EP0693540B1 - Aqueous fast drying aerosol coating composition - Google Patents
Aqueous fast drying aerosol coating composition Download PDFInfo
- Publication number
- EP0693540B1 EP0693540B1 EP95304831A EP95304831A EP0693540B1 EP 0693540 B1 EP0693540 B1 EP 0693540B1 EP 95304831 A EP95304831 A EP 95304831A EP 95304831 A EP95304831 A EP 95304831A EP 0693540 B1 EP0693540 B1 EP 0693540B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- acrylic polymer
- weight
- range
- solubilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000443 aerosol Substances 0.000 title claims description 29
- 239000008199 coating composition Substances 0.000 title claims description 19
- 238000001035 drying Methods 0.000 title description 10
- 229920000058 polyacrylate Polymers 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 57
- 238000000576 coating method Methods 0.000 claims description 37
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 36
- 229920001169 thermoplastic Polymers 0.000 claims description 29
- 239000004416 thermosoftening plastic Substances 0.000 claims description 28
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 26
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 22
- 229920001577 copolymer Polymers 0.000 claims description 19
- 239000003513 alkali Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 15
- -1 alkyl methacrylate Chemical compound 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 10
- 239000000049 pigment Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000003381 solubilizing effect Effects 0.000 claims description 4
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 239000002518 antifoaming agent Substances 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000002274 desiccant Substances 0.000 claims description 2
- 239000004014 plasticizer Substances 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 description 23
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 20
- 239000003973 paint Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000003380 propellant Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 239000010985 leather Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- CUTWSDAQYCQTGD-UHFFFAOYSA-N 2-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)C(C)OC(=O)C=C CUTWSDAQYCQTGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004908 Emulsion polymer Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- SGGOJYZMTYGPCH-UHFFFAOYSA-L manganese(2+);naphthalene-2-carboxylate Chemical compound [Mn+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 SGGOJYZMTYGPCH-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S524/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S524/903—Aerosol compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- This invention generally relates to aqueous, also known as water-based, aerosol coating compositions and, more particularly, to a gloss-controlled aerosol coating composition having improved drying capability, hardness and alkali resistance over current water-based systems.
- Aerosol paint compositions that employ volatile organic solvents as a carrier and propellant for film-forming polymers are known and widely used.
- organic solvents raises serious environmental concerns.
- organic solvents are highly flammable, they create hazardous workplace conditions.
- aqueous aerosol paint compositions have had some impact in resolving the problems of toxicity and flammability, a continuing concern is the longer drying times typically observed in water-based systems compared with organic solvent-based systems.
- high gloss aerosol paint compositions which are typically solvent based, are generally not suitable for coating solvent-sensitive surfaces, such as the surfaces of leather substrates.
- a variety of polymers such as acrylics, alkyds, epoxy esters, and vinyl polymers and copolymers may be used in aqueous aerosol compositions as film-forming polymers, which are also known as film formers.
- Water-based aerosol paint formulations having a mixture of dimethyl ether, water and a water-soluble solvent such as monohydric alcohol as a carrier and a propellant are known.
- the dimethyl ether-based propellant system is said to be suitable for water-soluble (WS) polymers and water-dilutable [also known as water-reducible (WR)] emulsion polymers that are useful as film-forming polymers.
- EP-A-0526036 discloses coatings having improved drying time, pH range stability, hardness and gloss. Such coatings consist of an aqueous aerosol coating composition involving the use of a blend of a water-soluble salt of an acrylic dispersible polymer with a water-soluble ammonium or amine salt of a drying oil-modified copolymer in a carrier and propellant active system having dimethyl ether, water and a water-soluble organic solvent.
- U.S. 4,450,253 describes a film-forming polymer comprising an oil-modified acrylic ester polymer rendered water-soluble by neutralization with a base, such as ammonia or an amine.
- This film-forming polymer is applied to a substrate by employing a single phase, water-based carrier and propellant system having dimethyl ether, water and water-soluble polar organic solvents.
- a Rohm and Haas Company product, Acrysol® WS-24 acrylic dispersion resin is identified as an oil-modified acrylic acid ester suitable as a film-forming polymer.
