EP0710052A1 - Starter électronique pour lampe fluorescente - Google Patents

Starter électronique pour lampe fluorescente Download PDF

Info

Publication number
EP0710052A1
EP0710052A1 EP95402406A EP95402406A EP0710052A1 EP 0710052 A1 EP0710052 A1 EP 0710052A1 EP 95402406 A EP95402406 A EP 95402406A EP 95402406 A EP95402406 A EP 95402406A EP 0710052 A1 EP0710052 A1 EP 0710052A1
Authority
EP
European Patent Office
Prior art keywords
circuit
voltage
preheating
current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402406A
Other languages
German (de)
English (en)
Other versions
EP0710052B1 (fr
Inventor
Marco Cabinet Ballot-Schmitt Bildgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics SA filed Critical SGS Thomson Microelectronics SA
Publication of EP0710052A1 publication Critical patent/EP0710052A1/fr
Application granted granted Critical
Publication of EP0710052B1 publication Critical patent/EP0710052B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices
    • H05B41/044Starting switches using semiconductor devices for lamp provided with pre-heating electrodes
    • H05B41/046Starting switches using semiconductor devices for lamp provided with pre-heating electrodes using controlled semiconductor devices

Definitions

  • the present invention relates to an electronic starter for a fluorescent lamp.
  • a choke is necessary to obtain the breakdown of the gas in the lamp: it is a question of causing an overvoltage at the terminals of the lamp to ionize the gas.
  • We are thus used to using an inductor and a device for short-circuiting the lamp and passing current. When the device is opened, the energy stored in the inductor turns into an overvoltage which causes the gas to snap.
  • the duration of the short circuit is normalized according to the category of lamp considered. For example, it is around 1.5 seconds for low-pressure fluorescent lamps. This standardization makes it possible to use a lamp from a given manufacturer with a choke from another manufacturer.
  • a commonly used type of choke is a bimetallic strip (with a suppressor capacitor in parallel). This inexpensive electromechanical device makes it possible to maintain a short circuit for the necessary time long enough to warm up (1.5 seconds), then open the short circuit to snap the gas.
  • the lamp does not always light up. As long as it is not lit (that is to say that the breakdown did not take place), the bimetallic strip will work: there is then a permanent flashing of the particularly troublesome lamp. In addition, the bimetallic strip may be damaged. Finally, the bimetallic strip opens for any current. It can therefore open at a time when the current is almost zero: the energy is then too small to be effective, or at a time when the current is very strong: the lamp itself can be damaged.
  • these circuits must measure the duration of the short circuit, to then control the opening of the electronic power device.
  • this preheating time is relatively long. We saw in an example, that it had a normalized value of 1.5 seconds (low pressure fluorescent lamp). It is not desirable to use a slow RC circuit to measure such a long duration, in particular by the need in this case to use a high resistance (1 Megaohm for example), which reduces noise immunity (high input impedance).
  • An object of the invention is to overcome these various drawbacks.
  • the gate control circuit further comprises a preheating current measurement circuit, for delivering a command to open the switch after reception of the end of preheating detection signal, upon detection of an optimal current of preheating in the lamp.
  • the gate control circuit comprises a gate circuit placed between the logic supply voltage and the current measurement circuit and controlled by the logic circuit to de-energize the current measurement circuit upon detection of the first voltage reference and energize it upon detection of the second voltage reference.
  • FIG. 1 represents a first variant of an electronic starter for a fluorescent lamp 1 according to the invention.
  • the choke is connected between a terminal e1 of a first filament f1 of the lamp and a terminal e2 of a second filament f2 of the lamp.
  • An inductor 2 has a first end 11 connected to the other terminal el 'of the first filament f1.
  • the lamp and inductance assembly is supplied at high alternating voltage, in the example 220 volts - 50 hertz, applied between the other end l2 of the inductor and the other terminal e2 'of the second filament f2 of the lamp.
  • the electronic choke comprises a power device 3 with gate control G, a gate control circuit 5 and an auxiliary power supply circuit AUX.
  • the gate control power device is connected between the terminals e1, e2 of the lamp, through a rectifier stage 4 with diodes.
  • the gate control power device may for example be a MOS transistor with field as shown in FIG. 1 (N-type MOSFET), or an insulated gate bipolar transistor, or a controlled gate thyristor, etc. In the following, it is designated by the general term of power switch. It is closed, similar to a short circuit if it passes current, or open, to allow the breakdown of gas in the lamp.
  • the gate G of the power switch is voltage-controlled by the gate control circuit 5, to make it conducting, equivalent to a short circuit for a determined period of preheating of the lamp, then open, to allow ignition.
  • An auxiliary power supply circuit AUX is connected in parallel on the power switch, to supply the logic voltage Vdd necessary for the gate control circuit 5 and maintain this voltage while the power switch is closed, equivalent to a short circuit . It comprises a capacitor C on a terminal from which it supplies the logic supply voltage Vdd necessary for the control circuit. More specifically, the auxiliary supply circuit comprises a resistor R connected between the high voltage and the terminal c1 of the capacitor which supplies the voltage Vdd, the other terminal c2 of the capacitor being connected to ground. A diode D1, having the anode connected to the high voltage and the cathode connected to the resistor, makes it possible to prevent the discharge of the capacitor C by the power switch, when the latter is closed (on).
  • the gate control circuit 5 comprises a circuit for measuring a time of determined preheating, during which the power switch 3 must be closed (on), equivalent to a short circuit.
  • the preheating time measurement circuit comprises a comparator 8 with two voltage references V1, V2 and a logic circuit 9.
  • This comparator receives as input the logic supply voltage Vdd, supplied by the auxiliary supply circuit, on the terminal c1 of the capacitor.
  • the comparator compares this input voltage Vdd with the voltage reference V1 or V2 applied by a switch 10 controlled by the logic circuit 9.
  • the voltage V2 is lower than the voltage V1. They both take their value between the maximum logic voltage supplied by the auxiliary supply circuit and a minimum voltage for which the electronics of the control circuit can still operate, for example between 15 and 3.5 volts.
  • the logic circuit 9 delivers a signal sl for detecting the start of preheating, upon detection by the comparator of an input voltage Vdd greater than or equal to the first voltage reference V1. It delivers a signal s2 for detecting the end of preheating, upon detection by the comparator of a logic voltage Vdd which has become less than or equal to the second voltage reference V2. Finally, it commands (s3) the switching of the voltage reference V1 or V2 to a voltage reference node v of the comparator 8.
  • the signals s1 and s2 are applied to a voltage control circuit (COM) of the gate G of the power switch. Depending on the signals s1 and s2, it applies an appropriate voltage VG to the gate G, to close the switch on the detection of the start of preheating (s1) or open it at the end of preheating detection (s2).
  • the signal s3 is applied to a switch 10 to switch the voltage V1 or the voltage V2 on a reference node of the comparator 8.
  • the voltage control circuit then advantageously comprises a diode 6 for switching the positive logic voltage on the gate G.
  • the signal s1 for detecting the start of preheating is then applied to the anode of diode 6, the cathode of the diode being connected to the grid G of the power switch.
  • the control circuit also includes a transistor 7 to force the gate to ground.
  • the end of preheating detection signal s2 is applied to the gate of transistor 7, one electrode of which is connected to gate G of the power switch, the other being connected to ground.
  • transistor 7 is a bipolar NPN transistor, passing for a positive gate voltage and off for a zero gate voltage.
  • a circuit 11 for measuring the lamp preheating current is advantageously provided for controlling (s2 ') the opening of the power switch, for an optimal value of current, after the detection of the end of preheating.
  • Measuring the current determines the appropriate time to open the short circuit after the necessary preheating time has elapsed. It is a question of having an optimum current to light the lamp: neither too small, to have a sufficient overvoltage, nor too large, not to damage the lamp.
