EP0693972B1 - Procede et dispositif de pulverisation de liquides - Google Patents

Procede et dispositif de pulverisation de liquides Download PDF

Info

Publication number
EP0693972B1
EP0693972B1 EP94911111A EP94911111A EP0693972B1 EP 0693972 B1 EP0693972 B1 EP 0693972B1 EP 94911111 A EP94911111 A EP 94911111A EP 94911111 A EP94911111 A EP 94911111A EP 0693972 B1 EP0693972 B1 EP 0693972B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
liquid
bores
apertures
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94911111A
Other languages
German (de)
English (en)
Other versions
EP0693972A1 (fr
Inventor
Peter Walzel
Christian Reedtz Funder
S Ren Birk Flyger
Poul Bach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Process Engineering AS
Original Assignee
Niro AS
Niro Atomizer AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niro AS, Niro Atomizer AS filed Critical Niro AS
Publication of EP0693972A1 publication Critical patent/EP0693972A1/fr
Application granted granted Critical
Publication of EP0693972B1 publication Critical patent/EP0693972B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/001Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements incorporating means for heating or cooling, e.g. the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/10Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces
    • B05B3/1007Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member
    • B05B3/1021Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements discharging over substantially the whole periphery of the rotating member, i.e. the spraying being effected by centrifugal forces characterised by the rotating member with individual passages at its periphery