- thermoplastic polymers and copolymers of esters of methacrylic acid do solubilize in certain mixtures of alcohol and water. Compared with other organic solvents, these solutions dry rapidly at room temperature, to produce hard and tough films.
- Thermoplatic acrylic polymers as defined herein, are those 100 % solid thermoplastic acrylic polymers produced as powders or pellets which can form a film by simple solvent evaporation, as opposed to oil-modified polymers which require further treatment to cure.
- the present invention is directed to an aqueous aerosol coating composition
- a thermoplastic acrylic polymer solubilized in an aqueous solution of a monohydric alcohol to form a solubilized acrylic solution
- the thermoplastic acrylic polymer having a weight average molecular weight in the range of 105,000 to 200,000 and a Tg in the range of 35°C to 105°C.
- the aqueous aerosol coating composition may further comprise a blend of the solubilized acrylic solution with a controlling amount of a water-based acrylic polymer for providing a desired degree of gloss and alkali resistance, the water-based acrylic polymer being selected from the group consisting of a water-soluble acrylic polymer, water-reducible acrylic polymer and a combination thereof.
- the present invention is also directed to a method of producing an aqueous coating composition
- a method of producing an aqueous coating composition comprising, adding a monohydric alcohol to water to form an aqueous solution, solubilizing a thermoplastic acrylic polymer having a weight average molecular weight in the range of 105,000 to 200,000 and a Tg in the range of 35°C to 105°C in the aqueous solution to form a solubilized acrylic solution, blending a controlling amount of a water-based acrylic polymer with the solubilized acrylic solution to provide a desired degree of gloss and alkali resistance to a coating resulting from the aqueous coating composition.
- the invention also comprises in a further aspect a substrate coated with a composition as defined above.
- the present invention addresses the problems of longer drying times typically observed in conventional aqueous aerosol systems, which utilize oil modified acrylics as film formers. It further provides for environmentally safe aqueous aerosol coating compositions which produce coatings having improved alkali resistance, hardness and gloss that equals or exceeds that normally seen in coatings employing solvent-based aerosol systems. The present invention also provides high gloss aerosol paint compositions that do not damage or mar underlying solvent-sensitive substrate surfaces.
- thermoplastic acrylic polymers including polymers as well as copolymers, described below, are suitable as film formers in the aerosol compositions of the present invention.
- thermoplastic acrylic polymers are provided with a weight average molecular weight in the range of 105,000 to 200,000 and preferably 105,000 to 120,000.
- the weight average molecular weight is the mean of the weight relative molecular weights of the weight fractions as described on pages 6-10, Chapter II of The Characterization of Polymers published by Rohm and Haas Company, Philadelphia, Pennsylvania in 1976.
- the weight average molecular weights are determined by gel permeation chromatography as described on page 4, Chapter IV of The Characterization of Polymers published by Rohm and Haas Company, Philadelphia, Pennsylvania in 1976, utilizing polymethyl methacrylate as the standard.
- thermoplastic acrylic polymers generally exhibit a glass transition temperature (Tg) varying from 35°C to 105°C, preferably from 35°C to 40°C and most preferably 40°C.
- Tg is defined as that temperature at which the properties of the polymer, such as, viscosity, impact resistance, hardness, undergo substantial changes.
- the Tg of the acrylic polymer is calculated by substituting the weight percentages and the Tgs of the monomeric components of the acrylic polymer in the well known Fox Equation described in Bulletin of American Physics Society, Vol. 1, Issue 3, page 123 (1956) and on pages 20-21, Chapter IV of The Characterization of Polymers published by Rohm and Haas Company, Philadelphia, Pennsylvania in 1976.
- thermoplastic acrylic polymers suitable for use in the aerosol composition of the present invention usually have an acid number in the range of 2 to 12, preferably in the range of 3 to 4.
- the acid number, as defined herein, is a number expressed as milligrams of potassium hydroxide divided by grams of the neutralized polymer.
- thermoplastic acrylic polymers may be prepared by well known polymerization techniques, such as, suspension polymerization and emulsion polymerization of ethylenically unsaturated monomers. Suspension polymerization is preferred.
