EP0691895A1 - Procede et dispositif de regulation du niveau de metal liquide dans une lingotiere de coulee continue des metaux - Google Patents
Procede et dispositif de regulation du niveau de metal liquide dans une lingotiere de coulee continue des metauxInfo
- Publication number
- EP0691895A1 EP0691895A1 EP94909977A EP94909977A EP0691895A1 EP 0691895 A1 EP0691895 A1 EP 0691895A1 EP 94909977 A EP94909977 A EP 94909977A EP 94909977 A EP94909977 A EP 94909977A EP 0691895 A1 EP0691895 A1 EP 0691895A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- meniscus
- sensors
- signals
- level
- diff
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 14
- 238000005058 metal casting Methods 0.000 title claims description 4
- 230000005499 meniscus Effects 0.000 claims abstract description 49
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 21
- 230000010355 oscillation Effects 0.000 claims abstract description 5
- 230000001143 conditioned effect Effects 0.000 claims abstract description 4
- 230000003750 conditioning effect Effects 0.000 claims description 10
- 238000009749 continuous casting Methods 0.000 abstract description 7
- 150000002739 metals Chemical class 0.000 abstract description 3
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000005266 casting Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 210000002816 gill Anatomy 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000029152 Small face Diseases 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
- B22D11/186—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/20—Controlling or regulating processes or operations for removing cast stock
- B22D11/201—Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level
- B22D11/205—Controlling or regulating processes or operations for removing cast stock responsive to molten metal level or slag level by using electric, magnetic, sonic or ultrasonic means
Definitions
- the invention relates to the field of continuous casting of metals, in particular steel. More specifically, it relates to the regulation of the level of liquid metal present in a continuous casting mold.
- the molten metal flowing from the ladle first passes through an intermediate container, called a distributor.
- a distributor One of the roles of the distributor is to orient the liquid metal towards the single oscillating ingot mold or, more generally, the multiple oscillating ingot molds of the continuous casting machine, in which the solidification of steel products begins (slabs, blooms or billets).
- the metal flows out of the distributor through an outlet orifice, and thus forms a pouring jet which penetrates into the ingot mold through the meniscus, i.e. the surface of the molten metal. present in the mold.
- the pouring jet On its path between the distributor and the ingot mold, the pouring jet is confined in a tube made of refractory material, called a pouring nozzle.
- the upper end of the nozzle is fixed to the bottom of the distributor, while its lower end passes through the meniscus and plunges into the liquid metal.
- the purpose of the nozzle is to protect the jet of liquid metal against its oxidation by the atmosphere, to prevent that during its crossing of the meniscus, the jet does not carry with it a part of the covering slag which covers the meniscus, this which would deteriorate the cleanliness of the cast product, and finally to impose on the flows of liquid metal in the mold a configuration favorable to a satisfactory solidification of the product.
- its lower end may include a multiplicity of lateral orifices (or gills), each oriented towards one or the other of the faces of the mold.
- One of the essential parameters in obtaining a healthy product is the stability of the level of the meniscus in the mold. If this stability is not ensured in a way satisfactory, the solidification of the product takes place under excessively variable conditions. We can thus end up with a solidified thickness of the product locally too small, hence a risk of more or less significant tears da solidified skin. At best, we end up with a product of poor surface quality; at worst, liquid metal can flow through the tears (a phenomenon called "breakthrough"), causing the casting to stop and serious damage to the machine.
- the average level of the meniscus is conditioned by the flow of steel flowing out of the distributor and by the speed at which the product being solidified is extracted from the mold.
- This level measurement is usually obtained using a single optical or inductive sensor. It provides an electrical signal which, after processing, is used to control the position of the stopper rod. It is in the case of continuous slab flows that the problem of regulating the level of the meniscus is most complex. Indeed, these ingot molds are long and narrow, and at a given time, the level fluctuations of the meniscus can be very uneven from one region to another of the mold. The indications given by a single sensor are therefore not necessarily representative of fluctuations in the level of the meniscus.
- the lower end of the nozzle most often comprises two diametrically opposite openings which each orient a fraction of the metal jet towards one of the small faces of the mold.
- these two openings do not become blocked or necessarily widen identically during the entire casting.