  • a gate circuit 12 is placed between the logic supply voltage Vdd and the current measurement circuit 11. It is controlled by the end of preheating detection signal s2 to de-energize the current measurement circuit 11, during the preheating period, and to energize it, at the end of the preheating time, to control the opening of the switch for an optimal value of the preheating current flowing in the power switch (signal s2 ').
  • a current bypass circuit 13 is then provided between the power switch 3 and ground to derive a small current Ip to the current measurement circuit 11.
  • the current measurement circuit 11 comprises, as shown in FIG. 4, a current amplifier 14 followed by a comparator 15 to a current or power reference (ref) corresponding to an optimal preheating current Ip for lighting the lamp .
  • a current or power reference corresponding to an optimal preheating current Ip for lighting the lamp .
  • the comparator 15 will switch for a too high preheating current.
  • the comparator 15 is of the window type, such that it does not switches only for passing through the reference value ref with a negative slope. It could also be a comparator with a first comparison to zero: thus, we are sure not to switch for a too high current value.
  • the gate control circuit 5 preferably comprises a counter 16 of the number of lamp ignition tests ( Figures 1 and 2).
  • An incrementation (or decrementation) command is provided by the logic circuit 9. In the example, it is the detection signal for the start of preheating sl which is used, but one could as well use the detection signal end of preheating s2.
  • This counter delivers an inhibition signal inh to stop the choke, if the lamp is still not lit after a number n of authorized tests.
  • This signal inh is applied in the example to logic circuit 9.
  • the logic circuit 9 controls the switch 10 to apply the first voltage reference V1 to the comparator, for example equal to 15 volts.
  • the comparator sv output is at zero.
  • the logic circuit 9 then generates the preheating start detection signal s1 to control the closing of the power switch and switches the second voltage reference V2 to the comparator.
  • the counter 16 is incremented (or decremented by one).
  • the logic voltage Vdd is maintained by the auxiliary supply circuit, but the capacitance C is gradually discharged through the consumption current of the gate control circuit 5.
  • the comparator 8 will then detect the transition to the lower voltage V2.
  • the time after which the voltage Vdd will drop from the voltage V1 to the voltage V2 is perfectly known: it depends on the capacitance of the capacitor, the consumption current and of the voltage excursion (V2-V1).
  • the gate control circuit 5 uses its own consumption to precisely measure the duration of preheating.
  • the capacitor C of the auxiliary supply circuit is used both to maintain the logic voltage and to measure the necessary duration of preheating.
  • the logic circuit 9 activates the end of preheating detection signal s2, to re-energize the circuit 11 for measuring the preheating current. The latter can then command (s2 ') the blocking of the power switch for an optimum value of the lamp preheating current IP.
  • the logic circuit can then switch the first reference voltage V1 again, for a new preheating phase.
  • one seeks to have a small capacitor, one seeks to have the lowest possible current consumption.
  • provision is made to cut the logic supply to the circuits which are not useful during the measurement of the preheating time.
  • the supply of the current measurement circuit 11, which consumes a lot of current (amplifier), is thus cut off and which is only useful after the preheating time has elapsed.
  • the power supply is cut by the door circuit 12 controlled by the end of preheating detection signal s2, delivered by the logic circuit 9.
  • the counter 16 remains supplied, so as not to lose its information.
  • diode 6 to switch the positive voltage on the grid of the power switch, to turn it on is particularly advantageous, because this grid voltage is then maintained, regardless of the level of the logic supply voltage then Vdd. It is thus possible to use a large voltage excursion of the logic supply voltage. We are only limited by the classical logic of the control circuit (and not by the minimum gate voltage necessary to keep the switch closed).
  • the choke according to the invention thus makes it possible to obtain a small consumption current, of the order of a micro-ampere, and a large voltage excursion (10 volts for example) authorizing the use of a small capacitor, with a capacity of the order of microfarad.
  • the gate control circuit 5 comprises a current generator, with current mirrors. In this way, a current is imposed in each current branch of the gate control circuit. There is no longer any need to measure the current at the end of manufacture to adjust the reference values (reference voltages, capacity). In dynamic operation, the current is imposed and the preheating time measured very reliably.
  • the current generator comprises a reference branch 17 with a reference load element 18 (resistance) and a transistor 19 mounted as a diode with its drain connected to its gate, and transistors of the same type (20 to 23), all having their gate controlled by the gate of the transistor of the reference branch: the respective current in each transistor is identical to that imposed in the reference branch, except for the geometry ratio of the transistors.
  • a reference current is imposed in this way on the circuit for measuring the preheating current, which can also be very useful for a particularly reliable measurement of the preheating current.
  • FIG. 2 To prevent the starter from continuing to operate once the lamp is on, provision is made (FIG. 2) preferably for a zener diode D2 between the high voltage and the auxiliary power supply circuit AUX, with a high zener threshold, so as to bring a zero voltage across the auxiliary power circuit when the lamp is on.
  • the switch 10 of the voltages V1, V2 on the voltage reference node v of the comparator 8 comprises in one example (FIG. 2) an N-type MOS transistor 24, connected between the voltage reference V2 and the reference node v, and controlled in the state passing on its grid by the signal s3 delivered by the logic circuit 9, upon detection by the comparator 8 of an input voltage greater than or equal to V1.
  • the voltage reference V1 is directly connected to the reference node v. Thus, when the transistor 24 is blocked, it is the voltage V1 which is applied. When the transistor 24 is on, the voltage V2 lower than V1 is imposed on the node v.
  • the logic of circuit 9 is simple, dependent on the technologies selected for the various elements that it controls.
  • the circuit 9 comprises a power switch 3, constituted by a MOSFET transistor of type N. It also includes a gate circuit 12 with MOS transistor of type P and a switch 10 of voltage type MOS transistor 24 of type N, the signals s1, s2 and s3 are a copy of the signal sv of the comparator output 8.
  • the logic circuit 9 preferably comprises an inhibition transistor 25 for transmitting the signal sv to the outputs s1, s2 and s3 of the logic circuit. This inhibition transistor is controlled on its gate by the inhibition signal inh of the counter 16 or of an ignition detection circuit not shown.
  • the comparator 8 When the comparator 8 detects an input voltage Vdd greater than or equal to V1, its output sv goes to 1. If the inhibition transistor 25 is on (ignition test authorized), the signals s1, s2 and s3 follow this transition: the corresponding logic voltage level is switched by the diode 6 on the gate G of the power switch 3; the door circuit 12 is blocked, thereby putting the current measurement circuit 11 off; the transistor 24 turns on, which imposes the reference voltage V2 on the node v of the comparator 8.
  • the entire gate control circuit 5 can be easily produced in the form of an integrated electronic circuit, which is a definite advantage.
  • control circuit comprises a generator with current mirrors as shown in FIG. 3, that the reference resistor 18 is transferred outside the integrated circuit. This optionally makes it possible to easily adjust this value, depending on the desired preheating time and above all to use high precision resistors, which the integrated technology does not allow.
  • the electronic starter according to the invention using its consumption current during the preheating period, to perform a precise time measurement based on its own consumption characteristics (in particular discharge of the capacitor), allows particularly simple and reliable control of the power switch.
  • the capacity of the holding capacitor is of the order of microfarad. We no longer have to use electrochemical capacitors, which makes it possible to extend the life of these starters.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