- the acrylic content results from the polymerization of acrylate or methacrylate esters, such as, for example, methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, i-butyl methacrylate, acrylic acid, methacrylic acid, and acryloxypropionic acid
- the thermoplastic acrylic polymers are preferably prepared by suspension polymerizing ethyl methacrylate and methacrylic acid or methyl methacrylate, ethyl acrylate and methacrylic acid, the former being the most preferred.
- thermoplastic acrylic polymers suitable for use herein are those made by Rohm and Haas Company, Philadelphia, Pennsylvania, under the trademark Acryloid® solid grade acrylic resins, which are available in 100% solid powder or pelletized form.
- thermoplastic acrylic polymers are solubilized, preferably at room temperature, in a previously prepared aqueous solution of monohydric alcohol, such as isopropanol, n-butanol or 3A alcohol (by weight - 95% ethanol and 5% isopropanol) to form a solubilized acrylic solution.
- monohydric alcohol such as isopropanol, n-butanol or 3A alcohol (by weight - 95% ethanol and 5% isopropanol)
- Isopropanol is preferred.
- the aqueous solution is produced by dissolving by weight 60% to 95%, preferably 70% monohydric alcohol in water.
- the term “solubilized” as defined herein means "dissolved” or "go in solution.” It is desirable to dissolve the monohydric alcohol in water before solubilizing the thermoplastic acrylic polymer therein. Such a step appears to prevent the alcohol from swelling the polymer and causing haze in the resulting aqueous solution.
- Table 1 below provides the solubility data obtained by solubilizing 40% by weight of an Acryloid® acrylic polymer in various monohydric alcohols at various alcohol to water weight ratios: Alcohol/water N-butanol 3A alcohol (95% ethanol, 5% IPA) 50/50 Insoluble Insoluble 60/40 Partially soluble Insoluble 70/30 Soluble Partially soluble 80/20 Soluble Partially soluble 90/10 Soluble Soluble 100% Alcohol Insoluble Insoluble
- the weight percentage of the thermoplastic acrylic polymer being solubilized in the aqueous solution of monohydric alcohol is adjusted in accordance with the desired drying rate of the resultant coating. By lowering the weight percentage of the solubilized thermoplastic acrylic polymer, faster drying rates of the resultant coating composition are achieved.
- the weight percentage of the thermoplastic acrylic polymer solubilized in the aqueous solution of monohydric alcohol and water may be varied from 5% to 45%, preferably from 30% to 40%, most preferably at 40%, all in the weight percentage of the solubilized acrylic solution.
- thermoplastic acrylic polymer solubilized at various isopropanol (IPA) to water weight ratios: IPA/Water 30% solid Resin 40% solid Resin 50% solid Resin 50/50 Insoluble Insoluble Insoluble 60/40 Insoluble Insoluble Insoluble 70/30 Soluble Soluble Soluble 80/20 Soluble Soluble Soluble 90/10 Soluble Soluble Soluble 100% IPA Insoluble Insoluble Insoluble
- the appearance of the coating resulting from the foregoing aerosol coating composition is flat.
- the gloss of the resultant coating may be varied by blending the solubilized acrylic solution with a controlling amount of a water-based acrylic polymer.
- the "controlling amount” is defined as the amount of water-based acrylic polymer in weight percentage sufficient to achieve a desired degree of gloss and alkali resistance to a coating resulting therefrom.
- the water-based acrylic polymers suitable for use in this manner comprise a water-soluble acrylic polymer, a water-reducible acrylic polymer or a combination of the two.
- the water-soluble acrylic polymer is preferred.
- the water-soluble acrylic polymer suitable for use as above in the present invention preferably has a weight average molecular weight in the range of 20,000 to 250,000, more preferably 20,000 to 200,000, as determined by gel permeation chromatography, based on poly(methyl methacrylate) as the standard, an acid number typically in the range of 30 to 160, preferably 100 and a Tg in the range of 30°C to 140°C, preferably 45°C.
- the water-soluble acrylic polymer may comprise from about 40% to 60% butyl acrylate and 20% to 40% methyl methacrylate and with lower levels of styrene and methyl acrylate.
- the desired degree of gloss and alkali resistance in the coatings produced from the aerosol coating composition of the present invention is obtained by blending by weight 2% to 12%, preferably 8%, of the water-based acrylic polymer with the solubilized acrylic solution. These weight percentages are based on the total weight of the blend comprising the water-soluble acrylic polymer and the solubilized acrylic solution.