Definitions

  • the invention relates to a method for Manufacture of drops with a narrow size distribution Liquids.
  • liquids in the sense of Invention both clear liquids and solutions, e.g. Metal melts, and flowable dispersions, such as e.g. Suspensions.
  • Rotary atomizers of conventional design can only produce drops with a relatively narrow size distribution in certain narrow operating areas.
  • the effect of laminar jet decay is used. If, for example, the liquid is placed in the center of the disc on a flat, round rotating disc, this will flow radially outwards as a laminar film if a certain limited liquid throughput is maintained and forms liquid threads on the trailing edge of the disc.
  • the liquid threads form naturally at regular intervals on the circumference of the trailing edge.
  • the subsequent disintegration of the liquid threads leads to drops with a very narrow range of sizes. If one describes the size distribution of the droplets produced in this way, for example with the RRSB function according to DIN 66 141, this results in a uniformity parameter of 6 ⁇ m ⁇ 8.
  • the mean droplet size d v.50 is defined in this text as the droplet diameter at which the 50th % Value of the volume distribution is reached; ie that 50% of the sprayed liquid volume takes smaller - and 50% of the sprayed liquid volume larger drop diameter than d v.50 .
  • FR-A-2 662 374 is a rotary atomizer known, which, as indicated, appears to be capable to work with different volumes, under Achieving uniform atomization, even of highly viscous ones Liquids.
  • This atomizer rotor is on the Grooves on the outside, through which the to atomizing liquid through perforations in the cylindrical rotor wall is guided. It is stated that the length of these perforations never doubles Diameter may exceed.
  • the liquid to be atomized is on the inside of the rotor by means of a distributed stationary tube. In particular, they seem grooves on the outside of the rotor which have a uniform drop size during atomization secure, and the improvement achieved is limited.
  • Those commonly used in spray drying Atomizers consist of a flat cylindrical body, usually referred to as a disc atomizer, usually 10 - 50 Has holes or channels. In the case of drilling these usually have diameters in the range of 5 - 30 mm.
  • the fluid is often fed centrally into the body, flows radially outwards and leaves the atomizer through the holes to the outside.
  • the design has the Advantage that the relatively large flow-through holes in usually do not clog, however, the throughput for large-scale industrial applications chosen so that the Fluid in thick, turbulent jets from the holes exit. Due to the high relative speed of The liquid and the ambient gas are already there streaks of fluid emerging turbulently from the openings divided. This creates at the same time high speeds required for small droplet dimensions Droplets with a very wide range of sizes. At the same time occurs because of the high flow rate often a considerable one in the bores of suspensions Wear on the bore walls.
  • Typical liquid throughputs lie with the conventional method, eg for an average droplet size of 250 ⁇ m at approx. 20 - 200 l / h and drilling.
  • the limit is reached through the strength of the material.
  • the minimum throughput per bore results from the lower limit that is required for jet formation.
  • is the dynamic viscosity of the liquid.
  • the uniformity parameter of the RRSB distribution lies in the range of 6 ⁇ m ⁇ 8, which is characteristic of laminar beam decay.
  • the invention now relates to a method for atomizing liquids with the aid of rotating hollow cylinders with holes in the cylinder wall, characterized in that the liquid is distributed evenly inside the cylinder on the inner cylinder wall and on the holes and that the volume flow the liquid per hole in the area 1.0 ⁇ V B (a 3rd ⁇ 5 / ⁇ 5 ) 0.25 ⁇ 16 lies and that V B ⁇ 3195 ( ⁇ 2nd / a ⁇ 2) 7/6 (a ⁇ D B / ⁇ ) is observed.
  • V ⁇ B the volume flow of the liquid per hole
  • D B the diameter of the holes
  • D means the diameter of the outer cylinder surface and n - the speed of the cylinder.
  • the total volume flow V ⁇ results from the volume flow V ⁇ B per bore, times the number N of bores in the cylinder.
  • the invention also relates to a method that is characterized in that in the cylinder except the Liquid gases are also introduced.
  • the introduction of the liquid into the cylinder can e.g., with a tube placed over a tube with the Cylinder with rotating baffle plate is arranged.
  • the Baffle plate is conveniently in the middle of the Cylinder height arranged and attached to the bottom of the cylinder.
  • the liquid in the mold emerges from the tube of a jet is passed through the baffle plate to the outside and thus hurled onto the inner cylinder surface and thereby spread over the holes.
  • the even distribution of the liquid on the inner cylinder surface can be particularly easily by the Injection with one-component nozzles or with pneumatic atomizing nozzles, also often called two-component nozzles.
  • Single-component nozzles have proven particularly advantageous proven to produce a conical spray.
  • a another beneficial way of getting the liquid inside Distributing the cylinder is concentric with it arranged rotating nozzles, in particular flat jet nozzles to spray inside the cylinder.
  • the invention relates to a method that characterized in that the liquid with a Single component nozzle or with a pneumatic atomizing nozzle in the cylinder is sprayed in and in this way evenly on the inner cylinder surface and on the Drilling is distributed, as well as a method that is characterized in that the liquid over a or several rotating nozzles sprayed into the cylinder becomes.
  • the invention also relates to a method in the nozzle produces a hollow-cone spray.
  • An advantageous device for executing the inventive method consists of a hollow Cylinder in the wall a variety, for in practice usable liquid throughputs at least 200, In the simplest case, cylindrical bores are introduced.
  • the cylinder is closed with a bottom and bounded at the top with a lid with a central opening. This will cause the liquid to escape axially prevented.
  • the holes in the cylinder wall should be in diameter be chosen so that on the one hand as possible large number can be accommodated on the cylinder surface can, on the other hand, blockage of the holes sufficient dimensions is still avoided.
  • the division the holes should be as narrow as possible, so that again one the largest possible number of holes in the cylinder jacket can be introduced.
  • Typical ratios of pitch t of the bores on the outer cylinder jacket to the diameter D B of the bores are in the range 1.1 ⁇ t / D B ⁇ 5.
  • the minimum division results from the strength of the body which is still sufficient for the required speed.
  • Mean a 2 ⁇ 2nd D n 2nd the centrifugal acceleration on the outer surface of the cylinder with the diameter D, ⁇ - the surface tension of the liquid, ⁇ - the density of the liquid.
  • the full cross section of the bore is not filled with liquid; rather, due to the effect of the Coriolis acceleration, a liquid channel similar to the flow in a partially filled sewer pipe with a slight incline is formed.
  • D B 50 ( ⁇ / ⁇ a) 0.5
  • the ratio of bore length L B to bore diameter D B should be at least 3.
  • bores or holes with cross-sectional shapes other than circular for example rectangular or triangular bores or larger holes with several V-shaped flow channels, can also be used.
  • Square holes have the advantage, for example, that lower Reynolds numbers occur in the holes with the same throughput and the same opening dimensions. However, they are more difficult to manufacture and lead to a lower strength of the cylinder.
