EP0021252B1 - Pillbox type radar antenna with integrated iff antenna - Google Patents

Pillbox type radar antenna with integrated iff antenna Download PDF

Info

Publication number
EP0021252B1
EP0021252B1 EP80103252A EP80103252A EP0021252B1 EP 0021252 B1 EP0021252 B1 EP 0021252B1 EP 80103252 A EP80103252 A EP 80103252A EP 80103252 A EP80103252 A EP 80103252A EP 0021252 B1 EP0021252 B1 EP 0021252B1
Authority
EP
European Patent Office
Prior art keywords
radar
iff
antenna
radar antenna
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80103252A
Other languages
German (de)
French (fr)
Other versions
EP0021252A1 (en
Inventor
Anton Dipl.-Ing. Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0021252A1 publication Critical patent/EP0021252A1/en
Application granted granted Critical
Publication of EP0021252B1 publication Critical patent/EP0021252B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
    • H01Q19/138Parallel-plate feeds, e.g. pill-box, cheese aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • Primary radar and IFF antennas can be constructed separately, e.g. as pillbox antenna and IFF beam antenna, and then combine them spatially one above the other.
  • a beam antenna with a series-fed radar antenna and an integrated IFF beam is also known.
  • the disadvantage of a series fed radar antenna, e.g. a waveguide slot antenna consists in the narrow band and in particular in the frequency dependence of the main beam direction.
  • a pillbox antenna for primary radar with an integrated IFF antenna is known, which is attached in the interior of the pillbox antenna in a specially preferred area in the radiation direction in the form of radiating elements in front of a polarizing grating acting as a reflector wall.
  • the IFF emitters thus have no external reflection at the cylindrical parabolic reflector of the pillbox antenna. Because of the IFF radiator stem, the overall antenna, which is low and therefore suitable for placement on vehicles, is longer than a conventional pillbox antenna.
  • the object of the invention which relates to a radar antenna with an integrated IFF antenna of the type mentioned at the outset, is to make such an antenna shorter and, at the same time, to achieve optimum radiation properties in the horizontal plane within a larger frequency bandwidth.
  • this object is achieved in that between the two plates there is also a metallic intermediate plate running parallel to these two plates, but not reaching as far as the cylindrical parabolic reflector, so that two are known in the manner of a double-deck pillbox antenna known per se
  • Both sides of this intermediate plate result in plate interspaces between which there is a radiation connection via a device for deflecting the radiation provided along the cylindrical parabolic reflector, both the radar signal primary radiator and the device for radiation coupling of the IFF signal being arranged in the one plate interspace. while the other plate gap opens to the antenna aperture.
  • a simple pillbox antenna is formed by a cylindrical parabolic reflector and two metallic plates that run perpendicular to and parallel to one another and have a spacing of less than one wavelength. The feed takes place at the focal line. A fan-shaped radiation lobe is created.
  • the double-deck (folded) pillbox antenna known per se for example from US-A-2 638 546, has the advantage that the aperture is not partially shadowed by the primary radiator.
  • the double-decker pillbox antenna consists of a cylindrical parabolic reflector 1 and two mutually parallel, mutually parallel metallic plates 2 and 3 with an intermediate plate 4, which however does not extend to the parabolic reflector 1.
  • the intermediate plate 4 runs parallel to the two plates 2 and 3.
  • a radar signal primary radiator 7 in the plate space 6 arranged.
  • the radar signal primary radiator 7 can be designed, for example, as an open waveguide or as a small horn radiator, for example a deflecting horn radiator, as in FIG. 1.
  • the radar signal coming from a feeder 8 is thus coupled into the lower plate space 6 via the primary radiator 7.
  • the radiation transition from the lower plate space 6 into the upper space 5 takes place in the arrangement according to FIG. 1 with the aid of two 45 ° bevels 9 and 10 in the cross-sectional contour of the cylindrical parabolic reflector 1.
  • the transition can also be made by a simple slot between the intermediate plate 4 and the cylindrical parabolic reflector 1.
  • the intermediate plate 4 is fastened in a holder 11 made of dielectric material and running along the cylindrical parabolic reflector 1.
  • Such a mounting of the intermediate plate 4 may be preferable to the use of discrete spacer pins, since disturbing inhomogeneity points can arise when using such pins.
  • a funnel-shaped opening 12 is provided in front of the aperture 20 of the upper intermediate space 5 in order to enable the desired vertical bundling chen.
  • the intermediate space can be held by a support 21 made of dielectric material, which can also serve as a climatic seal.
  • IFF coupling takes place on both sides of the deflection horn 7 and thus also the pillbox parabolic focal line by means of two radiators 13 and 14.
  • the vertical polarization of these two IFF radiators 13 and 14 is in any case spreadable and horizontal horizontal or vertical primary radar polarization can also easily go to the floor above, ie be redirected into the intermediate space 5.
  • the IFF coupling takes place through the extended inner conductor of two coaxial lines and must be adjusted due to its short extension relative to the wavelength.
  • the emitters 13 and 14 serving for IFF coupling can be offset somewhat from one another in the transverse direction, so that the distances between these coupling emitters 13 and 14 are each different from the radar signal primary emitter and an IFF main beam direction that is necessary for an optimized, target-controlled interrogation and squinting towards the main radar lobe arises.
  • a sum-difference formation of the signals of the two IFF emitters 13 and 14 for narrowing the effective lobe width and for suppressing side lobe signal suppression is advantageously carried out by a hybrid circuit 15 attached to the outside of the plate 3 directly below the IFF coupling. 16 and 17 denote the sum and difference input of this hybrid circuit 15.
  • the lower plate gap 6 is closed on the side facing away from the cylindrical parabolic reflector with a metallic rear wall 18.
  • the distance d 2 between the device for coupling the radiation of the IFF signals, ie the two radiators 13 and 14, and the rear wall 18 is advantageously dimensioned such that the rear wall acts as a sub-reflector for the IFF signals.
  • the distance d 1 between the radiation center of the radar signal primary emitter 7 and the rear wall 18 be greater than the distance d between the emitters 13 and 14 of the device for coupling in radiation the IFF signals on one side and the rear wall 18 on the other side. This measure prevents interference from the primary radar by the IFF radiation.
  • the resulting deviation of the IFF radiation center of gravity from the focal line of the cylindrical parabolic reflector 1 is not critical at the usual wavelength for IFF signals of approximately 30 centimeters.
  • a polarization grating 22 in the region of the funnel in which the horizontal polarization can spread.
  • a polarization grating 22 consists in a known manner e.g. from wires or meander lines inclined at 45 ° to the aperture edges, which in addition to the existing z.
  • vertical e-vector generate an equally large, 90 ° phase-shifted horizontal e-vector, so that the desired circular polarization arises.
  • This polarization conversion is undesirable for the IFF signal, since the signals of the transponders to be interrogated are also vertically polarized.
  • An arrangement of the polarization grating within the funnel 12 at a point at which the transverse dimension is less than half an IFF wavelength prevents the excitation of a horizontal IFF component, since this component cannot spread there.
  • the support 21 and the polarization grating 22 can also be structurally combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