- a number of water-soluble acrylic polymers sold by Rohm and Haas Company as Acrysol® acrylic dispersion resins are suitable for use in this invention.
- the water-based acrylic polymer may comprise a water-reducible, low molecular weight acrylate copolymer having copolymerized units of an alkyl acrylate and an alkyl methacrylate, wherein the alkyl group has 3 to 5 carbon atoms.
- the preferred copolymers comprise 5% to 20 % butyl acrylate and from 30% to 60 % isobutyl methacrylate by weight.
- the composition may comprise 10% to 30 % by weight of a copolymerized drying oil, such as, linseed oil, soya oil, tung oil, sunflower oil or other polyunsaturated oils.
- the composition may comprise 10% to 20 % by weight of olefinically unsaturated acid, or acid anhydride, such as acrylic acid, methacrylic acid, maleic acid and the like or an anhydride thereof.
- the weight average molecular weight of the copolymer is generally in the range of 300 to 20,000, preferably from 6000 to 12,000 and most prefer,ably from 8000 to 10,000.
- the desired degree of gloss and alkali resistance on the coatings produced from the aerosol coating composition of the present invention is obtained by blending by weight 2% to 30%, preferably 8%, of the water-reducible, low molecular weight acrylate copolymer with the solubilized acrylic solution. These weight percentages are based on the total weight of the blend comprising the water-reducible, low molecular weight acrylate copolymer and the solubilized acrylic solution.
- a water-reducible, low molecular weight co-polymer of butyl acrylate and isobutyl methacrylate having a weight average molecular weight of 9000 is most preferred.
- the water-based acrylic polymer may comprise a combination of water-soluble and water-reducible acrylic polymers.
- the water-reducible acrylic polymer is neutralized and the viscosity reduced with water to prevent precipitation of the polymer.
- the neutralization can occur before or after the dryers are added to the polymer but typically before reduction with water.
- the water-soluble acrylic polymer can be added to form the combination. If the above order of addition is not adhered to, it would be more difficult to form the combination of water-soluble and water-reducible acrylic polymers.
- the weight ratio of the water-soluble acrylic polymer to the water-reducible, low molecular weight copolymer is usually from 20/80 to 80/20, while the preferred weight ratio should be from 40/60 to 60/40. When weight ratios are outside of the above ranges, the combinations are less stable and the coatings produced therefrom are inferior.
- the present invention contemplates an aerosol composition adopted for providing a continuous film on a substrate upon discharge from suitable containment means, such as, for example, an aerosol can.
- the propellant-active carrier system employed in the present invention preferably includes dimethyl ether and water.
- Dimethyl ether is a colourless, stable, polar liquid with a freezing point of minus 25°C.
- the aerosol composition of the present invention may comprise from 5 % to 60 %, preferably from 25 % to 50 % of dimethyl ether by weight, based on the total weight of the aerosol composition.
- dimethyl ether is the sole propellant
- dimethyl ether may be replaced by another liquid propellant, such as an aliphatic hydrocarbon or a fluorinated hydrocarbon.
- a gaseous propellant such as nitrogen, carbon dioxide or nitrous oxide may also be used.
- Water is present in the composition of the present invention in an amount generally varying from 10 % to 70 %, preferably from 20 % to 60 % by weight of the total weight of the aerosol paint composition.
- the aerosol coating composition of the present invention may further include additives, such as a surfactant, pigment, pH stabilizer, antifoam agent, plasticizer, drying agents.
- additives such as a surfactant, pigment, pH stabilizer, antifoam agent, plasticizer, drying agents.
- a surfactant such as sodium bicarbonate
- pigment such as sodium bicarbonate
- pH stabilizer such as sodium bicarbonate
- antifoam agent such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
- a blend of a thermoplastic acrylic polymer solubilized in a previously prepared aqueous solution of a monohydric alcohol with a water-based acrylic polymer in a water-based carrier and propellant system having dimethyl ether and water provides paint compositions with the desired film-forming and drying properties that are not obtained when the water-reducible, low molecular weight copolymer is employed without the water-soluble acrylic polymer. Coating properties are further enhanced when the water-reducible low molecular weight polymer undergoes air cure.