  • cylindrical bores for rectangular and triangular holes and holes with several V-shaped channels, an expression for the hydraulic depth of the channel can be determined and a condition for sufficient laminarity can be obtained.
  • conditions can also be set up to avoid blockages and to achieve a sufficient number of channels.
  • Such a device can in a simple manner be made by making larger in the first drilled holes in the cylinder wall, tubes inserted that are all the same degree over the inside protrude inner cylinder wall.
  • Another possibility to produce a device with raised inside The edges of the holes consist of making grooves in the direction the cylinder generator and grooves in the circumferential direction between the bores inside the cylinder. This The method is preferably suitable for drilling in Rectangular division are arranged.
  • the invention also relates to a device for atomizing liquids with a rotating hollow cylinder which is closed on the lower side by a bottom and is delimited on the upper side by a lid with a central opening, characterized by holes with a diameter D B in the Cylinder wall, a bore pitch t on the outer cylinder surface in the range of 1.1 D B ⁇ t ⁇ 5 D B , a ratio of bore length L B to the bore diameter D B of at least 3, and bore diameters in the range 10 ⁇ D B ( ⁇ a / ⁇ ) 0.5 ⁇ 50 for medium droplet sizes greater than or equal to 100 ⁇ m and bore diameters in the range 10 ⁇ D B ( ⁇ a / ⁇ ) 0.5 ⁇ 200 for medium droplet sizes smaller than 100 ⁇ m.
  • Another object of the invention is a Device for atomizing liquids with hollow Cylinders with at least 200 bores in the cylinder wall, a device with cylindrical bores and a Device in which the holes in the cylinder wall in Interior of the cylinder have such depressions that no inner cylinder wall remains. It is also an object the invention a device for atomizing liquids with hollow rotating cylinders are characterized in that the edges of the holes in Inside of the cylinder are raised and by the same amount protrude over the inner cylinder surface.
  • the bores in the cylinder, in the plane of rotation have an inclination towards the radial direction.
  • the turbulence of the strand of liquid flowing out in the bore can be reduced by the fact that the bore axes, which are extended outwards, form an angle ⁇ ⁇ 90 ° at the intersection with the outer cylinder surface against the vector of the circumferential speed (forward inclination), so that rotation causes a fluid backlog arises in the hole. This measure reduces the acceleration effective in the axial direction of the bores.
  • the angle ⁇ > 90 ° should be selected (backward inclination) to avoid sedimentation of solid particles.
  • the higher viscosity ensures sufficient laminarity of the flow even at ⁇ > 90 °.
  • the holes can be straight but also curved.
  • the invention relates to a device that is characterized by holes, the extension of which Bore axes beyond the outer cylinder surface, all the same angle ⁇ in the range 10 ° ⁇ ⁇ 170 ° take the vector of the peripheral speed, as well as one Device, which is characterized in that their the outer cylinder surface extended bore axes around the angle ⁇ in the range 0 ⁇ ⁇ 80 ° Plane of rotation are inclined.
  • a rotationally symmetrical distributor body be installed concentrically in the cylinder and whose diameter increases towards the bottom of the cylinder.
  • a distributor body is particularly simple to carry out is fixed in the cylinder. Will the manifold Can be rotated independently of the cylinder any speed of the cylinder a favorable speed of the distributor body for distributing the liquid in the Cylinders can be adjusted.
  • a particularly advantageous embodiment of a Distribution body consists of a body attached to its Surface has grooves that run in the circumferential direction, so that several circular throwing edges arise. This causes liquid fractions to be different Heights towards the inner cylinder surface flung away. This causes an equalization of the Fluid division.
  • An advantageous embodiment of a Distribution body consists of circular plates with Spacers is assembled between the plates. In this embodiment, the circular Slabs, according to the distribution requirements, of the liquid added to the cylinder, in their Diameter and distance changed easily will.
  • the invention relates to a device for Atomizing liquids with hollow rotating cylinders, which is concentric with a rotationally symmetrical Cylinder built-in distributor body is marked, whose diameter increases towards the bottom, as well as a Device which is characterized by one in the cylinder attached distributor body.
  • the invention also relates to a device for atomizing liquids with hollow rotating cylinders, which is characterized in that the distributor body is independently rotatably mounted in the cylinder is.
  • the invention further relates to a device for atomizing liquids with hollow rotating cylinders, which is characterized in that the distributor body has grooves in its surface, which run in the circumferential direction, and a device where the distributor body made of circular plates and Spacers is composed.
  • the invention also relates to a device for atomizing liquids with hollow cylinders, characterized by holes in the cylinder wall Edges inside the cylinder are raised and around that protrude the same dimension over the inner cylinder surface.
  • the same throughput through every hole in the cylinder can especially with liquids that have no solid particles included, also with a cylindrical porous layer uniform wall thickness can be achieved on the Inside of the cylinder.
  • Filter layers or porous sintered bodies can be used.
  • baffles built into the cylinder can also through baffles built into the cylinder be balanced.
  • the baffles can with the cylinder rotate or with a different direction of rotation or Rotate speed as the cylinder. You make one radial and axial distribution of the liquid in the cylinder.
  • Particularly advantageous embodiments of these Baffles consist of co-rotating, fixed in the cylinder concentric drilled cylinders, in spiral arranged perforated sheets or in wire mesh.
  • the Mesh size, or the size of the holes in the baffles should be larger than the diameter of the holes in the Cylinder.
  • the invention relates to a device for Atomize liquids with rotating hollow Cylinders, which is characterized in that concentric in the cylinder with a second cylindrical porous body uniform wall thickness is installed, as well as a device the baffles built into the cylinder is marked.
  • the invention also relates to a device for atomizing liquids with rotating hollow Cylinders, characterized by baffles in the cylinder, the can be rotated independently of the cylinder, as well as marked through baffles in the form of concentric in the cylinder arranged perforated sheets and in the form of concentric wire mesh arranged in the cylinder, and by Baffles where the hole diameter or the range is larger than the diameter of the holes in the Cylinder wall.
  • the invention also relates to a device for atomizing liquids with rotating hollow Cylinders, with built-in baffles in the shape of Perforated sheets and or wire mesh that are spirally wound are.
  • the inventive device for atomizing Liquids with rotating hollow cylinders are special for the production of spray dried powder in mean drop size range from 50 ⁇ m to 400 ⁇ m Liquids, for the production of powders from organic Melting in the grain or drop size range 0.5 mm - 3 mm and in particular for metal powder from melts in the grain or
  • Suitable drop size range from 10 to 100 ⁇ m.
  • the Drop sizes mentioned here are only typical Values for the listed applications.