Die Erfindung bezieht sich auf eine mit einer integrierten IFF-Antenne (IFF = identification-friend-foe = Freund-Feind-Identifizierung) versehene, als Pillbox-Antenne ausgebildete Radar- antenne, bestehend aus einem zylindrischen Parabolreflektor, aus zwei senkrecht dazu angeordneten, zueinander parallel verlaufenden metallischen Platten und aus einem mit seinem Strahlungszentrum im Fokus des zylindrischen Parabolreflektors angeordneten Radarsignal-Primärstrahler, neben dem eine Einrichtung zur Strahlungseinkopplung des IFF-Signals angeordnet ist.The invention relates to a radar antenna designed as a pillbox antenna and provided with an integrated IFF antenna (IFF = identification-friend-foe = friend-enemy identification), consisting of a cylindrical parabolic reflector, of two arranged perpendicular to it, metallic plates running parallel to one another and from a radar signal primary radiator arranged with its radiation center in the focus of the cylindrical parabolic reflector, next to which a device for radiation coupling of the IFF signal is arranged.

Primärradar- und IFF-Antennen lassen sich baulich getrennt ausführen, z.B. als Pillbox-Antenne und IFF-Balkenantenne, und dann beispielsweise räumlich übereinander kombinieren. Es ist auch eine Balkenantenne mit einer seriengespeisten Radarantenne und einem integrierten IFF-Balken bekannt. Der Nachteil einer seriengespeisten Radar-Antenne, z.B. einer Hohlleiterschlitzantenne, besteht in der Schmalbandigkeit und insbesondere in der Frequenzabhängigkeit der Hauptstrahlrichtung.Primary radar and IFF antennas can be constructed separately, e.g. as pillbox antenna and IFF beam antenna, and then combine them spatially one above the other. A beam antenna with a series-fed radar antenna and an integrated IFF beam is also known. The disadvantage of a series fed radar antenna, e.g. a waveguide slot antenna, consists in the narrow band and in particular in the frequency dependence of the main beam direction.

