EP0709914B1 - RF seeker head antenna system for missiles - Google Patents

RF seeker head antenna system for missiles Download PDF

Info

Publication number
EP0709914B1
EP0709914B1 EP95116740A EP95116740A EP0709914B1 EP 0709914 B1 EP0709914 B1 EP 0709914B1 EP 95116740 A EP95116740 A EP 95116740A EP 95116740 A EP95116740 A EP 95116740A EP 0709914 B1 EP0709914 B1 EP 0709914B1
Authority
EP
European Patent Office
Prior art keywords
periodic
antenna system
logarithmic
dipole antennas
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95116740A
Other languages
German (de)
French (fr)
Other versions
EP0709914A1 (en
Inventor
Helmuth Dipl.-Ing. Thiere
Anton Dipl.-Ing. Brunner
Peter Dipl.-Ing. Fritsche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Bodenseewerk Geratetechnik GmbH
Original Assignee
DaimlerChrysler AG
Bodenseewerk Geratetechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Bodenseewerk Geratetechnik GmbH filed Critical DaimlerChrysler AG
Publication of EP0709914A1 publication Critical patent/EP0709914A1/en
Application granted granted Critical
Publication of EP0709914B1 publication Critical patent/EP0709914B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/281Nose antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/10Logperiodic antennas
    • H01Q11/105Logperiodic antennas using a dielectric support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns

Definitions

  • the invention relates to a housed in a missile Antenna system according to the preamble of the claim 1 and claim 2.
  • a long-range missile for locating radar systems or the like requires an HF antenna system to find the target, that in a very wide frequency range a monopulse bearing in azimuth or elevation direction. Because in one Missile next to the HF radar seeker head depending on the task also other sensors, e.g. optronic or millimeter wave sensors, for target location and target tracking, the HF antenna system must be used with this System regarding space requirements and undisturbed mode of operation be tolerable. This means that there is no blanking or shading by a closed surface or components the antenna may arise.
  • Missiles with multi-sensors i.e. with HF antennas and optronic Sensors are known for the detection of radar systems.
  • a four-armed planar spiral antenna is used as the HF antenna used with the help of a complex passive Feed network made up of hybrid couplers in sum mode and in differential mode operate over a very wide range can.
  • the spiral antenna is a broadband antenna shape, but in terms of polarization it works in a very limited way Wise. By their structure and how they work is namely the direction of rotation of the immanent circular polarization fixed. It can be either right or left circular Polarization and the respective polarization components to process. Determining the lowest operating frequency is the aperture diameter of the spiral antenna.
  • the difference mode M2 requires a circumference of the radiating active area of at least two wavelengths.
  • Sinus antenna which is known from EP 0 198 578 B1 and electrically viewed with the logarithmic-periodic dipole antenna is related, can detect all polarizations. However, similar to a monopulse bearing with a differential mode to be able to perform as with the spiral antenna they have at least eight arms. There would also be one more complex dining network than necessary with the spiral antenna. Sinus antennas with more than four arms that have an aperture diameter of, for example, half a wavelength have the lowest operating frequency, but are currently not available.
  • the object of the invention is a very broadband over several Octave effective RF seeker antenna system suitable for monopulse direction finding for a missile to create that with additional sensors regarding space requirements and undisturbed Mode of action is compatible and any polarization allows.
  • This task is carried out in a generic antenna system by the in the characterizing part of claim 1 or that specified in the characterizing part of claim 2 Features resolved.
  • the logarithmic periodic dipole antenna is for example from the essay by D.E. Isbell: "Log Periodic Dipole Arrays" in "IRE Transactions on Antennas and Propagation", May 1960, S. 260 to 267 known. It is one of the almost frequency-independent and thus very broadband antenna shapes. In the Cross dipole design are both orthogonal linear polarizations to disposal. All other polarizations can be on one of the two outputs with a maximum loss of 3 dB become. Loss of polarization can be achieved with the help of a 90 ° / 3dB hybrids a left or right circular polarization be formed. Over a very wide frequency band of several Octaves can therefore process any polarization without exception become. Similar to the planar sine antenna there is also an "active" depending on the frequency Area "for the radiation behavior Operating frequency always excited several half-wave dipoles.
  • the empty space in the missile cross section offers thus an inexpensive integration option for additional sensors as required for a millimeter wave antenna system with monopulse direction finder or other sensors.
  • the triple antenna system can be designed that the three log-periodic cross dipole antennas so are arranged to each other that their phase centers are the corner points form an isosceles triangle, the base of which runs horizontally.
  • the base can be either below or be on top so that a top of the triangle is exactly on top or below. In this case there is azimuth symmetry completely undisturbed.
  • a triangular arrangement be cheaper with the tip up or down.
  • the triple antenna system can also be designed that the three log-periodic cross dipole antennas are arranged to each other so that their phase centers form the corner points of an isosceles triangle whose Base runs vertically.
  • the base can either be based on the left or the right side, so that there is a The tip of the triangle is on the far right or left outside. In this case, the symmetry of the elevation is completely undisturbed.
  • the signals of the respective individual lobes of the four log-periodic Cross dipole antennas in a conventionally designed monopulse comparator network be interconnected so that there is an amplitude and phase comparison of sum and difference diagrams can be carried out in elevation and azimuth.
  • a The embodiment described there has a cross section Cross shape and is made up of two orthogonally polarized log-periodic Dipole arrangements composed. she covers a frequency range of several octaves, for example from, different polarizations due to Selection of one of the two dipole radiator series (i.e. vertical or horizontal linear polarization) or by combination of the two output signals in a broadband 90 ° hybrid (i.e. left circular polarization or right circular polarization) can be adjusted, and is in a foamed Radome included.
  • Fig. 1 shows a view from the front and Fig. 2 in one Sectional view II-II of Fig. 1 one of four closely adjacent arranged, logarithmic-periodic cross dipole antennas 1, 2, 3 and 4 existing antenna group, which acts as an RF seeker antenna system forward in a long-range missile for locating radar systems or the like shall be.
  • the four log periodic Cross dipole antennas 1, 2, 3 and 4 are on a circular, for example, dielectric carrier plate 5 attached in such a way that the cross dipole antennas 1 and 2 and below the cross dipole antennas 3 and 4 horizontally next to each other and the Cross dipole antennas 1 and 3 and next to it the cross dipole antennas 2 and 4 are vertically one below the other.
  • the four log periodic Cross dipole antennas 1, 2, 3 and 4 protrude with their longitudinal axes 6, 7, 8 and 9 to the front, whereby in with respect to a central one, perpendicular to the carrier plate 5 standing axis 10 there is symmetry.
  • the two crossed Dipole radiator rows of each cross dipole antenna 1, 2, 3 and 4 ensure that the two orthogonal linear polarizations separately and at the same time for the recycling of related Signals are available.
  • the longitudinal axes 6, 7, 8 and 9 are inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipole antennas 1, 2, 3 and 4 about a maximum of 0.7 ⁇ ⁇ apart lie.
  • Fig. 3 shows a schematic cross-sectional view advantageous integration option of a so-called "multi mode "seeker head, which includes an RF antenna system contains according to the invention.
  • a circular, e.g. dielectric carrier plate 11 eccentrically attached RF antenna system consists of four closely spaced log-periodic cross dipole antennas 12, 13, 14 and 15. Apart from the eccentric position on the carrier plate 11 is correct from the four cross dipole antennas 12, 13, 14 and 15 composed group of four with that according to the figures 1 and 2 agree in principle.
  • offset of the group of four upwards creates a free space 16, in which a further sensor can be arranged can.
  • This free space 16 results just like the free spaces 17, 18 and 19 e.g.
  • FIG. 4 is a schematic side view of the front part of a missile, in which under a Radom 20 is a very broadband HF search body antenna system is housed according to the invention.
  • This antenna system consists of a group 21 of four spatially narrow adjacent single antennas, which are logarithmic-periodic Cross dipole antennas are formed.
  • the Longitudinal axes 22, 23, 24 and 25 (in Fig. 4 are only those Axes 23 and 25 of the two front cross dipole antennas visible) of these log-periodic cross dipole antennas run inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipoles are approximately a maximum of 0.7 ⁇ ⁇ apart.
  • the signals of the individual log-periodic cross dipole antennas the group of four 21 are via polarization switches 26, 27, 28 and 29 interconnected in a monopulse feed network 30 in such a way that an amplitude and phase comparison of Sum and difference diagrams in elevation and azimuth can be carried out.
  • the dipoles of the four log-periodic cross dipole antennas Half-wave dipoles, the ends of which are capacitively loaded are, so that a significantly smaller base diameter Group of four 21 is reached.
  • the empty space in the Missile cross section thus offers a very advantageous integration option for further sensors.
  • FIG. 5 shows in a block diagram a monopulse comparator network, as is provided for example in the arrangement according to FIG. 4 as a monopulse feed network 30.
  • the signals coming from the four log-periodic cross dipole antennas are labeled A, B, C and D. They are first fed to two hybrid circuits 31 and 32, the output signals of which then act on two further hybrid circuits 33 and 34. At the outputs of the two hybrid circuits 33 and 34, a total humming signal ⁇ and a total difference signal ⁇ AZ for the azimuth and a total difference signal ⁇ EL for the elevation are then output for any polarization set.
  • Fig. 6 shows a front view of one of three closely adjacent arranged, logarithmic-periodic cross dipole antennas 35, 36 and 37 existing antenna group, the RF seeker antenna system forward in a missile with a long Range for locating radar systems or similar housed shall be.
  • the three log periodic Cross dipole antennas 35, 36 and 37 are on a circular, for example dielectric carrier plate 38 is attached in such a way that the two cross dipole antennas 35 and 36 are each horizontal lie next to each other and the cross dipole antenna 37 centrally is arranged above.
  • the three log periodic Cross dipole antennas 35, 36 and 37 are arranged relative to one another that their phase centers 39, 40 and 41 are the cornerstones of a form isosceles triangle, the base of which is horizontal runs.
  • the base of this triangle is shown in FIG. 6 Embodiment below, so that a tip of the triangle is right at the top. In this case there is azimuth symmetry completely undisturbed.
  • the elevation symmetry is on the other hand disturbed because in the upper half of the antenna system only one log-periodic Cross dipole antenna exists, namely antenna 37, and in the lower half two log-periodic cross dipole antennas, namely antennas 35 and 36 are present.
  • the three log-periodic cross dipole antennas 35, 36 and 37 protrude forward with their longitudinal axes 42, 43 and 44.
  • the two crossed dipole radiator rows of each cross dipole antenna 35, 36 and 37 ensure that the two orthogonal linear polarizations separately and at the same time for recycling of related signals are available.
  • the Longitudinal axes 42, 43 and 44 are inclined at an angle to one another, that the phase centers 39, 40 and 41 of the active cross dipole antennas 35, 36 and 37 about a maximum of 0.7 ⁇ ⁇ apart.
  • the unfilled one 45th place in the cross section of the missile below the three log-periodic cross dipole antennas 35, 36 and 37 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.
  • Fig. 7 also shows a front view of one of three logarithmic-periodic Cross dipole antennas 46, 47 and 48 existing antenna group, the RF seeker antenna system in the front of a missile with a long range for locating radar systems or similar should be accommodated.
  • the three log periodic Cross dipole antennas 46, 47 and 48 are on one circular, for example dielectric carrier plate 49 so attached that the two cross dipole antennas 46 and 47 each lie horizontally next to each other and the cross dipole antenna 48 is arranged centrally below.
  • the three log periodic Cross dipole antennas 46, 47 and 48 are like this arranged to each other that their phase centers 50, 51 and 52nd form the corner points of an isosceles triangle whose Base runs horizontally. The base of this triangle is in in Fig.
  • the Longitudinal axes 53, 54 and 55 are inclined at an angle to one another, that the phase centers 50 in the entire operating frequency range, 51 and 52 of the active cross dipole antennas 46, 47 and 48 are approximately a maximum of 0.7 ⁇ ⁇ apart.
  • the unfilled one Place 56 in the cross section of the missile below the the three log-periodic cross dipole antennas 46, 47 and 48 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.
  • FIG. 8 shows in a block diagram a monopulse feed network as can be provided, for example, in an advantageous manner for the antenna system in the arrangement according to FIG. 7.
  • the signals coming from the three log-periodic cross dipole antennas are labeled A, B and C.
  • three 3dB dividers 57, 58 and 59 are provided, the inputs of which are each connected to one of the three log-periodic cross-dipole antennas.
  • Signal A thus arrives at the input of the 3dB divider 57, signal B at the input of the 3dB divider 58 and signal C at the input of the 3dB divider 59.
  • an output of the two 3dB dividers 57 and 58 that is to say on the input side are connected to the logarithmic-periodic cross-dipole antennas with their phase centers in the two base corner points of the isosceles triangle, are connected to a terminating resistor 60 or 61.
  • the other output of the two 3dB dividers 57 and 58 is connected to an input of one of two 3dB / 180 ° hybrid circuits 62 and 63, the second input of which is connected to an output of the third 3dB distributor 59, that is to say its input is connected to the logarithmic-periodic cross-dipole antenna which is not in a base vertex of the isosceles triangle.
  • the difference output of the two 3dB / 180 ° hybrid circuits 62 and 63 is with an input of a first further 3dB / 180 ° hybrid circuit 64 and the sum output of the two 3dB / 180 ° hybrid circuits 62 and 63 with one input a second further 3dB / 180 ° hybrid circuit 65 connected.
  • the total difference signal ⁇ El are at the two outputs of the first further 3dB / 180 ° hybrid circuit 64 in the elevation and the total differential signal ⁇ Az in azimuth and the sum output of the second further 3dB / 180 ° hybrid circuit 65, to whose differential Output a terminating resistor 66 is present, the total signal ⁇ .
  • the disturbed elevation symmetry is corrected by the combination in the monopulse feed network shown in FIG. 8.
  • This disturbance arises because there are two log-periodic cross-dipole antennas in the upper half of the antenna system and only one such cross-dipole antenna in the lower half.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

