EP0709914B1 - Système d'antenne d'une tête chercheuse-HF pour missiles - Google Patents

Système d'antenne d'une tête chercheuse-HF pour missiles Download PDF

Info

Publication number
EP0709914B1
EP0709914B1 EP95116740A EP95116740A EP0709914B1 EP 0709914 B1 EP0709914 B1 EP 0709914B1 EP 95116740 A EP95116740 A EP 95116740A EP 95116740 A EP95116740 A EP 95116740A EP 0709914 B1 EP0709914 B1 EP 0709914B1
Authority
EP
European Patent Office
Prior art keywords
periodic
antenna system
logarithmic
dipole antennas
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95116740A
Other languages
German (de)
English (en)
Other versions
EP0709914A1 (fr
Inventor
Helmuth Dipl.-Ing. Thiere
Anton Dipl.-Ing. Brunner
Peter Dipl.-Ing. Fritsche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bodenseewerk Geratetechnik GmbH
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Bodenseewerk Geratetechnik GmbH filed Critical DaimlerChrysler AG
Publication of EP0709914A1 publication Critical patent/EP0709914A1/fr
Application granted granted Critical
Publication of EP0709914B1 publication Critical patent/EP0709914B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/281Nose antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • H01Q11/105Logperiodic antennas using a dielectric support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Definitions