Aus FR-A-2 387 528 ist eine Pillbox-Antenne für Primärradar mit einer integrierten IFF-Antenne bekannt, die im Inneren der Pillbox-Antenne in einem in Strahlungsrichtung eigens vorgezogenen Bereich in Form von Strahlerelementen vor einem als Reflektorwand wirkenden Polarisationsgritter angebracht ist. Die IFF-Strahler wirken somit ohne ,Reflexion -am zylindrischen Parabolreflektor der Pillbox-Antenne nach aussen. Wegen des IFF-Strahlervorbaus ist die zwar niedrige und deswegen für eine Unterbringung auf Fahrzeugen geeignete Gesamtantenne länger als eine übliche Pillbox-Antenne. Ausserdem weist sie wegen der im Aperturberich der einfachen Pillbox-Antenne liegenden Primärradar- und IFF-Strahler und der damit gegebenen Abschattungen bzw. dem hohen Nebenzipfelpegel keine günstigen Strahlungseigenschaften auf.From FR-A-2 387 528 a pillbox antenna for primary radar with an integrated IFF antenna is known, which is attached in the interior of the pillbox antenna in a specially preferred area in the radiation direction in the form of radiating elements in front of a polarizing grating acting as a reflector wall. The IFF emitters thus have no external reflection at the cylindrical parabolic reflector of the pillbox antenna. Because of the IFF radiator stem, the overall antenna, which is low and therefore suitable for placement on vehicles, is longer than a conventional pillbox antenna. In addition, due to the primary radar and IFF emitters located in the aperture area of the simple pillbox antenna, and the resulting shadowing and the high level of the side lobe, it does not have any favorable radiation properties.

Aufgabe der Erfindung, die sich auf eine Radar- antenne mit einer integrierten IFF-Antenne der eingangs genannten Art bezieht, ist es, eine derartige Antenne kürzer auszubilden und gleichzeitig in der horizontalen Ebene innerhalb einer grösseren Frequenzbandbreite optimale Strahlungseigenschaften zu erreichen.The object of the invention, which relates to a radar antenna with an integrated IFF antenna of the type mentioned at the outset, is to make such an antenna shorter and, at the same time, to achieve optimum radiation properties in the horizontal plane within a larger frequency bandwidth.

Gemäss der Erfindung wird diese Aufgabe dadurch gelöst, dass zwischen den beiden Platten noch eine parallel zu diesen beiden Platten verlaufende, jedoch nicht bis zum zylindrischen Parabolreflektor reichende metallische Zwischenplatte vorgesehen ist, so dass sich nach Art einer an sich bekannten doppelstöckigen Pillbox-Antenne zwei zu beiden Seiten dieser Zwischenplatte liegende Plattenzwischenräume ergeben, zwischen denen eine Strahlungsverbindung über eine entlang des zylindrischen Parabolreflektors vorgesehene Einrichtung zur Umlenkung der Strahlung besteht, wobei in dem einen Plattenzwischenraum sowohl der Radarsignal-Primärstrahler als auch daneben die Einrichtung zur Strahlungseinkopplung des IFF-Signals angeordnet sind, während sich der andere Plattenzwischenraum zur Antennenapertur öffnet.According to the invention, this object is achieved in that between the two plates there is also a metallic intermediate plate running parallel to these two plates, but not reaching as far as the cylindrical parabolic reflector, so that two are known in the manner of a double-deck pillbox antenna known per se Both sides of this intermediate plate result in plate interspaces between which there is a radiation connection via a device for deflecting the radiation provided along the cylindrical parabolic reflector, both the radar signal primary radiator and the device for radiation coupling of the IFF signal being arranged in the one plate interspace. while the other plate gap opens to the antenna aperture.

Eine einfache Pillbox-Antenne wird bekanntlich durch einen zylindrischen Parabolreflektor und zwei senkrecht dazu und zueinander parallel verlaufende, metallische Platten, die einen Abstand von weniger als eine Wellenlänge aufweisen, gebildet. Die Einspeisung erfolgt hierbei an der Brennlinie. Es entsteht eine fächerförmige Strahlungskeule. Im Gegensatz dazu weist die an sich beispielsweise aus US-A-2 638 546 bekannte Doppelstock-(gefaltete)Pillbox-Antenne den Vorteil auf, dass die Apertur nicht durch den Primärstrahler teilweise abgeschattet wird.As is known, a simple pillbox antenna is formed by a cylindrical parabolic reflector and two metallic plates that run perpendicular to and parallel to one another and have a spacing of less than one wavelength. The feed takes place at the focal line. A fan-shaped radiation lobe is created. In contrast, the double-deck (folded) pillbox antenna known per se, for example from US-A-2 638 546, has the advantage that the aperture is not partially shadowed by the primary radiator.

Die Erfindung wird im folgenden anhand von drei Figuren näher erläutert. Es zeigen

  • Fig. 1 eine Doppelstock-Pillbox-Antenne für Radar- und IFF-Signale nach der Erfindung in einer geschnittenen Seitendarstellung
  • Fig. 2 diese Antenne in einer in Fig. 1 bei l-I geschnittenen Draufsicht, und
  • Fig. 3 einen Ausschnitt aus Fig. 2.
The invention is explained in more detail below with reference to three figures. Show it
  • Fig. 1 shows a double-deck pillbox antenna for radar and IFF signals according to the invention in a sectional side view
  • Fig. 2 shows this antenna in a top view in Fig. 1 at lI, and
  • 3 shows a detail from FIG. 2.

Die doppelstöckige Pillbox-Antenne nach der Erfindung besteht aus einem zylindrischen Parabolreflektor 1 und zwei senkrecht dazu angeordneten, zueinander parallel verlaufenden metallischen Platten 2 und 3 mit einer Zwischenplatte 4, die jedoch nicht bis zum Parabolreflektor 1 reicht. Die Zwischenplatte 4 verläuft parallel zu den beiden Platten 2 und 3. Zu beiden Seiten der Zwischenplatte 4 ergibt sich jeweils ein Plattenzwischenraum (= Stockwerk) 5 bzw. 6. In der Brennlinie des Parabolreflektors 1 ist mit seinem Strahlungszentrum ein Radarsignal-Primärstrahler 7 im Plattenzwischenraum 6 angeordnet. Der Radarsignal-Primärstrahler 7 lässt sich beispielsweise als offener Hohlleiter oder als ein kleiner Hornstrahler, z.B. ein Umlenkhornstrahler, wie in Fig. 1 ausbilden. Das von einer Zuführung 8 kommende Radarsignal wird somit über den Primärstrahler 7 in den unteren Plattenzwischenraum 6 eingekoppelt. Der Strahlungsübergang vom unteren Plattenzwischenraum 6 in den oberen Zwischenraum 5 erfolgt in der Anordnung nach Fig. 1 mit Hilfe von zwei 45°-Abschrägungen 9 und 10 in der Querschnittskontur des zylindrischen Parabolreflektors 1. Der Übergang kann aber auch durch einen einfachen Schlitz zwischen der Zwischenplatte 4 und dem zylindrischen Parabolreflektor 1 erfolgen. Die Zwischenplatte 4 wird in einer am zylindrischen Parabolreflektor 1 entlang verlaufenden, aus dielektrischem Material bestehenden Halterung 11 befestigt. Eine derartige Halterung der Zwischenplatte 4 ist der Verwendung von diskreten Abstandsstiften u.U. vorzuziehen, da bei der Verwendung solcher Stifte störende Inhomogenitätsstellen entstehen können. Vor der Apertur 20 des oberen Zwischenraumes 5 ist eine trichterförmige Öffnung 12 vorgesehen, um die gewünschte vertikale Bündelung zu ermöglichen. Auch in der Nähe der Apertur kann der Zwischenraum durch eine aus dielektrischem Material bestehende Abstützung 21 gehalten werden, die gleichzeitig der klimatischen Abdichtung dienen kann.The double-decker pillbox antenna according to the invention consists of a cylindrical parabolic reflector 1 and two mutually parallel, mutually parallel metallic plates 2 and 3 with an intermediate plate 4, which however does not extend to the parabolic reflector 1. The intermediate plate 4 runs parallel to the two plates 2 and 3. On both sides of the intermediate plate 4 there is a plate space 5 or 6 respectively. In the focal line of the parabolic reflector 1, with its radiation center, there is a radar signal primary radiator 7 in the plate space 6 arranged. The radar signal primary radiator 7 can be designed, for example, as an open waveguide or as a small horn radiator, for example a deflecting horn radiator, as in FIG. 1. The radar signal coming from a feeder 8 is thus coupled into the lower plate space 6 via the primary radiator 7. The radiation transition from the lower plate space 6 into the upper space 5 takes place in the arrangement according to FIG. 1 with the aid of two 45 ° bevels 9 and 10 in the cross-sectional contour of the cylindrical parabolic reflector 1. The transition can also be made by a simple slot between the intermediate plate 4 and the cylindrical parabolic reflector 1. The intermediate plate 4 is fastened in a holder 11 made of dielectric material and running along the cylindrical parabolic reflector 1. Such a mounting of the intermediate plate 4 may be preferable to the use of discrete spacer pins, since disturbing inhomogeneity points can arise when using such pins. A funnel-shaped opening 12 is provided in front of the aperture 20 of the upper intermediate space 5 in order to enable the desired vertical bundling chen. Also in the vicinity of the aperture, the intermediate space can be held by a support 21 made of dielectric material, which can also serve as a climatic seal.