- the flows in the ingot mold can therefore evolve asymmetrically, and the undulations which affect the meniscus then have very different configurations on either side of the nozzle at a given instant.
- this opening takes place on the side of the nozzle where the sensor is located, this one attributes to the corresponding disturbance an exaggerated importance compared to the real evolution of the average level of the meniscus that it provokes.
- the aim of the invention is to propose a method for regulating the level of liquid metal which takes account of local disturbances of the meniscus by correctly estimating their real influence on the average level of liquid metal in ingot mold, and which makes it possible to significantly reduce the amplitude of the fluctuations in the level of the meniscus harmful to the quality of the slabs, and this taking into account the entire meniscus.
- the subject of the invention is a method for regulating the level of the meniscus of liquid metal in an ingot mold of a continuous metal casting machine, according to which the electrical signals supplied by at least one pair of sensors overhanging are collected.
- said signals being a function of the respective distances (h ⁇ , h 2 ) between said sensors and said meniscus, these two signals are combined so as to obtain a single signal representative of a fictitious level of said meniscus, and said signal is sent control means of a device for regulating the flow rate of metal entering the ingot mold, so that said control means actuate said device so as to bring said fictitious level of said meniscus to a predetermined set value (h), characterized in each signal from said sensors is conditioned, by eliminating the oscillations having both a frequency greater than a threshold ( F) and an amplitude below a threshold (D).
- F a threshold
- D amplitude below a threshold
- the invention also relates to a device for implementing this method.
- the invention consists in conditioning the signals from these sensors prior to their combination, by eliminating from these signals the oscillations at high frequency and low amplitude, and by combining these signals into a single signal of a appropriately.
- the liquid steel 1 contained in a distributor 2 flows through an outlet orifice 3, formed in the bottom 4 of the distributor 2, in an oscillating ingot mold 5 without bottom.
- the side walls 6, 7 of the mold 2 are vigorously cooled by an internal circulation of water. against these walls 6, 7 begins the formation of a solidified crust 8. This progressively gains the entire cross-section of the cast slab as it is extracted from the machine, as symbolized by the arrow 9.
- the liquid steel 1 On its path between the distributor 2 and the mold 5, the liquid steel 1 is protected by a tubular nozzle 10 made of a refractory material such as graphite alumina.
- the upper part of the nozzle 10 is fixed against the bottom 4 of the distributor 1, in the extension of the outlet orifice 3.
- the lower part of the nozzle 10 is provided with two lateral openings 11, 12 through which flows the liquid steel 1, each oriented towards one of the walls 7.
- the nozzle 10 crosses the meniscus 13 so as to bring the liquid metal 1 to the heart of the ingot mold 5 (for reasons of clarity of the drawing, we have not represented the layer of slag which usually covers the meniscus 13).
- the orifice 3 is partially closed (or completely closed when the casting is stopped) by a stopper 14 with a roughly conoid end, whose height position is adjusted by a device 15.
- the height position of the stopper 14, combined with the value of the speed of extraction of the slab from the ingot mold 5, determines the average level at which the meniscus 13 is in the ingot mold 5.
- the setpoint level 16 is thus marked with dotted lines. one wishes to maintain permanently during the casting of the slab.
- the nozzle 10 comprises two level sensors 17, 18 of a type known in itself, for example eddy current sensors. They are located on either side of the nozzle 10, preferably at equal distances from the nozzle 10 and above the major median axis of the cross section of the ingot mold 5. In the general case, their lower ends are located at equal altitudes.
- the sensor 17 delivers an electrical signal representative of the distance h ⁇ between its lower end and the meniscus 13
- the sensor 18 delivers an electrical signal representative of the distance h 2 between its lower end and the meniscus 13. In the ideal case, these distances h ⁇ , h 2 should be equal to the distance h between the lower ends of the sensors 17, 18 and the reference level 16.
- h- and h are generally uneven. This explains the previously reported impossibility of effecting reliable regulation of the level of the meniscus 13 on the basis only of the information delivered by a single sensor.
- the analog signals delivered by the sensors 17, 18 are sent to analog / digital converters 19,
- the signals emitted by the sensors 17, 18 and representative of the variations in the level of the meniscus 13 which they detect, are the superposition of multiple undulations of frequencies and of various amplitudes.