Un starter électronique d'une lampe fluorescente (1) comprend un commutateur de puissance (3), commandé sur sa grille (G) par un circuit de commande de grille (5) et un circuit d'alimentation auxiliaire (AUX) qui fournit la tension logique (Vdd) nécessaire au circuit de commande de grille sur une borne (b1) d'un condensateur C.
Le circuit de commande de grille comprend un comparateur (8) à deux références de tension pour mesurer une durée de préchauffage de la lampe, l'entrée de ce comparateur recevant la tension logique fournie par le condensateur, la sortie du comparateur servant à commander la fermeture ou l'ouverture du commutateur.
Dans un perfectionnement, on prévoit un circuit (11) de mesure du courant de préchauffage pour détecter le courant optimum pour allumer la lampe, une fois la durée nécessaire de préchauffage écoulée.

Description

  • La présente invention concerne un starter électronique pour une lampe fluorescente.
  • Le comportement électrique des lampes fluorescentes qui contiennent des gaz sous pression (néon, argon) est similaire à celui d'une diode zéner en avalanche, avec une résistance dans le gaz qui devient très faible et négative après le claquage.
  • Un starter est nécessaire pour obtenir le claquage du gaz dans la lampe : il s'agit de provoquer une surtension aux bornes de la lampe pour ioniser le gaz. On a ainsi l'habitude d'utiliser une inductance et un dispositif pour court-circuiter la lampe et faire passer du courant. Quand on ouvre le dispositif, l'énergie emmagasinée dans l'inductance se transforme en une surtension qui provoque le claquage du gaz.
  • Il est aussi préférable de préchauffer les filaments de la lampe afin de les porter à une température à laquelle ils émettent facilement des électrons.
  • En pratique, la durée du court-circuit est normalisée selon la catégorie de lampe considérée. Par exemple, elle est de l'ordre de 1,5 seconde pour les lampes fluorescentes à basse pression. Cette normalisation permet d'utiliser une lampe d'un constructeur donné avec un starter d'un autre constructeur.
  • Un type de starter couramment utilisé est un bilame (avec un condensateur d'antiparasitage en parallèle). Ce dispositif électromécanique peu coûteux permet de maintenir un court-circuit pendant la durée nécessaire assez longue de préchauffage (1,5 seconde), puis d'ouvrir le court-circuit pour claquer le gaz.
  • Cependant, la lampe ne s'allume pas toujours. Tant qu'elle n'est pas allumée (c'est à dire que le claquage n'a pas eu lieu), le bilame va fonctionner : on a alors un clignotement permanent de la lampe particulièrement gênant. De plus, le bilame peut être endommagé. Enfin, le bilame s'ouvre pour n'importe quel courant. Il peut donc s'ouvrir à un moment où le courant est presque nul : l'énergie est alors trop petite pour être efficace, ou à un moment où le courant est très fort : la lampe peut elle-même être endommagée.
  • Pour pallier ces inconvénients, on a cherché à utiliser des circuits électroniques utilisant en général un triac ou un thyristor comme dispositif de puissance et un compteur pour limiter le nombre d'essais d'allumage de la lampe.
  • Ces circuits consomment beaucoup de courant, nécessitant une très forte capacité pour le condensateur de maintien de la tension logique nécessaire à la commande du dispositif électronique de puissance (triac) et au comptage, pendant toute la durée du court-circuit.
  • De plus, ces circuits doivent mesurer la durée du court-circuit, pour commander ensuite l'ouverture du dispositif électronique de puissance. Or cette durée de préchauffage est relativement longue. On a vu dans un exemple, qu'elle avait une valeur normalisée de 1,5 seconde (lampe fluorescente à basse pression). Il n'est pas souhaitable d'utiliser un circuit RC lent pour mesurer une si longue durée, notamment par la nécessité dans ce cas d'utiliser une résistance élevée (1 Megaohm par exemple), qui diminue l'immunité au bruit (forte impédance d'entrée).
  • On préfère utiliser un circuit RC assez rapide, suivi d'un compteur de grosse capacité pour mesurer la durée voulue.
  • Ces circuits électroniques sont cependant de grands consommateurs de courant, et nécessitent en pratique un condensateur de maintien de la tension logique de forte capacité, de l'ordre de 100 ou 1000 microfarads par exemple, de type électrochimique, ce qui par ailleurs fragilise ces circuits du fait de la durée de vie limitée de ces condensateurs.
  • Un objet de l'invention est de pallier ces différents inconvénients.
  • Telle qu'elle est caractérisée, l'invention concerne un starter électronique d'une lampe fluorescente, comprenant un commutateur de puissance en parallèle sur la lampe et alimenté en haute tension, un circuit de commande de grille dudit commutateur comportant un circuit de mesure d'un temps de préchauffage déterminé et un circuit d'alimentation auxiliaire en parallèle sur ledit commutateur et comprenant un condensateur, pour fournir une tension d'alimentation logique au circuit de commande de grille sur une borne dudit condensateur.
    Selon l'invention, le circuit de mesure du temps de préchauffage comprend un comparateur à deux références de tension, une première référence de tension supérieure à une deuxième référence de tension, le comparateur ayant une entrée connectée à la borne du condensateur, et une sortie connectée à un circuit logique pour commuter la première référence de tension sur le comparateur à la mise sous haute tension, et pour :
    • sur détection d'une tension d'entrée correspondant à la première référence de tension, délivrer un signal de détection du début du préchauffage, pour commander la fermeture du commutateur de puissance et commuter la deuxième référence de tension sur le comparateur,
    • sur détection d'une tension d'entrée correspondant à la deuxième référence, délivrer un signal de détection de fin du préchauffage, pour commander l'ouverture du commutateur de puissance.
  • Avantageusement, le circuit de commande de grille comprend en outre un circuit de mesure de courant de préchauffage, pour délivrer un signal de commande d'ouverture du commutateur après réception du signal de détection de fin de préchauffage, sur détection d'un courant optimal de préchauffage dans la lampe.