Zu beiden Seiten der Primärradareinkopplung, d. h. zu beiden Seiten des Umlenkhornstrahlers 7 und damit auch der Pillbox-Parabol-Brennlinie, erfolgt die IFF-Einkopplung mittels zweier Strahler 13 und 14. Die vertikale Polarisation dieser beiden IFF-Strahler 13 und 14 ist bei horizontaler oder vertikaler Primärradarpolarisation in jedem Fall ausbreitungsfähig und kann auch problemlos in das darüber liegende Stockwerk, d.h. in den Zwischenraum 5 umgelenkt werden. Die IFF-Einkopplung erfolgt durch die verlängerten Innenleiter zweier Koaxialleitungen und muss wegen seiner relativ zur Wellenlänge kurzen Ausdehnung angepasst werden. Die der IFF-Einkopplung dienenden Strahler 13 und 14 können in Querrichtung etwas zueinander versetzt sein, so dass die Abstände dieser Einkoppelstrahler 13 und 14 jeweils zum Radarsignal-Primärstrahler unterschiedlich sind und eine für eine optimierte zielgesteuerte Abfrage notwendige, gegenüber der Radarhauptkeule schielende IFF-Hauptstrahlrichtung entsteht. Eine Summen-Differenz-Bildung der Signale der beiden IFF-Strahler 13 und 14 zur Einengung der effektiven Keulenbreite und zur Nebenkeulensignalunterdrückung erfolgt durch eine aussen an der Platte 3 angebrachte Hybridschaltung 15 in zweckmässiger Weise unmittelbar unterhalb der IFF-Einkopplung. Mit 16 und 17 sind der Summen- und Differenzeingang dieser Hybridschaltung 15 bezeichnet.On both sides of the primary radar launch, i.e. H. IFF coupling takes place on both sides of the deflection horn 7 and thus also the pillbox parabolic focal line by means of two radiators 13 and 14. The vertical polarization of these two IFF radiators 13 and 14 is in any case spreadable and horizontal horizontal or vertical primary radar polarization can also easily go to the floor above, ie be redirected into the intermediate space 5. The IFF coupling takes place through the extended inner conductor of two coaxial lines and must be adjusted due to its short extension relative to the wavelength. The emitters 13 and 14 serving for IFF coupling can be offset somewhat from one another in the transverse direction, so that the distances between these coupling emitters 13 and 14 are each different from the radar signal primary emitter and an IFF main beam direction that is necessary for an optimized, target-controlled interrogation and squinting towards the main radar lobe arises. A sum-difference formation of the signals of the two IFF emitters 13 and 14 for narrowing the effective lobe width and for suppressing side lobe signal suppression is advantageously carried out by a hybrid circuit 15 attached to the outside of the plate 3 directly below the IFF coupling. 16 and 17 denote the sum and difference input of this hybrid circuit 15.

Der untere Plattenzwischenraum 6 ist an der zum zylindrischen Parabolreflektor abgewandten Seite mit einer metallischen Rückwand 18 abgeschlossen. Der Abstand d2 zwischen der Einrichtung zur Strahlungseinkopplung der IFF-Signale, d. h. den beiden Strahlern 13 und 14, und der Rückwand 18 ist in vorteilhafter Weise so bemessen, dass die Rückwand als Subreflektor für die IFF-Signale wirksam ist. Bei vertikaler Strahlungspolarisation sowohl der auszustrahlenden Radarsignale als auch der auszustrahlenden IFF-Signale empfiehlt es sich, den Abstand d1 zwischen dem Strahlungszentrum des Radarsignal-Primärstrahler 7 und der Rückwand 18 grösser als den Abstand d, zwischen den Strahlern 13 und 14 der Einrichtung zur Strahlungseinkopplung der IFF-Signale auf der einen Seite und der Rückwand 18 auf der anderen Seite zu wählen. Durch diese Massnahme werden Störungen des Primärradars durch die IFF-Strahlung vermieden. Die sich ergebende Abweichung des IFF-Strahlungsschwerpunktes von der Brennlinie des zylindrischen Parabolreflektors 1 ist bei der üblichen Wellenlänge für IFF-Signale von ca. 30 Zentimeter unkritisch.The lower plate gap 6 is closed on the side facing away from the cylindrical parabolic reflector with a metallic rear wall 18. The distance d 2 between the device for coupling the radiation of the IFF signals, ie the two radiators 13 and 14, and the rear wall 18 is advantageously dimensioned such that the rear wall acts as a sub-reflector for the IFF signals. With vertical radiation polarization of both the radar signals to be emitted and the IFF signals to be emitted, it is recommended that the distance d 1 between the radiation center of the radar signal primary emitter 7 and the rear wall 18 be greater than the distance d between the emitters 13 and 14 of the device for coupling in radiation the IFF signals on one side and the rear wall 18 on the other side. This measure prevents interference from the primary radar by the IFF radiation. The resulting deviation of the IFF radiation center of gravity from the focal line of the cylindrical parabolic reflector 1 is not critical at the usual wavelength for IFF signals of approximately 30 centimeters.

In den wieter aussen liegenden Bereichen der Rückwand 18 können störende Reflexionen beispielsweise durch einen Absorberbelag 19 reduziert werden. Eine andere Möglichkeit der Verringerung störender Reflexionen bestünde in einer bestimmten Formgebung der Rückwand 18. Die beiden Abstände d, und d2 wären dann allerdings nicht mehr konstant. Es lässt sich jedoch durch eine solche Formgebung eine gewünschte Belegung des zylindrischen Parabolreflektors erzielen.In the areas of the rear wall 18 lying outside, disruptive reflections can be reduced, for example, by an absorber covering 19. Another possibility of reducing disturbing reflections would be to shape the rear wall 18 in a certain way. The two distances d and d 2 would then no longer be constant. However, it is possible to achieve a desired assignment of the cylindrical parabolic reflector by such a shaping.

Im Frequenzbereich über ca. 8-10 GHz kann durch die Verwendung von zirkularer anstelle von linearer Polarisation eine bessere Regenechounterdrückung erzielt werden. Die aus der Pillbox-Apertur austretende, beispielsweise vertikale Polarisation kann im Bereich des Trichters, in dem die horizontale Polarisation ausbreitungsfähig ist, durch ein Polarisationsgitter 22 in eine zirkulare Polarisation umgewandelt werden. Ein derartiges Polarisationsgitter 22 besteht in bekannter Weise z.B. aus unter 45° gegen die Aperturkanten geneigten Drähten oder Mäanderlinien, welche neben dem vorhandenen z. B. vertikalen E-Vektor einen gleich grossen, 90°-phasenverschobenen horizontalen E-Vektor erzeugen, so dass die gewünschte zirkulare Polarisation entsteht.In the frequency range above approx. 8-10 GHz, better rain echo suppression can be achieved by using circular instead of linear polarization. The, for example, vertical polarization emerging from the pillbox aperture can be converted into a circular polarization by a polarization grating 22 in the region of the funnel in which the horizontal polarization can spread. Such a polarization grating 22 consists in a known manner e.g. from wires or meander lines inclined at 45 ° to the aperture edges, which in addition to the existing z. B. vertical e-vector generate an equally large, 90 ° phase-shifted horizontal e-vector, so that the desired circular polarization arises.

Für das IFF-Signal ist diese Polarisationsumwandlung unerwünscht, da auch die Signale der abzufragenden Transponder vertikal polarisiert sind. Eine Anordnung des Polarisationsgitters innerhalb des Trichters 12 an einer Stelle, an der die Querabmessung unter einer halben IFF-Wellenlänge liegt, verhindert die Anregung einer horizontalen IFF-Komponente, da diese dort nicht ausbreitungsfähig ist.This polarization conversion is undesirable for the IFF signal, since the signals of the transponders to be interrogated are also vertically polarized. An arrangement of the polarization grating within the funnel 12 at a point at which the transverse dimension is less than half an IFF wavelength prevents the excitation of a horizontal IFF component, since this component cannot spread there.

Damit besteht die Möglichkeit, die Radarpolarisation in eine zirkulare Polarisation umzuwandeln und die in derselben Antenne erregte IFF-Polarisation vertikal zu belassen.It is therefore possible to convert the radar polarization into a circular polarization and to leave the IFF polarization excited in the same antenna vertical.

Die Abstützung 21 und das Polarisationsgitter 22 lassen sich auch baulich zusammenfassen.The support 21 and the polarization grating 22 can also be structurally combined.

Claims (20)