  • a further area of application of the device according to the invention are scrubbers for gases to remove dust and for washing out chemical substances.
  • the invention relates to the use of a Device for atomizing liquids, with rotating Hollow cylinders for spray drying, for manufacturing of powders from melts, as well as the use of the Gas cleaning device.
  • the preferred materials for the cylinder are Metals, plastics and ceramics in question.
  • Fig. 1 shows a typical embodiment of the Invention.
  • the bottom 2 and the lid 3 with The liquid 4 is introduced in the central opening. She leaves the cylinder through the holes 5 in the cylinder wall 1. The drops occur at the exit of the holes 5 due to laminar jet decay.
  • the cylinder wall will inside through the inner cylinder surface 6 and outside through the outer cylinder surface 7 limited.
  • the liquid 4 is evenly on the inner cylinder surface 6 and thus distributed over the holes 5. Flows into the cylinder in addition to the liquid also the gas 8. It leaves the Cylinder together with the liquid 4 through the holes 5.
  • the even distribution of the liquid 4 on the inner cylinder surface 6 can e.g. with a single component nozzle 9 - the nozzle used here creates a hollow cone Spray jet - or with two-component nozzles 10.
  • the distribution of the liquid 4 in the cylinder is determined by improved a distributor body 11. It consists in the drawn Fall from a body concentric to the cylinder whose diameter increases towards the bottom 2.
  • the distributor body 11 has grooves 12 in the circumferential direction in its surface on.
  • baffles 13 Inside the cylinder are baffles 13 the cylindrical perforated plates around the liquid evenly on the inner cylinder surface 6 and on the Distribute holes 5.
  • the cylinder is driven via the hollow shaft 13.
  • Fig. 2a shows a section through the hollow cylinder with holes 5 in the cylinder wall 1 and the used Designations.
  • the cylinder wall 1 is through the inner Cylinder surface 6 and the outer cylinder surface 7 limited.
  • the cylinder is closed at the bottom with the bottom 2.
  • At the top is the lid 3 with a central one Opening.
  • 2b shows a section of the outer cylinder surface 7 with a view of the holes 5 and associated names; here is a triangle division shown.
  • Fig. 2c is a section of the drilled cylinder in a plane of rotation.
  • the cylinder wall 1 can be seen outer cylinder surface 7, the inner cylinder surface 6 and the holes 5 in the cylinder wall 1.
  • Fig. 3 shows a rotating cylinder with bores 5 in the cylinder wall 1 and two rotating flat jet nozzles 9, the liquid 4 on the inner cylinder surface 6 distribute evenly so that the liquid throughput is the same in each hole 5.
  • FIG. 4 is a section of a cylinder in a plane of rotation, in which the axes 14 of the bores 5, which are extended over the outer cylinder surface 7, assume an angle ⁇ ⁇ 90 ° with respect to the direction of the vector of the peripheral speed.
  • the direction of rotation according to arrow x or ⁇ ⁇ 90 ° is preferably used for low-viscosity liquids, or to reduce the Re ⁇ number, the direction of rotation according to arrow y or ⁇ > 90 ° is preferably used for higher-viscosity liquids and suspensions.
  • Fig. 5 shows a cylinder in which the axes 14 of the Bores 5 in the cylinder wall 1 an angle ⁇ against Take up the plane of rotation. Flows into the cylinder next to the Liquid 4 also gas 8. That out of the cylinder the gas flowing out of the bores 5 deflects the drops the liquid 4 in the axial direction of the cylinder. Also here is the Re number compared to radial ones Holes 5 reduced.
  • Fig. 6 is a section through a cylinder, the is particularly suitable for suspensions.
  • the holes 5 are provided with countersinks 15 in the interior of the cylinder. Because of the complex geometry of the surface only the intersection of the bore axes 14 with the inner Drawn cylinder wall. Here is a rectangle division shown.
  • FIG. 7 is a sectional drawing of a cylinder; preferably for solid-free liquids.
  • the cylinder is the one concentric to the cylinder porous cylindrical body 16 which has a boundary and Uniformization of the liquid flow rate at everyone Bore 5 causes.
  • Fig. 8 shows an advantageous embodiment of the Cylinders.
  • this version which is especially for pure liquids and melts are suitable
  • the edges of the holes 5 are raised inwards. It turns out thereby a cylindrical liquid level to the Excess liquid overflows evenly 4 leads into each hole 5.
  • the Bores tubes 17 are inserted, all around the same Protrude inwards.
  • Fig. 10 shows a side view of a cylinder triangular holes 32.
  • the cylinder wall consists of Pieces 20 with V-shaped channels 21.
  • the triangular holes 32 are partly through the grooves 21 of the piece 20, partly limited by the back 22 of the adjacent piece.
  • Fig. 11 shows a cross section in plane A-A through the embodiment of the cylinder shown in Fig. 10.
  • Fig. 12 shows a cross section in plane B-B through the embodiment of the cylinder shown in Fig. 10.
  • Fig. 13 shows a single one of the pieces 20 which the Cylinder wall result against the surface that the V-shaped Troughs 21, seen.
  • Fig. 14 shows the same piece 20 seen from above.
  • FIG. 15 shows the same piece 20, but from the side seen.
  • the angle ⁇ shown is the angle between the two faces of a gutter.
  • the width of the hole that from a gutter 21 and the adjacent flat rear another piece 20 is formed, as in Fig. 10 and 12 is indicated by B and the height of this hole with H.
  • the 16 is a cylinder with larger holes 24 with several V-shaped channels 21.
  • the cylinder wall consists of Pieces 20 with V-shaped grooves 21.
  • the holes 24 are from the gutter side of a piece 20, from the back 22 of an adjacent piece 20, from the bottom of the cylinder 2 and limited by the cover of the cylinder 3. In there are several V-shaped channels 21 in each hole 24.
  • FIG 17 shows a cross section of an embodiment, where the holes in the cylinder wall are rectangular Holes 27 are.
  • a wall 28 serves as a flow area.
  • Fig. 18 shows another embodiment in which each of the holes 29 from two cylindrical bores is formed, of which the one 30 a substantial has a larger diameter than the other 31. At In operation, the latter, narrower bore serves as a U-shaped one Channel for the current.
  • the average drop size is 250 ⁇ m.
  • the suspension throughput (4) is 1.0 t / h.
  • a cylinder with an outer diameter of 300 mm is selected for this task.
  • the ratio of bore length L B to bore diameter D B is 6.7; the ratio of bore pitch t to bore diameter D B is 1.67 in the range typical for the invention.
  • the holes (5) are arranged in a triangle.
  • N 7850
  • the ratio of hole length to hole diameter is approx. 7.
  • Gas (8) flows through the holes (5) at a speed in the holes (5) of 40 m / s in order to deflect the drops formed downwards.
  • the gas (8) has no effect on the drop formation process.
  • a droplet size d v.50 30 ⁇ m should be achieved.
  • the outer diameter D of the cylinder is 80 mm.
  • the thickness of the cylinder wall (1) is 5 mm.
  • the cylinder is heated with hot gas (8), for example with argon, which flows through the bores (5) of the body.
  • hot gas (8) for example with argon
  • the liquid lead (1) is discharged from a melt container after the heating phase and flows as a jet onto an impact surface or a distributor body (11) inside the cylinder. Due to the built-in baffles (13) in this case several layers of wound wire mesh, the melt (1) is distributed evenly over the inner cylinder surface (6) and thus over the bores (5).
  • the gas flow (8) remains upright during operation in order to prevent the cylinder from cooling down and the bores (5) from overgrowing.