  • Selon une autre caractéristique de l'invention, pour réduire le courant de consommation pendant la mesure du temps de préchauffage, le circuit de commande de grille comprend un circuit porte placé entre la tension d'alimentation logique et le circuit de mesure de courant et commandé par le circuit logique pour mettre hors tension le circuit de mesure de courant sur détection de la première référence de tension et la mettre sous tension sur détection de la deuxième référence de tension.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit, faite à titre indicatif et nullement limitatif et en référence aux dessins annexés, dans lesquels :
    • la figure 1 est une première variante d'un schéma d'un starter électronique appliqué à une lampe fluorescente selon l'invention,
    • la figure 2 est une deuxième variante d'un schéma d'un starter électronique selon l'invention,
    • la figure 3 est un schéma d'un circuit de commande de grille avec un circuit de génération de courant selon l'invention et
    • la figure 4, est un schéma d'un circuit de mesure de courant utilisé dans l'invention.
  • La figure 1 représente une première variante d'un starter électronique pour une lampe fluorescente 1 selon l'invention. Le starter est connecté entre une borne e1 d'un premier filament f1 de la lampe et une borne e2 d'un deuxième filament f2 de la lampe. Une inductance 2 a une première extrémité l1 connectée à l'autre borne el' du premier filament f1. L'ensemble lampe et inductance est alimenté sous haute tension alternative, dans l'exemple 220 volts - 50 hertz, appliquée entre l'autre extrémité l2 de l'inductance et l'autre borne e2' du deuxième filament f2 de la lampe.
  • Le starter électronique comprend un dispositif de puissance 3 à commande de grille G, un circuit 5 de commande de grille et un circuit d'alimentation auxiliaire AUX.
  • Le dispositif de puissance à commande de grille est connecté entre les bornes e1, e2 de la lampe, à travers un étage redresseur 4 à diodes.
  • Le dispositif de puissance à commande de grille peut être par exemple un transistor MOS à effet de champ comme représenté sur la figure 1 (MOSFET de type N), ou un transistor bipolaire à grille isolée, ou un thyristor à grille contrôlée... Dans la suite, on le désigne par le terme général de commutateur de puissance. Il est fermé, analogue à un court-circuit s'il fait passer du courant, ou ouvert, pour permettre le claquage du gaz dans la lampe.
  • La grille G du commutateur de puissance est commandée en tension par le circuit 5 de commande de grille, pour le rendre passant, équivalent à un court-circuit pendant une durée déterminée de préchauffage de la lampe, puis ouvert, pour permettre l'allumage.
  • Un circuit d'alimentation auxiliaire AUX est connecté en parallèle sur le commutateur de puissance, pour fournir la tension logique Vdd nécessaire au circuit 5 de commande de grille et maintenir cette tension pendant que le commutateur de puissance est fermé, équivalent à un court-circuit. Il comprend un condensateur C sur une borne duquel il fournit la tension d'alimentation logique Vdd nécessaire au circuit de commande. Plus précisément, le circuit d'alimentation auxiliaire comprend une résistance R connectée entre la haute tension et la borne c1 du condensateur qui fournit la tension Vdd, l'autre borne c2 du condensateur étant reliée à la masse. Une diode D1, ayant l'anode connectée à la haute tension et la cathode connectée à la résistance permet d'empêcher la décharge du condensateur C par le commutateur de puissance, quand ce dernier est fermé (passant).
  • Selon l'invention, le circuit 5 de commande de grille comprend un circuit de mesure d'un temps de préchauffage déterminé, pendant lequel le commutateur de puissance 3 doit être fermé (passant), équivalent à un court-circuit.
  • Le circuit de mesure du temps de préchauffage comprend un comparateur 8 à deux références de tension V1, V2 et un circuit logique 9. Ce comparateur reçoit en entrée la tension d'alimentation logique Vdd, fournie par le circuit d'alimentation auxiliaire, sur la borne c1 du condensateur. Le comparateur compare cette tension d'entrée Vdd à la référence de tension V1 ou V2 appliquée par un commutateur 10 commandé par le circuit logique 9. La tension V2 est inférieure à la tension V1. Elles prennent toutes les deux leur valeur entre la tension logique maximale fournie par le circuit d'alimentation auxiliaire et une tension minimale pour laquelle l'électronique du circuit de commande peut encore fonctionner, par exemple entre 15 et 3,5 volts.
  • Le circuit logique 9 délivre un signal sl de détection de début de préchauffage, sur détection par le comparateur d'une tension d'entrée Vdd supérieure ou égale à la première référence de tension V1. Il délivre un signal s2 de détection de fin de préchauffage, sur détection par le comparateur d'une tension logique Vdd devenue inférieure ou égale à la deuxième référence de tension V2. Il commande enfin (s3) la commutation de la référence de tension V1 ou V2 sur un noeud v de référence de tension du comparateur 8.
  • Les signaux s1 et s2 sont appliqués à un circuit de commande en tension (COM) de la grille G du commutateur de puissance. En fonction des signaux s1 et s2, il applique une tension VG appropriée sur la grille G, pour fermer le commutateur sur la détection de début de préchauffage (s1) ou l'ouvrir sur la détection de fin de préchauffage (s2). Le signal s3 est appliqué à un commutateur 10 pour commuter la tension V1 ou la tension V2 sur un noeud de référence du comparateur 8.
  • Dans l'exemple représenté, où le commutateur de puissance est un transistor MOSFET de type N, il faut une tension logique positive sur la grille G pour fermer le commutateur (transistor passant) et une tension logique nulle pour ouvrir le commutateur (transistor bloqué). Dans cet exemple, le circuit de commande en tension comprend alors avantageusement une diode 6 pour commuter la tension logique positive sur la grille G. Le signal s1 de détection de début de préchauffage est alors appliqué sur l'anode de la diode 6, la cathode de la diode étant connectée à la grille G du commutateur de puissance. Le circuit de commande comprend aussi un transistor 7 pour forcer la grille à la masse. Le signal s2 de détection de fin de préchauffage est appliqué sur la grille du transistor 7, dont une électrode est connectée sur la grille G du commutateur de puissance, l'autre étant reliée à la masse. Dans l'exemple, le transistor 7 est un transistor bipolaire de type NPN, passant pour une tension de grille positive et bloqué pour une tension de grille nulle.
  • Dans un perfectionnement représenté sur la figure 2, un circuit 11 de mesure du courant de préchauffage de la lampe est avantageusement prévu pour commander (s2') l'ouverture du commutateur de puissance, pour une valeur optimale de courant, après la détection de la fin du préchauffage.
