EP0698136B1 - Structure tubulaire de preforme ou de matrice pour le tubage d'un puits - Google Patents

Structure tubulaire de preforme ou de matrice pour le tubage d'un puits Download PDF

Info

Publication number
EP0698136B1
EP0698136B1 EP94915185A EP94915185A EP0698136B1 EP 0698136 B1 EP0698136 B1 EP 0698136B1 EP 94915185 A EP94915185 A EP 94915185A EP 94915185 A EP94915185 A EP 94915185A EP 0698136 B1 EP0698136 B1 EP 0698136B1
Authority
EP
European Patent Office
Prior art keywords
preform
fact
matrix
assembly according
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94915185A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0698136A1 (fr
Inventor
Eric Bertet
Jean-Marie Gueguen
Jean-Louis Saltel
Frédéric SIGNORI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drillflex
Original Assignee
Drillflex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drillflex filed Critical Drillflex
Publication of EP0698136A1 publication Critical patent/EP0698136A1/fr
Application granted granted Critical
Publication of EP0698136B1 publication Critical patent/EP0698136B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • E21B29/10Reconditioning of well casings, e.g. straightening
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/06Braid or lace serving particular purposes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Definitions

  • the present invention relates to an assembly consisting of a preform tubular and of a recoverable matrix for the casing of a well, in particular a well of oil drilling.
  • casing a tube for consolidating a well
  • preform a structure tubular which is initially flexible and is then hardened to bind intimately and to remains against the wall of a well (thus constituting a casing)
  • matrix a flexible and recoverable structure used as a tool to dilate the preform and apply it against the wall of the well before it hardens.
  • production tubing refers to a tube coaxial with a casing, and smaller diameter, allowing the fluid produced by the well to be transported (water or oil especially).
  • the tubular preform in its folded form, has a lower radial section of about half of its developed radial section, which in most cases is sufficient, but may not be sufficient for some applications.
  • the objective of the present invention is to solve this problem by proposing a preform-matrix set whose structure presents a deformable geometry able to be applied to the walls of the tube hole (or casing to line) without however exceeding certain limits, this deformation being controlled and variable depending on the different applications.
  • Another objective of the invention is to propose an assembly whose preform has a significantly higher degree of expansion than those obtained with the devices known of the aforementioned genre, the expansion of the preform being done in two stages, all first by radial deployment, then by radial expansion.
  • the inflatable sleeve Admittedly, the inflatable sleeve is removable in the event of degradation, but the assembly does not operate in normal service without the sleeve; moreover, the structure tubular is not polymerizable and cannot be hardened to be intimately and remains against the wall of the well.
  • the assembly which is the subject of the present invention consists of a radially expandable tubular preform, and a recoverable matrix serving as a tool to expand the preform.
  • this braiding comprises two series wicks symmetrically intersecting on either side of the generators of the tubular structure, that is to say in relation to its longitudinal axis, the wicks of each series being parallel to each other.
  • each of the series of wicks forms an acute angle with the longitudinal axis which is between 10 ° and 30 °, and is preferably of the order of 20 °, when the structure is in its radially contracted state, while this angle is between 50 ° and 70 ° when the structure is in its radially expanded state.
  • the locks are flat, affecting the shape of ribbons.
  • the preform has several braided wick structures fitted coaxially one inside the other.
  • the preform is flexible enough to be able to be folded in on itself longitudinally when the structure is in its state radially contracted.
  • the preform or the matrix designated 1 in FIGS. 1 to 3 has a tubular shape provided with a braided structure. This is made up of an intertwining of two series of flat wicks, or ribbons 10a, 10b which are wound in a helix to form the envelope of the structure.
  • the two series are of opposite pitch, and the wicks are inclined at an acute angle u relative to the generatrix of the tube which it forms, which is cylindrical.