- each of these is sent to a conditioning device 21, 22.
- These conditioning devices 21, 22 are identical, and operate in the following manner.
- the signal from each sensor 17, 18, after having been digitized by one of the converters 19, 20, is processed by a low-pass filter which suppresses or at least strongly attenuates the signals of frequency above a threshold F, that l for example, 0.02 Hz is fixed.
- the remaining low frequencies are then subtracted from the original, unfiltered signal, in order to obtain a new signal comprising no more, significantly, than the highest frequencies of the original signal.
- This new signal then crosses a dead band which strongly attenuates or eliminates from it the components whose amplitude does not exceed a predetermined threshold D, taken for example equal to 3 mm.
- the low frequency sampled at the output of the low-pass filter is added to the signal thus processed.
- the signals thus reconstituted are then sent to a combination device 23, to be combined into a single signal which synthesizes them, so as to provide the information necessary for the control of the stopper 14.
- This signal constitutes in a way a medium level fictitious for metal in the mold. It is sent to a digital regulator 24 which in turn provides the device 15 with a signal which allows it to adjust the position of the stopper nose 14 in the outlet orifice 3 adequately, and therefore the flow of liquid metal entering in the ingot mold 5.
- the aim is thus to reduce the fictitious level of the liquid metal in the ingot mold to the set value, if a difference is detected between them.
- the converters 19, 20, the conditioning devices 21, 22, the combination device 23 and the regulator 24 can be arranged inside the same housing 25.
- the devices downstream of the converters 19, 20 can even be made up of a single digital processing card designed and programmed to perform each of their functions.
- (h 2 - h) translate the deviations of the levels of the metal in the ingot mold in line with the sensors 17, 18 compared to the set level 16. If these differences are positive, the level of metal at the place of measurement is lower than the set level 16. If they are negative, the metal level at the measurement location is higher than the setpoint level.
- the combination device first calculates at an instant t, the arithmetic mean M of (h ⁇ - h) and (h - h)
- IMI> diff max the signal which is sent to regulator 24 corresponds to the highest, in absolute value of the differences (h ⁇ -h) and (h 2 - h), which is called ⁇ h max . Only the one which reflects the largest deviation from the set point is then taken into account.
- the regulator 24 and the control means 15 impose on the stopper 14 a movement such that it aims to correct the difference between the set value 16 and the fictitious level represented by the signal leaving the device. combination, established as just exposed.
- the operation is then repeated at an instant t + ⁇ t, ⁇ t being, for example, equal to 0.1 sec, and an almost continuous regulation of the level of liquid metal in the mold is thus obtained.
- IMI 2.5 mm is between diff m - n and diff max , it is necessary
- the regulating device described can also be used on a continuous casting machine on which the flow rate of the liquid steel leaving the distributor is regulated by a device other than a stopper, for example a nozzle with drawer. .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Control Of Non-Electrical Variables (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Confectionery (AREA)
- Physical Vapour Deposition (AREA)
- Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9303872A FR2703277B1 (fr) | 1993-03-30 | 1993-03-30 | Procédé et dispositif de régulation du niveau de métal liquide dans une lingotière de coulée continue des métaux. |