  • La mesure du courant permet de déterminer le moment opportun pour ouvrir le court-circuit, une fois la durée nécessaire de préchauffage écoulée. Il s'agit d'avoir un courant optimum pour allumer la lampe : ni trop petit, pour avoir une surtension suffisante, ni trop grand, pour ne pas endommager la lampe.
  • De préférence, un circuit porte 12 est placé entre la tension d'alimentation logique Vdd et le circuit 11 de mesure de courant. Il est commandé par le signal s2 de détection de fin de préchauffage pour mettre hors tension le circuit 11 de mesure de courant, pendant la durée de préchauffage, et pour le mettre sous tension, à expiration de la durée de préchauffage, pour commander l'ouverture du commutateur pour une valeur optimale du courant de préchauffage passant dans le commutateur de puissance (signal s2').
  • Un circuit de dérivation 13 de courant est alors prévu entre le commutateur de puissance 3 et la masse pour dériver un petit courant Ip vers le circuit 11 de mesure de courant.
  • Le circuit 11 de mesure de courant comporte, comme représenté à la figure 4, un amplificateur de courant 14 suivi d'un comparateur 15 à une référence de courant ou de puissance (ref) correspondant à un courant Ip de préchauffage optimal pour allumer la lampe. Mais, il se pose un problème de mesure du courant de préchauffage, car la mise sous tension se fait à n'importe quelle valeur du courant de préchauffage. Si le circuit de mesure de courant est remis sous tension à un moment où le courant est croissant et supérieur à la référence : le comparateur 15 va basculer pour un courant de préchauffage trop élevé. Pour pallier cet inconvénient, le comparateur 15 est du type à fenêtre, tel qu'il ne bascule que pour le passage par la valeur de référence ref avec une pente négative. Ce pourrait aussi être un comparateur avec une première comparaison à zéro : ainsi, on est sûr de ne pas basculer pour une valeur de courant trop fort.
  • Le circuit 5 de commande de grille comprend de préférence un compteur 16 du nombre d'essais d'allumage de la lampe (figures 1 et 2). Une commande d'incrémentation (ou de décrémentation) est fournie par le circuit logique 9. Dans l'exemple, c'est le signal de détection de début de préchauffage sl qui est utilisé, mais on pourrait aussi bien utiliser le signal de détection de fin de préchauffage s2.
  • Ce compteur délivre un signal d'inhibition inh pour stopper le starter, si la lampe n'est toujours pas allumée au bout d'un nombre n d'essais autorisés. Ce signal inh est appliqué dans l'exemple au circuit logique 9.
  • Le principe de fonctionnement du starter selon l'invention va maintenant être expliqué, en relation avec la figure 2.
  • A la mise sous haute tension, le circuit logique 9 commande le commutateur 10 pour appliquer la première référence de tension V1 sur le comparateur, par exemple égale à 15 volts. La sortie sv du comparateur est à zéro.
  • La détection par le comparateur d'une tension logique Vdd qui devient supérieure ou égale à V1, fournit le point de départ de la phase de préchauffage de la lampe : la sortie sv du comparateur passe à 1.
  • Le circuit logique 9 génère alors le signal s1 de détection de début de préchauffage pour commander la fermeture du commutateur de puissance et commute la deuxième référence de tension V2 sur le comparateur. Le compteur 16 est incrémenté (ou décrémenté d'une unité).
  • Le signal s1 étant appliqué sur l'anode de la diode 6, celle-ci commute alors le niveau logique correspondant (15 volts à ce moment) sur la grille G du commutateur de puissance 3. Un courant de préchauffage Ip passe alors dans le commutateur de puissance 3. La tension aux bornes du commutateur de puissance chute pour devenir pratiquement nulle.
  • La tension logique Vdd est maintenue par le circuit d'alimentation auxiliaire, mais la capacité C se décharge progressivement, à travers le courant de consommation du circuit 5 de commande de grille. Le comparateur 8 va alors détecter le passage à la tension inférieure V2.
  • Comme le courant de consommation du circuit de commande de grille est parfaitement connu, le temps au bout duquel la tension Vdd va chuter de la tension V1 à la tension V2 est parfaitement connu : il dépend de la capacité du condensateur, du courant de consommation et de l'excursion de tension (V2-V1).
  • Ainsi, selon l'invention, le circuit 5 de commande de grille utilise sa propre consommation pour mesurer précisément la durée de préchauffage. Et le condensateur C du circuit d'alimentation auxiliaire sert à la fois pour maintenir la tension logique et pour mesurer la durée nécessaire de préchauffage.
  • Quand le comparateur de tension 8 détecte une tension logique Vdd correspondant à la deuxième référence de tension V2, le circuit logique 9 active le signal de détection de fin de préchauffage s2, pour remettre sous tension le circuit 11 de mesure du courant de préchauffage. Ce dernier peut alors commander (s2') le blocage du commutateur de puissance pour une valeur optimum du courant IP de préchauffage de la lampe.
  • Le circuit logique peut ensuite commuter à nouveau la première tension de référence V1, pour une nouvelle phase de préchauffage.
  • Comme on cherche de préférence à avoir un petit condensateur, on cherche à avoir une consommation en courant la plus faible possible. Dans l'invention, on prévoit de couper l'alimentation logique des circuits non utiles pendant la mesure du temps de préchauffage.
  • Dans l'exemple représenté sur la figure 2, on coupe ainsi l'alimentation du circuit 11 de mesure de courant, très consommateur en courant (amplificateur), et qui n'a d'utilité qu'une fois la durée de préchauffage écoulée. La coupure d'alimentation est réalisée par le circuit porte 12 commandé par le signal de détection de fin de préchauffage s2, délivré par le circuit logique 9.
  • Par contre, le compteur 16 reste alimenté, pour ne pas perdre son information.
  • En pratique, il suffit alors, en fabrication, de mesurer précisément le courant consommé dans le circuit de commande de grille, tel qu'utilisé pendant la période de mesure, pour déterminer la valeur de la capacité du condensateur C et la valeur des références de tension V1 et V2, pour pouvoir mesurer la durée de préchauffage. Dans le cas de l'utilisation du circuit de mesure de courant, il faut aussi tenir compte de la consommation de ce dernier, qui est mis sous tension après la détection de fin de préchauffage, sachant que la détection du courant optimum nécessite au plus 1 à 2 alternances de courant.