  • the invention relates to a housed in a missile Antenna system according to the preamble of the claim 1 and claim 2.
  • a long-range missile for locating radar systems or the like requires an HF antenna system to find the target, that in a very wide frequency range a monopulse bearing in azimuth or elevation direction. Because in one Missile next to the HF radar seeker head depending on the task also other sensors, e.g. optronic or millimeter wave sensors, for target location and target tracking, the HF antenna system must be used with this System regarding space requirements and undisturbed mode of operation be tolerable. This means that there is no blanking or shading by a closed surface or components the antenna may arise.
  • Missiles with multi-sensors i.e. with HF antennas and optronic Sensors are known for the detection of radar systems.
  • a four-armed planar spiral antenna is used as the HF antenna used with the help of a complex passive Feed network made up of hybrid couplers in sum mode and in differential mode operate over a very wide range can.
  • the spiral antenna is a broadband antenna shape, but in terms of polarization it works in a very limited way Wise. By their structure and how they work is namely the direction of rotation of the immanent circular polarization fixed. It can be either right or left circular Polarization and the respective polarization components to process. Determining the lowest operating frequency is the aperture diameter of the spiral antenna.
  • the difference mode M2 requires a circumference of the radiating active area of at least two wavelengths.
  • Sinus antenna which is known from EP 0 198 578 B1 and electrically viewed with the logarithmic-periodic dipole antenna is related, can detect all polarizations. However, similar to a monopulse bearing with a differential mode to be able to perform as with the spiral antenna they have at least eight arms. There would also be one more complex dining network than necessary with the spiral antenna. Sinus antennas with more than four arms that have an aperture diameter of, for example, half a wavelength have the lowest operating frequency, but are currently not available.
  • the object of the invention is a very broadband over several Octave effective RF seeker antenna system suitable for monopulse direction finding for a missile to create that with additional sensors regarding space requirements and undisturbed Mode of action is compatible and any polarization allows.
  • This task is carried out in a generic antenna system by the in the characterizing part of claim 1 or that specified in the characterizing part of claim 2 Features resolved.
  • the logarithmic periodic dipole antenna is for example from the essay by D.E. Isbell: "Log Periodic Dipole Arrays" in "IRE Transactions on Antennas and Propagation", May 1960, S. 260 to 267 known. It is one of the almost frequency-independent and thus very broadband antenna shapes. In the Cross dipole design are both orthogonal linear polarizations to disposal. All other polarizations can be on one of the two outputs with a maximum loss of 3 dB become. Loss of polarization can be achieved with the help of a 90 ° / 3dB hybrids a left or right circular polarization be formed. Over a very wide frequency band of several Octaves can therefore process any polarization without exception become. Similar to the planar sine antenna there is also an "active" depending on the frequency Area "for the radiation behavior Operating frequency always excited several half-wave dipoles.
  • the empty space in the missile cross section offers thus an inexpensive integration option for additional sensors as required for a millimeter wave antenna system with monopulse direction finder or other sensors.
  • the triple antenna system can be designed that the three log-periodic cross dipole antennas so are arranged to each other that their phase centers are the corner points form an isosceles triangle, the base of which runs horizontally.
  • the base can be either below or be on top so that a top of the triangle is exactly on top or below. In this case there is azimuth symmetry completely undisturbed.
  • a triangular arrangement be cheaper with the tip up or down.
  • the triple antenna system can also be designed that the three log-periodic cross dipole antennas are arranged to each other so that their phase centers form the corner points of an isosceles triangle whose Base runs vertically.
  • the base can either be based on the left or the right side, so that there is a The tip of the triangle is on the far right or left outside. In this case, the symmetry of the elevation is completely undisturbed.
  • the signals of the respective individual lobes of the four log-periodic Cross dipole antennas in a conventionally designed monopulse comparator network be interconnected so that there is an amplitude and phase comparison of sum and difference diagrams can be carried out in elevation and azimuth.
  • a The embodiment described there has a cross section Cross shape and is made up of two orthogonally polarized log-periodic Dipole arrangements composed. she covers a frequency range of several octaves, for example from, different polarizations due to Selection of one of the two dipole radiator series (i.e. vertical or horizontal linear polarization) or by combination of the two output signals in a broadband 90 ° hybrid (i.e. left circular polarization or right circular polarization) can be adjusted, and is in a foamed Radome included.
  • Fig. 1 shows a view from the front and Fig. 2 in one Sectional view II-II of Fig. 1 one of four closely adjacent arranged, logarithmic-periodic cross dipole antennas 1, 2, 3 and 4 existing antenna group, which acts as an RF seeker antenna system forward in a long-range missile for locating radar systems or the like shall be.
  • the four log periodic Cross dipole antennas 1, 2, 3 and 4 are on a circular, for example, dielectric carrier plate 5 attached in such a way that the cross dipole antennas 1 and 2 and below the cross dipole antennas 3 and 4 horizontally next to each other and the Cross dipole antennas 1 and 3 and next to it the cross dipole antennas 2 and 4 are vertically one below the other.
  • the four log periodic Cross dipole antennas 1, 2, 3 and 4 protrude with their longitudinal axes 6, 7, 8 and 9 to the front, whereby in with respect to a central one, perpendicular to the carrier plate 5 standing axis 10 there is symmetry.
  • the two crossed Dipole radiator rows of each cross dipole antenna 1, 2, 3 and 4 ensure that the two orthogonal linear polarizations separately and at the same time for the recycling of related Signals are available.
  • the longitudinal axes 6, 7, 8 and 9 are inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipole antennas 1, 2, 3 and 4 about a maximum of 0.7 ⁇ ⁇ apart lie.
  • Fig. 3 shows a schematic cross-sectional view advantageous integration option of a so-called "multi mode "seeker head, which includes an RF antenna system contains according to the invention.
  • a circular, e.g. dielectric carrier plate 11 eccentrically attached RF antenna system consists of four closely spaced log-periodic cross dipole antennas 12, 13, 14 and 15. Apart from the eccentric position on the carrier plate 11 is correct from the four cross dipole antennas 12, 13, 14 and 15 composed group of four with that according to the figures 1 and 2 agree in principle.
  • offset of the group of four upwards creates a free space 16, in which a further sensor can be arranged can.
  • This free space 16 results just like the free spaces 17, 18 and 19 e.g.
  • FIG. 4 is a schematic side view of the front part of a missile, in which under a Radom 20 is a very broadband HF search body antenna system is housed according to the invention.
  • This antenna system consists of a group 21 of four spatially narrow adjacent single antennas, which are logarithmic-periodic Cross dipole antennas are formed.
  • the Longitudinal axes 22, 23, 24 and 25 (in Fig. 4 are only those Axes 23 and 25 of the two front cross dipole antennas visible) of these log-periodic cross dipole antennas run inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipoles are approximately a maximum of 0.7 ⁇ ⁇ apart.
  • the signals of the individual log-periodic cross dipole antennas the group of four 21 are via polarization switches 26, 27, 28 and 29 interconnected in a monopulse feed network 30 in such a way that an amplitude and phase comparison of Sum and difference diagrams in elevation and azimuth can be carried out.
  • the dipoles of the four log-periodic cross dipole antennas Half-wave dipoles, the ends of which are capacitively loaded are, so that a significantly smaller base diameter Group of four 21 is reached.
  • the empty space in the Missile cross section thus offers a very advantageous integration option for further sensors.
  • FIG. 5 shows in a block diagram a monopulse comparator network, as is provided for example in the arrangement according to FIG. 4 as a monopulse feed network 30.
  • the signals coming from the four log-periodic cross dipole antennas are labeled A, B, C and D. They are first fed to two hybrid circuits 31 and 32, the output signals of which then act on two further hybrid circuits 33 and 34. At the outputs of the two hybrid circuits 33 and 34, a total humming signal ⁇ and a total difference signal ⁇ AZ for the azimuth and a total difference signal ⁇ EL for the elevation are then output for any polarization set.
  • Fig. 6 shows a front view of one of three closely adjacent arranged, logarithmic-periodic cross dipole antennas 35, 36 and 37 existing antenna group, the RF seeker antenna system forward in a missile with a long Range for locating radar systems or similar housed shall be.
  • the three log periodic Cross dipole antennas 35, 36 and 37 are on a circular, for example dielectric carrier plate 38 is attached in such a way that the two cross dipole antennas 35 and 36 are each horizontal lie next to each other and the cross dipole antenna 37 centrally is arranged above.
  • the three log periodic Cross dipole antennas 35, 36 and 37 are arranged relative to one another that their phase centers 39, 40 and 41 are the cornerstones of a form isosceles triangle, the base of which is horizontal runs.
  • the base of this triangle is shown in FIG. 6 Embodiment below, so that a tip of the triangle is right at the top. In this case there is azimuth symmetry completely undisturbed.
  • the elevation symmetry is on the other hand disturbed because in the upper half of the antenna system only one log-periodic Cross dipole antenna exists, namely antenna 37, and in the lower half two log-periodic cross dipole antennas, namely antennas 35 and 36 are present.
  • the three log-periodic cross dipole antennas 35, 36 and 37 protrude forward with their longitudinal axes 42, 43 and 44.
  • the two crossed dipole radiator rows of each cross dipole antenna 35, 36 and 37 ensure that the two orthogonal linear polarizations separately and at the same time for recycling of related signals are available.
  • the Longitudinal axes 42, 43 and 44 are inclined at an angle to one another, that the phase centers 39, 40 and 41 of the active cross dipole antennas 35, 36 and 37 about a maximum of 0.7 ⁇ ⁇ apart.
  • the unfilled one 45th place in the cross section of the missile below the three log-periodic cross dipole antennas 35, 36 and 37 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.
  • Fig. 7 also shows a front view of one of three logarithmic-periodic Cross dipole antennas 46, 47 and 48 existing antenna group, the RF seeker antenna system in the front of a missile with a long range for locating radar systems or similar should be accommodated.
  • the three log periodic Cross dipole antennas 46, 47 and 48 are on one circular, for example dielectric carrier plate 49 so attached that the two cross dipole antennas 46 and 47 each lie horizontally next to each other and the cross dipole antenna 48 is arranged centrally below.
  • the three log periodic Cross dipole antennas 46, 47 and 48 are like this arranged to each other that their phase centers 50, 51 and 52nd form the corner points of an isosceles triangle whose Base runs horizontally. The base of this triangle is in in Fig.
  • the Longitudinal axes 53, 54 and 55 are inclined at an angle to one another, that the phase centers 50 in the entire operating frequency range, 51 and 52 of the active cross dipole antennas 46, 47 and 48 are approximately a maximum of 0.7 ⁇ ⁇ apart.
  • the unfilled one Place 56 in the cross section of the missile below the the three log-periodic cross dipole antennas 46, 47 and 48 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.
  • FIG. 8 shows in a block diagram a monopulse feed network as can be provided, for example, in an advantageous manner for the antenna system in the arrangement according to FIG. 7.
  • the signals coming from the three log-periodic cross dipole antennas are labeled A, B and C.
  • three 3dB dividers 57, 58 and 59 are provided, the inputs of which are each connected to one of the three log-periodic cross-dipole antennas.
  • Signal A thus arrives at the input of the 3dB divider 57, signal B at the input of the 3dB divider 58 and signal C at the input of the 3dB divider 59.
  • an output of the two 3dB dividers 57 and 58 that is to say on the input side are connected to the logarithmic-periodic cross-dipole antennas with their phase centers in the two base corner points of the isosceles triangle, are connected to a terminating resistor 60 or 61.
  • the other output of the two 3dB dividers 57 and 58 is connected to an input of one of two 3dB / 180 ° hybrid circuits 62 and 63, the second input of which is connected to an output of the third 3dB distributor 59, that is to say its input is connected to the logarithmic-periodic cross-dipole antenna which is not in a base vertex of the isosceles triangle.
  • the difference output of the two 3dB / 180 ° hybrid circuits 62 and 63 is with an input of a first further 3dB / 180 ° hybrid circuit 64 and the sum output of the two 3dB / 180 ° hybrid circuits 62 and 63 with one input a second further 3dB / 180 ° hybrid circuit 65 connected.
  • the total difference signal ⁇ El are at the two outputs of the first further 3dB / 180 ° hybrid circuit 64 in the elevation and the total differential signal ⁇ Az in azimuth and the sum output of the second further 3dB / 180 ° hybrid circuit 65, to whose differential Output a terminating resistor 66 is present, the total signal ⁇ .
  • the disturbed elevation symmetry is corrected by the combination in the monopulse feed network shown in FIG. 8.
  • This disturbance arises because there are two log-periodic cross-dipole antennas in the upper half of the antenna system and only one such cross-dipole antenna in the lower half.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (7)