Landscapes

  • Nozzles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Claims (33)

  1. Procédé de pulvérisation de liquides (4) au moyen d'un cylindre creux et rotatif avec des alésages (5) dans la paroi de cylindre (1), caractérisé en ce que le liquide (4) est reparti également à l'intérieur du cylindre sur la surface intérieure de cylindre (6) et sur les alésages (5) et que la vitesse du flux du liquide (4) par alésage (5) est dans le domaine de 1,0 < VB (a3 ρ5 / σ5)0,25 < 16 et que la condition VB < 3195 (η2 / a ρ2)7/6 (a ρ √ DB / η) est remplie, VB représentant la vitesse du flux du liquide (4) par alésage, indiquée en m3/s, a: l'accélération centrifuge à la surface extérieure de cylindre (7), indiquée en m/s2, ρ: la densité du liquide (4), indiquée en kg/m3, σ: la tension de surface du liquide (4), indiquée en N/m, et η: la viscosité dynamique du liquide (4), indiquée en Pa·s, et l'accélération centrifuge étant déterminée par la relation a = 2 D π2n2 , D représentant le diamètre de la surface de cylindre extérieure (7), indiqué en m, DB: le diamètre des alésages (5), indiqué en m, et n: le nombre de tours des cylindres, indiqué en s-1.
  2. Procédé de pulvérisation de liquides (4) au moyen d'un cylindre creux et rotatif avec des orifices carrés (27) dans les parois de cylindre (1), caractérisé en ce que le liquide (4) est reparti également à l'intérieur du cylindre sur la surface intérieure de cylindre (6) et sur les orifices (27), et que la vitesse du flux du liquide (4) par orifice (27) est dans le domaine de 1,0 < VL . (a3 ρ5 / σ5)0,25 < 16, et que la condition VL < 400 · η·Hρ est remplie, VL représentant la vitesse du flux du liquide (4) par orifice (27), indiquée en m3/s, H: la hauteur des orifices carrés, indiquée en m, et que les symboles restants sont définis comme dans la revendication 1.
  3. Procédé de pulvérisation de liquides (4) au moyen d'un cylindre creux et rotatif avec des orifices carrés (32) ou des orifices plus larges (24) avec plusieurs rainures en V (21) dans la paroi d'orifice, par quels orifices (32) respectivement rainures (21) deux surfaces de flux sont formées, caractérisé en ce que le liquide (4) est reparti également dans l'intérieur du cylindre sur la surface intérieure (6) et sur les orifices (32) ou les rainures (21), et que la vitesse du flux du liquide (4) par orifice (32) ou rainure (21) est dans le domaine de 1,0 < VR (a3 · ρ5 / σ5)0,25 < 16, et que la condition VR < 34.000 · 1sin · ηρ · 5/3 · 1a1/3 est remplie, VR représentant la vitesse du flux du liquide (4) par rainure (21) ou, pour des orifices triangulaires, la vitesse du flux par orifice, indiquée en m3/s,  étant l'angle entre les deux surfaces de flux, et que les symboles restants sont définis comme dans la revendication 1.
  4. Procédé selon les revendications 1 à 3, caractérisé en qu'en plus du liquide (4), du gaz (8) est aussi introduit dans le cylindre.
  5. Procédé selon les revendications 1 à 4, caractérisé en ce que le liquide (4) est injecté dans le cylindre au moyen d'un injecteur à produit unique (9) ou d'un tuyau atomiseur pneumatique et, de cette façon, est reparti également sur la surface supérieure de cylindre (6) et les alésages (5).
  6. Procédé selon les revendications 1 à 5, caractérisé en ce que le liquide (4) est injecté dans le cylindre par un ou plusieurs tuyaux rotatifs (9, 10).
  7. Procédé selon la revendication 5 ou 6, caractérisé en ce que le tuyau (9, 10) produit un jet pulvérisé creux et conique.
  8. Procédé selon la revendication 1, caractérisé en ce que VB < 1410 (η2 / a ρ2)7/6 · (a·ρ·√ DB / η).
  9. Dispositif de pulvérisation de liquides (4) avec un cylindre creux et rotatif qui est fermé sur le côté inférieur par un fond (2) et est limité au côté supérieur par un couvercle (3) avec une ouverture centrale, caractérisé par les alésages (5) avec le diamètre DB dans la paroi de cylindre (1), un espacement d'alésage t, indiqué en m, à la surface de cylindre extérieure (7) dans le domaine de 1,1 DB < t < 5 DB, une relation de la longueur LB des alésages (5), indiqué en m, au diamètre DB des alésages (5) d'au moins 3, ainsi que des diamètres d'alésages dans le domaine de 10 < DB (ρ a / σ)0,5 < 50, pour la production de gouttes avec des dimensions moyennes de goutte plus grandes ou égales à 100 µm ou des diamètres d'alésages dans le domaine de 10 < DB (ρ a / σ)0,5 < 200 pour la production de gouttes avec des dimensions moyennes de goutte moindres que 100 µm.
  10. Dispositif de pulvérisation de liquides (4) avec un cylindre creux et rotatif qui est fermé sur le côté inférieur par un fond (2) et est limité au côté supérieur par un couvercle (3) avec une ouverture centrale, caractérisé par les orifices (27), (32) avec la hauteur H, indiqué en m, et la largeur B, indiquée en m, dans la paroi de cylindre (1), une relation de la longueur L, indiquée en m, des orifices (27), (32) à la largeur B, indiquée en m, des orifices (27), (32), d'au moins 3, ainsi que des largeurs d'orifice dans le domaine de 10 < B · (ρ a / σ)0,5 < 50 et des hauteurs d'orifice dans le domaine de 10 < H (ρ a / σ)0,5 < 50 pour la production de gouttes avec des dimensions de goutte moyennes plus grandes ou égales à 100 µm ou des largeurs d'orifice dans le domaine de 10 < B . (ρ a / σ)0.5 < 200 et des hauteurs d'orifices dans le domaine de 10 < H (ρ a / σ)0,5 < 200 pour la production de gouttes avec des dimensions moyennes de goutte moindres que 100 µm.