Die Erfindung bezieht sich auf ein in einem Flugkörper untergebrachtes Antennensystem gemäß dem Oberbegriff des Patentanspruchs 1 und des Patentanspruchs 2.The invention relates to a housed in a missile Antenna system according to the preamble of the claim 1 and claim 2.

Ein Flugkörper mit langer Reichweite zur Auffindung von Radaranlagen oder ähnlichem benötigt zur Zielfindung ein HF-Antennensystem, das in einem sehr breiten Frequenzbereich bei möglichst allen Polarisationen eine Monopuls-Peilung in Azimut- bzw. Elevationsrichtung ermöglicht. Da in einem solchen Flugkörper neben dem HF-Radar-Suchkopf je nach Aufgabenstellung auch noch weitere Sensoren, z.B. optronische bzw. Millimeterwellen-Sensoren, für die Zielortung und Zielverfolgung, eingesetzt werden sollen, muß das HF-Antennensystem mit diesem System hinsichtlich Platzbedarf und ungestörter Wirkungsweise verträglich sein. Dies bedeutet, daß keine Ausblendung oder Abschattung durch eine geschlossene Fläche oder Bauteile der Antenne entstehen darf.A long-range missile for locating radar systems or the like requires an HF antenna system to find the target, that in a very wide frequency range a monopulse bearing in azimuth or elevation direction. Because in one Missile next to the HF radar seeker head depending on the task also other sensors, e.g. optronic or millimeter wave sensors, for target location and target tracking, the HF antenna system must be used with this System regarding space requirements and undisturbed mode of operation be tolerable. This means that there is no blanking or shading by a closed surface or components the antenna may arise.

Flugkörper mit Multisensorik, d.h. mit HF-Antennen und optronischen Sensoren, sind zur Auffindung von Radaranlagen bekannt. Dabei wird als HF-Antenne eine vierarmige planare Spiralantenne verwendet, die mit Hilfe eines komplexen passiven Speisenetzwerks aus Hybridkopplern im Summenmode und im Differenzmode über eine sehr große Bandbreite betrieben werden kann.Missiles with multi-sensors, i.e. with HF antennas and optronic Sensors are known for the detection of radar systems. A four-armed planar spiral antenna is used as the HF antenna used with the help of a complex passive Feed network made up of hybrid couplers in sum mode and in differential mode operate over a very wide range can.

Die Spiralantenne ist zwar eine breitbandige Antennenform, doch hinsichtlich der Polarisation arbeitet sie in stark eingeschränkter Weise. Durch ihren Aufbau und ihre Funktionsweise ist nämlich der Drehsinn der immanenten Zirkularpolarisation festgelegt. Sie kann entweder rechts- oder linkszirkulare Polarisation und die jeweiligen Polarisationskomponenten verarbeiten. Bestimmend für die unterste Betriebsfrequenz ist der Aperturdurchmesser der Spiralantenne. Der Differenzmode M2 erfordert einen Umfang des strahlenden aktiven Bereichs von mindestens zwei Wellenlängen.The spiral antenna is a broadband antenna shape, but in terms of polarization it works in a very limited way Wise. By their structure and how they work is namely the direction of rotation of the immanent circular polarization fixed. It can be either right or left circular Polarization and the respective polarization components to process. Determining the lowest operating frequency is the aperture diameter of the spiral antenna. The difference mode M2 requires a circumference of the radiating active area of at least two wavelengths.