  1. Système d'antennes d'autodirecteur H.F. fonctionnant sur une très large bande de plusieurs octaves et placé sous un radôme à l'avant d'un missile destiné à détecter les radars ou analogue, comprenant un groupe d'antennes individuelles étroitement installées les unes à côté des autres sur une plaque support diélectrique par exemple, lesquelles sont interconnectées par l'intermédiaire d'un réseau d'alimentation monoimpulsion de telle sorte qu'il est possible d'effectuer une comparaison d'amplitudes et de phases de représentations de sommes et de différences en élévation et en azimut,
    caractérisé en ce que
    il est prévu, comme antennes individuelles du groupe, quatre antennes tourniquets log-périodiques (1, 2, 3, 4) dont les axes longitudinaux (6, 7, 8, 9) sont inclinés les uns par rapport aux autres de sorte que, dans l'ensemble de la gamme de fréquences de service, les centres de phases des dipôles croisés actifs soient à chaque fois éloignés les uns des autres d'une distance maximale d'environ 0,7 λ.
  2. Système d'antennes d'autodirecteur H.F. fonctionnant sur une très large bande de plusieurs octaves et placé sous un radôme à l'avant d'un missile destiné à détecter les radars ou analogue, comprenant un groupe d'antennes individuelles étroitement installées les unes à côté des autres sur une plaque support diélectrique par exemple, lesquelles sont interconnectées par l'intermédiaire d'un réseau d'alimentation mono-impulsion de telle sorte qu'il est possible d'effectuer une comparaison d'amplitudes et de phases de représentations de sommes et de différences en élévation et en azimut,
    caractérisé en ce que
    il est prévu, comme antennes individuelles du groupe, trois antennes tourniquets log-périodiques (35, 36, 37) dont les axes longitudinaux (42, 43, 44) sont inclinés les uns par rapport aux autres de sorte que, dans l'ensemble de la gamme de fréquences de service, les centres de phases (39, 40, 41) des dipôles croisés actifs soient à chaque fois éloignés les uns des autres d'une distance maximale d'environ 0,7 λ.
  3. Système d'antennes selon la revendication 1 ou 2,
    caractérisé en ce que
    les dipôles des antennes tourniquets log-périodiques (1, 2, 3, 4) sont des doublets demi-onde dont les extrémités sont chargées en régime capacitif.
  4. Système d'antennes selon l'une des revendications 1 à 3,
    caractérisé en ce que
    le groupe constitué des antennes tourniquets log-périodiques (12, 13, 14, 15) est placé à l'avant du missile de sorte qu'il en résulte, en coupe transversale du missile, des espaces libres (16 à 19) dans lesquels il est possible de disposer d'autres capteurs, par exemple des capteurs optoélectroniques ou en ondes millimétriques.
  5. Système d'antennes selon la revendication 2,
    caractérisé en ce que
    les trois antennes tourniquets log-périodiques (35, 36, 37) sont disposées les unes par rapport aux autres de sorte que leurs centres de phase (39, 40, 41) forment les sommets d'un triangle isocèle dont la base est horizontale.
  6. Système d'antennes selon la revendication 2,
    caractérisé en ce que les trois antennes tourniquets log-périodiques sont disposées les unes par rapport aux autres de sorte que leurs centres de phase forment les sommets d'un triangle isocèle dont la base est verticale.
  7. Système d'antennes selon la revendication 5 ou 6,
    caractérisé en ce que
    il est prévu, dans le réseau d'alimentation mono-impulsion, trois diviseurs 3 dB (57, 58, 59) dont les entrées respectives sont chacune reliées à l'une des trois antennes tourniquets log-périodiques (46, 47, 48 ; signaux A, B et C) ; en ce qu'une sortie des deux diviseurs 3 dB (57, 58) qui sont connectés, côté entrée, aux antennes tourniquets log-périodiques (46, 47 ; signaux A et B) dont les centres de phase se trouvent dans les deux sommets de base du triangle isocèle est à chaque fois raccordée à une résistance terminale (60, 61) et en ce que l'autre sortie mène à chaque fois à une entrée de l'un des deux circuits hybrides 3 dB/180° (62, 63) dont la seconde entrée est à chaque fois connectée à une sortie du troisième diviseur 3 dB (59) dont l'entrée est raccordée à l'antenne tourniquet log-périodique (48, signal C) qui ne se trouve pas dans un sommet de base du triangle isocèle ; en ce que la sortie de différence des deux circuits hybrides 3 dB/180° (62, 63) est à chaque fois connectée à une entrée d'un premier circuit hybride 3 dB/180° supplémentaire (64) et en ce que la sortie de somme des deux circuits hybrides 3 dB/180° (62, 63) est à chaque fois connectée à une entrée d'un second circuit hybride 3 dB/180° supplémentaire (65) ; et en ce qu'aux deux sorties du premier circuit hybride 3 dB/180° supplémentaire (64) apparaissent respectivement le signal de différence total (ΔEl) en élévation et le signal de différence total (ΔAz) en azimut et en ce que à la sortie de somme du second circuit hybride 3 dB/180° supplémentaire (65), à la sortie de différence duquel se trouve une résistance terminale (66), apparaít le signal de somme total (Σ).
EP95116740A 1994-10-25 1995-10-24 Système d'antenne d'une tête chercheuse-HF pour missiles Expired - Lifetime EP0709914B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4438089 1994-10-25
DE4438089 1994-10-25

Publications (2)

Publication Number Publication Date
EP0709914A1 EP0709914A1 (fr) 1996-05-01
EP0709914B1 true EP0709914B1 (fr) 2000-01-12

Family

ID=6531640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116740A Expired - Lifetime EP0709914B1 (fr) 1994-10-25 1995-10-24 Système d'antenne d'une tête chercheuse-HF pour missiles

Country Status (3)

Country Link
US (1) US5686929A (fr)
EP (1) EP0709914B1 (fr)
DE (1) DE59507604D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682842B1 (en) 2020-10-08 2023-06-20 Rockwell Collins, Inc. Log periodic array application of minature active differential/quadrature radiating elements

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999138A (en) * 1998-03-30 1999-12-07 Ponce De Leon; Lorenzo A. Low power switched diversity antenna system
GB0016409D0 (en) * 2000-07-05 2001-08-01 Royal Ordnance Plc Proximity sensing device
EP2079128A1 (fr) 2008-01-11 2009-07-15 Michael Salewski Système d'antenne de brouilleur
US8773300B2 (en) * 2011-03-31 2014-07-08 Raytheon Company Antenna/optics system and method
US8791853B2 (en) * 2011-04-20 2014-07-29 Rockwell Collins, Inc. Air-to-ground antenna
IL232381B (en) * 2014-04-30 2020-02-27 Israel Aerospace Ind Ltd Cover
CN105633584B (zh) * 2015-12-30 2018-07-13 中国电子科技集团公司第三十九研究所 基于星载多波束天线空间立体结构布局的对数周期馈源阵
CN106252900A (zh) * 2016-07-27 2016-12-21 江西洪都航空工业集团有限责任公司 一种共口径宽带干涉仪天线阵

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2270130A (en) * 1940-08-30 1942-01-13 Rca Corp Directive antenna system
US2414103A (en) * 1941-07-08 1947-01-14 Sperry Gyroscope Co Inc Apparatus for controlling missiles in flight
US3273158A (en) * 1961-07-19 1966-09-13 Ling Temco Vought Inc Multi-polarized tracking antenna
US3147479A (en) * 1962-03-01 1964-09-01 Radiation Inc Plural juxtaposed parabolic reflectors with frequency independent feeds
US4360816A (en) * 1971-07-21 1982-11-23 The United States Of America As Represented By The Secretary Of The Navy Phased array of six log-periodic dipoles
SE411596B (sv) * 1977-10-25 1980-01-14 Saab Scania Ab For elektromagnetisk stralning kenslig anordning, inrettad att lokalisera en sendare
US4348677A (en) * 1979-06-25 1982-09-07 General Dynamics, Pomona Division Common aperture dual mode seeker antenna
US4490725A (en) * 1981-10-09 1984-12-25 Gte Products Corporation Log-periodic antenna
US4658262A (en) * 1985-02-19 1987-04-14 Duhamel Raymond H Dual polarized sinuous antennas
US4977408A (en) * 1989-06-28 1990-12-11 General Electric Company Deployable antenna bay
US5274390A (en) * 1991-12-06 1993-12-28 The Pennsylvania Research Corporation Frequency-Independent phased-array antenna
US5451969A (en) * 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682842B1 (en) 2020-10-08 2023-06-20 Rockwell Collins, Inc. Log periodic array application of minature active differential/quadrature radiating elements

Also Published As

Publication number Publication date
EP0709914A1 (fr) 1996-05-01
DE59507604D1 (de) 2000-02-17
US5686929A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
DE69618814T2 (de) Hybride-peilsystem mit amplituden/phasenvergleich
DE69929241T2 (de) Kreisförmige peilantenne
DE68910677T2 (de) Mikrostreifenantenne.
DE60214585T2 (de) Patchgespeiste, gedruckte antenne
DE69126941T2 (de) Breitbandige, dualpolarizierte Mehrmodenantenne
DE68907575T2 (de) Den vollen Raumwinkel abtastende elektronische Antenne mit räumlich zufällig verteilten, verdünnt angeordneten Strahlern.
DE69602052T2 (de) Phasengesteuerte Gruppenantenne für Mehrbandbetrieb unter wechselseitiger Verwendung von Strahlern aus Hohlleitern und sich verjüngten Elementen
DE69901026T2 (de) Doppelbandantenne
DE60035003T2 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
EP2135324B1 (fr) Dispositif d'antenne pour émettre et recevoir des signaux électromagnétiques
DE102012023938A1 (de) Dualpolarisierte, omnidirektionale Antenne
EP0709914B1 (fr) Système d'antenne d'une tête chercheuse-HF pour missiles
DE102009000644A1 (de) Vorrichtung zum Senden und/oder Empfangen elektromagnetischer HF-Signale, sowie Messgerät und Werkzeugmaschinenüberwachungsvorrichtung mit einer solchen Vorrichtung
DE68910728T2 (de) Streifenleiter Array-Antenne.
DE10345314A1 (de) Vorrichtung sowie Verfahren zum Abstrahlen und/oder zum Empfangen von elektromagnetischer Strahlung
EP0028836A1 (fr) Disposition d'antenne radar à balayage azimuthal et détermination du site
DE60019412T2 (de) Antenne mit vertikaler polarisation
EP0021252B1 (fr) Antenne radar du type pillbox avec antenne d'interrogation IFF intégrée
DE3638879C2 (de) Mikrowellenradarantennenanordnung
DE2929254C2 (de) Antennensystem zur Peilung einer Mikrowellen-Signalquelle
WO2019158251A1 (fr) Système d'antenne pour un capteur radar
DE69408303T2 (de) Antennensystem
DE4135828A1 (de) Antennenanordnung
DE2502376C2 (fr)
EP3333971B1 (fr) Module de diffuseur dipolaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960520

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODENSEEWERK GERAETETECHNIK GMBH

Owner name: DAIMLER-BENZ AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODENSEEWERK GERAETETECHNIK GMBH

Owner name: DAIMLERCHRYSLER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59507604

Country of ref document: DE

Date of ref document: 20000217

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101104

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111024

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59507604

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111024