- the present coating composition is suitable for use in many coating applications, such as, for example, wood finishes, printing inks, coatings on solvent sensitive substrates, such as, leather, sealers, over print varnishes, label varnishes, paper coatings, floor finishes, ceramic binders, vacuum metallized coatings, coatings over polymeric substrates, traffic and zone marking paints, glaze coatings, wall coatings, clear coatings on delicate substrates, such as those of art objects.
- coating applications such as, for example, wood finishes, printing inks, coatings on solvent sensitive substrates, such as, leather, sealers, over print varnishes, label varnishes, paper coatings, floor finishes, ceramic binders, vacuum metallized coatings, coatings over polymeric substrates, traffic and zone marking paints, glaze coatings, wall coatings, clear coatings on delicate substrates, such as those of art objects.
- Two white paint compositions were prepared, a conventional composition using water-reducible, low molecular weight acrylate copolymer as the resin and a composition based on the present invention, which comprises a blend of 40% by weight of the thermoplastic acrylic polymer in a 70/30 mixture of Isopropyl alcohol and water with the water-soluble acrylic polymer.
- Triton® CF-10 non-ionic alkylaryl polyether supplied by The Industrial Chemical Division of Union Carbide Chemical and Plastic Co. Triton® CF-10 non-ionic alkylaryl polyether is supplied as a liquid and it is utilized as a low foaming wetting agent for pigments used in latex paints.
- compositions were pigmented with the white Ti-pure® R-900 titanium dioxide pigment supplied by duPont de Nemours Co. Inc., Wilmington, Delaware.
- the conventional composition further included metallic dryers at 0.15 parts by weight of cobalt naphthenate and 0.20 parts by weight of manganese naphthenate supplied by Tenneco Chemicals Inc.
- composition of invention water-reducible, low molecular weight acrylate copolymer 37.92 ---- 40% thermoplastic acrylic polymer in 70/30 IPA/Water ---- 40.90 water-soluble acrylic polymer ---- 4.50 Isopropyl alcohol ---- 4.50 Triton @ CF-10 1.07 1.13 Ti-Pure® R-900 titanium dioxide pigment 15.77 15.77 70/30 IPA/Water 44.89 33.20 Dryer 0.35 ---- TOTAL 100% 100%
- compositions were applied as a coating having 25.4 ⁇ m (1.0 mil) ⁇ 2.5 ⁇ m (0.10 mils) dry film thickness over steel panels.
- the specifications of the coating from both of these compositions is outlined in Table 6 below: Specifications Conventional coating Present invention coating Weight of solids 39.59 34.54 Pigment/binder ratio 0.69 0.89 Pigment Volume Concentration 15.76 21.08 VOC in lbs/gallon 5.40 (0.54 kg/l) 5.70 (0.57 kg/l)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/278,468 US5451627A (en) | 1994-07-21 | 1994-07-21 | Aqueous fast drying aerosol coating composition comprising a blend of acrylic polymers |
US278468 | 1994-07-21 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0693540A2 EP0693540A2 (en) | 1996-01-24 |
EP0693540A3 EP0693540A3 (en) | 1996-03-20 |
EP0693540B1 true EP0693540B1 (en) | 1998-09-09 |
Family
ID=23065089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95304831A Expired - Lifetime EP0693540B1 (en) | 1994-07-21 | 1995-07-11 | Aqueous fast drying aerosol coating composition |
Country Status (12)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3620495A1 (en) | 2018-09-06 | 2020-03-11 | Maston OY | Method for preparing water-based aerosol paint composition and the usage of paint material |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19708157A1 (de) * | 1997-02-28 | 1998-09-03 | Peter Kwasny Gmbh | Unbrennbare Aerosolzubereitung |