FR9303872 | 1993-03-30 | ||
PCT/FR1994/000292 WO1994022618A1 (fr) | 1993-03-30 | 1994-03-17 | Procede et dispositif de regulation du niveau de metal liquide dans une lingotiere de coulee continue des metaux |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0691895A1 true EP0691895A1 (fr) | 1996-01-17 |
EP0691895B1 EP0691895B1 (fr) | 1997-02-26 |
Family
ID=9445662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94909977A Expired - Lifetime EP0691895B1 (fr) | 1993-03-30 | 1994-03-17 | Procede et dispositif de regulation du niveau de metal liquide dans une lingotiere de coulee continue des metaux |
Country Status (21)
Country | Link |
---|---|
US (1) | US5605188A (fr) |
EP (1) | EP0691895B1 (fr) |
JP (1) | JP3245423B2 (fr) |
KR (1) | KR100312807B1 (fr) |
CN (1) | CN1046224C (fr) |
AT (1) | ATE149108T1 (fr) |
AU (1) | AU681634B2 (fr) |
BR (1) | BR9406134A (fr) |
CA (1) | CA2159475C (fr) |
CZ (1) | CZ284394B6 (fr) |
DE (1) | DE69401811T2 (fr) |
DK (1) | DK0691895T3 (fr) |
ES (1) | ES2100705T3 (fr) |
FI (1) | FI102151B1 (fr) |
FR (1) | FR2703277B1 (fr) |
GR (1) | GR3022815T3 (fr) |
NO (1) | NO305856B1 (fr) |
RU (1) | RU2120837C1 (fr) |
SK (1) | SK281795B6 (fr) |
UA (1) | UA37227C2 (fr) |
WO (1) | WO1994022618A1 (fr) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1070745C (zh) * | 1998-09-18 | 2001-09-12 | 重庆钢铁(集团)有限责任公司 | 连铸机结晶器液面控制系统 |
SE0301049A0 (en) * | 2002-11-29 | 2004-05-30 | Abb Ab | Control system, computer program product, device and method |
JP2006507950A (ja) * | 2002-11-29 | 2006-03-09 | アーベーベー・アーベー | コントロールシステム、コンピュータプログラム製品、装置及び方法 |
KR20050119133A (ko) * | 2003-03-21 | 2005-12-20 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 허가 증명서들내의 사용자 신분 프라이버시 |
KR101177813B1 (ko) * | 2004-12-30 | 2012-08-30 | 주식회사 포스코 | 연속주조기 내의 단주기 탕면 변동 억제 방법 |
EP2272605A1 (fr) * | 2009-06-24 | 2011-01-12 | Siemens AG | Procédé de réglage pour la surface de bain d'une coquille de coulée par faisceau |
CN101704081B (zh) * | 2009-11-24 | 2011-08-03 | 中冶连铸技术工程股份有限公司 | 抑制薄板坯连铸机漏斗型结晶器内钢水波动的方法及其容积补偿器 |
KR101167997B1 (ko) | 2009-12-30 | 2012-07-24 | 주식회사 포스코 | 탕면 레벨 안정화 방법 및 탕면 레벨 안정화 시스템 |
EP2353752A1 (fr) * | 2010-01-15 | 2011-08-10 | Siemens Aktiengesellschaft | Procédé de réglage pour la surface de bain d'une coquille de coulée par faisceau |
DE102011085932A1 (de) * | 2011-06-07 | 2012-12-13 | Sms Siemag Ag | Verfahren zum Regeln der Höhe des Gießspiegels in einer Kokille einer Stranggießanlage |
IN2014DN10256A (fr) * | 2012-06-07 | 2015-08-07 | Jfe Steel Corp | |
CN104281166B (zh) * | 2013-07-04 | 2017-03-01 | 中国钢铁股份有限公司 | 连铸机的液位控制方法 |
JP6536384B2 (ja) * | 2015-12-02 | 2019-07-03 | 日本製鉄株式会社 | 状態推定方法、湯面レベル制御方法、プログラム及び状態推定装置 |
IT201800006751A1 (it) * | 2018-06-28 | 2019-12-28 | Apparato e metodo di controllo della colata continua | |
KR20230006557A (ko) | 2020-07-23 | 2023-01-10 | 노벨리스 인크. | 금속 주조 시스템의 이벤트 감지 |
KR102349042B1 (ko) * | 2021-07-26 | 2022-01-11 | 주식회사 에이치아이이엔지 | 디지털 신호처리를 이용한 용탕몰드레벨 제어시스템 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216959A (ja) * | 1984-04-13 | 1985-10-30 | Nippon Steel Corp | 連続鋳造モ−ルドレベル検出法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63188463A (ja) * | 1987-01-29 | 1988-08-04 | Nippon Steel Corp | 連続鋳造用モ−ルド内の溶鋼表面状況検出方法 |
JPH02137655A (ja) * | 1988-11-15 | 1990-05-25 | Sumitomo Metal Ind Ltd | 溶鋼湯面変動の測定方法及びその制御方法 |
JPH0688113B2 (ja) * | 1990-10-05 | 1994-11-09 | 新日本製鐵株式会社 | 溶融金属の湯面レベル検出装置 |
JPH04339551A (ja) * | 1991-05-13 | 1992-11-26 | Sumitomo Metal Ind Ltd | 連続鋳造鋳型の湯面レベル異常検知方法 |
JP3373553B2 (ja) * | 1992-06-18 | 2003-02-04 | 新日本製鐵株式会社 | 鋳型内湯面レベル制御方法 |
-
1993
- 1993-03-30 FR FR9303872A patent/FR2703277B1/fr not_active Expired - Fee Related
-
1994
- 1994-03-17 CA CA002159475A patent/CA2159475C/fr not_active Expired - Fee Related
- 1994-03-17 JP JP52172794A patent/JP3245423B2/ja not_active Expired - Fee Related