1. A radar antenna provided with an integrated IFF antenna (IFF = identification-friend-foe), and of the type designed as a pillbox antenna consisting of a cylindrical parabolic reflector (1), two metallic plates (2, 3) arranged at right angles to the reflector and parallel to one another, and a radar signal - primary radiator (7) whose radiation centre is arranged in the focus of the cylindrical parabolic reflector, beside which there is arranged a device (13, 14) which serves for the radiation input-coupling of the IFF signal, characterised in that between the two plates (2, 3) there is arranged a metallic intermediate plate (4) which runs parallel to the two plates but which does not reach the cylindrical reflector (1), so that, in the manner of a two-level pillbox antenna as known per se, two plate-interspaces (5, 6) are formed located on each side of this intermediate plate (4) and between which a radiation link is provided via a device which is located along the clyindrical parabolic reflector (1) and which serves to deflect the radiation, where both the radar signal primary radiator (7) accompanied by the device (13, 14) which serves for the radiation input-coupling of the IFF signal are located in the first plate-interspace (6), whereas the other plate-interspace (15) opens towards the antenna aperture (20).
2. A radar antenna as claimed in Claim 1, characterised in that the radar signal primary radiator (7) consists of a horn radiator, e. g. a deflecting horn radiator.
3. A radar antenna as claimed in Claim 1, characterised in that the radar signal primary radiator is an open waveguide.
4. A radar antenna as claimed in one of the preceding Claims, characterised in that the device which serves to deflect radiation from the one plate-interspace to the other (5, 6) consists of a slot formed by the fact that the intermediate plate (4) does not entirely reach the cylindrical parabolic reflector (1).
5. A radar antenna as claimed in one of the Claims 1 to 3, characterised in that the device which serves to deflect radiation from the one plate-interspace (5, 6) to the other is formed by two 45° bevels (9, 10) in the cross-sectional contour of the cylindrical parabolic reflector (1).
6. A radar antenna as claimed in one of the preceding Claims, characterised in that the intermediate plate (4) is secured in a holder (11) which runs along the cylindrical parabolic reflector (1) and which consists of dielectric material.
7. A radar antenna as claimed in one of the preceding Claims, characterised in that the plate-interspace (6), in which the radar signal primary radiator (7) is arranged, is terminated by a metallic rear wall (18) on the side which lies opposite the parabolic reflector (1).
8. A radar antenna as claimed in Claim 7, characterised in that the distance (d2) between the device (13, 14) which serves for the radiation input-coupling of the IFF signals and the rear wall (18) is designed so as to be capable of acting as a sub-reflector for IFF signals.
9. A radar antenna as claimed in Claim 8, characterised in that in the case of vertical radiation polarisation both of the radar signals which are to be irradiated and of the IFF signals which are to be irradiated, the distance (d,) between the radiation centre of the radar signal primary radiator (7) and the rear wall (18) is greater than the distance (d2) between the device (13, 14) which serves for the radiation input-coupling of the IFF signal and this rear wall (18).
10. A radar antenna as claimed in one of the Claims 7 to 9, characterised in that absorber coatings (19) are applied to the rear wall (18) in the outlying regions thereof.
11. A radar antenna as claimed in one of the Claims 7 to 9, characterised in that the rear wall (18) is shaped to produce a desired covering of the cylindrical parabolic reflector (1).
12. A radar antenna as claimed in one ofthe preceding Claims, characterised in that the device which serves for the radiation input-cooling of the IFF signals is formed by two radiators (13, 14) which are arranged on each side of the radar signal primary radiator (7).
13. A radar antenna as claimed in Claim 12, characterised in that the two IFF radiators (13, 14) are each formed by the extended, electrically adapted inner conductor of two coaxial supply lines which lead through the first metallic plate (3).
14. A radar antenna as claimed in Claim 12 or 13, characterised in that the two IFF radiators (13, 14) are offset in the transverse direction so that the distances of these two radiators (13, 14) to the radar signal primary radiator (7) differ.
15. A radar antenna as claimed in one of the Claims 12 to 14, characterised in that a hybrid circuit (15) which serves for sum difference formation is arranged directly beneath the two IFF radiators (13, 14) on the outside of the lower plate (3).
16. A radar antenna as claimed in one of the preceding Claims, characterised in that the plate-interspace (5) which does not contain the radar primary radiator (7) opens up towards the exterior in a funnel formation (12).
17. A radar antenna as claimed in Claim 16, characterised in that a dielectric support (21) is arranged in the plate-interspace (5) in the vicinity of the funnel (12).
18. A radar antenna as claimed in Claim 16 or 17, characterised in that a circularly polarised grid (22) is arranged in the funnel (12).
19. A radar antenna as claimed in Claim 18, characterised in that the grid (22) is arranged in the funnel (12) in such manner that different propagation conditions exist for the horizontal vector of the electric field strength of the higher- frequency primary radar signal so that it serves only for primary radar, but not for IFF.
20. A radar antenna as claimed in Claim 17 and one of the Claims 18 and 19, characterised in that the dielectric support (21) and the polarising grid (22) are structurally combined.
EP80103252A 1979-06-21 1980-06-11 Pillbox type radar antenna with integrated iff antenna Expired EP0021252B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2925063 1979-06-21
DE2925063A DE2925063C2 (en) 1979-06-21 1979-06-21 Radar antenna with integrated IFF antenna

Publications (2)

Publication Number Publication Date
EP0021252A1 EP0021252A1 (en) 1981-01-07
EP0021252B1 true EP0021252B1 (en) 1984-01-25

Family

ID=6073788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103252A Expired EP0021252B1 (en) 1979-06-21 1980-06-11 Pillbox type radar antenna with integrated iff antenna

Country Status (3)