KR19980033527A (ko) | 1998-04-22 | 1998-07-25 | 이명섭 | 음식폐기물의 저온 자연발효건조방법과 그 장치 |
US6372842B1 (en) * | 1998-06-15 | 2002-04-16 | The Lubrizol Corporation | Methods of using an aqueous composition containing a water-soluble or water-dispersible synthetic polymer and resultant compositions formed thereof |
DE10010417C1 (de) * | 2000-03-03 | 2001-09-27 | Basf Coatings Ag | Wäßrige Sprühdosenlacke |
US6622064B2 (en) * | 2000-03-31 | 2003-09-16 | Imx Labs, Inc. | Nail polish selection method |
KR100401419B1 (ko) * | 2000-11-29 | 2003-10-11 | 이종철 | 복합비료의 제조방법 및 그 장치 |
US6664329B2 (en) | 2001-02-21 | 2003-12-16 | Betco Corporation | Floor finish composition |
US7935183B1 (en) * | 2003-09-26 | 2011-05-03 | Ez Paint, Inc. | Temporary aqueous aerosol paint composition and a method for preparing the composition |
US8377186B1 (en) * | 2003-09-26 | 2013-02-19 | Ez Paint, Inc. | Temporary aqueous aerosol paint composition and a method for preparing the composition |
US7220299B2 (en) * | 2003-09-26 | 2007-05-22 | Ez Paint, Inc. | Temporary aqueous aerosol paint composition and method for preparing the composition |
US20080221263A1 (en) * | 2006-08-31 | 2008-09-11 | Subbareddy Kanagasabapathy | Coating compositions for producing transparent super-hydrophobic surfaces |
US20090018249A1 (en) * | 2006-01-30 | 2009-01-15 | Subbareddy Kanagasabapathy | Hydrophobic self-cleaning coating compositions |
US8258206B2 (en) | 2006-01-30 | 2012-09-04 | Ashland Licensing And Intellectual Property, Llc | Hydrophobic coating compositions for drag reduction |
US20080221009A1 (en) * | 2006-01-30 | 2008-09-11 | Subbareddy Kanagasabapathy | Hydrophobic self-cleaning coating compositions |
TWM311166U (en) | 2006-11-23 | 2007-05-01 | Inventec Corp | Guide member for electrical connection |
US20080250978A1 (en) * | 2007-04-13 | 2008-10-16 | Baumgart Richard J | Hydrophobic self-cleaning coating composition |
US20090064894A1 (en) * | 2007-09-05 | 2009-03-12 | Ashland Licensing And Intellectual Property Llc | Water based hydrophobic self-cleaning coating compositions |
ES2545733T3 (es) | 2008-12-01 | 2015-09-15 | Basf Se | Composición acuosa de aglutinantes que contiene oligómeros |
US8147607B2 (en) * | 2009-10-26 | 2012-04-03 | Ashland Licensing And Intellectual Property Llc | Hydrophobic self-cleaning coating compositions |
CN109679427A (zh) * | 2018-12-25 | 2019-04-26 | 广东美涂士建材股份有限公司 | 低挥发的水性珠光效果艺术涂料及其制备方法 |
CN113429850A (zh) * | 2021-06-29 | 2021-09-24 | 罗浮塔涂料科技有限公司 | 一种3d艺术漆及其制备方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126595A (en) * | 1975-06-17 | 1978-11-21 | Rohm And Haas Company | Aqueous coating compositions comprising acrylic oligomers, high molecular weight polymers and crosslinkers |
US4098740A (en) * | 1975-11-20 | 1978-07-04 | Ppg Industries, Inc. | Aqueous acrylic-carboxylated polyether compositions |
US4136075A (en) * | 1977-04-27 | 1979-01-23 | A. E. Staley Manufacturing Company | Acrylic copolymer coatings |
US4187204A (en) * | 1977-06-16 | 1980-02-05 | Pactra Industries, Inc. | Water-restricted, water-soluble paint |
US4136076A (en) * | 1977-10-25 | 1979-01-23 | Dennison Manufacturing Co. | Ink jet printing composition comprising a solvent, a dye stuff, a volatile base, a multi-valent metal and a polymer containing carboxyl groups |
US4177178A (en) * | 1978-04-17 | 1979-12-04 | Ppg Industries, Inc. | Thermosetting acrylic copolymer compositions |
US4166882A (en) * | 1978-04-26 | 1979-09-04 | Ppg Industries, Inc. | Method of coating with aqueous thermosetting acrylic polymer latex of uniform particle size |