Eine alternative, ebenfalls planare Antennenform, die sogenannte Sinusantenne, welche aus EP 0 198 578 B1 bekannt und elektrisch betrachtet mit der logarithmisch-periodischen Dipolantenne verwandt ist, kann alle Polarisationen erfassen. Um jedoch eine Monopuls-Peilung mit einem Differenzmode ähnlich wie bei der Spiralantenne durchführen zu können, müßte sie mindestens acht Arme aufweisen. Dazu wäre auch ein noch komplexeres Speisenetzwerk als bei der Spiralantenne nötig. Sinusantennen mit mehr als vier Armen, die einen Aperturdurchmesser von beispielsweise einer halben Wellenlänge bei der untersten Betriebsfrequenz besitzen, sind aber zur Zeit nicht verfügbar.An alternative, also planar antenna form, the so-called Sinus antenna, which is known from EP 0 198 578 B1 and electrically viewed with the logarithmic-periodic dipole antenna is related, can detect all polarizations. However, similar to a monopulse bearing with a differential mode to be able to perform as with the spiral antenna they have at least eight arms. There would also be one more complex dining network than necessary with the spiral antenna. Sinus antennas with more than four arms that have an aperture diameter of, for example, half a wavelength have the lowest operating frequency, but are currently not available.

Aufgabe der Erfindung ist es, ein sehr breitbandig über mehrere Oktaven wirksames, für Monopuls-Peilung geeignetes HF-Suchkopf-Antennensystem für einen Flugkörper zu schaffen, das mit weiteren Sensoren hinsichtlich Platzbedarf und ungestörter Wirkungsweise verträglich ist und jede beliebige Polarisation zuläßt.The object of the invention is a very broadband over several Octave effective RF seeker antenna system suitable for monopulse direction finding for a missile to create that with additional sensors regarding space requirements and undisturbed Mode of action is compatible and any polarization allows.

Diese Aufgabe wird bei einem gattungsgemäßen Antennensystem durch die im kennzeichnenden Teil des Patentanspruchs 1 oder die im kennzeichnenden Teil des Patentanspruchs 2 angegebenen Merkmale gelöst.This task is carried out in a generic antenna system by the in the characterizing part of claim 1 or that specified in the characterizing part of claim 2 Features resolved.

Die logarithmisch-periodische Dipolantenne ist beispielsweise aus dem Aufsatz von D.E.Isbell: "Log Periodic Dipole Arrays" in "IRE Transactions on Antennas and Propagation", Mai 1960, S. 260 bis 267 bekannt. Sie zählt zu den nahezu frequenzunabhängigen und somit sehr breitbandigen Antennenformen. In der Kreuzdipolausführung stehen beide orthogonalen Linearpolarisationen zur Verfügung. Alle anderen Polarisationen können an einem der beiden Ausgänge mit maximal 3 dB Verlust empfangen werden. Polarisationsverlustfrei kann mit Hilfe eines 90°/3dB-Hybrids eine links- bzw. rechtszirkulare Polarisation gebildet werden. Über ein sehr breites Frequenzband von mehreren Oktaven kann somit ohne Ausnahme jede Polarisation verarbeitet werden. Ähnlich wie bei der planaren Sinusantenne gibt es auch hier einen von der Frequenz abhängigen "aktiven Bereich" für das Strahlungsverhalten. Es werden bei der jeweiligen Betriebsfrequenz stets mehrere Halbwellen-Dipole angeregt.The logarithmic periodic dipole antenna is for example from the essay by D.E. Isbell: "Log Periodic Dipole Arrays" in "IRE Transactions on Antennas and Propagation", May 1960, S. 260 to 267 known. It is one of the almost frequency-independent and thus very broadband antenna shapes. In the Cross dipole design are both orthogonal linear polarizations to disposal. All other polarizations can be on one of the two outputs with a maximum loss of 3 dB become. Loss of polarization can be achieved with the help of a 90 ° / 3dB hybrids a left or right circular polarization be formed. Over a very wide frequency band of several Octaves can therefore process any polarization without exception become. Similar to the planar sine antenna there is also an "active" depending on the frequency Area "for the radiation behavior Operating frequency always excited several half-wave dipoles.

Nach der Erfindung sind die Längsachsen der vier bzw. drei logarithmisch-periodischen Kreuzdipolantennen schräg so zueinander geneigt, daß im gesamten Betriebsfrequenzbereich die Phasenzentren der jeweils aktiven Kreuzdipole etwa maximal 0,7 · λ auseinander liegen. Damit werden die sich auf das Strahlungsverhalten ungünstig auswirkenden Interferometereigenschaften vermieden, wie sie bei einer achsparallelen Anordnung mit zunehmender Frequenz und damit größer werdenden elektrischen Antennenabständen auftreten würden.According to the invention, the longitudinal axes of the four or three logarithmic-periodic cross dipole antennas at an angle to each other inclined that in the entire operating frequency range Phase centers of the respective active cross dipoles approximately maximum 0.7 · λ are apart. This will affect the Radiation behavior of unfavorable interferometer properties avoided, as in an axially parallel arrangement with increasing frequency and thus increasing electrical antenna distances would occur.

Durch in vorteilhafter Weise angebrachte kapazitive Belastungen an den Enden der Halbwellen-Dipole können im unteren Frequenzbereich die mechanischen Abmessungen beträchtlich verringert werden, so daß ein stark reduzierter Basisdurchmesser, der dann noch die Anbringung weiterer Sensoren zuläßt, erreicht werden kann. Zwei unverkürzte Halbwellen-Dipole nebeneinander würden sonst für die untere Frequenz eine Abmessung verlangen, die möglicherweise die störungsfreie Unterbringung weiterer Sensoren nicht mehr zuläßt.By capacitive loads applied in an advantageous manner at the ends of the half-wave dipoles can be in the lower frequency range the mechanical dimensions are considerably reduced so that a greatly reduced base diameter, which then allows the attachment of further sensors, can be achieved. Two unabridged half-wave dipoles side by side would otherwise have a dimension for the lower frequency may require trouble-free accommodation no more sensors.

Der nicht ausgefüllte Platz im Flugkörperquerschnitt bietet somit eine günstige Integrationsmöglichkeit für weitere Sensoren wie erforderlichenfalls für ein Millimeterwellen-Antennensystem mit Monopuls-Peilmöglichkeit oder andere Sensoren.The empty space in the missile cross section offers thus an inexpensive integration option for additional sensors as required for a millimeter wave antenna system with monopulse direction finder or other sensors.

Im Vergleich zu einem Vierergruppen-System gemäß Anspruch 1 benötigt ein Dreiergruppen-System gemäß Anspruch 2 bei etwa gleich groß bleibenden logarithmisch-periodischen Kreuzdipolantennen weniger Einbauvolumen. Dadurch steht für andere Sensoren, z.B. optronische Sensoren, eine größere Querschnittsfläche im Flugkörper zur Verfügung.Compared to a group of four system according to claim 1 needs a triple system according to claim 2 at about logarithmic-periodic cross dipole antennas that remain the same size less installation volume. This stands for other sensors, e.g. optronic sensors, a larger cross-sectional area available in the missile.

Das Dreiergruppen-Antennensystem kann so ausgebildet sein, daß die drei logarithmisch-periodischen Kreuzdipolantennen so zueinander angeordnet sind, daß ihre Phasenzentren die Eckpunkte eines gleichschenkligen Dreiecks bilden, dessen Basis horizontal verläuft. Die Basis kann dabei entweder unten oder oben sein, so daß sich eine Spitze des Dreiecks genau oben bzw. unten befindet. In diesem Fall ist die Azimutsymmetrie völlig ungestört. Je nach Bedarf kann eine Dreiecksanordnung mit der Spitze nach oben oder nach unten günstiger sein.The triple antenna system can be designed that the three log-periodic cross dipole antennas so are arranged to each other that their phase centers are the corner points form an isosceles triangle, the base of which runs horizontally. The base can be either below or be on top so that a top of the triangle is exactly on top or below. In this case there is azimuth symmetry completely undisturbed. Depending on your needs, a triangular arrangement be cheaper with the tip up or down.

Das Dreiergruppen-Antennensystem läßt sich aber auch so ausbilden, daß die drei logarithmisch-periodischen Kreuzdipolantennen so zueinander angeordnet sind, daß ihre Phasenzentren die Eckpunkte eines gleichschenkligen Dreiecks bilden, dessen Basis vertikal verläuft. Die Basis kann dabei entweder auf der linken oder auf der rechten Seite sein, so daß sich eine Spitze des Dreiecks rechts außen bzw. links außen befindet. In diesem Fall ist die Elevationssymmetrie völlig ungestört.The triple antenna system can also be designed that the three log-periodic cross dipole antennas are arranged to each other so that their phase centers form the corner points of an isosceles triangle whose Base runs vertically. The base can either be based on the left or the right side, so that there is a The tip of the triangle is on the far right or left outside. In this case, the symmetry of the elevation is completely undisturbed.