  • L'utilisation de la diode 6 pour commuter la tension positive sur la grille du commutateur de puissance, pour le rendre passant est particulièrement avantageuse, car cette tension de grille est alors maintenue, quel que soit ensuite le niveau de la tension d'alimentation logique Vdd. On peut ainsi utiliser une grande excursion en tension de la tension d'alimentation logique. On est seulement limité par la logique classique du circuit de commande (et non par la tension de grille minimum nécessaire pour maintenir le commutateur fermé).
  • Le starter selon l'invention permet ainsi d'obtenir un courant de consommation petit, de l'ordre du micro-ampère, et une grande excursion de tension (10 volts par exemple) autorisant l'utilisation d'un petit condensateur, avec une capacité de l'ordre du microfarad.
  • Dans un perfectionnement représenté à la figure 3, le circuit 5 de commande de grille comprend un générateur de courant, à miroirs de courant. De cette manière, on impose un courant dans chaque branche de courant du circuit de commande de grille. Il n'y a plus besoin de mesurer le courant en fin de fabrication pour régler les valeurs de référence (tensions de référence, capacité). En fonctionnement dynamique, le courant est imposé et le temps de préchauffage mesuré de manière très fiable.
  • Le générateur de courant comprend une branche de référence 17 avec un élément de charge de référence 18 (résistance) et un transistor 19 monté en diode avec son drain relié à sa grille, et des transistors de même type (20 à 23), ayant tous leur grille commandée par la grille du transistor de la branche de référence : le courant respectif dans chaque transistor est identique à celui imposé dans la branche de référence, au rapport de géométrie des transistors près.
  • Dans l'exemple, on impose de cette manière un courant de référence au circuit de mesure du courant de préchauffage, ce qui peut aussi être très utile pour une mesure particulièrement fiable du courant de préchauffage.
  • Enfin, pour éviter que le starter continue à fonctionner une fois la lampe allumée, on prévoit (figure 2) de préférence une diode zéner D2 entre la haute tension et le circuit d'alimentation auxiliaire AUX, avec un seuil zéner élevé, de manière à ramener une tension nulle aux bornes du circuit d'alimentation auxiliaire quand la lampe est allumée.
  • Dans un exemple, pour une lampe alimentée en 220 volts, et qui a 100 volts à ses bornes quand elle est allumée, il suffit de prendre un seuil zéner de 120 volts.
  • D'autres dispositifs de coupure sont possibles. On peut ainsi prévoir un circuit de lecture de la tension aux bornes du commutateur de puissance, pour inhiber le circuit logique 9.
  • Enfin, le compteur lui-même permet d'arrêter, comme on l'a vu, le starter.
  • Le commutateur 10 des tensions V1, V2 sur le noeud v de référence de tension du comparateur 8 comprend dans un exemple (figure 2) un transistor MOS 24 de type N, connecté entre la référence de tension V2 et le noeud v de référence, et commandé à l'état passant sur sa grille par le signal s3 délivré par le circuit logique 9, sur détection par le comparateur 8 d'une tension d'entrée supérieure ou égale à V1. La référence de tension V1 est directement connectée au noeud de référence v. Ainsi, quand le transistor 24 est bloqué, c'est la tension V1 qui est appliquée. Quand le transistor 24 est passant, la tension V2 inférieure à V1 s'impose sur le noeud v.
  • La logique du circuit 9 est simple, dépendante des technologies retenues pour les différents éléments qu'elle commande. Dans l'exemple plus particulièrement décrit en relation avec la figure 2, le circuit 9 comprend un commutateur 3 de puissance, constitué par un transistor MOSFET de type N. Il comprend aussi un circuit porte 12 à transistor MOS de type P et un commutateur 10 de tension à transistor MOS 24 de type N, les signaux s1, s2 et s3 sont une recopie du signal sv de sortie du comparateur 8. Le circuit logique 9 comprend de préférence un transistor d'inhibition 25 pour transmettre le signal sv sur les sorties s1, s2 et s3 du circuit logique. Ce transistor d'inhibition est commandé sur sa grille par le signal d'inhibition inh du compteur 16 ou d'un circuit de détection d'allumage non représenté.
  • Quand le comparateur 8 détecte une tension d'entrée Vdd supérieure ou égale à V1, sa sortie sv passe à 1. Si le transistor d'inhibition 25 est passant (essai d'allumage autorisé), les signaux s1, s2 et s3 suivent cette transition : le niveau de tension logique correspondant est commuté par la diode 6 sur la grille G du commutateur de puissance 3; le circuit porte 12 est bloqué, mettant ainsi le circuit 11 de mesure de courant hors tension; le transistor 24 devient passant, ce qui impose la tension de référence V2 sur le noeud v du comparateur 8. Quand le comparateur détecte une tension d'entrée inférieure ou égale à V2, sa sortie sv passe à 0 : le circuit porte 12 est rendu passant, remettant le circuit 11 de mesure du courant sous tension et le transistor 24 devient bloqué, ce qui impose à nouveau la tension de référence V1 sur le noeud de référence de tension du comparateur 8.
  • L'ensemble du circuit 5 de commande de grille peut être aisément réalisé sous forme d'un circuit électronique intégré, ce qui est un avantage certain.
  • Dans un perfectionnement, on prévoira dans le cas où le circuit de commande comprend un générateur à miroirs de courant comme représenté à la figure 3, que la résistance de référence 18 est reportée à l'extérieur du circuit intégré. Ceci permet éventuellement d'ajuster très facilement cette valeur, selon la durée de préchauffage voulue et surtout d'utiliser des résistances de grande précision, ce que ne permet pas la technologie intégrée.
  • Le starter électronique selon l'invention, en utilisant son courant de consommation pendant la période de préchauffage, pour effectuer une mesure de temps précise basée sur ses caractéristiques propres de consommation (notamment décharge du condensateur), permet une commande particulièrement simple et fiable du commutateur de puissance.
  • De plus, il permet une consommation réduite et contrôlée, et une capacité beaucoup plus petite que celles nécessaires dans les circuits de l'état de la technique.
  • Dans un exemple, la capacité du condensateur de maintien est de l'ordre du microfarad. On n'est plus obligé d'utiliser des condensateurs électrochimiques, ce qui permet d'allonger la durée de vie de ces starters.