CA1102466A (en) * | 1978-12-06 | 1981-06-02 | Albert Suk | Aerosol water-based paint composition |
US4240940A (en) * | 1979-02-16 | 1980-12-23 | Envirosol Systems International, Ltd. | Water clean up aerosol paint |
US4376175A (en) * | 1980-06-04 | 1983-03-08 | Airwick Industries, Inc. | Floor care compositions |
US4329336A (en) * | 1980-11-10 | 1982-05-11 | Colgate-Palmolive Company | Nonionic based antimicrobial shampoo |
US4450253A (en) * | 1981-03-03 | 1984-05-22 | Ccl Industries Inc. | Propellant-active carrier system for water-based paints |
US4365028A (en) * | 1981-06-11 | 1982-12-21 | Seymour Of Sycamore, Inc. | Coating composition |
US4363887A (en) * | 1981-06-11 | 1982-12-14 | Seymour Of Sycamore, Inc. | Solvent resin emulsion enamel composition |
US4420575A (en) * | 1982-07-26 | 1983-12-13 | Plasti-Kote Company, Inc. | Water reducible aerosol paints |
US4482662A (en) * | 1982-07-26 | 1984-11-13 | Plasti-Kote Company, Inc. | Water-soluble aerosol paint compositions |
US4703433A (en) * | 1984-01-09 | 1987-10-27 | Hewlett-Packard Company | Vector network analyzer with integral processor |
US4578415A (en) * | 1984-06-29 | 1986-03-25 | Dap Inc. | Aqueous aerosol coating composition |
US4968735A (en) * | 1984-12-05 | 1990-11-06 | Page Edward H | Aerosol water based paint |
US5071900A (en) * | 1984-12-05 | 1991-12-10 | Page Edward H | Aerosol water based paint |
CA1268732A (en) * | 1984-12-27 | 1990-05-08 | Akira Yada | Radiation-polymerizing water-soluble cast vinyl monomer layer and forming particles |
JPS61254678A (ja) * | 1985-05-07 | 1986-11-12 | Nitto Electric Ind Co Ltd | エアゾ−ル型感圧性接着剤組成物 |
JPH0759681B2 (ja) * | 1987-02-06 | 1995-06-28 | 関西ペイント株式会社 | 水性被覆組成物 |
DE3822731A1 (de) * | 1988-07-05 | 1990-02-08 | Ici Lacke Farben | Aerosolanstrichzusammensetzung auf wasserbasis |
NL8803003A (nl) * | 1988-12-07 | 1990-07-02 | Mobacc Bv | Spuitbuslak. |
GB9005838D0 (en) * | 1989-03-29 | 1990-05-09 | Ici Plc | Aqueous coating compositions |
CA2033885A1 (en) * | 1990-01-10 | 1991-07-11 | Thomas J. Smrt | Non-flammable aerosol paint compositions |
US5158609A (en) * | 1991-03-18 | 1992-10-27 | Aervoe Pacific Company, Inc. | Water based aerosol marking paint |
US5433885A (en) * | 1991-07-17 | 1995-07-18 | Church & Dwight Co., Inc. | Stabilization of silicate solutions |
US5250599A (en) * | 1991-07-30 | 1993-10-05 | Rohm And Haas Company | Aqueous aerosol coating compositions |
-
1994
- 1994-07-21 US US08/278,468 patent/US5451627A/en not_active Expired - Lifetime
-
1995
- 1995-06-06 US US08/471,944 patent/US5633314A/en not_active Expired - Fee Related
- 1995-06-20 TW TW084106292A patent/TW288034B/zh active
- 1995-07-11 DK DK95304831T patent/DK0693540T3/da active
- 1995-07-11 DE DE69504600T patent/DE69504600T2/de not_active Expired - Fee Related
- 1995-07-11 EP EP95304831A patent/EP0693540B1/en not_active Expired - Lifetime
- 1995-07-14 AU AU25009/95A patent/AU695176B2/en not_active Ceased
- 1995-07-14 BR BR9503329A patent/BR9503329A/pt not_active IP Right Cessation
- 1995-07-17 CA CA002154057A patent/CA2154057C/en not_active Expired - Fee Related
- 1995-07-18 JP JP20398195A patent/JP4083249B2/ja not_active Expired - Fee Related
- 1995-07-20 SG SG1995000911A patent/SG52157A1/en unknown
- 1995-07-20 KR KR1019950021420A patent/KR100383328B1/ko not_active Expired - Fee Related
- 1995-07-21 CN CN95108964A patent/CN1064064C/zh not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3620495A1 (en) | 2018-09-06 | 2020-03-11 | Maston OY | Method for preparing water-based aerosol paint composition and the usage of paint material |
Also Published As