  11. Dispositif de pulvérisation de liquides (4) avec un cylindre creux et rotatif qui est fermé sur le côté inférieur par un fond (2) et est limité au côté supérieur par un couvercle (3) avec une ouverture centrale, caractérisé par les orifices (24) avec plusieurs rainures (21) avec la hauteur de rainure H, indiquée en m, et la largeur d'orifice W, indiquée en m, dans la paroi de cylindre (1), une relation de la longueur L des orifices (24) à la largeur W des orifices (24) d'au moins 3, ainsi que des largeurs d'orifices W dans le domaine de 10 < W · (ρ a / σ)0,5 et des hauteurs de rainures H dans le domaine de H (ρ a / σ)0,5 < 50 pour la production de gouttes avec des dimensions de goutte moyennes plus grandes ou égales à 100 µm ou des largeurs d'orifice dans le domaine de 10 < W (ρ a / σ)0,5 et des hauteurs de rainure dans le domaine de H (ρ a / σ)0,5 < 200 pour la production de gouttes avec des dimensions moyennes de goutte moindres que 100 µm.
  12. Dispositif selon les revendications 9 à 11, caractérisé par au moins 200 alésages (5), orifices (27), (29), (32) ou des rainures (21.
  13. Dispositif selon les revendications 9 à 12, caractérisé par des alésages ou orifices cylindriques, carrés ou triangulaires.
  14. Dispositif selon les revendications 9 à 13, caractérisé par des orifices avec une ou plusieurs rainures en V ou en U (21).
  15. Dispositif selon les revendications 9 à 13, caractérisé par des alésages (5) ou des orifices (24, 27, 29, 32) dans la paroi de cylindre (1) qui à l'intérieur du cylindre sont pourvus de telles cavités (15) qu'il ne reste aucune surface de cylindre (6).
  16. Dispositif selon la revendication 9, 12 ou 13, caractérisé par des alésages (5) dans la paroi de cylindre (1), dont les arêtes sont élévées dans l'intérieur du cylindre et font saillie avec la même distance sur la surface intérieure de cylindre.
  17. Dispositif selon les revendications 9 à 16, caractérisé par les alésages (5) ou les orifices (24), (27), (29), (32) ayant de telles directions, que les allongements de leur axes (14) au-dessus de la surface extérieure de cylindre (7) tous présentent le même angle a dans le domaine de 10° < α < 170° par rapport au vecteur de la vitesse périphérique.
  18. Dispositif selon la revendication 9, 10 ou 12 à 17, caractérisé par les alésages (5) dont les axes d'alésage (14) allongés au-dessus de la surface extérieure de cylindre (7) sont inclinés autour de l'angle β dans le domaine de 0 < β < 80° par rapport au plan de rotation.
  19. Dispositif selon les revendications 9 à 18, caractérisé par un organe de distribution rotatoirement symétrique (11) encastré dans le cylindre et dont le diamètre grandit vers le fond (2).
  20. Dispositif selon les revendications 9 à 19, caractérisé par un organe de distribution (11) fixé dans le cylindre.
  21. Dispositif selon les revendications 9 à 19, caractérisé par un organe de distribution (11) rotatif indépendamment du cylindre.
  22. Dispositif selon les revendications 9 à 20, caractérisé par un organe de distribution (11), qui présente dans sa surface des évidements (12) s'étendant dans la direction périphérique.
  23. Dispositif selon les revendications 9 à 21, caractérisé par un organe de distribution (11), qui est composé de plaques circulaires (18) et de pièces d'écartement (19).
  24. Dispositif selon les revendications 9 à 20, caractérisé par un deuxième organe cylindrique et poreux (16) concentriquement encastré dans le cylindre avec une densité de paroi uniforme.
  25. Dispositif selon les revendications 9 à 21, caractérisé par des chicanes (13) encastrées dans le cylindre.
  26. Dispositif selon la revendication 22, caractérisé par des chicanes (13) rotatives indépendamment du cylindre.
  27. Dispositif selon les revendications 18 et 19, caractérisé par des chicanes (13) en forme de plaques cylindriques concentriquement arrangés et perforés, dont le diamètre est plus grand que les alésages (5).
  28. Dispositif selon les revendications 18 et 19, caractérisé par des chicanes (13) en forme de réseaux de fils cylindriques concentriquement arrangés et avec un maillage plus grand que les alésages (5).
  29. Dispositif selon les revendications 18 et 19, caractérisé par des chicanes (13) en forme de plaques enroulés de manière hélicoïdale et perforés, dont le diamètre d'orifice est plus grand que les alésages (5).
  30. Dispositif selon les revendications 18 et 19, caractérisé par des chicanes (13) en forme de réseaux de fils enroulés de manière hélicoïdale et avec un maillage plus grand que les alésages (5).
  31. Usage du dispositif selon les revendications 9 à 30 pour sechage à pulvérisation de produits.
  32. Usage du dispositif selon les revendications 9 à 30 pour production de poudres par fusion.
  33. Usage du dispositif selon les revendications 9 à 30 pour épuration de gaz dans des laveries.
EP94911111A 1993-03-19 1994-03-21 Procede et dispositif de pulverisation de liquides Expired - Lifetime EP0693972B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4308842 1993-03-19
DE4308842A DE4308842A1 (de) 1993-03-19 1993-03-19 Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten
PCT/DK1994/000113 WO1994021383A1 (fr) 1993-03-19 1994-03-21 Procede et dispositif de pulverisation de liquides