  • the axis XX ′ of the tube has been taken as a reference in FIGS. 1 to 3.
  • the two series of wicks 10a and 10b are intertwined like a cane, symmetrically with respect to the axis XX ', on either side of the latter.
  • the angle u is of the order of 20 ° ( Figures 1 and 1A).
  • Each of the locks 10 is formed from a plurality of fibers or of wires having a great mechanical resistance, and inextensible, joined the to each other. These are, for example, glass or carbon fibers having a diameter of a few micrometers, or steel wire.
  • the wicks 10 have a width included between 1 and 6 mm, and a thickness between 0.1 and 0.5 mm.
  • the material constituting the fibers or threads which form these wicks have a low coefficient of friction, favoring the mutual sliding of the intertwined locks, and consequently favoring the deformability of the structure.
  • the braiding of the two series strands 10a on the one hand and 10b on the other hand is made with a certain play, giving a loose assembly which spares 11-shaped spaces diamonds at the intersection of the two series 10a, 10b.
  • the preform or the matrix is represented in the configuration which gives it the greatest possible length L1.
  • the structure is self-locked, the different wicks being in support by their edges against each other.
  • the preform has a minimum diameter D1.
  • the braiding is determined so that this blocking takes place when the angle w formed by the locks relative to the axial direction of between 50 ° and 70 °.
  • the structure then has a minimum length L3 and a maximum diameter D3.
  • the braiding shown in FIGS. 1A to 3A is a braiding simple, in which a wick 10a alternately passes over and below a wick 10b, and vice versa. It goes without saying that others braiding modes can be considered, such as for example that shown in Figure 8. According to the latter, each wick 10a passes successively above and below two wicks 10b, and vice versa.
  • FIG. 4 shows a preform 1 capable of application industrial.
  • This includes several deformable tubular structures such as that which has just been described, in this case four structures 3a, 3b, 3c and 3d coaxial, and of increasingly smaller diameters, fitted into each other.
  • four structures 3a, 3b, 3c and 3d coaxial, and of increasingly smaller diameters, fitted into each other.
  • a higher number, per example of ten fitted structures can naturally be expected. They are confined between two skins made of elastic materials, for example elastomeric material one exterior 4 and the other interior 5. The role of the latter could be played by the wall of the matrix. They are impregnated with a fluid but curable medium, for example a resin thermosetting polymerizable hot, housed between the two skins 4 and 5.
  • a fluid but curable medium for example a resin thermosetting polymerizable hot
  • the deformability of skins 4 and 5 is chosen for be compatible with that of braided structures 3, the deformation of the whole being done jointly, and with the same amplitudes.
  • FIGS. 6A and 6B show two possible (non-limiting) modes of folding, respectively in the shape of a U and in the shape of a snail (spiral). Following such folding, it is therefore possible to give the preform a cross section having a very small footprint.
  • the preform By unfolding, the preform can be deployed, to give it the cylindrical shape shown in FIG. 7. Then, for example by applying an internal overpressure, it is possible to cause the radial expansion of the preform, by deformation of each of the concentric structures 3a , 3b, 3c and 3d by applying the phenomenon described above.
  • FIG. 9 represents a preform similar to that which comes to be described associated with a dilator tool intended to ensure its implementation place in a well, tool hereinafter called matrix.
  • Preform 1 shown in the unfolded state, but not expanded, includes - as already said - a medium 30 of thermosetting resin which occupies the annular space between two skins of elastic material one exterior 4 and the other interior 5 or 71 (of the sleeve 7). In this space are also located several deformable tubular structures and concentric formed by braided ribbons 3.
  • the matrix - referenced 6 - comprises a tubular sleeve 7 closed at its upper and lower ends by blanking plugs 60 respectively 61.
  • the upper plug 60 is crossed by a tube 8 which has openings 80 opening, like its free end, to inside the sleeve 7.
  • This liquid can be brought in from the surface.