Bei einem Vierergruppen-Antennensystem können die Signale der jeweiligen Einzelkeulen der vier logarithmisch-periodischen Kreuzdipolantennen in einem herkömmlich ausgebildeten Monopuls-Komparatornetzwerk so zusammengeschaltet werden, daß sich ein Amplituden- und Phasenvergleich von Summen- und Differenzdiagrammen in Elevation und Azimut durchführen läßt.With a group of four antenna systems, the signals of the respective individual lobes of the four log-periodic Cross dipole antennas in a conventionally designed monopulse comparator network be interconnected so that there is an amplitude and phase comparison of sum and difference diagrams can be carried out in elevation and azimuth.

Wegen der für Monopuls notwendigen Azimut- und Elevationsdifferenz zur Nachführung in beiden Ebenen muß bei den horizontalen und vertikalen Abständen der einzelnen logarithmisch-periodischen Kreuzdipolantennen neben der Freifläche für andere Sensoren auch die Breitband-Monopulsqualität berücksichtigt werden. Because of the azimuth and elevation difference necessary for monopulse for tracking in both planes must be in the horizontal and vertical distances of the individual log-periodic Cross dipole antennas next to the open space for others Sensors also take into account the broadband monopulse quality become.

Bei einem Dreiergruppen-Antennensystem wird die gestörte Symmetrie im Elevationsdiagramm bzw. im Azimutdiagramm durch die im Patentanspruch 7 angegebene vorteilhafte Kombination im Monopuls-Speisenetzwerk korrigiert.With a triple antenna system, the disturbed symmetry in the elevation diagram or in the azimuth diagram by the in claim 7 advantageous combination specified in Monopulse feed network corrected.

Dual polarisierte logarithmisch-periodische Dipolantennen sind für ihre Verwendbarkeit in Einrichtungen auf dem Gebiet von elektronischen Unterstützungsmaßnahmen ESM (=Electronic Support Measures) aus dem Aufsatz von G. S. Hardie, H.B. Sefton Jr.: "Fixed Beam and Mechanically Steerable Antennas" in der Zeitschrift "Microwave Journal", Sept. 1984, Seiten 143 bis 156, insbesondere Seiten 149 und 150 bekannt. Eine dort beschriebene Ausführungsform weist im Querschnitt eine Kreuzform auf und ist aus zwei orthogonal polarisierten logarithmisch-periodischen Dipolanordnungen zusammengesetzt. Sie deckt beispielsweise einen Frequenzbereich von mehreren Oktaven ab, wobei unterschiedliche Polarisationen aufgrund der Auswahl einer der beiden Dipolstrahlerreihen (d.h. vertikale oder horizontale Linearpolarisation) oder durch Kombination der beiden Ausgangssignale in einem breitbandigen 90°-Hybrid (d.h. linkszirkulare Polarisation oder rechtszirkulare Polarisation) eingestellt werden können, und ist in einem geschäumten Radom eingeschlossen.Dual polarized log-periodic dipole antennas are for their usability in facilities in the field of electronic support measures ESM (= Electronic Support Measures) from the essay by G. S. Hardie, H.B. Sefton Jr .: "Fixed Beam and Mechanically Steerable Antennas" in the journal "Microwave Journal", Sept. 1984, pages 143 to 156, in particular pages 149 and 150 are known. A The embodiment described there has a cross section Cross shape and is made up of two orthogonally polarized log-periodic Dipole arrangements composed. she covers a frequency range of several octaves, for example from, different polarizations due to Selection of one of the two dipole radiator series (i.e. vertical or horizontal linear polarization) or by combination of the two output signals in a broadband 90 ° hybrid (i.e. left circular polarization or right circular polarization) can be adjusted, and is in a foamed Radome included.

Die Erfindung wird im folgenden anhand von fünf Figuren erläutert.The invention is explained below with reference to five figures.

Es zeigen:

Fig. 1
die prinzipielle Anordnung eines mit vier logarithmisch-periodischen Kreuzdipolantennen versehenen Antennensystems nach der Erfindung in einer Ansicht von vorne,
Fig. 2
eine Schnittansicht II-II des Antennensystems nach Fig. 1,
Fig. 3
die schematische Querschnittsansicht einer vorteilhaften Integrationsmöglichkeit eines "multi mode"-Suchkopfs, der ein Antennensystem nach der Erfindung mit vier logarithmisch-periodischen Kreuzdipolantennen enthält,
Fig. 4
in einer schematischen Seitenansicht des Vorderteiles eines Flugkörpers eine vorteilhafte Einbaumöglichkeit eines Antennensystems nach der Erfindung,
Fig. 5
die schematische Ansicht der Schaltung eines Monopuls-Speisenetzwerks für ein Antennensystem nach der Erfindung mit vier logarithmisch-periodischen Kreuzdipolantennen,
Fig. 6
in einer Ansicht von vorne eine Anordnung eines mit drei logarithmisch-periodischen Kreuzdipolantennen versehenen Antennensystems nach der Erfindung mit zusätzlichem Sensor,
Fig. 7
ebenfalls in einer Ansicht von vorne eine andere Anordnung eines mit drei logarithmisch-periodischen Kreuzdipolantennen versehenen Antennensystems nach der Erfindung mit zusätzlichem Sensor, und
Fig. 8
die schematische Ansicht der Schaltung eines Monopuls-Speisenetzwerks für ein Antennensystem nach der Erfindung mit drei logarithmisch-periodischen Kreuzdipolantennen.
Show it:
Fig. 1
the basic arrangement of an antenna system provided with four log-periodic cross dipole antennas according to the invention in a view from the front,
Fig. 2
2 shows a sectional view II-II of the antenna system according to FIG. 1,
Fig. 3
FIG. 2 shows a schematic cross-sectional view of an advantageous possibility of integrating a "multi-mode" seeker head which contains an antenna system according to the invention with four log-periodic cross-dipole antennas,
Fig. 4
a schematic side view of the front part of a missile an advantageous installation option of an antenna system according to the invention,
Fig. 5
2 shows the schematic view of the circuit of a monopulse feed network for an antenna system according to the invention with four log-periodic cross-dipole antennas,
Fig. 6
in a view from the front an arrangement of an antenna system according to the invention provided with three log-periodic cross dipole antennas with an additional sensor,
Fig. 7
also in a view from the front another arrangement of an antenna system provided with three log-periodic cross-dipole antennas according to the invention with an additional sensor, and
Fig. 8
the schematic view of the circuit of a monopulse feed network for an antenna system according to the invention with three log-periodic cross-dipole antennas.

Fig. 1 zeigt in einer Ansicht von vorne und Fig. 2 in einer Schnittansicht II-II von Fig. 1 eine aus vier eng benachbart angeordneten, logarithmisch-periodischen Kreuzdipolantennen 1, 2, 3 und 4 bestehende Antennengruppe, die als HF-Suchkopf-Antennensystem vorne in einem Flugkörper mit langer Reichweite zur Auffindung von Radaranlagen oder ähnlichem untergebracht werden soll. Die vier logarithmisch-periodischen Kreuzdipolantennen 1, 2, 3 und 4 sind auf einer kreisrunden, beispielsweise dielektrischen Trägerplatte 5 so angebracht, daß die Kreuzdipolantennen 1 und 2 und darunter die Kreuzdipolantennen 3 und 4 jeweils horizontal nebeneinander und die Kreuzdipolantennen 1 und 3 und daneben die Kreuzdipolantennen 2 und 4 jeweils vertikal untereinander liegen. Die vier logarithmisch-periodischen Kreuzdipolantennen 1, 2, 3 und 4 ragen mit ihren Längsachsen 6, 7, 8 und 9 nach vorne, wobei in bezug zu einer zentralen, senkrecht auf der Trägerplatte 5 stehenden Achse 10 Symmetrie besteht. Die beiden gekreuzten Dipolstrahlerreihen jeder Kreuzdipolantenne 1, 2, 3 und 4 sorgen dafür, daß die beiden orthogonalen Linearpolarisationen getrennt und gleichzeitig für eine Verwertung von diesbezüglichen Signalen zur Verfügung stehen. Die Längsachsen 6, 7, 8 und 9 sind schräg so zueinander geneigt, daß im gesamten Betriebsfrequenzbereich die Phasenzentren der jeweils aktiven Kreuzdipolantennen 1, 2, 3 und 4 etwa maximal 0,7 · λ auseinander liegen.Fig. 1 shows a view from the front and Fig. 2 in one Sectional view II-II of Fig. 1 one of four closely adjacent arranged, logarithmic-periodic cross dipole antennas 1, 2, 3 and 4 existing antenna group, which acts as an RF seeker antenna system forward in a long-range missile for locating radar systems or the like shall be. The four log periodic Cross dipole antennas 1, 2, 3 and 4 are on a circular, for example, dielectric carrier plate 5 attached in such a way that the cross dipole antennas 1 and 2 and below the cross dipole antennas 3 and 4 horizontally next to each other and the Cross dipole antennas 1 and 3 and next to it the cross dipole antennas 2 and 4 are vertically one below the other. The four log periodic Cross dipole antennas 1, 2, 3 and 4 protrude with their longitudinal axes 6, 7, 8 and 9 to the front, whereby in with respect to a central one, perpendicular to the carrier plate 5 standing axis 10 there is symmetry. The two crossed Dipole radiator rows of each cross dipole antenna 1, 2, 3 and 4 ensure that the two orthogonal linear polarizations separately and at the same time for the recycling of related Signals are available. The longitudinal axes 6, 7, 8 and 9 are inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipole antennas 1, 2, 3 and 4 about a maximum of 0.7 · λ apart lie.

Fig. 3 zeigt in einer schematischen Querschnittsansicht eine vorteilhafte Integrationsmöglichkeit eines sogenannten "multi mode"-Suchkopfes, der unter anderem ein HF-Antennensystem nach der Erfindung enthält. Das auf einer kreisrunden, z.B. dielektrischen Trägerplatte 11 exzentrisch angebrachte HF-Antennensystem besteht aus vier eng benachbart angeordneten logarithmisch-periodischen Kreuzdipolantennen 12, 13, 14 und 15. Abgesehen von der exzentrischen Lage auf der Trägerplatte 11 stimmt die aus den vier Kreuzdipolantennen 12, 13, 14 und 15 zusammengesetzte Vierergruppe mit derjenigen nach den Figuren 1 und 2 prinzipiell überein. Durch den exzentrischen Versatz der Vierergruppe nach oben entsteht jedoch ein Freiraum 16, in welchem ein weiterer Sensor angeordnet werden kann. Dieser Freiraum 16 ergibt sich genauso wie die Freiräume 17, 18 und 19 z.B. für ein zusätzliches Millimeterwellen-Antennensystem 17, einen Laser-Entfernungsmesser 18 und einen weiteren Sensor 19 durch eine besondere Maßnahme an den logarithmisch-periodischen Kreuzdipolantennen 12, 13, 14 und 15. Durch kapazitive Belastungen an den Enden der Halbwellen-Dipole der vier logarithmisch-periodischen Kreuzdipolantennen 12, 13, 14 und 15 können nämlich im unteren Frequenzbereich die mechanischen Abmessungen beträchtlich verringert werden, so daß sich für die Vierergruppe ein erheblich geringerer Basisdurchmesser als der Durchmesser der Trägerplatte 11 erreichen läßt. Zwei unverkürzte Halbwellendipole nebeneinander würden sonst, d.h. also ohne die kapazitiven Belastungen, für die untere Frequenz eine Abmessung verlangen, die um einiges größer ist als der Durchmesser der Trägerplatte 11. Der nicht ausgefüllte Platz im Flugkörperquerschnitt innerhalb eines Radoms 20 bietet somit eine günstige Integrationsmöglichkeit für das Millimeterwellen-Antennensystem an der Stelle des Freiraumes 17 und für weitere Sensoren an den Stellen der Freiräume 16, 18 und 19.Fig. 3 shows a schematic cross-sectional view advantageous integration option of a so-called "multi mode "seeker head, which includes an RF antenna system contains according to the invention. That on a circular, e.g. dielectric carrier plate 11 eccentrically attached RF antenna system consists of four closely spaced log-periodic cross dipole antennas 12, 13, 14 and 15. Apart from the eccentric position on the carrier plate 11 is correct from the four cross dipole antennas 12, 13, 14 and 15 composed group of four with that according to the figures 1 and 2 agree in principle. By the eccentric However, offset of the group of four upwards creates a free space 16, in which a further sensor can be arranged can. This free space 16 results just like the free spaces 17, 18 and 19 e.g. for an additional millimeter wave antenna system 17, a laser rangefinder 18 and another sensor 19 by a special measure to the log-periodic cross dipole antennas 12, 13, 14 and 15. Through capacitive loads at the ends of the half-wave dipoles of the four log-periodic cross dipole antennas 12, 13, 14 and 15 can namely in the lower frequency range the mechanical dimensions are considerably reduced, so that there is a significantly smaller base diameter for the group of four reach as the diameter of the support plate 11 leaves. Two unabridged half-wave dipoles side by side otherwise, i.e. without the capacitive loads, for the lower frequency require a dimension that is quite a bit is larger than the diameter of the carrier plate 11. The not filled space in the cross section of a missile within a Radoms 20 thus offers an inexpensive integration option for the millimeter wave antenna system at the location of the Free space 17 and for additional sensors at the locations of the Free spaces 16, 18 and 19.

In Fig. 4 ist in einer schematischen Seitenansicht das Vorderteil eines Flugkörpers dargestellt, in welchem unter einem Radom 20 ein sehr breitbandig wirkendes HF-Suchkörper-Antennensystem nach der Erfindung untergebracht ist. Dieses Antennensystem besteht aus einer Gruppe 21 von vier räumlich eng benachbart angeordneten Einzelantennen, die durch logarithmisch-periodische Kreuzdipolantennen gebildet werden. Die Längsachsen 22, 23, 24 und 25 (in Fig. 4 sind davon nur die Achsen 23 und 25 der beiden vorderen Kreuzdipolantennen sichtbar) dieser logarithmisch-periodischen Kreuzdipolantennen verlaufen schräg so zueinander geneigt, daß im gesamten Betriebsfrequenzbereich die Phasenzentren der jeweils aktiven Kreuzdipole etwa maximal 0,7 · λ auseinander liegen. Die Signale der einzelnen logarithmisch-periodischen Kreuzdipolantennen der Vierergruppe 21 werden über Polarisationsschalter 26, 27, 28 und 29 in einem Monopuls-Speisenetzwerk 30 so zusammengeschaltet, daß ein Amplituden- und Phasenvergleich von Summen- und Differenzdiagrammen in Elevation und Azimut durchgeführt werden kann. Auch bei diesem Ausführungsbeispiel sind die Dipole der vier logarithmisch-periodischen Kreuzdipolantennen Halbwellendipole, deren Enden kapazitiv belastet sind, so daß ein erheblich geringerer Basisdurchmesser der Vierergruppe 21 erreicht wird. Der nicht ausgefüllte Platz im Flugkörperquerschnitt bietet somit eine sehr vorteilhafte Integrationsmöglichkeit für weitere Sensoren. 4 is a schematic side view of the front part of a missile, in which under a Radom 20 is a very broadband HF search body antenna system is housed according to the invention. This antenna system consists of a group 21 of four spatially narrow adjacent single antennas, which are logarithmic-periodic Cross dipole antennas are formed. The Longitudinal axes 22, 23, 24 and 25 (in Fig. 4 are only those Axes 23 and 25 of the two front cross dipole antennas visible) of these log-periodic cross dipole antennas run inclined to each other so that in the whole Operating frequency range the phase centers of the currently active Cross dipoles are approximately a maximum of 0.7 · λ apart. The signals of the individual log-periodic cross dipole antennas the group of four 21 are via polarization switches 26, 27, 28 and 29 interconnected in a monopulse feed network 30 in such a way that an amplitude and phase comparison of Sum and difference diagrams in elevation and azimuth can be carried out. Also in this embodiment are the dipoles of the four log-periodic cross dipole antennas Half-wave dipoles, the ends of which are capacitively loaded are, so that a significantly smaller base diameter Group of four 21 is reached. The empty space in the Missile cross section thus offers a very advantageous integration option for further sensors.

Fig. 5 zeigt in einem Blockschaltbild ein Monopuls-Komparatornetzwerk, wie es beispielsweise in der Anordnung nach Fig. 4 als Monopuls-Speisenetzwerk 30 vorgesehen ist. Die von den vier logarithmisch-periodischen Kreuzdipolantennen kommenden Signale sind mit A, B, C und D bezeichnet. Sie werden zunächst zwei Hybridschaltungen 31 und 32 zugeführt, deren Ausgangssignale dann zwei weitere Hybridschaltungen 33 und 34 beaufschlagen. An den Ausgängen der beiden Hybridschaltungen 33 und 34 werden dann für jede beliebige eingestellte Polarisation ein Gesamtsumnensignal Σ sowie ein Gesamtdifferenzsignal ΔAZ für den Azimut und ein Gesamtdifferenzsignal ΔEL für die Elevation abgegeben. Dieses herkömmlich aufgebaute Monopuls-Komparatornetzwerk nach Fig. 5 ist also so zusammengeschaltet, daß ein Amplituden- und Phasenvergleich von Summen- und Differenzdiagrammen in Elevation und Azimut durchgeführt werden kann. Es wird noch einmal darauf hingewiesen, daß die logarithmisch-periodische Kreuzdipolantenne in der Lage ist, beide linearen Polarisationen zur Verfügung zu stellen. Alle anderen Polarisationen können an einem der beiden Ausgänge mit maximal 3 dB Verlust empfangen werden. Polarisationsverlustfrei kann mit Hilfe eines 90°/3 dB-Hybrids eine links- bzw. rechtszirkulare Polarisation gebildet werden.FIG. 5 shows in a block diagram a monopulse comparator network, as is provided for example in the arrangement according to FIG. 4 as a monopulse feed network 30. The signals coming from the four log-periodic cross dipole antennas are labeled A, B, C and D. They are first fed to two hybrid circuits 31 and 32, the output signals of which then act on two further hybrid circuits 33 and 34. At the outputs of the two hybrid circuits 33 and 34, a total humming signal Σ and a total difference signal Δ AZ for the azimuth and a total difference signal Δ EL for the elevation are then output for any polarization set. This conventionally constructed monopulse comparator network according to FIG. 5 is interconnected such that an amplitude and phase comparison of sum and difference diagrams in elevation and azimuth can be carried out. It is pointed out once again that the logarithmic-periodic cross-dipole antenna is able to provide both linear polarizations. All other polarizations can be received at one of the two outputs with a maximum loss of 3 dB. With the help of a 90 ° / 3 dB hybrid, polarization loss-free left and right circular polarization can be formed.

Fig. 6 zeigt in einer Ansicht von vorne eine aus drei eng benachbart angeordneten, logarithmisch-periodischen Kreuzdipolantennen 35, 36 und 37 bestehende Antennengruppe, die als HF-Suchkopf-Antennensystem vorne in einem Flugkörper mit langer Reichweite zur Auffindung von Radaranlagen oder ähnlichem untergebracht werden soll. Die drei logarithmisch-periodischen Kreuzdipolantennen 35, 36 und 37 sind auf einer kreisrunden, beispielsweise dielektrischen Trägerplatte 38 so angebracht, daß die beiden Kreuzdipolantennen 35 und 36 jeweils horizontal nebeneinander liegen und die Kreuzdipolantenne 37 zentral darüber angeordnet ist. Die drei logarithmisch-periodischen Kreuzdipolantennen 35, 36 und 37 sind so zueinander angeordnet, daß ihre Phasenzentren 39, 40 und 41 die Eckpunkte eines gleichschenkligen Dreiecks bilden, dessen Basis horizontal verläuft. Die Basis dieses Dreiecks ist im in Fig. 6 dargestellten Ausführungsbeispiel unten, so daß sich eine Spitze des Dreiecks genau oben befindet. In diesem Fall ist die Azimutsymmetrie völlig ungestört. Die Elevationssymmetrie ist dagegen deswegen gestört, weil in der oberen Hälfte des Antennensystems nur eine einzige logarithmisch-periodische Kreuzdipolantenne existiert, nämlich die Antenne 37, und in der unteren Hälfte zwei logarithmisch-periodische Kreuzdipolantennen, nämlich die Antennen 35 und 36, vorhanden sind. Die drei logarithmisch-periodischen Kreuzdipolantennen 35, 36 und 37 ragen mit ihren Längsachsen 42, 43 und 44 nach vorne. Die beiden gekreuzten Dipolstrahlerreihen jeder Kreuzdipolantenne 35, 36 und 37 sorgen dafür, daß die beiden orthogonalen Linearpolarisationen getrennt und gleichzeitig für eine Verwertung von diesbezüglichen Signalen zur Verfügung stehen. Die Längsachsen 42, 43 und 44 sind schräg so zueinander geneigt, daß im gesamten Betriebsfrequenzbereich die Phasenzentren 39, 40 und 41 der jeweils aktiven Kreuzdipolantennen 35, 36 und 37 etwa maximal 0,7 · λ auseinander liegen. Der nicht ausgefüllte Platz 45 im Flugkörperquerschnitt unterhalb des aus den drei logrithmisch-periodischen Kreuzdipolantennen 35, 36 und 37 bestehenden Antennensystems bietet einem zusätzlichen Sensor, z.B. einen optronischen Sensor, eine günstige Integrationsmöglichkeit.Fig. 6 shows a front view of one of three closely adjacent arranged, logarithmic-periodic cross dipole antennas 35, 36 and 37 existing antenna group, the RF seeker antenna system forward in a missile with a long Range for locating radar systems or similar housed shall be. The three log periodic Cross dipole antennas 35, 36 and 37 are on a circular, for example dielectric carrier plate 38 is attached in such a way that the two cross dipole antennas 35 and 36 are each horizontal lie next to each other and the cross dipole antenna 37 centrally is arranged above. The three log periodic Cross dipole antennas 35, 36 and 37 are arranged relative to one another that their phase centers 39, 40 and 41 are the cornerstones of a form isosceles triangle, the base of which is horizontal runs. The base of this triangle is shown in FIG. 6 Embodiment below, so that a tip of the triangle is right at the top. In this case there is azimuth symmetry completely undisturbed. The elevation symmetry is on the other hand disturbed because in the upper half of the antenna system only one log-periodic Cross dipole antenna exists, namely antenna 37, and in the lower half two log-periodic cross dipole antennas, namely antennas 35 and 36 are present. The three log-periodic cross dipole antennas 35, 36 and 37 protrude forward with their longitudinal axes 42, 43 and 44. The two crossed dipole radiator rows of each cross dipole antenna 35, 36 and 37 ensure that the two orthogonal linear polarizations separately and at the same time for recycling of related signals are available. The Longitudinal axes 42, 43 and 44 are inclined at an angle to one another, that the phase centers 39, 40 and 41 of the active cross dipole antennas 35, 36 and 37 about a maximum of 0.7 · λ apart. The unfilled one 45th place in the cross section of the missile below the three log-periodic cross dipole antennas 35, 36 and 37 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.

Fig. 7 zeigt ebenso in einer Ansicht von vorne eine aus drei eng benachbart angeordneten, logarithmisch-periodischen Kreuzdipolantennen 46, 47 und 48 bestehende Antennengruppe, die als HF-Suchkopf-Antennensystem vorne in einem Flugkörper mit langer Reichweite zur Auffindung von Radaranlagen oder ähnlichem untergebracht werden soll. Die drei logarithmisch-periodischen Kreuzdipolantennen 46, 47 und 48 sind auf einer kreisrunden, beispielsweise dielektrischen Trägerplatte 49 so angebracht, daß die beiden Kreuzdipolantennen 46 und 47 jeweils horizontal nebeneinander liegen und die Kreuzdipolantenne 48 zentral darunter angeordnet ist. Die drei logarithmisch-periodischen Kreuzdipolantennen 46, 47 und 48 sind so zueinander angeordnet, daß ihre Phasenzentren 50, 51 und 52 die Eckpunkte eines gleichschenkligen Dreiecks bilden, dessen Basis horizontal verläuft. Die Basis dieses Dreiecks ist im in Fig. 7 dargestellten Ausführungsbeispiel oben, so daß sich eine Spitze des Dreiecks genau unten befindet. Auch in diesem Fall ist die Azimutsymmetrie völlig ungestört, wogegen die Elevationssymmetrie deswegen gestört ist, weil in der oberen Hälfte des Antennensystems zwei Antennen vorgesehen sind und in der unteren Hälfte nur eine Antenne vorhanden ist. Die drei logarithmisch-periodischen Kreuzdipolantennen 46, 47 und 48 ragen mit ihren Längsachsen 53, 54 und 55 nach vorne. Die beiden gekreuzten Dipolstrahlerreihen jeder Kreuzdipolantenne 46, 47 und 48 sorgen dafür, daß die beiden orthogonalen Linearpolarisationen getrennt und gleichzeitig für eine Verwertung von diesbezüglichen Signalen zur Verfügung stehen. Die Längsachsen 53, 54 und 55 sind schräg so zueinander geneigt, daß im gesamten Betriebsfrequenzbereich die Phasenzentren 50, 51 und 52 der jeweils aktiven Kreuzdipolantennen 46, 47 und 48 etwa maximal 0,7 · λ auseinander liegen. Der nicht ausgefüllte Platz 56 im Flugkörperquerschnitt unterhalb des aus den drei logrithmisch-periodischen Kreuzdipolantennen 46, 47 und 48 bestehenden Antennensystems bietet einem zusätzlichen Sensor, z.B. einen optronischen Sensor, eine günstige Integrationsmöglichkeit.Fig. 7 also shows a front view of one of three logarithmic-periodic Cross dipole antennas 46, 47 and 48 existing antenna group, the RF seeker antenna system in the front of a missile with a long range for locating radar systems or similar should be accommodated. The three log periodic Cross dipole antennas 46, 47 and 48 are on one circular, for example dielectric carrier plate 49 so attached that the two cross dipole antennas 46 and 47 each lie horizontally next to each other and the cross dipole antenna 48 is arranged centrally below. The three log periodic Cross dipole antennas 46, 47 and 48 are like this arranged to each other that their phase centers 50, 51 and 52nd form the corner points of an isosceles triangle whose Base runs horizontally. The base of this triangle is in in Fig. 7 embodiment shown above, so that a tip of the triangle is located just below. Also in this Case, the azimuth symmetry is completely undisturbed, whereas the Elevation symmetry is disturbed because in the upper one Half of the antenna system two antennas are provided and there is only one antenna in the lower half. The three log-periodic cross dipole antennas 46, 47 and 48 protrude forward with their longitudinal axes 53, 54 and 55. The two crossed dipole radiator rows of each cross dipole antenna 46, 47 and 48 ensure that the two orthogonal linear polarizations separately and at the same time for recycling of related signals are available. The Longitudinal axes 53, 54 and 55 are inclined at an angle to one another, that the phase centers 50 in the entire operating frequency range, 51 and 52 of the active cross dipole antennas 46, 47 and 48 are approximately a maximum of 0.7 · λ apart. The unfilled one Place 56 in the cross section of the missile below the the three log-periodic cross dipole antennas 46, 47 and 48 existing antenna systems offers an additional Sensor, e.g. an optronic sensor, an inexpensive integration option.

Fig. 8 zeigt in einem Blockschaltbild ein Monopuls-Speisenetzwerk wie es beispielsweise in zweckmäßiger Weise für das Antennensystem in der Anordnung nach Fig. 7 vorgesehen werden kann. Die von den drei logarithmisch-periodischen Kreuzdipolantennen kommenden Signale sind mit A, B und C bezeichnet. Im dargestellten Monopuls-Speisenetzwerk sind drei 3dB-Teiler 57, 58 und 59 vorgesehen, deren Eingang jeweils mit einer der drei logarithmisch-periodischen Kreuzdipolantennen verbunden ist. Zum Eingang des 3dB-Teilers 57 gelangt also das Signal A, zum Eingang des 3dB-Teilers 58 das Signal B und zum Eingang des 3dB-Teilers 59 das Signal C. Jeweils ein Ausgang der zwei 3dB-Teiler 57 und 58, die also eingangsseitig mit den mit ihren Phasenzentren in den beiden Basiseckpunkten des gleichschenkligen Dreiecks liegenden logarithmisch-periodischen Kreuzdipolantennen verbunden sind, ist an einen Abschlußwiderstand 60 bzw. 61 angeschlossen. Der andere Ausgang der beiden 3dB-Teiler 57 und 58 ist an einen Eingang jeweils einer von zwei 3dB/180°-Hybridschaltungen 62 und 63 geführt, deren jeweils zweiter Eingang mit jeweils einem Ausgang des dritten 3dB-Verteilers 59 verbunden ist, der also mit seinem Eingang an die nicht in einem Basiseckpunkt des gleichschenkligen Dreiecks liegenden logarithmisch-periodischen Kreuzdipolantenne angeschlossen ist. Jeweils der Differenz-Ausgang der beiden 3dB/180°-Hybridschaltungen 62 und 63 ist mit einem Eingang einer ersten weiteren 3dB/180°-Hybridschaltung 64 und jeweils der Summen-Ausgang der beiden 3dB/180°-Hybridschaltungen 62 und 63 mit einem Eingang einer zweiten weiteren 3dB/180°-Hybridschaltung 65 verbunden. An den beiden Ausgängen der ersten weiteren 3dB/180°-Hybridschaltung 64 stehen das Gesamtdifferenzsignal ΔEl in der Elevation bzw. das Gesamtdifferenzsignal ΔAz im Azimut und am Summen-Ausgang der zweiten weiteren 3dB/180°-Hybridschaltung 65, an deren Differenz-Ausgang ein Abschlußwiderstand 66 liegt, das Gesamtsummensignal ∑ an.FIG. 8 shows in a block diagram a monopulse feed network as can be provided, for example, in an advantageous manner for the antenna system in the arrangement according to FIG. 7. The signals coming from the three log-periodic cross dipole antennas are labeled A, B and C. In the monopulse feed network shown, three 3dB dividers 57, 58 and 59 are provided, the inputs of which are each connected to one of the three log-periodic cross-dipole antennas. Signal A thus arrives at the input of the 3dB divider 57, signal B at the input of the 3dB divider 58 and signal C at the input of the 3dB divider 59. In each case an output of the two 3dB dividers 57 and 58, that is to say on the input side are connected to the logarithmic-periodic cross-dipole antennas with their phase centers in the two base corner points of the isosceles triangle, are connected to a terminating resistor 60 or 61. The other output of the two 3dB dividers 57 and 58 is connected to an input of one of two 3dB / 180 ° hybrid circuits 62 and 63, the second input of which is connected to an output of the third 3dB distributor 59, that is to say its input is connected to the logarithmic-periodic cross-dipole antenna which is not in a base vertex of the isosceles triangle. In each case the difference output of the two 3dB / 180 ° hybrid circuits 62 and 63 is with an input of a first further 3dB / 180 ° hybrid circuit 64 and the sum output of the two 3dB / 180 ° hybrid circuits 62 and 63 with one input a second further 3dB / 180 ° hybrid circuit 65 connected. The total difference signal Δ El are at the two outputs of the first further 3dB / 180 ° hybrid circuit 64 in the elevation and the total differential signal Δ Az in azimuth and the sum output of the second further 3dB / 180 ° hybrid circuit 65, to whose differential Output a terminating resistor 66 is present, the total signal ∑.

Durch die in Fig. 8 dargestellte Kombination im Monopuls-Speisenetzwerk wird die gestörte Elevationssymmetrie korrigiert. Diese Störung entsteht deswegen, weil in Elevationsrichtung in der oberen Hälfte des Antennensystems zwei logarithmisch-periodische Kreuzdipolantennen und in der unteren Hälfte lediglich eine einzige solche Kreuzdipolantenne vorhanden ist. Mit Hilfe des in Fig. 8 dargestellten Monopuls-Speisenetzwerks wird das Gesamtdifferenzsignal ΔAz im Azimut aus den von den beiden nebeneinanderliegenden Antennen stammenden Signalen A und B gebildet und zwar in Form von ΔAz = A/2 - B/2 und das Gesamtdifferenzsignal ΔEl in der Elevation aus den von allen drei Antennen stammenden Signalen A, B und C nach der Gleichung ΔEl = A/2 + B/2 - C. The disturbed elevation symmetry is corrected by the combination in the monopulse feed network shown in FIG. 8. This disturbance arises because there are two log-periodic cross-dipole antennas in the upper half of the antenna system and only one such cross-dipole antenna in the lower half. With the help of the monopulse feed network shown in FIG. 8, the total difference signal Δ Az in azimuth is formed from the signals A and B originating from the two adjacent antennas, in the form of Δ Az = A / 2 - B / 2 and the total difference signal Δ El in the elevation from the signals A, B and C originating from all three antennas according to the equation Δ El = A / 2 + B / 2 - C.

Das Gesamtsummensignal Σ setzt sich aus den drei Signalen A, B und C folgendermaßen zusammen: Σ = A/2 + B/2 + C. The total signal Σ is composed of the three signals A, B and C as follows: Σ = A / 2 + B / 2 + C.