Publications (2)

Publication Number Publication Date
EP0693972A1 EP0693972A1 (fr) 1996-01-31
EP0693972B1 true EP0693972B1 (fr) 1998-06-17

Family

ID=6483254

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911111A Expired - Lifetime EP0693972B1 (fr) 1993-03-19 1994-03-21 Procede et dispositif de pulverisation de liquides

Country Status (7)

Country Link
US (2) US6098895A (fr)
EP (1) EP0693972B1 (fr)
JP (1) JP3276150B2 (fr)
AU (1) AU6374594A (fr)
DE (2) DE4308842A1 (fr)
DK (1) DK0693972T3 (fr)
WO (1) WO1994021383A1 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308842A1 (de) * 1993-03-19 1994-09-22 Peter Prof Dr Walzel Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten
JPH11503818A (ja) * 1995-04-18 1999-03-30 アドバンスト・モレキュラー・テクノロジーズ・リミテッド・ライアビリティ・カンパニー 流体加熱方法および同方法を実施するための装置
US6019499A (en) * 1995-04-18 2000-02-01 Advanced Molecular Technologies, Llc Method of conditioning hydrocarbon liquids and an apparatus for carrying out the method
SE514437C2 (sv) 1998-09-25 2001-02-26 Sandvik Ab Sätt att spraytorka pulver för hårdmetall och liknande
US6730349B2 (en) 1999-04-19 2004-05-04 Scimed Life Systems, Inc. Mechanical and acoustical suspension coating of medical implants
DE19935253A1 (de) * 1999-07-27 2001-02-15 Lactec Ges Fuer Moderne Lackte Elektrostatischer Rotationszerstäuber
US6933141B1 (en) 1999-10-01 2005-08-23 Novozymes A/S Enzyme granulate
CN100378218C (zh) * 1999-10-01 2008-04-02 诺沃奇梅兹有限公司 喷雾干燥的酶产品
US6924133B1 (en) * 1999-10-01 2005-08-02 Novozymes A/S Spray dried enzyme product
AU4889200A (en) * 2000-07-27 2002-01-31 Cedar Ridge Consultants Limited Rotary atomisers
JP2004513514A (ja) 2000-11-06 2004-04-30 キャボット コーポレイション 酸素を低減した改質バルブ金属酸化物
WO2002075228A1 (fr) 2001-03-15 2002-09-26 Harald Koller Canon a neige dote d'un systeme de pulverisation de liquides
GR1003825B (el) * 2001-03-29 2002-02-26 Φυγοκεντρικη γεννητρια του αεροζολ
DE10154312A1 (de) * 2001-11-05 2003-05-15 Robert Wuest Verfahren zum Entfernen von Verunreinigungen aus einem Luft- oder Abluftstrom
US7584633B2 (en) * 2003-04-14 2009-09-08 Lg Electronics Inc. Spray type drum washing machine
DE102004001222B4 (de) * 2004-01-07 2006-08-03 Rational Ag Düseneinheit und Gargerät mit einer Düseneinheit
GB0426710D0 (en) * 2004-12-06 2005-01-12 Applied Sweepers Ltd Dust control system
FR2887788B1 (fr) * 2005-07-01 2008-08-15 Francois Simon Procede et dispositif de dispersion d'un liquide utilisable a la brumisation.
DK1968523T3 (da) * 2005-12-23 2012-05-29 Gea Process Engineering As Direkte tabletting
DE102007047411B4 (de) 2007-10-04 2017-11-16 Peter Walzel Vorrichtung zum Aufteilen von Flüssigkeiten in Rotationszerstäubern
JP5661769B2 (ja) 2009-08-25 2015-01-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se モノマー溶液の液滴の重合によって改善された血液吸収を有する、吸水性ポリマー粒子の製造方法
US9139692B2 (en) 2010-12-03 2015-09-22 Basf Se Process for polymerizing lactam
EP2460838A1 (fr) 2010-12-03 2012-06-06 Basf Se Procédé de polymérisation de lactame
US20140142274A1 (en) 2011-07-05 2014-05-22 Basf Se Solid particles, containing lactam, activator, and catalyst, method for producing said solid particles, and use of said solid particles
CN103857727B (zh) 2011-08-23 2016-01-20 巴斯夫欧洲公司 制造模制品的方法
KR101956534B1 (ko) 2011-08-23 2019-03-11 바스프 에스이 성형품의 제조 방법
US8957180B2 (en) 2011-08-23 2015-02-17 Basf Se Process for producing moldings
KR20150091388A (ko) 2012-12-04 2015-08-10 바스프 에스이 섬유 보강 복합 재료의 제조 방법
SG11201509892XA (en) 2013-06-12 2016-01-28 Basf Se Method for continuously producing polyamide oligomers and for producing semicrystalline or amorphous polyamides that can be thermoplastically processed
DE102014205875A1 (de) * 2014-03-28 2015-10-01 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
WO2016050397A1 (fr) 2014-09-30 2016-04-07 Basf Se Procédé de production de particules de polymère absorbant l'eau
DE102014115077A1 (de) * 2014-10-16 2016-04-21 Rvt Process Equipment Gmbh Flüssigkeitsverteiler einer verfahrenstechnischen Kolonne
DE102015200236A1 (de) * 2015-01-12 2016-07-14 Lechler Gmbh Verfahren zum Erzeugen eines Sprühstrahls und Zweistoffdüse
CN105944475B (zh) * 2016-06-24 2018-09-25 深圳市三丰环保科技有限公司 一种废气净化装置
DE102017126310A1 (de) * 2017-11-09 2019-05-09 Precitec Optronik Gmbh Abstandsmessvorrichtung
EP3802065A1 (fr) * 2018-06-01 2021-04-14 Applied Materials, Inc. Lame d'air pour fabrication additive
DE102018130901A1 (de) 2018-12-04 2020-06-04 Precitec Optronik Gmbh Optische Messeinrichtung
US10712029B1 (en) 2019-01-03 2020-07-14 Ontel Products Corporation Evaporative personal air cooler
US11774116B2 (en) 2019-01-03 2023-10-03 Ontel Products Corporation Evaporative air cooling tower
US11953256B2 (en) 2019-01-03 2024-04-09 Ontel Products Corporation Evaporative personal air cooler with clip
USD948679S1 (en) 2020-03-26 2022-04-12 Ontel Products Corporation Personal air cooler
US11852373B2 (en) 2019-01-03 2023-12-26 Ontel Products Corporation Evaporative air cooler having an ice pack
USD948009S1 (en) 2020-05-29 2022-04-05 Ontel Products Corporation Evaporative air cooling tower
CN109772257B (zh) * 2019-03-26 2024-02-13 萍乡学院 一种用于混流式超重力旋转床转子结构的圆盘
US11413817B2 (en) 2019-09-26 2022-08-16 Applied Materials, Inc. Air knife inlet and exhaust for additive manufacturing
US11400649B2 (en) 2019-09-26 2022-08-02 Applied Materials, Inc. Air knife assembly for additive manufacturing
USD963135S1 (en) 2020-04-22 2022-09-06 Ontel Products Corporation Personal air cooler
USD948680S1 (en) 2020-05-29 2022-04-12 Ontel Products Corporation Evaporative air cooling tower
USD967363S1 (en) 2021-04-05 2022-10-18 Ontel Products Corporation Personal air cooler
USD1007657S1 (en) 2022-04-04 2023-12-12 Ontel Products Corporation Personal air cooling tower