  • the wall of the sleeve consists of two membranes elastic, for example of elastomeric material, the inner 72 and the other exterior 71. Between the two membranes is a structure tubular with braided wicks as described above, referenced 70. In a variant, several concentric structures can be provided, fitted into each other as is the case for the preform.
  • the length of the sleeve 7 is greater than that of the preform 1. End caps 60, 61 are fixed, for example by bonding, in the end zones of the inner membrane 72.
  • the sleeve 7 is fixed, by its external membrane 71, to the preform 1, by means of end sleeves 73, 74. These have rupture zones 730 and 740 respectively.
  • the cuffs 73 and 74 form seals between the preform and the sleeve 7 constituting the matrix 6.
  • the interface between the outer membrane 71 of the sleeve and the inner skin 5 of the preform is treated, for example by coating with silicone, so that there is little adhesion between these two elements.
  • the inner skin can be deleted.
  • the outer face of the outer skin 4 of the preform has pads 40.
  • pads 40 are for example annular bulges separated by cavities also annular 41. The function of these pads is to promote sealing with the wall of the well, and to keep a prestress and some flexibility after hardening.
  • Figure 10 and following illustrate the casing operation of an oil well through a production tubing by means of preform 1 and using the matrix which have just been described.
  • the inside diameter of tubing 9 is 60 mm while the average diameter of the well is of the order of 180 mm.
  • the preform is introduced by being folded back on itself, for example by snail (see Figure 6B) in such a way that the largest dimension of its cross section is less than the inside diameter of the tubing 9. This larger dimension is for example of the order of 55 mm.
  • the preform is therefore lowered, at the same time as the tube 8, to the level desired inside the well.
  • the preform is therefore applied intimately against the wall P of the well.
  • the degree of expansion is done as needed, that is to say according to the roughness of the wall. This is an essential difference compared to the known flexible preform device, the radial expansion of which can only take place according to a well-defined diameter.
  • the preform therefore adapts to the configuration of wells it encounters. This is further favored by the presence of the pads 40, which provide anchoring and sealing.
  • the wall of the preform is then allowed to harden, introducing and circulating a hot fluid (and under pressure) in the sleeve 7.
  • a hot fluid and under pressure
  • the fluid is aspirated contained in the sleeve, which causes its radial retraction, as shown in Figure 10C.
  • the sleeve 7 lengthens by retracting radially, and it is possible to extract it through tube 9.
  • the old preform 1, hardened, constitutes a casing element of Wells.
  • Such tubing can be used with or without cement, in depending on the soil conditions encountered.
  • the extraction mode illustrated in Figure 11 does not require applying a vacuum inside the matrix.
  • the reference 7a designates the portion of the matrix already constricted, and detached from the casing, whose strands of structure form the angle u .
  • the reference 7b designates the expanded portion, the wicks of which form the angle w .
  • Figures 12 and 12A show a dilation of the matrix 7 and preform 1 which is done gradually, from the bottom to the top, an inflation liquid being introduced, via the conduit 8, to the part bottom of the matrix.
  • Inflation progression can be obtained by example by enclosing the preform and the matrix (in the folded state) in a envelope suitable for tearing longitudinally and from bottom to top.
  • braided deformable structure conforms to the invention can be implemented with preforms, the implementation of which instead would not use inflation dies using such structure, and vice versa.
  • certain fibers of at least some of the locks are replaced by electrically conductive wires, allowing the preform to be heated or the matrix, for the polymerization of the preform, when they are connected to a current source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Actuator (AREA)
  • Reinforced Plastic Materials (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
EP94915185A 1993-05-03 1994-04-28 Structure tubulaire de preforme ou de matrice pour le tubage d'un puits Expired - Lifetime EP0698136B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9305416 1993-05-03
FR9305416A FR2704898B1 (fr) 1993-05-03 1993-05-03 Structure tubulaire de preforme ou de matrice pour le tubage d'un puits.
PCT/FR1994/000484 WO1994025655A1 (fr) 1993-05-03 1994-04-28 Structure tubulaire de preforme ou de matrice pour le tubage d'un puits

Publications (2)

Publication Number Publication Date
EP0698136A1 EP0698136A1 (fr) 1996-02-28
EP0698136B1 true EP0698136B1 (fr) 1998-08-05

Family

ID=9446829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94915185A Expired - Lifetime EP0698136B1 (fr) 1993-05-03 1994-04-28 Structure tubulaire de preforme ou de matrice pour le tubage d'un puits

Country Status (10)

Country Link
US (1) US5695008A (zh)
EP (1) EP0698136B1 (zh)
JP (1) JP3446207B2 (zh)
CN (1) CN1046976C (zh)
AU (1) AU673261B2 (zh)
DE (1) DE69412252T2 (zh)
FR (1) FR2704898B1 (zh)
NO (1) NO310577B1 (zh)
RU (1) RU2123571C1 (zh)
WO (1) WO1994025655A1 (zh)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2717855B1 (fr) * 1994-03-23 1996-06-28 Drifflex Procédé pour rendre étanche la liaison entre un chemisage intérieur d'une part, et un puits de forage, un tubage ou une canalisation extérieure d'autre part.
FR2728934B1 (fr) * 1994-12-29 1997-03-21 Drillflex Procede et dispositif pour tuber un puits, notamment un puits de forage petrolier, ou une canalisation, au moyen d'une preforme tubulaire souple, durcissable in situ
FR2735523B1 (fr) * 1995-06-13 1997-07-25 Inst Francais Du Petrole Methode et dispositif de tubage de puits avec un tube en composite
FR2737534B1 (fr) * 1995-08-04 1997-10-24 Drillflex Dispositif de chemisage d'une bifurcation d'un puits, notamment de forage petrolier, ou d'une canalisation, et procede de mise en oeuvre de ce dispositif
FR2737533B1 (fr) * 1995-08-04 1997-10-24 Drillflex Manchon tubulaire gonflable pour tuber ou obturer un puits ou une canalisation
US5944107A (en) * 1996-03-11 1999-08-31 Schlumberger Technology Corporation Method and apparatus for establishing branch wells at a node of a parent well
FR2748486B1 (fr) * 1996-05-09 1998-06-19 Inst Francais Du Petrole Compositions thermodurcissables a latence amelioree a base de polyamine aromatique primaire, en suspension dans une resine epoxy et utilisation pour l'impregnation de preformes
WO1998009049A1 (en) 1996-08-30 1998-03-05 Camco International, Inc. Method and apparatus to seal a junction between a lateral and a main wellbore
FR2753978B1 (fr) * 1996-09-30 1999-05-14 Inst Francais Du Petrole Composition thermodurcissable, ses utilisations et preforme souple depliable comprenant cette composition
US5833001A (en) * 1996-12-13 1998-11-10 Schlumberger Technology Corporation Sealing well casings
FR2764935B1 (fr) * 1997-06-24 1999-09-10 Drillflex Preforme tubulaire souple durcissable in situ, comportant une armature filamentaire, pour le tubage d'un puits ou d'une canalisation
GB9714651D0 (en) * 1997-07-12 1997-09-17 Petroline Wellsystems Ltd Downhole tubing
FR2771133B1 (fr) * 1997-11-17 2000-02-04 Drillflex Dispositif de mise en place d'une enveloppe filtrante a l'interieur d'un puits
US6135208A (en) 1998-05-28 2000-10-24 Halliburton Energy Services, Inc. Expandable wellbore junction
FR2780751B1 (fr) 1998-07-06 2000-09-29 Drillflex Procede et dispositif de tubage d'un puits ou d'une canalisation
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6604763B1 (en) 1998-12-07 2003-08-12 Shell Oil Company Expandable connector