Claims (7)

  1. A very broad band RF seeker head antenna system, which is effective over a plurality of octaves, and which is accommodated under a radome at the front of a missile which is suitable for the detection of radar devices or the like, consisting of a group of individual antennas which are mounted in close spatial proximity to each other on a backplate, e.g. a dielectric backplate, and which are interconnected via a monopulse supply network so that an amplitude and phase comparison can be made of elevation and azimuth sum and difference diagrams,
    characterised in that
    four logarithmic-periodic crossed dipole antennas (1, 2, 3, 4) are provided as the individual antennas of the group, the longitudinal axes (6, 7, 8, 9) of which are inclined in relation to each other so that over the entire operating frequency range the phase centres of the crossed dipoles which are active each time are situated at a maximum of about 0.7 . λ apart.
  2. A very broad band RF seeker head antenna system, which is effective over a plurality of octaves, and which is accommodated under a radome at the front of a missile which is suitable for the detection of radar devices or the like, consisting of a group of individual antennas which are mounted in close spatial proximity to each other on a backplate, e.g. a dielectric backplate, and which are interconnected via a monopulse supply network so that an amplitude and phase comparison can be made of elevation and azimuth sum and difference diagrams,
    characterised in that
    three logarithmic-periodic crossed dipole antennas (35, 36, 37) are provided as the individual antennas of the group, the longitudinal axes (42, 43, 44) of which are inclined in relation to each other so that over the entire operating frequency range the phase centres (39, 40, 41) of the crossed dipoles which are active each time are situated at a maximum of about 0.7 . λ apart.
  3. An antenna system according to claims 1 or 2,
    characterised in that
    the dipoles of the logarithmic-periodic crossed dipole antennas (1, 2, 3, 4) are halfwave dipoles, the ends of which are subjected to capacitive loading.
  4. An antenna system according to any one of claims 1 to 3,
    characterised in that
    the group consisting of the logarithmic-periodic crossed dipole antennas (12, 13, 14, 15) is accommodated in the front of the missile so that free spaces (16 to 19) are formed in the missile cross-section in which further sensors, e.g. optronic or millimetre wave sensors, can be disposed.
  5. An antenna system according to claim 2,
    characterised in that
    the three logarithmic-periodic crossed dipole antennas (35, 36, 37) are disposed in relation to each other so that their phase centres (39, 40, 41) form the apices of an isosceles triangle, the base of which is horizontal.
  6. An antenna system according to claim 2,
    characterised in that
    the three logarithmic-periodic crossed dipole antennas are disposed in relation to each other so that their phase centres form the apices of an isosceles triangle, the base of which is vertical.
  7. An antenna system according to claims 5 or 6,
    characterised in that
    three 3dB separators (57, 58, 59) are provided in the monopulse supply network, the input of each of which is connected to one of the three logarithmic-periodic crossed dipole antennas (46, 47, 48; signals A, B and C), that one output of each of the two 3dB separators (57, 56), the inputs of which are connected to the logarithmic-periodic crossed dipole antennas(46, 47; signals A, and B) with their phase centres situated at the two base apices of the isosceles triangle, are connected to a terminating resistor (60, 61), and the other output of each is fed to the input of one of two 3dB/180° hybrid circuits (62, 63), the second input of each of which is connected to an output of the third 3dB separator (59), the input of which is connected to the logarithmic-periodic crossed dipole antenna (48; signal C) which is not situated on a base apex of the isosceles triangle, that the differential output of each of the two 3dB/180° hybrid circuits (62, 63) is connected to an input of a first, further 3dB/180° hybrid circuit (64), and the summing output of the two 3dB/180° hybrid circuits (62, 63) is connected to an input of a second, further 3dB/180° hybrid circuit (65), and that the total differential signal (ΔEl) for the elevation and the total differential signal (AAz) for the azimuth are output at the two respective outputs of the first, further 3dB/180° hybrid circuit (64), and the total summing signal (Σ) is output at the summing output of the second further 3dB/180° hybrid circuit (65), at the differential output of which a terminating resistor (66) is situated.
EP95116740A 1994-10-25 1995-10-24 RF seeker head antenna system for missiles Expired - Lifetime EP0709914B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4438089 1994-10-25
DE4438089 1994-10-25

Publications (2)

Publication Number Publication Date
EP0709914A1 EP0709914A1 (en) 1996-05-01
EP0709914B1 true EP0709914B1 (en) 2000-01-12

Family

ID=6531640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116740A Expired - Lifetime EP0709914B1 (en) 1994-10-25 1995-10-24 RF seeker head antenna system for missiles

Country Status (3)

Country Link
US (1) US5686929A (en)
EP (1) EP0709914B1 (en)
DE (1) DE59507604D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682842B1 (en) 2020-10-08 2023-06-20 Rockwell Collins, Inc. Log periodic array application of minature active differential/quadrature radiating elements

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999138A (en) * 1998-03-30 1999-12-07 Ponce De Leon; Lorenzo A. Low power switched diversity antenna system
GB0016409D0 (en) * 2000-07-05 2001-08-01 Royal Ordnance Plc Proximity sensing device
EP2079128A1 (en) 2008-01-11 2009-07-15 Michael Salewski Jammer antenna system
US8773300B2 (en) * 2011-03-31 2014-07-08 Raytheon Company Antenna/optics system and method
US8791853B2 (en) * 2011-04-20 2014-07-29 Rockwell Collins, Inc. Air-to-ground antenna
IL232381B (en) * 2014-04-30 2020-02-27 Israel Aerospace Ind Ltd Cover
CN105633584B (en) * 2015-12-30 2018-07-13 中国电子科技集团公司第三十九研究所 Logarithm period feed battle array based on satellite multi-beam antenna stereoeffect layout
CN106252900A (en) * 2016-07-27 2016-12-21 江西洪都航空工业集团有限责任公司 A kind of Shared aperture Broadband interferometer antenna array

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2270130A (en) * 1940-08-30 1942-01-13 Rca Corp Directive antenna system
US2414103A (en) * 1941-07-08 1947-01-14 Sperry Gyroscope Co Inc Apparatus for controlling missiles in flight
US3273158A (en) * 1961-07-19 1966-09-13 Ling Temco Vought Inc Multi-polarized tracking antenna
US3147479A (en) * 1962-03-01 1964-09-01 Radiation Inc Plural juxtaposed parabolic reflectors with frequency independent feeds
US4360816A (en) * 1971-07-21 1982-11-23 The United States Of America As Represented By The Secretary Of The Navy Phased array of six log-periodic dipoles
SE411596B (en) * 1977-10-25 1980-01-14 Saab Scania Ab FOR ELECTROMAGNETIC RADIATION SENSITIVE DEVICE, FITTED TO LOCATE A TRANSMITTER
US4348677A (en) * 1979-06-25 1982-09-07 General Dynamics, Pomona Division Common aperture dual mode seeker antenna
US4490725A (en) * 1981-10-09 1984-12-25 Gte Products Corporation Log-periodic antenna
US4658262A (en) * 1985-02-19 1987-04-14 Duhamel Raymond H Dual polarized sinuous antennas
US4977408A (en) * 1989-06-28 1990-12-11 General Electric Company Deployable antenna bay
US5274390A (en) * 1991-12-06 1993-12-28 The Pennsylvania Research Corporation Frequency-Independent phased-array antenna
US5451969A (en) * 1993-03-22 1995-09-19 Raytheon Company Dual polarized dual band antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682842B1 (en) 2020-10-08 2023-06-20 Rockwell Collins, Inc. Log periodic array application of minature active differential/quadrature radiating elements

Also Published As

Publication number Publication date
US5686929A (en) 1997-11-11
EP0709914A1 (en) 1996-05-01
DE59507604D1 (en) 2000-02-17

Similar Documents

Publication Publication Date Title
DE69618814T2 (en) HYBRID BEARING SYSTEM WITH AMPLITUDE / PHASE COMPARISON
DE69929241T2 (en) CIRCULAR PEILANTENNE
DE68910677T2 (en) MICROSTRIPED ANTENNA.
DE60214585T2 (en) PATCH VESSEL, PRINTED ANTENNA
DE69126941T2 (en) Broadband, dual polarized multimode antenna
DE68907575T2 (en) Electronic antenna scanning the full solid angle with spatially randomly distributed, diluted radiators.
DE69602052T2 (en) Phase-controlled group antenna for multi-band operation with mutual use of radiators made of waveguides and tapered elements
DE69901026T2 (en) DOUBLE BAND ANTENNA
DE60035003T2 (en) Dual polarized printed antenna and corresponding array antenna
EP2135324A1 (en) Antenna apparatus for transmitting and receiving electromagnetic signals
DE102012023938A1 (en) Dual polarized omnidirectional antenna
EP0709914B1 (en) RF seeker head antenna system for missiles
DE102009000644A1 (en) Device for transmitting and / or receiving electromagnetic RF signals, and measuring device and machine tool monitoring device with such a device
DE68910728T2 (en) Stripline array antenna.
DE10345314A1 (en) Device and method for emitting and / or receiving electromagnetic radiation
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
EP0021252B1 (en) Pillbox type radar antenna with integrated iff antenna
DE2929254C2 (en) Antenna system for direction finding of a microwave signal source
DE69408303T2 (en) ANTENNA SYSTEM
DE3638879C2 (en) Microwave radar antenna arrangement
DE4135828A1 (en) ANTENNA ARRANGEMENT
DE2502376C2 (en)
EP3333971B1 (en) Dipole radiator module
DE19855115A1 (en) Multi-layer antenna arrangement
DE102018202299A1 (en) Antenna arrangement for a radar sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960520

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODENSEEWERK GERAETETECHNIK GMBH

Owner name: DAIMLER-BENZ AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BODENSEEWERK GERAETETECHNIK GMBH

Owner name: DAIMLERCHRYSLER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59507604

Country of ref document: DE

Date of ref document: 20000217

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101104

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101022

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101021

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111024

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59507604

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111024