- 1994-03-17 EP EP94909977A patent/EP0691895B1/fr not_active Expired - Lifetime
- 1994-03-17 AT AT94909977T patent/ATE149108T1/de not_active IP Right Cessation
- 1994-03-17 WO PCT/FR1994/000292 patent/WO1994022618A1/fr active IP Right Grant
- 1994-03-17 AU AU62610/94A patent/AU681634B2/en not_active Ceased
- 1994-03-17 CZ CZ952523A patent/CZ284394B6/cs unknown
- 1994-03-17 CN CN94191646A patent/CN1046224C/zh not_active Expired - Fee Related
- 1994-03-17 DK DK94909977.4T patent/DK0691895T3/da active
- 1994-03-17 UA UA95094323A patent/UA37227C2/uk unknown
- 1994-03-17 KR KR1019950704257A patent/KR100312807B1/ko not_active IP Right Cessation
- 1994-03-17 ES ES94909977T patent/ES2100705T3/es not_active Expired - Lifetime
- 1994-03-17 DE DE69401811T patent/DE69401811T2/de not_active Expired - Fee Related
- 1994-03-17 BR BR9406134A patent/BR9406134A/pt not_active IP Right Cessation
- 1994-03-17 SK SK1213-95A patent/SK281795B6/sk unknown
- 1994-03-17 US US08/513,870 patent/US5605188A/en not_active Expired - Fee Related
- 1994-03-17 RU RU95122436A patent/RU2120837C1/ru not_active IP Right Cessation
-
1995
- 1995-09-27 FI FI954578A patent/FI102151B1/fi not_active IP Right Cessation
- 1995-09-29 NO NO953859A patent/NO305856B1/no unknown
-
1997
- 1997-03-14 GR GR970400489T patent/GR3022815T3/el unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60216959A (ja) * | 1984-04-13 | 1985-10-30 | Nippon Steel Corp | 連続鋳造モ−ルドレベル検出法 |
Non-Patent Citations (2)
Title |
---|
(SHIN NIPPON SEITETSU KK) 30 Octobre 1985 * |
PATENT ABSTRACTS OF JAPAN vol. 10, no. 73 (M-463)22 Mars 1986 & JP,A,60 216 959 * |
Also Published As
Publication number | Publication date |
---|---|
FI954578A0 (fi) | 1995-09-27 |
US5605188A (en) | 1997-02-25 |
BR9406134A (pt) | 1995-12-12 |
ES2100705T3 (es) | 1997-06-16 |
NO953859D0 (no) | 1995-09-29 |
DE69401811T2 (de) | 1997-09-04 |
FR2703277A1 (fr) | 1994-10-07 |
DK0691895T3 (da) | 1997-09-01 |
FI102151B (fi) | 1998-10-30 |
EP0691895B1 (fr) | 1997-02-26 |
JP3245423B2 (ja) | 2002-01-15 |
RU2120837C1 (ru) | 1998-10-27 |
SK121395A3 (en) | 1996-03-06 |
AU681634B2 (en) | 1997-09-04 |
DE69401811D1 (de) | 1997-04-03 |
CZ284394B6 (cs) | 1998-11-11 |
FI954578A (fi) | 1995-09-27 |
GR3022815T3 (en) | 1997-06-30 |
UA37227C2 (uk) | 2001-05-15 |
ATE149108T1 (de) | 1997-03-15 |
JPH08508208A (ja) | 1996-09-03 |
FI102151B1 (fi) | 1998-10-30 |
NO305856B1 (no) | 1999-08-09 |
CA2159475C (fr) | 2002-12-31 |
KR100312807B1 (ko) | 2002-02-28 |
WO1994022618A1 (fr) | 1994-10-13 |
CA2159475A1 (fr) | 1994-10-13 |
CZ252395A3 (en) | 1996-04-17 |
CN1046224C (zh) | 1999-11-10 |
SK281795B6 (sk) | 2001-08-06 |
AU6261094A (en) | 1994-10-24 |
NO953859L (no) | 1995-09-29 |
FR2703277B1 (fr) | 1995-05-24 |
CN1120323A (zh) | 1996-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0691895B1 (fr) | Procede et dispositif de regulation du niveau de metal liquide dans une lingotiere de coulee continue des metaux | |
CA2683965A1 (fr) | Procede de coulee continue de billette de petite section | |
CH624032A5 (fr) | ||
FR2579120A1 (fr) | Procede et dispositif de mise en marche automatique d'une installation de coulee continue | |
FR2566297A1 (fr) | Procede de coulee d'un bain metallique | |
EP1616643A2 (fr) | Installation de remplissage d'un moule avec du métal liquide comprenant un système de détection du niveau du métal liquide, et procédé pour la mise en oeuvre de cette installation | |
EP0564316B1 (fr) | Procédé de coulée continue | |
CA2296743C (fr) | Procede de demarrage d'une operation de coulee continue des metaux | |
EP3986638B1 (fr) | Procédé pour équilibrer un écoulement d'acier liquide dans une lingotière et système de coulée continue d'acier liquide | |
FR2516823A1 (fr) | Procede de coulee electromagnetique ou a refroidissement direct | |
EP0385904A1 (fr) | Procédé de réglage du refroidissement secondaire d'une machine de coulée continue de produits metalliques | |
FR2595598A1 (fr) | Procede de demarrage automatique de la coulee d'une barre dans des installations de coulee continue | |
EP0391822B1 (fr) | Procédé et dispositif d'obtention de produits métalliques minces par coulée continue | |
FR2607738A3 (fr) | Dispositif pour l'alimentation en metal en fusion des lingotieres de coulee continue | |
EP0393005A2 (fr) | Procédé et dispositif de refroidissement d'un produit métallique coulé en continu | |
EP0528723B1 (fr) | Procédé de coulée en source à remplissage régulé et moule pour la mise en oeuvre de ce procédé | |
FR2835208A3 (fr) | Procede de coulee continue des metaux en lingotiere oscillante | |
FR2653045A3 (fr) | Dispositif de couleee continue de produits metalliques minces sur un cylindre en rotation. | |
EP0030991A1 (fr) | Procédé de commande de processus industriels | |
FR2757430A1 (fr) | Lingotiere a largeur variable pour la coulee continue de produits metalliques | |
FR2843056A1 (fr) | Procede de demarrage automatique d'une installation de coulee continu et ensemble pour la mise en oeuvre de ce procede | |
BE841632A (fr) | Perfectionnements aux procedes et aux dispositifs de coulee, d'un metal liquide hors d'un recipient metallurgique | |
FR2610855A1 (fr) | Procede pour la coulee d'alliages ferreux | |
JPH04270050A (ja) | 連続鋳造プロセスにおける鋳型内湯面レベル制御方法 | |
BE899618A (fr) | Procede de conduite d'une operation de coulee de metal liquide. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950829 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960530 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
REF | Corresponds to: |
Ref document number: 149108 Country of ref document: AT Date of ref document: 19970315 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69401811 Country of ref document: DE Date of ref document: 19970403 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: 72277 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970501 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3022815 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2100705 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19970320 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20060223 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060313 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060314 Year of fee payment: 13 Ref country code: LU Payment date: 20060314 Year of fee payment: 13 Ref country code: DE Payment date: 20060314 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20060315 Year of fee payment: 13 Ref country code: CH Payment date: 20060315 Year of fee payment: 13 Ref country code: AT Payment date: 20060315 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060322 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20060323 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060329 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20060330 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060331 Year of fee payment: 13 Ref country code: BE Payment date: 20060331 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070917 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20070917 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070317 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20071001 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
BERE | Be: lapsed |
Owner name: *SOLLAC Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20071130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070319 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060314 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070402 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070402 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070317 |