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US6758278B2 (en) 1998-12-07 2004-07-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
GB2344606B (en) 1998-12-07 2003-08-13 Shell Int Research Forming a wellbore casing by expansion of a tubular member
EP1582274A3 (en) 1998-12-22 2006-02-08 Weatherford/Lamb, Inc. Procedures and equipment for profiling and jointing of pipes
AU770359B2 (en) 1999-02-26 2004-02-19 Shell Internationale Research Maatschappij B.V. Liner hanger
FR2790534B1 (fr) 1999-03-05 2001-05-25 Drillflex Procede et installation de mise en place d'une conduite cylindrique sur un support
AU779084B2 (en) * 1999-07-19 2005-01-06 Baker Hughes Incorporated Extrusion resistant inflatable tool
US9586699B1 (en) 1999-08-16 2017-03-07 Smart Drilling And Completion, Inc. Methods and apparatus for monitoring and fixing holes in composite aircraft
GB9920935D0 (en) * 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring a first conduit to a second conduit
EG22306A (en) 1999-11-15 2002-12-31 Shell Int Research Expanding a tubular element in a wellbore
US8746028B2 (en) 2002-07-11 2014-06-10 Weatherford/Lamb, Inc. Tubing expansion
US6401815B1 (en) * 2000-03-10 2002-06-11 Halliburton Energy Services, Inc. Apparatus and method for connecting casing to lateral casing using thermoset plastic molding
WO2001077570A1 (en) * 2000-04-07 2001-10-18 Flexfab Horizons International, Inc. Repair bladder with breather vent
FR2808557B1 (fr) * 2000-05-03 2002-07-05 Schlumberger Services Petrol Procede et dispositif pour la regulation du debit des fluides de formation produits par un puits petrolier ou analogue
US6478091B1 (en) 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US6457518B1 (en) 2000-05-05 2002-10-01 Halliburton Energy Services, Inc. Expandable well screen
DE10042166A1 (de) * 2000-08-17 2002-03-07 Siegfried Schwert Verfahren und Schlauch zum Auskleiden einer Hochdruckrohrleitung
FR2822100B1 (fr) * 2001-03-13 2004-04-23 Inst Francais Du Petrole Methode de fabrication en grande longueur d'elements tubulaires en composite
GB0106819D0 (en) 2001-03-20 2001-05-09 Weatherford Lamb Tube manufacture
GB2414496B (en) * 2001-06-19 2006-02-08 Weatherford Lamb Tubing expansion
GB0114872D0 (en) * 2001-06-19 2001-08-08 Weatherford Lamb Tubing expansion
US6638245B2 (en) 2001-06-26 2003-10-28 Concentric Medical, Inc. Balloon catheter
US20080149343A1 (en) * 2001-08-19 2008-06-26 Chitwood James E High power umbilicals for electric flowline immersion heating of produced hydrocarbons
US8515677B1 (en) 2002-08-15 2013-08-20 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US7311151B2 (en) * 2002-08-15 2007-12-25 Smart Drilling And Completion, Inc. Substantially neutrally buoyant and positively buoyant electrically heated flowlines for production of subsea hydrocarbons
US7032658B2 (en) * 2002-01-31 2006-04-25 Smart Drilling And Completion, Inc. High power umbilicals for electric flowline immersion heating of produced hydrocarbons
US9625361B1 (en) 2001-08-19 2017-04-18 Smart Drilling And Completion, Inc. Methods and apparatus to prevent failures of fiber-reinforced composite materials under compressive stresses caused by fluids and gases invading microfractures in the materials
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
FR2831240B1 (fr) * 2001-10-24 2004-01-23 Philippe Constant Cha Nobileau Tube multistructure de grande flexibilite
US7066284B2 (en) * 2001-11-14 2006-06-27 Halliburton Energy Services, Inc. Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell
GB0130849D0 (en) * 2001-12-22 2002-02-06 Weatherford Lamb Bore liner
US6732806B2 (en) 2002-01-29 2004-05-11 Weatherford/Lamb, Inc. One trip expansion method and apparatus for use in a wellbore
US6772841B2 (en) 2002-04-11 2004-08-10 Halliburton Energy Services, Inc. Expandable float shoe and associated methods
EP1985797B1 (en) 2002-04-12 2011-10-26 Enventure Global Technology Protective sleeve for threated connections for expandable liner hanger
CA2482278A1 (en) 2002-04-15 2003-10-30 Enventure Global Technology Protective sleeve for threaded connections for expandable liner hanger
US7000695B2 (en) * 2002-05-02 2006-02-21 Halliburton Energy Services, Inc. Expanding wellbore junction
US6722433B2 (en) * 2002-06-21 2004-04-20 Halliburton Energy Services, Inc. Methods of sealing expandable pipe in well bores and sealing compositions
US7128145B2 (en) * 2002-08-19 2006-10-31 Baker Hughes Incorporated High expansion sealing device with leak path closures
AU2003265452A1 (en) 2002-09-20 2004-04-08 Enventure Global Technology Pipe formability evaluation for expandable tubulars
AU2003297615B2 (en) * 2002-12-04 2008-09-25 Baker Hughes Incorporated Expandable composite tubulars
US7104317B2 (en) * 2002-12-04 2006-09-12 Baker Hughes Incorporated Expandable composition tubulars
US6863130B2 (en) * 2003-01-21 2005-03-08 Halliburton Energy Services, Inc. Multi-layer deformable composite construction for use in a subterranean well
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US20040144535A1 (en) * 2003-01-28 2004-07-29 Halliburton Energy Services, Inc. Post installation cured braided continuous composite tubular
GB2415988B (en) 2003-04-17 2007-10-17 Enventure Global Technology Apparatus for radially expanding and plastically deforming a tubular member
US7104322B2 (en) 2003-05-20 2006-09-12 Weatherford/Lamb, Inc. Open hole anchor and associated method
GB0315997D0 (en) * 2003-07-09 2003-08-13 Weatherford Lamb Expanding tubing
US7082998B2 (en) * 2003-07-30 2006-08-01 Halliburton Energy Services, Inc. Systems and methods for placing a braided, tubular sleeve in a well bore
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
GB2438540B (en) * 2004-02-06 2008-04-09 Halliburton Energy Serv Inc Multi-layered wellbore junction
US7225875B2 (en) * 2004-02-06 2007-06-05 Halliburton Energy Services, Inc. Multi-layered wellbore junction
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
FR2875286B1 (fr) * 2004-09-13 2008-04-25 Saltel Ind Soc Par Actions Sim Dispositif d'etancheite servant a obturer un puits ou une canalisation
US8551591B2 (en) * 2004-12-20 2013-10-08 Albany Engineered Composites, Inc. Conformable braid