Claims (14)

  1. Starter électronique d'une lampe fluorescente, comprenant un commutateur de puissance (3) en parallèle sur la lampe (1) et alimenté en haute tension, un circuit de commande de grille (5) dudit commutateur comportant un circuit de mesure d'un temps de préchauffage déterminé et un circuit d'alimentation auxiliaire (AUX) en parallèle sur ledit commutateur et comprenant un condensateur (C) pour fournir une tension d'alimentation logique (Vdd) au circuit de commande de grille sur une borne (c1) dudit condensateur, caractérisé en ce que le circuit de mesure du temps de préchauffage comprend un comparateur pour comparer la tension sur la borne (c1) dudit condensateur à une première référence de tension pour délivrer un signal de détection de début de préchauffage commandant la fermeture du commutateur de puissance et pour comparer la tension sur la borne (c1) dudit condensateur à une deuxième référence de tension pour délivrer un signal de fin du préchauffage commandant l'ouverture du commutateur de puissance.
  2. Starter électronique selon la revendication 1, caractérisé en ce que le circuit (5) de commande de grille comprend en outre un circuit (11) de mesure du courant de préchauffage pour délivrer un signal de commande d'ouverture du commutateur (s2') après réception du signal de détection de fin de préchauffage (s2), sur détection d'un courant optimal de préchauffage dans la lampe.
  3. Starter électronique selon la revendication 2, caractérisé en ce que le circuit (5) de commande de grille comprend un circuit porte (12) placé entre la tension d'alimentation logique (Vdd) et le circuit (11) de mesure de courant et commandé par le circuit logique (9) pour mettre hors-tension le circuit de mesure de courant sur détection de la première référence de tension (V1) et pour le mettre sous-tension sur détection de la deuxième référence de tension (V2).
  4. Starter électronique selon la revendication 1 ou 2, caractérisé en ce que le circuit (5) de commande de grille comprend une diode (6), dont la cathode est connectée à la grille (G) du commutateur de puissance, et l'anode reçoit le signal de détection de début de préchauffage (s1), pour commuter une tension logique positive sur la grille (G) du commutateur de puissance, pour commander sa fermeture.
  5. Starter électronique selon la revendication 4, caractérisé en ce que le circuit (5) de commande de grille comprend un premier transistor (7) connecté entre la grille (G) du commutateur de puissance et la masse, et recevant sur sa grille le signal de détection de fin de préchauffage (s2) délivré par le circuit logique (9) ou le signal de commande d'ouverture (s2') délivré par le circuit (11) de mesure de courant, pour appliquer une tension nulle sur la grille (G) du commutateur de puissance, pour commander son ouverture.
  6. Starter électronique selon la revendication 2, caractérisé en ce que le circuit (11) de mesure du courant de préchauffage (Ip) de la lampe comprend un amplificateur (14) d'un courant dérivé (Ip) et un comparateur (15) à une valeur de référence (ref) de courant.
  7. Starter électronique selon la revendication 2, caractérisé en ce que le circuit (11) de mesure du courant de préchauffage (Ip) comprend un amplificateur (14) d'un courant dérivé et un comparateur (15) à une valeur de référence (ref) de puissance.
  8. Starter électronique selon la revendication 6 ou 7, caractérisé en ce que le comparateur à une valeur de référence (15) est un comparateur à fenêtre en sorte qu'il bascule pour un passage à pente négative de la valeur de référence.
  9. Starter électronique selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit (5) de commande de grille comprend un circuit de génération d'un courant déterminé, à miroirs de courant, avec une branche de référence de courant comprenant une résistance de référence (18).
  10. Starter électronique selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit logique (9) commute à nouveau la première référence de tension (V1) sur le comparateur (8) sur détection d'une tension d'entrée correspondant à la deuxième référence, pour une nouvelle étape de préchauffage.
  11. Starter électronique selon la revendication 10, caractérisé en ce que le circuit (5) de commande de grille comprend en outre un compteur (16) qui reçoit une commande de comptage/décomptage pour chaque nouvelle étape de préchauffage, pour désactiver le circuit (5) de commande de grille au bout d'un nombre déterminé de commandes de préchauffage.
  12. Starter électronique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une diode zéner (D2) est placée entre la haute tension et le circuit d'alimentation auxiliaire (AUX), pour mettre hors tension le starter quand la lampe est allumée.
  13. Starter électronique selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit (5) de commande de grille est un circuit intégré.
  14. Starter électronique selon la revendication 9 ou 11, caractérisé en ce que le circuit (5) de commande de grille est réalisé dans un même circuit intégré, sauf la résistance de référence (18) qui est placée à l'extérieur.
EP95402406A 1994-10-28 1995-10-26 Starter électronique pour lampe fluorescente Expired - Lifetime EP0710052B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9413009A FR2726426B1 (fr) 1994-10-28 1994-10-28 Starter electronique pour lampe fluorescente
FR9413009 1994-10-28

Publications (2)

Publication Number Publication Date
EP0710052A1 true EP0710052A1 (fr) 1996-05-01
EP0710052B1 EP0710052B1 (fr) 1997-05-28

Family

ID=9468372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402406A Expired - Lifetime EP0710052B1 (fr) 1994-10-28 1995-10-26 Starter électronique pour lampe fluorescente

Country Status (5)

Country Link
US (1) US5616992A (fr)
EP (1) EP0710052B1 (fr)
JP (1) JP2951578B2 (fr)
DE (1) DE69500324T2 (fr)
FR (1) FR2726426B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316245A (en) * 1996-08-08 1998-02-18 Matsushita Electric Ind Co Ltd Fluorescent lamp starter circuit
WO1998017081A2 (fr) * 1996-10-17 1998-04-23 Bischl Electronic Gmbh Starter de lampe a decharge a courant continu et appareil de protection a courant continu pour lampe a decharge
FR2771588A1 (fr) * 1997-11-21 1999-05-28 Sgs Thomson Microelectronics Circuit de commande de tube fluorescent
CN107733004A (zh) * 2017-09-26 2018-02-23 大唐终端技术有限公司 多平台硬件动态充电指示及充电闸断装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936356A (en) * 1998-09-22 1999-08-10 Interballast Inc. Fluorescent lamp flashing circuit and control
US6478569B1 (en) * 1999-12-10 2002-11-12 Slipmate Company Hybrid injection molding apparatus for enhancing cosmetic appearance of molded articles
US6603275B2 (en) * 2001-06-05 2003-08-05 Chen-Kuo Ku Electronic starter for fluorescent lamps
EP1442636A1 (fr) 2001-10-25 2004-08-04 Koninklijke Philips Electronics N.V. Demarreur de securite pour lampes fluorescentes
US7560867B2 (en) * 2006-10-17 2009-07-14 Access Business Group International, Llc Starter for a gas discharge light source
US8395333B2 (en) * 2009-02-13 2013-03-12 Koninklijke Philips Electronics N.V. Electro magnetic ballast for a gas discharge lamp
US8773037B2 (en) * 2010-02-01 2014-07-08 Empower Electronics, Inc. Ballast configured to compensate for lamp characteristic changes
CN114340074A (zh) * 2021-12-19 2022-04-12 安徽庆宇光电科技有限公司 一种用于doas技术中的氘灯电源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078790A2 (fr) * 1981-11-02 1983-05-11 Franz Wittmann Dispositif de circuit pour l'ignition électronique de lampes à décharge de gaz
EP0520735A1 (fr) * 1991-06-27 1992-12-30 Lighting Electronics Limited Starter électronique pour lampes fluorescentes
DE4216716C1 (de) * 1992-05-20 1993-10-14 Siemens Ag Schaltungsanordnung zum Starten einer vorheizbaren Entladungslampe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1026817A (fr) * 1972-05-09 1978-02-21 Michel Remery Circuit d'allumage et d'alimentation pour lampes a decharge
US4673844A (en) * 1985-09-30 1987-06-16 Texas Instruments Incorporated Starter circuit for a fluorescent tube lamp
US5003230A (en) * 1989-05-26 1991-03-26 North American Philips Corporation Fluorescent lamp controllers with dimming control
FR2656965B1 (fr) * 1990-01-09 1995-01-20 Sgs Thomson Microelectronics Commande et controle d'un commutateur de puissance.
ATE162922T1 (de) * 1992-10-28 1998-02-15 Knobel Lichttech Verfahren und schaltungsanordnung zum zünden von leuchtstofflampen bei vorbestimmter temperatur der lampenkathoden