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920834A (en) * 1955-05-03 1960-01-12 Hunt Capacitors Ltd A Method of winding electrical capacitors
US2920830A (en) 1956-12-26 1960-01-12 Niro Atomizer As Atomizer for the atomization of liquid dispersions in a reaction chamber
US3197143A (en) * 1962-10-16 1965-07-27 Edward O Norris Centrifugal atomizer with fixed fan jet feed
DE1400722A1 (de) * 1962-12-18 1969-07-03 Hege Dr Ing Hermann Verfahren und Vorrichtung zur Zerstaeubung von Fluessigkeiten mittels rotierender Zerstaeuberkanten
US5219076A (en) * 1982-04-28 1993-06-15 Wisconsin Alumni Research Foundation Spray fractionation of particles in liquid suspension
US4427541A (en) * 1982-04-28 1984-01-24 Wisconsin Alumni Research Foundation Method and apparatus for spray fractionation of particles in liquid suspension
US4898331A (en) * 1988-12-22 1990-02-06 A/A Niro Atomizer Atomizer wheel with bushings of different inwardly protruding lengths
FR2662374B1 (fr) * 1990-05-25 1992-09-11 Mat Rotor de micro-pulverisation centrifuge.
GB9014646D0 (en) * 1990-07-02 1990-08-22 Courtaulds Coatings Holdings Coating compositions
KR0159947B1 (ko) * 1991-03-12 1998-11-16 마사아키 오카와라 분수형 가압 2류체 노즐 장치와 그것을 편입하여 이루어지는 스프레이 드라이어 장치, 및 가압 2류체에 있어서의 액적 경 제어법
DE4308842A1 (de) * 1993-03-19 1994-09-22 Peter Prof Dr Walzel Verfahren und Vorrichtung zum Zerstäuben von Flüssigkeiten

Also Published As

Publication number Publication date
DK0693972T3 (da) 1999-04-06
DE4308842A1 (de) 1994-09-22
EP0693972A1 (fr) 1996-01-31
US6338438B1 (en) 2002-01-15
WO1994021383A1 (fr) 1994-09-29
DE59406282D1 (de) 1998-07-23
AU6374594A (en) 1994-10-11
JPH08507469A (ja) 1996-08-13
JP3276150B2 (ja) 2002-04-22
US6098895A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
EP0693972B1 (fr) Procede et dispositif de pulverisation de liquides
DE1500595C3 (de) Vollkegelzerstaubungsduse
DE2839013C2 (fr)
EP1259295B1 (fr) Procede et dispositif pour epandre des milieux liquides
DE60009554T2 (de) Vorrichtung zur zerstäubung einer flüssigkeit, mit dieser vorrichtung ausgerüstete anlage zum sprühtrocknen und konditionieren sowie verfahren zum konditionieren eines flüssigen produktes
DE1923234B2 (de) Verfahren und Düse zum luftlosen Umwandeln einer unter Überdruck strömenden Flüssigkeit
WO2010054798A1 (fr) Buse à deux composants, groupe de buses et procédés de pulvérisation de fluides
DE2252218A1 (de) Fluidumduese
DE2401649B2 (de) Verfahren zum kuehlen eines stranges und spruehduese
DE2237021A1 (de) Vorrichtung zum zerstaeuben von fluessigkeiten
DE3116660A1 (de) &#34;luftzerstaeuber-spruehduese&#34;
DE3501145A1 (de) Stroemungsverstaerkende fluessigkeitszerstaeubungsduese
DE10010880B4 (de) Verfahren und Vorrichtung zum Ausbringen von flüssigen Medien
DE10319582B4 (de) Zweistoffsprühdüse
DE3806539A1 (de) Wirbelschichtapparatur, insbes. zum granulieren pulverfoermiger substanz
DE3634443C2 (fr)
DE69936548T2 (de) Metallpulvermischung aus zementiertem Karbid
EP1186347A1 (fr) Procédé et dispositif de pulvérisation de liquides
EP1072318B1 (fr) Tête pour dispositif de pulvérisation électrostatique rotatif
DE19632642C2 (de) Sprühdüse und Verfahren zum Ausstoßen von Flüssigkeit in der Form kleiner Partikel
DE102008057295A1 (de) Ringspaltdüse
DE3505619C2 (de) Verfahren zum Beschichten von Gegenständen und Vorrichtung zur Durchführung des Verfahrens
DE3936080C2 (de) Verfahren zum Variieren der Umfangsgeschwindigkeitskomponente der Drallströmung eines Fluids
DE884325C (de) Vorrichtung zum Zerstaeuben von Fluessigkeiten
DE2411024C3 (de) Verfahren und Vorrichtung zur Zuführung von flüssigem Material in einen Spritzkorb eines Prillturmes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK FR GB IE IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980220

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB IE IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59406282

Country of ref document: DE

Date of ref document: 19980723

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980921

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: NIRO A/S

Free format text: NIRO A/S#GLADSAXEVEJ 305#DK-2860 SOEBORG (DK) -TRANSFER TO- NIRO A/S#GLADSAXEVEJ 305#DK-2860 SOEBORG (DK)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20090121

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090317

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090311

Year of fee payment: 16

Ref country code: CH

Payment date: 20090317

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090319

Year of fee payment: 16

Ref country code: DE

Payment date: 20090317

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090317

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100321

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100321

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331