ATE416299T1 (de) * 2005-02-10 2008-12-15 Schlumberger Technology Bv Verfahren und vorrichtung für die konsolidierung eines bohrlochs
US7320366B2 (en) * 2005-02-15 2008-01-22 Halliburton Energy Services, Inc. Assembly of downhole equipment in a wellbore
US8894069B2 (en) * 2005-03-30 2014-11-25 Schlumberger Technology Corporation Inflatable packers
US7331581B2 (en) * 2005-03-30 2008-02-19 Schlumberger Technology Corporation Inflatable packers
WO2006108735A1 (en) * 2005-04-15 2006-10-19 Nv Bekaert Sa Open braided structure with steel cord
FR2893973B1 (fr) * 2005-11-30 2008-02-15 Saltel Ind Soc Par Actions Sim Procede et dispositif de cimentation d'un puits ou d'une canalisation
JP2008058635A (ja) * 2006-08-31 2008-03-13 Tsuchiya Tsco Co Ltd クリーニングローラ
FR2910047B1 (fr) * 2006-12-18 2015-02-20 Francis Cour Manchon gonflable a deformation controlee, procede de fabrication, et application a la pressiometrie
US20090139708A1 (en) * 2007-06-06 2009-06-04 Baker Hughes Incorporated Wrap-On Reactive Element Barrier Packer and Method of Creating Same
EP2000630A1 (en) 2007-06-08 2008-12-10 Services Pétroliers Schlumberger Downhole 4D pressure measurement apparatus and method for permeability characterization
US7931091B2 (en) * 2007-10-03 2011-04-26 Schlumberger Technology Corporation Open-hole wellbore lining
DE102007060029A1 (de) 2007-12-13 2009-06-18 Airbus Deutschland Gmbh Verfahren und Vorrichtung zur Herstellung röhrenförmiger Strukturbauteile
US8394464B2 (en) * 2009-03-31 2013-03-12 Schlumberger Technology Corporation Lining of wellbore tubing
JP5588668B2 (ja) * 2009-12-22 2014-09-10 芦森工業株式会社 止水パッカー
US8770305B2 (en) * 2010-11-22 2014-07-08 Boise State University Modular hydraulic packer-and-port system
EP2479324B1 (en) 2011-01-20 2014-01-15 Tape Weaving Sweden AB Method and means for producing textile materials comprising tapes in two oblique orientations
ES2708683T3 (es) * 2011-01-20 2019-04-10 Tape Weaving Sweden Ab Materiales textiles que comprenden cintas en dos orientaciones oblicuas y materiales compuestos que comprenden tales materiales
US9850726B2 (en) * 2011-04-27 2017-12-26 Weatherford Technology Holdings, Llc Expandable open-hole anchor
EP2631423A1 (en) * 2012-02-23 2013-08-28 Services Pétroliers Schlumberger Screen apparatus and method
GB2512636B (en) * 2013-04-04 2015-07-15 Schlumberger Holdings Applying coating downhole
FR3009841B1 (fr) * 2013-08-20 2015-09-18 Calyf Manchon gonflable, a expansion controlee
JP5782097B2 (ja) * 2013-12-03 2015-09-24 関東天然瓦斯開発株式会社 円管の内壁への被覆部材の取付方法
CN104563874B (zh) * 2014-12-24 2017-03-01 新奥科技发展有限公司 地下气化固井方法、井结构
JP5903178B1 (ja) * 2015-03-31 2016-04-13 関東天然瓦斯開発株式会社 円管及び立坑の内壁への被覆部材の取付方法
CN105909180B (zh) * 2016-05-13 2019-05-28 中国石油大学(北京) 用于水下的可膨胀式隔水导管
CN107761246B (zh) * 2017-10-10 2019-12-31 东华大学 摩擦解锁转动与结构相转变耦合的径向缩胀管织物及其制备方法与应用
RU201945U1 (ru) * 2020-08-12 2021-01-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Рукав уплотнительный для пакера
US12037868B2 (en) 2021-03-08 2024-07-16 Halliburton Energy Services, Inc. Heat hardening polymer for expandable downhole seals