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078790A2 (fr) * 1981-11-02 1983-05-11 Franz Wittmann Dispositif de circuit pour l'ignition électronique de lampes à décharge de gaz
EP0520735A1 (fr) * 1991-06-27 1992-12-30 Lighting Electronics Limited Starter électronique pour lampes fluorescentes
DE4216716C1 (de) * 1992-05-20 1993-10-14 Siemens Ag Schaltungsanordnung zum Starten einer vorheizbaren Entladungslampe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316245A (en) * 1996-08-08 1998-02-18 Matsushita Electric Ind Co Ltd Fluorescent lamp starter circuit
GB2316245B (en) * 1996-08-08 2000-09-06 Matsushita Electric Ind Co Ltd Fluorescent lamp lighting device
DE19734298B4 (de) * 1996-08-08 2009-04-23 Matsushita Electric Industrial Co., Ltd., Kadoma-shi Zündschaltkreis zum Zünden einer Leuchtstoffröhre mit vorheizbaren Elektroden
WO1998017081A2 (fr) * 1996-10-17 1998-04-23 Bischl Electronic Gmbh Starter de lampe a decharge a courant continu et appareil de protection a courant continu pour lampe a decharge
WO1998017081A3 (fr) * 1996-10-17 1998-05-22 Bischl Electronic Gmbh Starter de lampe a decharge a courant continu et appareil de protection a courant continu pour lampe a decharge
FR2771588A1 (fr) * 1997-11-21 1999-05-28 Sgs Thomson Microelectronics Circuit de commande de tube fluorescent
CN107733004A (zh) * 2017-09-26 2018-02-23 大唐终端技术有限公司 多平台硬件动态充电指示及充电闸断装置
CN107733004B (zh) * 2017-09-26 2023-12-19 大唐终端技术有限公司 多平台硬件动态充电指示及充电闸断装置

Also Published As

Publication number Publication date
FR2726426B1 (fr) 1996-11-29
DE69500324T2 (de) 1997-09-18
DE69500324D1 (de) 1997-07-03
EP0710052B1 (fr) 1997-05-28
JPH08213175A (ja) 1996-08-20
FR2726426A1 (fr) 1996-05-03
US5616992A (en) 1997-04-01
JP2951578B2 (ja) 1999-09-20

Similar Documents

Publication Publication Date Title
EP0710052B1 (fr) Starter électronique pour lampe fluorescente
FR2661588A1 (fr) Circuit d'eclairage pour lampe a decharge pour vehicules.
EP0110775A1 (fr) Régulateur à faible tension de déchet
EP0688152A1 (fr) Circuit de commande de commutation et dispositif de commande pour lampe fluorescente à basse pression
FR2742013A1 (fr) Procede et dispositif de limitation d'appel de courant d'un condensateur associe a un redresseur
FR2662031A1 (fr) Systeme d'alimentation en energie a mode commute comportant un circuit de decharge pour une source d'energie auxiliaire.
EP1083471B1 (fr) Régulateur de tension
EP0847124B1 (fr) Alimentation de secours destinée à suppléer provisoirement à une carence d'une source d'alimentation principale
EP1271738B2 (fr) Déclencheur électronique comportant un condensateur d'alimentation d'une bobine de déclenchement
FR2864172A1 (fr) Circuit de detection d'ionisation a double etage
EP0688151B1 (fr) Dispositif de commande d'une lampe fluorescente à basse pression
WO2005074109A1 (fr) Gestion du court-circuit dans une inductance d'un convertisseur elevateur de tension
EP1067608B1 (fr) Dispositif et procédé de commande d'un actuateur piezo-électrique
EP1560474A2 (fr) Dispositif de protection pour alimentation à découpage et dispositif d'éclairage de véhicule
FR2747854A1 (fr) Circuit de commande de tension pour la charge d'une batterie d'automobile
FR2858909A1 (fr) Circuit d'eclairage a lampe a decharge determinant l'etat de la lampe a decharge
FR2927740A1 (fr) Appareil de commande destine a un alternateur embarque dans un vehicule
EP0785703B1 (fr) Dispositif de commande pour lampe fluorescente à basse pression
FR2458967A1 (fr) Dispositif d'alimentation a decoupage regule contre les variations de tension d'entree et de puissance de sortie, notamment pour recepteur de television
FR2579844A1 (fr) Circuit de commande de base de transistor fonctionnant a frequence elevee
EP0031626B1 (fr) Dispositif de commande de la gâchette d'un interrupteur semiconducteur d'un système bidirectionnel
EP0141698B1 (fr) Circuit de détection de courant à faible dissipation de puissance active et circuit de commande d'un dispositif électronique équipé d'un tel circuit de détection
FR2707054A1 (en) DC converter for supplying an electric load, especially a fluorescent tube
FR2801441A1 (fr) Dispositif ecreteur de surtensions pour un reseau de bord de vehicule, notamment automobile
FR2795251A1 (fr) Dispositif d'alimentation de microprocesseur de vehicule automobile a resistance accrue aux chutes d'alimentation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19960320

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960806

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: PORTA CHECCACCI E BOTTI S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970528

REF Corresponds to:

Ref document number: 69500324

Country of ref document: DE

Date of ref document: 19970703

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050825

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051026

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061026

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031