Country Link
US (1) US4345257A (en)
EP (1) EP0021252B1 (en)
DE (1) DE2925063C2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3211707C2 (en) * 1982-03-30 1984-07-12 Siemens AG, 1000 Berlin und 8000 München Omnidirectional radar antenna with height detection
DE3524132A1 (en) * 1985-07-05 1987-01-08 Siemens Ag Surveillance radar antenna
US4876554A (en) * 1988-01-19 1989-10-24 Qualcomm, Inc. Pillbox antenna and antenna assembly
US5486837A (en) * 1993-02-11 1996-01-23 Miller; Lee S. Compact microwave antenna suitable for printed-circuit fabrication
US5434548A (en) * 1994-03-28 1995-07-18 Qualcomm Incorporated Coaxial-waveguide rotary coupling assemblage
JP3302849B2 (en) * 1994-11-28 2002-07-15 本田技研工業株式会社 Automotive radar module
AU2003215242A1 (en) * 2002-02-14 2003-09-04 Hrl Laboratories, Llc Beam steering apparatus for a traveling wave antenna and associated method
AU2002950196A0 (en) * 2002-07-11 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Real-time, cross-correlating millimetre-wave imaging system
US8149154B2 (en) * 2009-05-19 2012-04-03 Raytheon Company System, method, and software for performing dual hysteresis target association
DE102018100845A1 (en) 2018-01-16 2019-07-18 Krohne Messtechnik Gmbh level meter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638546A (en) * 1946-03-14 1953-05-12 Us Navy Pillbox antenna

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA604700A (en) * 1960-09-06 Government Of The United States, As Represented By The Secretary Of The Army Narrow band microwave antenna
US2589433A (en) * 1945-09-17 1952-03-18 Us Navy Wave guide feed for cylindrical paraboloid
US2767396A (en) * 1946-04-30 1956-10-16 Bell Telephone Labor Inc Directive antenna systems
US2691731A (en) * 1951-02-21 1954-10-12 Westinghouse Electric Corp Feed horn
FR1291750A (en) * 1961-03-17 1962-04-27 Csf Flat antenna for single pulse radar
US3212095A (en) * 1963-02-14 1965-10-12 James S Ajioka Low side lobe pillbox antenna employing open-ended baffles
US3170158A (en) * 1963-05-08 1965-02-16 Rotman Walter Multiple beam radar antenna system
US3267477A (en) * 1964-04-28 1966-08-16 Orville G Brickey Dual frequency microwave antenna
FR1605378A (en) * 1966-02-22 1975-02-28
FR1586812A (en) * 1967-03-23 1970-03-06
US3852762A (en) * 1973-11-14 1974-12-03 Singer Co Scanning lens antenna
US4100548A (en) * 1976-09-30 1978-07-11 The United States Of America As Represented By The Secretary Of The Department Of Transportation Bifocal pillbox antenna system
FR2387528A1 (en) * 1977-04-13 1978-11-10 Thomson Csf Microwave antenna for helicopter and moderate speed aircraft - has two parabolic metal sides and central slotted waveguide transmitting energy through dielectric side wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638546A (en) * 1946-03-14 1953-05-12 Us Navy Pillbox antenna

Also Published As

Publication number Publication date
US4345257A (en) 1982-08-17
EP0021252A1 (en) 1981-01-07
DE2925063C2 (en) 1982-06-09
DE2925063A1 (en) 1981-01-08

Similar Documents

Publication Publication Date Title
EP0916169B1 (en) Antenna system
EP0896749B1 (en) Microwave antenna array for a motor vehicle radar system
EP1344277B1 (en) Antenna, in particular mobile radio antenna
DE19523805B4 (en) Microstrip antenna
DE1084787B (en) Horn antenna for circular or elliptically polarized waves
DE60308409T2 (en) MULTI-STREAM LENS WITH PHOTONIC BELT MATERIAL
EP0021252B1 (en) Pillbox type radar antenna with integrated iff antenna
DE3218690C1 (en) Biconical omnidirectional antenna
EP0021251B1 (en) Pillbox-radar antenna with integrated iff antenna
DE3217437A1 (en) MICROWAVE DIRECTIONAL ANTENNA FROM A DIELECTRIC LINE
DE60019412T2 (en) ANTENNA WITH VERTICAL POLARIZATION
DE2802585A1 (en) ANTENNA
DE2744192A1 (en) ANTENNA ARRANGEMENT
DE2810483C2 (en) Antenna with a feed waveguide having slots and a radiator line enclosing an angle with this
DE2139216C3 (en) Directional antenna arrangement, consisting of a main reflector mirror and two primary radiator systems and a method for producing a dielectric reflector plate
DE1107736B (en) Horn antenna with rectangular cross-section for microwaves
EP0709914A1 (en) RF seeker head antenna system for missiles
DE69630299T2 (en) ANTENNA ELEMENT FOR TWO ORTHOGONAL POLARISATIONS
DE3615502C2 (en) Decoupling arrangement for continuous wave radars
DE2245346C1 (en) Antenna arrangement for radar or direction finding purposes with sum-difference diagram
DE3529914A1 (en) Microwave aerial
DE19755607A1 (en) Microwave antenna arrangement for a motor vehicle radar system
DE3608413C2 (en)
DE3219365C1 (en) End-fire array directional antenna
DE1120526B (en) Directional antenna for very short electromagnetic waves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE FR GB IT NL

17P Request for examination filed

Effective date: 19810604

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT NL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860630

Year of fee payment: 7

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19870630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880611

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890630