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2238058A (en) * 1940-05-22 1941-04-15 Du Pont Expansible cover
US3104717A (en) * 1961-09-25 1963-09-24 Jersey Prod Res Co Well packer
FR2576040A1 (fr) * 1985-01-15 1986-07-18 Lejeune Germinal Gaine tressee
US5001961A (en) * 1988-05-09 1991-03-26 Airfoil Textron Inc. Braided preform
US4963301A (en) * 1988-06-28 1990-10-16 Kaiser Aerotech Method for fabrication of refractory composite tubing
JPH0723240Y2 (ja) * 1988-09-16 1995-05-31 日本鋼管株式会社 管路の内張り工法に使用されるチューブ
US4971152A (en) * 1989-08-10 1990-11-20 Nu-Bore Systems Method and apparatus for repairing well casings and the like
US5337823A (en) * 1990-05-18 1994-08-16 Nobileau Philippe C Preform, apparatus, and methods for casing and/or lining a cylindrical volume
US5549947A (en) * 1994-01-07 1996-08-27 Composite Development Corporation Composite shaft structure and manufacture
US5573039A (en) * 1993-06-16 1996-11-12 Markel Corporation Kink-resistant fuel hose liner

Also Published As

Publication number Publication date
JP3446207B2 (ja) 2003-09-16
FR2704898A1 (fr) 1994-11-10
DE69412252D1 (de) 1998-09-10
RU2123571C1 (ru) 1998-12-20
AU6660194A (en) 1994-11-21
WO1994025655A1 (fr) 1994-11-10
NO310577B1 (no) 2001-07-23
NO954299L (no) 1995-12-07
DE69412252T2 (de) 1999-05-06
EP0698136A1 (fr) 1996-02-28
AU673261B2 (en) 1996-10-31
US5695008A (en) 1997-12-09
NO954299D0 (no) 1995-10-27
FR2704898B1 (fr) 1995-08-04
CN1046976C (zh) 1999-12-01
CN1122619A (zh) 1996-05-15
JPH08509532A (ja) 1996-10-08

Similar Documents

Publication Publication Date Title
EP0698136B1 (fr) Structure tubulaire de preforme ou de matrice pour le tubage d'un puits
EP0527932B1 (fr) Preforme et procede pour tuber et/ou chemiser un volume cylindrique
CA2228732C (fr) Manchon tubulaire gonflable pour tuber ou obturer un puits ou une canalisation
EP0842347B9 (fr) Dispositif et procede pour le chemisage d'une bifurcation de canalisation, en particulier dans un puits petrolier
EP0867596B1 (fr) Joint fileté pour tubes
CA2489516C (fr) Joint filete tubulaire renforce pour etancheite amelioree apres expansion plastique
FR2780751A1 (fr) Procede et dispositif de tubage d'un puits ou d'une canalisation
FR2771133A1 (fr) Dispositif de mise en place d'une enveloppe filtrante a l'interieur d'un puits
FR2844331A1 (fr) Procede de realisation d'un joint tubulaire etanche avec expansion plastique
FR2918700A1 (fr) Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
FR2717855A1 (fr) Procédé pour rendre étanche la liaison entre un chemisage intérieur d'une part, et un puits de forage, un tubage ou une canalisation extérieure d'autre part.
WO2006030012A1 (fr) Dispositif d'etancheite servant a obturer un puits ou une canalisation
WO2007063016A1 (fr) Procédé et dispositif de cimentation d'un puits ou d'une canalisation
WO1996021083A1 (fr) Procede et dispositif pour tuber un puits, notamment un puits de forage petrolier, ou une canalisation, au moyen d'une preforme tubulaire souple, durcissable in situ
EP3158164A1 (fr) Dispositif de chemisage ou d'obturation d'un puits ou d'une canalisation
FR2856456A1 (fr) Dispositif d'etancheite pour l'obturation temporaire d'un puits ou d'une canalisation.
WO1996001937A1 (fr) Preforme, dispositif et procede pour le tubage d'un puits
CA2162035C (fr) Structure tubulaire de preforme ou de matrice pour le tubage d'un puits
FR2505973A1 (fr) Conduit tubulaire isolant a parois concentriques pour former une colonne tubulaire, et son procede de fabrication
EP0536256B1 (fr) Tube radialement deformable en plusieurs troncons raccordes de maniere demontable
FR2844330A1 (fr) Joint filete tubulaire a etancheite amelioree apres expansion plastique
FR2668576A1 (fr) Raccord pour tuyau deformable de transfert de fluide.
FR2668241A1 (fr) Dispositif pour realiser in situ un tubage de forage ou une canalisation.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960404

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69412252

Country of ref document: DE

Date of ref document: 19980910

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981020

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130424

Year of fee payment: 20

Ref country code: DE

Payment date: 20130508

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130625

Year of fee payment: 20

Ref country code: IT

Payment date: 20130419

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69412252

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140429