Publication number | Publication date |
---|---|
KR960004473A (ko) | 1996-02-23 |
CA2154057C (en) | 2008-01-08 |
JP4083249B2 (ja) | 2008-04-30 |
EP0693540A3 (en) | 1996-03-20 |
EP0693540A2 (en) | 1996-01-24 |
CA2154057A1 (en) | 1996-01-22 |
DK0693540T3 (da) | 1999-06-07 |
US5633314A (en) | 1997-05-27 |
TW288034B (enrdf_load_stackoverflow) | 1996-10-11 |
AU2500995A (en) | 1996-02-01 |
SG52157A1 (en) | 1998-09-28 |
AU695176B2 (en) | 1998-08-06 |
JPH0860033A (ja) | 1996-03-05 |
DE69504600D1 (de) | 1998-10-15 |
US5451627A (en) | 1995-09-19 |
CN1064064C (zh) | 2001-04-04 |
KR100383328B1 (ko) | 2003-08-21 |
DE69504600T2 (de) | 1999-05-12 |
CN1121945A (zh) | 1996-05-08 |
BR9503329A (pt) | 1997-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0693540B1 (en) | Aqueous fast drying aerosol coating composition | |
EP0526036B1 (en) | Aqueous aerosol coating composition | |
CA1223395A (en) | Water-swellable crosslinked polymeric microgel particles and aqueous dispersions of organic film- forming resins containing the same | |
KR100268964B1 (ko) | 다분산도가 낮은 열가소성 폴리하이드록시 에테르수지를 사용하는 함수도료 조성물의 제조방법 | |
US5750269A (en) | Removable coating composition and process for protecting surfaces | |
SK280784B6 (sk) | Spôsob výroby neutralizovaného latexu | |
CA1329303C (en) | Process for the production of a multi-layered coating, aqueous coating compositions, water-dilutable polyacrylate resins and process for the preparation of water-dilutable polyacrylate resins | |
JPH07196974A (ja) | 水性ペイントおよび木材塗料に有用な周囲温度および昇温硬化性ポリマー組成物 | |
EP0468293B1 (en) | Metallic water borne base coat composition based on acrylic latex resins using a water reducible resin for aluminium storage and a hectorite clay for rheology control | |
US20110060090A1 (en) | Binder combinations based on polyacrylate disperions | |
EP0030080B1 (en) | Vinylidene chloride copolymer latex composition and method of coating using it | |
US6034160A (en) | Method for the preparation of water-borne coating compositions using thermoplastic polyhydroxyether resins having narrow polydispersity | |
US4460721A (en) | Alcohol-soluble printing ink or varnish | |
EP0775176B1 (en) | Water dispersible acrylic based graft copolymers, a method of manufacture and aqueous paints | |
US5856408A (en) | Water dispersible acrylic based graft copolymers, a method of manufacture and aqueous paints | |
JP2922583B2 (ja) | 水性エアゾール用塗料組成物 | |
JP2866731B2 (ja) | 金属缶外面水性塗料用樹脂組成物 | |
JPH07331117A (ja) | 塗料用水系樹脂組成物 | |
JP2000038538A (ja) | 熱硬化性被覆組成物 | |
JPH0425575A (ja) | 水性エアゾール用塗料組成物 | |
WO1997034954A1 (en) | Water-borne aerosol coating composition | |
JPH04236279A (ja) | 水性塗料組成物 | |
MXPA97001940A (es) | Formulacion de revestimiento de auto-reticulacion | |
JPH02129279A (ja) | 被覆用組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950726 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE DK FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE DK FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19970205 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69504600 Country of ref document: DE Date of ref document: 19981015 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20070731 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070831 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070727 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070724 Year of fee payment: 13 Ref country code: IT Payment date: 20070727 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070717 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080711 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080711 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |