EP0691440A1 - Building block with insulating hollow spaces - Google Patents

Building block with insulating hollow spaces Download PDF

Info

Publication number
EP0691440A1
EP0691440A1 EP95110517A EP95110517A EP0691440A1 EP 0691440 A1 EP0691440 A1 EP 0691440A1 EP 95110517 A EP95110517 A EP 95110517A EP 95110517 A EP95110517 A EP 95110517A EP 0691440 A1 EP0691440 A1 EP 0691440A1
Authority
EP
European Patent Office
Prior art keywords
heat
cavities
reflecting
building blocks
building block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95110517A
Other languages
German (de)
French (fr)
Other versions
EP0691440B1 (en
Inventor
Eduard Blatter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziegeleien Freiburg and Lausanne AG
Original Assignee
Freiburger Ziegelei Duedingen AG
Ziegeleien Freiburg and Lausanne AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freiburger Ziegelei Duedingen AG, Ziegeleien Freiburg and Lausanne AG filed Critical Freiburger Ziegelei Duedingen AG
Publication of EP0691440A1 publication Critical patent/EP0691440A1/en
Application granted granted Critical
Publication of EP0691440B1 publication Critical patent/EP0691440B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0228Non-undercut connections, e.g. tongue and groove connections with tongues next to each other on one end surface and grooves next to each other on opposite end surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0286Building elements with coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/17Three or more coplanar interfitted sections with securing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the invention relates to a cuboid block with heat-insulating inner cavities that are more than 8 mm wide.
  • a brick of this type can also be a brick. It is used to create heat-insulating walls and is walled up with adhesive, thin-bed, medium-bed or a fiber-containing mortar that does not fall into the cavities.
  • the cavities can run vertically parallel to the wall surface, as with so-called perforated bricks, or horizontally.
  • the mean slot width is the cross-sectional area of a generally elongated cavity divided by its greatest extent transverse to the direction of heat flow.
  • the number of slotted holes is averaged over a large number of cuts through the brick in the direction of heat flow. It corresponds to a more common parameter, namely the number of rows of slots.
  • the cross sections of the cavities generally have elongated shapes such as ellipses, rectangles, trapezoids, cuboids, triangles, etc., transverse to the direction of heat flow.
  • the cavities can also have square, round, pentagonal, hexagonal and polygonal shapes.
  • Another way of producing heat-insulating blocks is to create the block with several larger cavities and, in order to limit the heat loss in the cavities, to subsequently fill them with insulating inserts made from a wide variety of materials, but this is a complex operation.
  • the invention has for its object to provide insulating blocks that are statically loadable to a conventional extent, but have a much better thermal insulation than previously known, and are easier to produce.
  • the heat transport in an insulating module of the type mentioned takes place on the one hand by heat conduction in the base material, i. H. in the walkways, and on the other hand by convection, conduction and radiation in the cavities.
  • Recent findings have shown that the share of heat transport through the air-filled dark cavities in the total heat transport is considerable, particularly in the case of building blocks with thin webs.
  • the heat transport in the cavities by radiation is surprisingly high. This outweighs the share of heat transport by conduction in the air and by convection.
  • the heat transfer by convection is small in slot holes with a height of 25 cm up to a slot width of approx. 3 cm next to the radiation component and also smaller than the heat transport through the heat conduction in the air.
  • the coated inner cavities do not need to be provided with additional insulating inserts because the coating of the cavities sufficiently reduces the heat exchange by radiation between the opposing webs delimiting the cavity.
  • the most favorable thermal conductivity values are realized with cavity widths below 3 cm, because otherwise convection currents can arise in the cavity.
  • the height of the cavity should be limited to a stone height of generally 25 cm and care should be taken that the cavities do not connect to channels during bricking, but are separated from one another by a layer of mortar. This can be achieved in particular in that a building block with large cavities up to three centimeters wide also has small cavities in addition to these, which are closed during bricking by the mortar used and cover the large cavities.
  • such building blocks are bricked up in the immersion process, that is, they are dipped only a few millimeters into the mortar and mixed with the mortar adhering to the stone.
  • the thermal conductivity for internally coated slot holes with a width of approx. 2 cm is less than 0.05 W / mK instead of over 0.11 W / mK for uncoated cavities.
  • the abutting sides of the insulating modules are also coated with heat reflecting properties. This applies in particular to building blocks that have recesses on the joint sides, which, when attached to a next stone in the same position, combine with the recesses to form closed cavities. These cavities are then also coated on their inner surfaces.
  • the heat reflective layer may contain aluminum or a similar heat reflective component.
  • Various oxides such as zirconium oxide, titanium oxide, magnesium oxide etc. are also suitable.
  • the heat-reflecting component can be in the Clay, embedded in a glaze, a varnish or any top layer or bonded with an adhesive layer.
  • a preferred method for applying the heat-reflecting layer is that it is evaporated or sprayed onto the traditionally produced insulating module.
  • a glaze is applied as a base for the heat-reflecting layer before the latter is applied. This forms a hard, smooth surface on which z.
  • aluminum can be evaporated or sprayed on.
  • special ceramic or inorganic masses can be sprayed on, which are then baked on.
  • the cavities can also be coated by spraying on a synthetic resin lacquer with reflective components, since the coating is not exposed to high temperatures.
  • Another method of coating the surfaces of insulating modules, in particular bricks, is to add water-soluble products with a low emission coefficient to the mass to be molded or the clay. During the drying and firing process, these migrate to the surfaces of the blank and coat it evenly. If this coating is undesirable on the wall-parallel outer surfaces, it can be brushed off or sanded down.
  • Another possibility of coating is that a glaze containing the heat reflecting component is co-extruded with the molding. The glaze is pressed onto the cores of the mouthpiece with great pressure.
  • the effectiveness of a heat-reflecting coating can be stated numerically by the so-called emission coefficient ⁇ . It is 0.93 for fired clay or cement-bound lightweight building materials without coating, but only 0.05 for aluminum-coated surfaces. Paints with aluminum bronze have an emission coefficient ⁇ of around 0.20 and are therefore perfectly suitable for coating the cavities.
  • a neighboring tile is indicated by dash-dotted lines.
  • the cavities are coated with heat reflecting on their wall surfaces. A corresponding coating is of course possible for any shape of the cavities.
  • these bricks are designed in such a way that the adjacent ends of the bricks complement the respective hole pattern. Accordingly, not only are the inner surfaces of the cross-sectionally differently shaped holes 2 running perpendicular to the bearing surface of the brick heat reflectively coated, but also the abutting surfaces 1 in order to also capture the inner surfaces of the trapezoidal, rectangular or wedge-shaped grooves, in which after the bricks have been assembled heat transfer by radiation also takes place.
  • the wall thickness of the brick was chosen to be 6 mm.
  • the wall thickness of the inner webs is 3 mm.
  • the honeycomb pattern is refined again.
  • the brick floor plan measures 30 x 27 cm.
  • Another special feature of this brick are two embedded handle holes 4 and a half-cavity 5 on the butt sides. These half-cavities complement each other when a further brick is added to form a whole cavity.
  • all cavities and the butt sides can be coated in a heat-reflecting manner. A very favorable influence can also be expected if only the grip holes 4 and the half-cavities 5 are coated accordingly.
  • this brick On a butt side, this brick has four vertical springs 6, each containing a hexagonal cavity, which engage in corresponding grooves 7 of the neighboring brick.
  • the emission ratio ⁇ which was changed between 0.05 and 0.9 with three intermediate stages in this calculation, is shown in FIG. 5 for the individual curves. It can be seen that with increasing quality of the heat-reflecting coating, ie with a smaller emission ratio ⁇ , the thermal resistance R not only becomes fundamentally greater, but the curve shape changes in such a way that a maximum becomes visible at all. This is particularly clear in FIG. 7 (web thickness 6 mm).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

The brick or tile with inner hollow zones > 8 mm wide, has a heat reflective coating on the inner surfaces of the hollow zones (2). <IMAGE>

Description

Die Erfindung betrifft einen quaderförmigen Baustein mit wärmeisolierend wirkenden inneren Hohlräumen, die mehr als 8 mm breit sind. Ein Baustein dieser Art kann auch ein Ziegel sein. Er dient zur Erstellung von wärmeisolierenden Wänden und wird mit Klebe-, Dünnbett-, Mittelbett- oder einem faserhaltigen Mörtel, der nicht in die Hohlräume fällt, vermauert. Die Hohlräume können parallel zur Wandfläche vertikal verlaufen, wie bei sogenannten Hochlochziegeln, oder auch horizontal.The invention relates to a cuboid block with heat-insulating inner cavities that are more than 8 mm wide. A brick of this type can also be a brick. It is used to create heat-insulating walls and is walled up with adhesive, thin-bed, medium-bed or a fiber-containing mortar that does not fall into the cavities. The cavities can run vertically parallel to the wall surface, as with so-called perforated bricks, or horizontally.

Bei herkömmlichen Isolierbausteinen, wie beispielsweise Lochziegeln, Gasbetonsteinen und Bausteinen aus zementgebundenen Leichtbaustoffen, wird versucht, das Wärmeisoliervermögen durch Verwendung eines möglichst leichten Baustoffes zu optimieren. Deshalb verwendet man stark porosierten Ton bei Ziegeln, aufgeschäumten Beton, Bims, Perlit oder dergleichen. Diese Technik findet aber ihre Grenzen in der beschränkten Druckfestigkeit der Leichtbaustoffe.In the case of conventional insulating building blocks, such as perforated bricks, gas concrete blocks and building blocks made of cement-bound lightweight building materials, attempts are made to optimize the thermal insulation capacity by using the lightest possible building material. That is why heavily porous clay is used for bricks, foamed concrete, pumice, pearlite or the like. However, this technology has its limits in the limited compressive strength of the lightweight materials.

Weiter ist es Stand der Technik, das Wärmeisoliervermögen durch geschickte Anordnung von Luftschlitzen zu verbessern, die quer zur Wärmestromrichtung von einer Bausteinseite zur anderen ganz oder zumindest größtenteils durchgehen. Insbesondere verbessern in Steinlängsrichtung ausgerichtete und quer zur Wärmestromrichtung gegeneinander versetzte schlitzförmige Hohlräume das Wärmeisoliervermögen. Die länglichen, bei Ziegeln im Strangpreßverfahren hergestellten und deshalb durchgehenden Hohlräume schwächen aber den Zusammenhalt, insbesondere die Querzugfestigkeit der Isolierbausteine. Deshalb kann ein Minimum an Querschnittsfläche von wärmeleitenden Stegen in Wärmestromrichtung nicht unterschritten werden.Furthermore, it is state of the art to improve the heat insulation capacity by cleverly arranging air slots which pass completely or at least for the most part transversely to the heat flow direction from one component side to the other. In particular, slot-shaped cavities aligned in the longitudinal direction of the stone and offset with respect to one another transversely to the direction of heat flow improve the thermal insulation capacity. However, the elongated cavities that are produced in the extrusion process of bricks and therefore continuous weaken the cohesion, in particular the transverse tensile strength of the insulating blocks. Therefore, a minimum cross-sectional area of heat-conducting webs in the heat flow direction cannot be undershot.

Es ist bekannt, daß sich bei vorgegebener Dicke der quer zur Wärmestromrichtung verlaufenden Längsstege die optimale mittlere Schlitzlochbreite respektive die durchschnittliche Anzahl der in Wärmestromrichtung aufeinanderfolgenden Schlitzlöcher rechnerisch ermitteln läßt (schweizerische Patentschriften 476 181, 482 882 und 516 057). Unter der mittleren Schlitzlochbreite versteht man die Querschnittsfläche eines in der Regel länglichen Hohlraumes dividiert durch seine größte Ausdehnung quer zur Wärmestromrichtung. Die Anzahl der Schlitzlöcher wird gemittelt über eine Vielzahl von in Wärmestromrichtung geführten Schnitten durch den Ziegel. Sie entspricht einer gebräuchlicheren Kenngröße, nämlich der Anzahl der Schlitzreihen. Die Hohlraumquerschnitte weisen in der Regel quer zur Wärmestromrichtung längliche Formen wie Ellipsen, Rechtecke, Trapeze, Quader, Dreiecke usw. auf. Die Hohlräume können aber auch quadratische, runde, fünf-, sechs- und mehreckige Formen haben.It is known that for a given thickness of the longitudinal webs running transversely to the direction of heat flow, the optimal average slot width or the average number of successive slot holes in the direction of heat flow can be calculated (Swiss Patents 476 181, 482 882 and 516 057). The mean slot width is the cross-sectional area of a generally elongated cavity divided by its greatest extent transverse to the direction of heat flow. The number of slotted holes is averaged over a large number of cuts through the brick in the direction of heat flow. It corresponds to a more common parameter, namely the number of rows of slots. The cross sections of the cavities generally have elongated shapes such as ellipses, rectangles, trapezoids, cuboids, triangles, etc., transverse to the direction of heat flow. The cavities can also have square, round, pentagonal, hexagonal and polygonal shapes.

Bei Bausteinen aus gebranntem Ton sind Stegdicken von 6 mm und mehr üblich. Wird die Stegdicke reduziert, beispielsweise auf 4 respektive 2 mm, so steigt in Anlehnung an oben genannte Patentschriften die optimale Zahl der Schlitzlöcher sehr stark an, so daß Ziegel mit der theoretisch ermittelten optimalen Schlitzreihenzahl nicht mehr produziert werden können, da bei der Extrudierung der Tonmassen viel zu hohe Drücke entstehen. Beispielsweise müßte für einen 30 cm dicken Ziegel bei der Stegdicke 2 mm nach Leitner (s. o. g. CH-PS 516 057) oder Amrein (s. o. g. CH-PS 476 181) die Schlitzlochbreite 3,5 mm betragen. Damit wären über 50 Schlitzlochreihen notwendig, um das theoretisch ermittelte Maximum annähernd zu erreichen. Heute produzierte 30 cm dicke Ziegel weisen in der Regel 17 Schlitzlochreihen auf, maximal 21 Lochreihen. 30 Lochreihen dürften zur Zeit einen Grenzfall der Produzierbarkeit darstellen.For blocks made of fired clay, web thicknesses of 6 mm and more are common. If the web thickness is reduced, for example to 4 or 2 mm, then increases based on the top mentioned patents very strongly on the optimal number of slotted holes, so that bricks with the theoretically determined optimal number of slotted rows can no longer be produced, since the extrusion of the clay masses results in excessively high pressures. For example, for a 30 cm thick brick with a web thickness of 2 mm according to Leitner (so-called CH-PS 516 057) or Amrein (so-called CH-PS 476 181), the slit hole width should be 3.5 mm. This would require more than 50 rows of slotted holes in order to approximately reach the theoretically determined maximum. Today 30 cm thick bricks usually have 17 rows of slots, a maximum of 21 rows. 30 rows of holes may currently represent a borderline case of producibility.

Eine weitere Möglichkeit, wärmeisolierende Bausteine herzustellen, besteht darin, den Baustein mit mehreren größeren Hohlräumen zu erstellen und, um den Wärmeverlust in den Hohlräumen zu begrenzen, diese nachträglich mit Isoliereinschüben aus den verschiedensten Materialien zu füllen, was aber einen aufwendigen Arbeitsgang darstellt.Another way of producing heat-insulating blocks is to create the block with several larger cavities and, in order to limit the heat loss in the cavities, to subsequently fill them with insulating inserts made from a wide variety of materials, but this is a complex operation.

Herkömmliche Isolierbausteine, die mit diesen Methoden optimiert wurden, erreichen Wärmeleitzahlen von 0,12 W/mK oder schlechter, bei Ziegeln bestenfalls 0,15 W/mK.Conventional insulation modules, which have been optimized with these methods, achieve thermal conductivity values of 0.12 W / mK or less, at best 0.15 W / mK for bricks.

Der Erfindung liegt die Aufgabe zugrunde, Isolierbausteine zu schaffen, die in herkömmlichem Ausmaß statisch belastbar sind, aber ein wesentlich besseres Wärmeisoliervermögen haben als bisher bekannt, und einfacher zu produzieren sind.The invention has for its object to provide insulating blocks that are statically loadable to a conventional extent, but have a much better thermal insulation than previously known, and are easier to produce.

Ausgehend von einem Baustein der einleitend bezeichneten Art wird diese Aufgabe durch das kennzeichnende Merkmal des Anspruchs 1 und durch die beanspruchten Verfahrensmerkmale gelöst.Starting from a module of the type described in the introduction, this object is achieved by the characterizing feature of claim 1 and by the claimed method features.

Der Wärmetransport in einem Isolierbaustein der genannten Art erfolgt einerseits durch Wärmeleitung im Grundmaterial, d. h. in den Stegen, und andererseits durch Konvektion, Leitung und Strahlung in den Hohlräumen. Neuere Erkenntnisse haben ergeben, daß insbesondere bei Bausteinen mit dünnen Stegen der Anteil des Wärmetransports durch die luftgefüllten dunklen Hohlräume am gesamten Wärmetransport erheblich ist. Überraschend hoch ist darüberhinaus der Wärmetransport in den Hohlräumen durch Strahlung. Diese überwiegt die Anteile des Wärmetransportes durch Leitung in der Luft und durch Konvektion. Die Wärmeübertragung durch Konvektion ist in Schlitzlöchern der Höhe 25 cm bis zu einer Schlitzbreite von ca. 3 cm neben dem Strahlungsanteil klein und auch kleiner als der Wärmetransport durch die Wärmeleitung in der Luft. Die große theoretische Anzahl Stege eines nach oben genannten Schriften optimierten Bausteines ist im Grunde nur deshalb nötig, weil die Stege wie Schirme immer wieder die Wärmestrahlung unterbrechen. Dasselbe geschieht bei bekannten Bausteinen, deren Hohlräume mit Isoliermaterialien gefüllt sind. Für Hohlräume, die wesentlich breiter sind als 3 cm verhindern die Isoliereinschübe zwar auch die Konvektion, bei allen gefüllten Hohlräumen, insbesondere jenen mit einer Breite um 3 cm und kleiner, bewirken die Isoliereinschübe aber primär eine Unterbrechung der Wärmestrahlung. Die ruhende Luft allein wäre ohne Konvektion und Strahlung ein optimaler Isolator.The heat transport in an insulating module of the type mentioned takes place on the one hand by heat conduction in the base material, i. H. in the walkways, and on the other hand by convection, conduction and radiation in the cavities. Recent findings have shown that the share of heat transport through the air-filled dark cavities in the total heat transport is considerable, particularly in the case of building blocks with thin webs. Furthermore, the heat transport in the cavities by radiation is surprisingly high. This outweighs the share of heat transport by conduction in the air and by convection. The heat transfer by convection is small in slot holes with a height of 25 cm up to a slot width of approx. 3 cm next to the radiation component and also smaller than the heat transport through the heat conduction in the air. The large theoretical number of webs of a block optimized according to the above-mentioned script is basically only necessary because the webs, like screens, repeatedly interrupt the heat radiation. The same happens with known building blocks, the cavities of which are filled with insulating materials. For cavities that are considerably wider than 3 cm, the insulated inserts prevent convection, but for all filled cavities, especially those with a width of 3 cm and smaller, the insulated inserts primarily cause an interruption of the heat radiation. The still air alone would be an optimal insulator without convection and radiation.

Es ist zwar allgemein bekannt, zu Isolierzwecken wärmereflektierende Oberflächen an den vor Wärmestrahlung zu schützenden Objekten vorzusehen, vor allem bei hohen Temperaturen und gegen Sonneneinstrahlung. Gestützt auf die erwähnte Erkenntnis, daß die Wärmestrahlung in den Hohlräumen selbst bei Raumtemperatur einen überraschend hohen Einfluß hat, schlägt die Erfindung vor, diese Möglichkeit zur Reduzierung der Wärmestrahlung durch wärmereflektierende Oberflächen in den Hohlräumen von Isolierbausteinen zu nutzen. Dabei ist zu beachten, daß im Interesse des maximalen Nutzens der Beschichtung die optimale Lochreihenanzahl neu definiert werden muß.It is generally known to provide heat-reflecting surfaces on the objects to be protected from thermal radiation for insulation purposes, especially at high temperatures and against solar radiation. Based on the above-mentioned knowledge that the heat radiation in the cavities has a surprisingly high influence even at room temperature, the invention proposes this possibility of reducing the heat radiation by heat-reflecting surfaces in the cavities of insulating modules use. It should be noted that in the interest of the maximum benefit of the coating the optimal number of rows of holes must be redefined.

Erfreulicherweise wurde gefunden, daß Bausteine mit wärmereflektierend beschichteten inneren Hohlräumen mit breiteren Hohlräumen versehen werden können als wenn die Hohlräume unbeschichtet sind. Es wird daher vorgeschlagen, im Gegensatz zu den Formeln nach den eingangs erwähnten schweizerischen Patentschriften weniger und breitere Schlitzlochreihen vorzusehen. Damit können weitere wärmeleitende Stege eingespart werden und das Wärmeisoliervermögen des Bausteins kann weiter gesteigert werden. Diese breiten inneren Hohlräume bringen nicht nur einen zusätzlichen Isolationsgewinn, sondern verbessern auch die Produzierbarkeit des Bausteins.Fortunately, it was found that building blocks with heat-reflective coated inner cavities can be provided with wider cavities than if the cavities are uncoated. It is therefore proposed, in contrast to the formulas according to the Swiss patents mentioned at the beginning, to provide fewer and wider rows of slotted holes. This means that further heat-conducting webs can be saved and the thermal insulation capacity of the module can be further increased. These wide internal cavities not only bring additional insulation gain, but also improve the producibility of the module.

Die beschichteten inneren Hohlräume brauchen nicht mit zusätzlichen Isoliereinschüben versehen zu werden, denn durch die Beschichtung der Hohlräume wird der Wärmeaustausch durch Strahlung zwischen den einander gegenüberliegenden, den Hohlraum begrenzenden Stegen hinreichend reduziert. Allerdings werden die günstigsten Wärmeleitwerte mit Hohlraumbreiten unter 3 cm realisiert, weil sonst Konvektionsströme im Hohlraum entstehen können. Aus dem gleichen Grund ist die Höhe des Hohlraums auf eine Steinhöhe von in der Regel 25 cm zu begrenzen und darauf zu achten, daß beim Vermauern sich die Hohlräume nicht zu Kanälen verbinden, sondern durch eine Mörtelschicht voneinander getrennt werden. Dies ist insbesondere dadurch zu erreichen, daß ein Baustein mit großen bis zu drei Zentimeter breiten Hohlräumen neben diesen auch kleine Hohlräume aufweist, die beim Vermauern durch den verwendeten Mörtel verschlossen werden und die großen Hohlräume überdecken. Auf jeden Fall ist darauf zu achten, daß nicht zuviel Mörtel in die Hohlräume fällt, diese verschmutzt, teilweise füllt und damit das Isolierverhalten senkt. Insbesondere ist es sinnvoll, Grifflöcher wärmereflektierend zu beschichten und so anzuordnen, daß sie sich beim Vermauern im üblichen Versatz nicht überdecken. Mit Vorteil werden derartige Bausteine im Tauchverfahren vermauert, d. h. nur wenige Millimeter weit in den Mörtel getaucht und mit dem am Stein haftenden Mörtel versetzt.The coated inner cavities do not need to be provided with additional insulating inserts because the coating of the cavities sufficiently reduces the heat exchange by radiation between the opposing webs delimiting the cavity. However, the most favorable thermal conductivity values are realized with cavity widths below 3 cm, because otherwise convection currents can arise in the cavity. For the same reason, the height of the cavity should be limited to a stone height of generally 25 cm and care should be taken that the cavities do not connect to channels during bricking, but are separated from one another by a layer of mortar. This can be achieved in particular in that a building block with large cavities up to three centimeters wide also has small cavities in addition to these, which are closed during bricking by the mortar used and cover the large cavities. In any case, it must be ensured that not too much mortar falls into the cavities, soiling them, partially filling them, and thus the insulation behavior lowers. In particular, it makes sense to coat handle holes in a heat-reflecting manner and to arrange them in such a way that they do not overlap in the usual offset during bricking. Advantageously, such building blocks are bricked up in the immersion process, that is, they are dipped only a few millimeters into the mortar and mixed with the mortar adhering to the stone.

Durch das weitgehende Unterbinden der Wärmestrahlung in den Hohlräumen ist eine Senkung des gesamten Wärmetransports in den Hohlräumen bei üblichen Klimatemperaturen in den Hohlräumen um mehr als die Hälfte möglich. Beispielsweise beträgt die Wärmeleitzahl für innen beschichtete Schlitzlöcher mit ca. 2 cm Breite weniger als 0,05 W/mK statt über 0,11 W/mK für unbeschichtete Hohlräume.By largely suppressing the heat radiation in the cavities, it is possible to reduce the total heat transport in the cavities by more than half at the usual climatic temperatures in the cavities. For example, the thermal conductivity for internally coated slot holes with a width of approx. 2 cm is less than 0.05 W / mK instead of over 0.11 W / mK for uncoated cavities.

Bei Anwendung dieser Technik auf gute Isolierbausteine, die nach traditioneller Methode aus Leichtbaustoffen gefertigt sind und hinsichtlich der Lochbreite und der Lochreihenzahl der wärmereflektierenden Beschichtung Rechnung tragen, gelingt es, Bausteine für statisch belastbare Isolierwände ohne Zusatzdämmung mit Wärmeleitzahlen unter 0,10 W/mK herzustellen.When this technique is used on good insulating blocks, which are made from lightweight materials using the traditional method and which take the heat-reflecting coating into account with regard to the hole width and number of holes, it is possible to produce blocks for statically loadable insulating walls without additional insulation with thermal conductivities below 0.10 W / mK.

In Weiterbildung der Erfindung wird vorgeschlagen, daß außer den Hohlräumen auch die Stoßseiten der Isolierbausteine wärmereflektierend beschichtet sind. Dies gilt vor allem für Bausteine, die an den Stoßseiten Vertiefungen aufweisen, die sich nach dem Ansetzen an einen Folgestein der gleichen Lage mit dessen Vertiefungen zu geschlossenen Hohlräumen kombinieren. Somit sind dann auch diese Hohlräume an ihren Innenflächen beschichtet.In a further development of the invention, it is proposed that, in addition to the cavities, the abutting sides of the insulating modules are also coated with heat reflecting properties. This applies in particular to building blocks that have recesses on the joint sides, which, when attached to a next stone in the same position, combine with the recesses to form closed cavities. These cavities are then also coated on their inner surfaces.

Die wärmereflektierende Schicht kann Aluminium oder eine ähnliche wärmereflektierende Komponente enthalten. In Frage kommen auch verschiedene Oxide wie Zirkoniumoxid, Titanoxid, Magnesiumoxid etc. Die wärmereflektierende Komponente kann im Ton, in einer Glasur, einem Lack oder irgend einer Deckschicht eingebettet oder mit einer Haftschicht verbunden sein.The heat reflective layer may contain aluminum or a similar heat reflective component. Various oxides such as zirconium oxide, titanium oxide, magnesium oxide etc. are also suitable. The heat-reflecting component can be in the Clay, embedded in a glaze, a varnish or any top layer or bonded with an adhesive layer.

Ein bevorzugtes Verfahren zum Aufbringen der wärmereflektierenden Schicht besteht darin, daß diese auf den traditionell produzierten Isolierbaustein aufgedampft oder aufgespritzt wird. Insbesondere bei Ziegeln wird vorgeschlagen, daß, sofern eine glatte Oberfläche notwendig ist, vor dem Aufbringen der wärmereflektierenden Schicht als Unterlage für diese eine Glasur aufgebracht wird. Diese bildet eine harte, glatte Unterlage, auf die dann z. B. Aluminium aufgedampft oder aufgespritzt werden kann. Statt des Aufdampfens können auch spezielle keramische oder anorganische Massen aufgespritzt werden, die nachträglich eingebrannt werden.A preferred method for applying the heat-reflecting layer is that it is evaporated or sprayed onto the traditionally produced insulating module. In the case of bricks in particular, it is proposed that, if a smooth surface is necessary, a glaze is applied as a base for the heat-reflecting layer before the latter is applied. This forms a hard, smooth surface on which z. B. aluminum can be evaporated or sprayed on. Instead of vapor deposition, special ceramic or inorganic masses can be sprayed on, which are then baked on.

Die Beschichtung der Hohlräume kann auch durch Aufspritzen eines Kunstharzlackes mit reflektierenden Komponenten erfolgen, da die Beschichtung keinen hohen Temperaturen ausgesetzt ist.The cavities can also be coated by spraying on a synthetic resin lacquer with reflective components, since the coating is not exposed to high temperatures.

Ein weiteres Verfahren, die Oberflächen von Isolierbausteinen, insbesondere von Ziegeln, zu beschichten, besteht darin, daß der zu formenden Masse bzw. dem Ton wasserlösliche Produkte mit einem niedrigen Emissionskoeffizienten beigemischt werden. Während des Trocknungs- und Brennprozesses wandern diese an die Oberflächen des Rohlings und beschichten diesen gleichmäßig. Falls an den wandparallelen äußeren Oberflächen diese Beschichtung unerwünscht ist, kann diese abgebürstet oder abgeschliffen werden.Another method of coating the surfaces of insulating modules, in particular bricks, is to add water-soluble products with a low emission coefficient to the mass to be molded or the clay. During the drying and firing process, these migrate to the surfaces of the blank and coat it evenly. If this coating is undesirable on the wall-parallel outer surfaces, it can be brushed off or sanded down.

Eine weitere Möglichkeit der Beschichtung besteht darin, daß eine die wärmereflektierende Komponente enthaltende Glasur mit dem Formling koextrudiert wird. Die Glasur wird dabei mit großem Druck über die Kerne des Mundstücks aufgepreßt.Another possibility of coating is that a glaze containing the heat reflecting component is co-extruded with the molding. The glaze is pressed onto the cores of the mouthpiece with great pressure.

Die Wirksamkeit einer wärmereflektierenden Beschichtung läßt sich durch den sogenannten Emissionskoeffizienten ε zahlenmäßig angeben. Er beträgt bei gebranntem Ton oder zementgebundenen Leichtbaustoffen ohne Beschichtung 0,93, bei aluminiumbeschichteten Oberflächen dagegen nur 0,05. Anstriche mit Aluminiumbronze haben einen Emissionskoeffizienten ε von etwa 0,20 und sind somit zur Beschichtung der Hohlräume durchaus geeignet.The effectiveness of a heat-reflecting coating can be stated numerically by the so-called emission coefficient ε. It is 0.93 for fired clay or cement-bound lightweight building materials without coating, but only 0.05 for aluminum-coated surfaces. Paintings with aluminum bronze have an emission coefficient ε of around 0.20 and are therefore perfectly suitable for coating the cavities.

Ausführungsbeispiele von Isolierbausteinen, bei denen die Erfindung verwirklicht ist, werden nachfolgend anhand der Zeichnung beschrieben. Diese stellt auch noch einige rechnerisch gewonnene Kurvenschaubilder dar, welche die Bedeutung der Erfindung unterstreichen. Im einzelnen zeigt

Fig. 1
die Draufsicht eines Bruchstücks eines Hochlochziegels mit wabenförmig angeordneten sechseckigen Hohlräumen (Wabenziegel),
Fig. 2
die entsprechende Draufsicht eines Hochlochziegels mit versetzten rechteckigen Hohlräumen (Schlitzlochziegel),
Fig. 3
die entsprechende Draufsicht eines Hochlochziegels mit elliptischen Hohlräumen,
Fig. 4
die Draufsicht eines ganzen Ziegels mit Grifflöchern im kleineren Maßstab,
Fig. 5
ein Kurvenschaubild, das bei einem Hochlochziegel bestimmter Abmessungen unter bestimmten Voraussetzungen die rechnerische Abhängigkeit des Wärmedurchlaßwiderstandes R von der Anzahl n der Lochreihen darstellt, und
Fig. 6 und 7
entsprechende Kurvenschaubilder, bei denen andere Parameter gelten.
Exemplary embodiments of insulating modules in which the invention is implemented are described below with reference to the drawing. This also shows some arithmetically obtained graphs that underline the importance of the invention. In detail shows
Fig. 1
the top view of a fragment of a perforated brick with honeycomb-shaped hexagonal cavities (honeycomb brick),
Fig. 2
the corresponding top view of a perforated brick with offset rectangular cavities (slotted perforated brick),
Fig. 3
the corresponding top view of a perforated brick with elliptical cavities,
Fig. 4
the top view of an entire brick with handle holes on a smaller scale,
Fig. 5
a graph showing the mathematical dependence of the thermal resistance R on the number n of rows of holes in a perforated brick of certain dimensions under certain conditions, and
6 and 7
Corresponding graphs where other parameters apply.

Bei den Figuren 1 bis 3 ist ein Nachbarziegel jeweils strichpunktiert angedeutet. Die Hohlräume sind an ihren Wandflächen wärmereflektierend beschichtet. Selbstverständlich ist eine entsprechende Beschichtung bei jeder Form der Hohlräume möglich.In the figures 1 to 3, a neighboring tile is indicated by dash-dotted lines. The cavities are coated with heat reflecting on their wall surfaces. A corresponding coating is of course possible for any shape of the cavities.

An den Stoßflächen 1 sind diese Ziegel so gestaltet, daß die angrenzenden Ziegelenden das jeweilige Lochmuster ergänzen. Demgemäß sind nicht nur die Innenflächen der querschnittlich unterschiedlich geformten, zur Lagerfläche des Ziegels senkrecht verlaufenden Löcher 2 wärmereflektierend beschichtet, sondern auch die Stoßflächen 1, um auch die Innenflächen der trapezförmigen, rechteckigen bzw. keilförmigen Nuten zu erfassen, in denen nach dem Zusammenfügen der Ziegel ebenfalls Wärmetransport durch Strahlung stattfindet. An den Sichtseiten 3 sind die Wandstärken des Ziegels 6 mm stark gewählt worden. Die Wandstärke der inneren Stege beträgt 3 mm.At the abutting surfaces 1, these bricks are designed in such a way that the adjacent ends of the bricks complement the respective hole pattern. Accordingly, not only are the inner surfaces of the cross-sectionally differently shaped holes 2 running perpendicular to the bearing surface of the brick heat reflectively coated, but also the abutting surfaces 1 in order to also capture the inner surfaces of the trapezoidal, rectangular or wedge-shaped grooves, in which after the bricks have been assembled heat transfer by radiation also takes place. On the visible sides 3, the wall thickness of the brick was chosen to be 6 mm. The wall thickness of the inner webs is 3 mm.

Der Wabenziegel nach Fig. 1 hat 15 Lochreihen verwirklicht. Ein mit solchen Ziegeln erstelltes Mauerwerk erreicht bei einer Wandstärke von 30 cm unverputzt, unter Berücksichtigung der genormten Wärmeübergangszahlen und bei einer Wärmeleitzahl des Scherbenmaterials von 0,30 W/mK bei nicht reflektierenden inneren Oberflächen einen k-Wert von 0,38 W/m²K. Dabei beträgt der Emissionskoeffizient der Tonoberfläche 0,93. Sind die Oberflächen reflektierend mit einem Emissionskoeffizienten ε = 0,1 ausgebildet, so wird statt 0,38 W/m²K ein k-Wert von 0,25 W/m²K erreicht.1 has 15 rows of holes. Masonry created with such bricks achieves a wall thickness of 30 cm unplastered, taking into account the standardized heat transfer coefficients and with a thermal conductivity of the cullet material of 0.30 W / mK for non-reflecting inner surfaces a k-value of 0.38 W / m²K. The emission coefficient is Clay surface 0.93. If the surfaces are reflective with an emission coefficient ε = 0.1, a k-value of 0.25 W / m²K is achieved instead of 0.38 W / m²K.

Bei dem in Fig. 4 dargestellten Ziegel ist das Wabenmuster noch einmal verfeinert. Der Ziegelgrundriß mißt in Natura 30 x 27 cm. Es sind 21 Lochreihen in Wärmestromrichtung verwirklicht. Eine weitere Besonderheit bei diesem Ziegel sind zwei eingelagerte Grifflöcher 4 und an den Stoßseiten je ein Halbhohlraum 5. Diese Halbhohlräume ergänzen sich beim Anfügen eines weiteren Ziegels zu einem ganzen Hohlraum. Selbstverständlich können hier wie in den vorhergehenden Beispielen alle Hohlräume und die Stoßseiten wärmereflektierend beschichtet sein. Ein sehr günstiger Einfluß ist aber auch schon zu erwarten, wenn nur die Grifflöcher 4 und die Halbhohlräume 5 entsprechend beschichtet sind. An einer Stoßseite hat dieser Ziegel vier je einen 6-eckigen Hohlraum enthaltende vertikale Federn 6, die in entsprechende Nuten 7 des Nachbarziegels eingreifen.In the brick shown in Fig. 4, the honeycomb pattern is refined again. The brick floor plan measures 30 x 27 cm. There are 21 rows of holes in the heat flow direction. Another special feature of this brick are two embedded handle holes 4 and a half-cavity 5 on the butt sides. These half-cavities complement each other when a further brick is added to form a whole cavity. Of course, as in the previous examples, all cavities and the butt sides can be coated in a heat-reflecting manner. A very favorable influence can also be expected if only the grip holes 4 and the half-cavities 5 are coated accordingly. On a butt side, this brick has four vertical springs 6, each containing a hexagonal cavity, which engage in corresponding grooves 7 of the neighboring brick.

In den Figuren 5, 6 und 7 ist der Einfluß einer wärmereflektierenden Beschichtung der Hohlräume auf den Wärmedurchlaßwiderstand R und auf die theoretisch optimale Anzahl n der Schlitzreihen eines 30 cm breiten und 25 cm hohen Bausteines bei unterschiedlichen Stegbreiten graphisch dargestellt. Diese Darstellungen gelten unter folgenden Voraussetzungen: Die Wärmeleitzahl des Scherbens beträgt 0,30 W/mK, die beiden äußeren Randstege an den Sichtflächen sind doppelt so dick wie die inneren Stege. Wärmeleitende Querstege aus Ton werden vernachlässigt, ebenso die Wärmeübertragung durch Konvektionsströme, wodurch die Gültigkeit der Schaubilder auf Lochbreiten von maximal 3 cm beschränkt bleibt. Generell nimmt der Wärmedurchgangswiderstand R des Ziegels mit zunehmender Güte der Beschichtung zu und die optimale Anzahl n der Schlitzlochreihen nimmt ab, wobei die Schlitzlöcher breiter werden. Das Emmisionsverhältnis ε, das bei dieser Berechnung zwischen 0,05 und 0,9 mit drei Zwischenstufen verändert wurde, ist in Fig. 5 bei den einzelnen Kurven angegeben. Man sieht, daß bei zunehmender Qualität der wärmereflektierenden Beschichtung, d. h. bei kleinerem Emissionsverhältnis ε, der Wärmedurchgangswiderstand R nicht nur grundsätzlich größer wird, sondern die Kurvenform sich so ändert, daß überhaupt ein Maximum sichtbar wird. Bei Fig. 7 (Stegdicke 6 mm) ist dies besonders deutlich.5, 6 and 7, the influence of a heat-reflecting coating of the cavities on the thermal resistance R and on the theoretically optimal number n of rows of slots of a 30 cm wide and 25 cm high building block with different web widths is shown graphically. These representations apply under the following conditions: The thermal conductivity of the body is 0.30 W / mK, the two outer edge webs on the visible surfaces are twice as thick as the inner webs. Thermally conductive crossbars made of clay are neglected, as is heat transfer by convection currents, which means that the validity of the diagrams is limited to a maximum hole width of 3 cm. In general, the thermal resistance R of the brick increases with increasing quality of the coating and the optimal number n of rows of slots decreases, the slots being wider will. The emission ratio ε, which was changed between 0.05 and 0.9 with three intermediate stages in this calculation, is shown in FIG. 5 for the individual curves. It can be seen that with increasing quality of the heat-reflecting coating, ie with a smaller emission ratio ε, the thermal resistance R not only becomes fundamentally greater, but the curve shape changes in such a way that a maximum becomes visible at all. This is particularly clear in FIG. 7 (web thickness 6 mm).

Es ist ersichtlich, daß bei Bausteinen mit beschichteten Hohlräumen bei mehr als 25 Schlitzlochreihen der Wärmedurchlaßwiderstand R bei Stegdicken von 4 mm und 6 mm sehr stark und selbst bei 2 mm noch abnimmt. Es ist deshalb nicht sinnvoll, die Hohlräume von Bausteinen mit Schlitzlochbreiten unter 8 mm wärmereflektierend zu beschichten.It can be seen that in the case of modules with coated cavities, if there are more than 25 rows of slots, the thermal resistance R at web thicknesses of 4 mm and 6 mm decreases very strongly and even at 2 mm. It is therefore not sensible to coat the cavities of building blocks with slot widths below 8 mm in a heat-reflecting manner.

Claims (10)

Baustein mit wärmeisolierend wirkenden leeren inneren Hohlräumen, die mehr als 8 mm breit sind, dadurch gekennzeichnet, daß die Innenflächen der Hohlräume (2) wärmereflektierend beschichtet sind.Building block with heat-insulating empty inner cavities that are more than 8 mm wide, characterized in that the inner surfaces of the cavities (2) are coated with heat reflecting. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß auch die Stoßflächen (1) wärmereflektierend beschichtet sind.Building block according to claim 1, characterized in that the abutting surfaces (1) are also coated in a heat-reflecting manner. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß größere Hohlräume wie Grifflöcher (4) wärmereflektierend beschichtet und so angeordnet sind, daß die Hohlräume beim Vermauern der Bausteine nicht direkt übereinander zu liegen kommen.Building block according to claim 1, characterized in that larger cavities such as grip holes (4) are coated with heat reflection and are arranged in such a way that the cavities do not lie directly one above the other when the building blocks are bricked up. Baustein nach Anspruch 1, dadurch gekennzeichnet, daß die wärmereflektierende Schicht Aluminium oder eine ähnliche wärmereflektierende Komponente wie andere Metalle oder Oxide enthält.Building block according to claim 1, characterized in that the heat-reflecting layer contains aluminum or a similar heat-reflecting component as other metals or oxides. Mauerwerk, erstellt mit Bausteinen nach einem der Ansprüche 1 bis 4, die mit Klebe-, Dünnbett-, Mittelbett- oder faserigen Mörtel vermauert sind, so daß die Hohlräume sich nicht mit Mörtel füllen oder verschmutzen.Masonry, created with building blocks according to one of claims 1 to 4, which are walled with adhesive, thin-bed, medium-bed or fibrous mortar, so that the cavities do not fill with mortar or become dirty. Verfahren zur Herstellung von Bausteinen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die wärmereflektierende Schicht aufgedampft oder aufgespritzt oder als dünne Folie aufgeklebt wird.Process for the production of building blocks according to one of the preceding claims, characterized in that the heat-reflecting layer is vapor-deposited or sprayed on or glued on as a thin film. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die wärmereflektierende Schicht eingebrannt wird.A method according to claim 6, characterized in that the heat reflecting layer is baked. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die wärmereflektierende Schicht auf Ziegel vor dem Brennen durch Aufspritzen, Koextrudieren oder Streichen aufgebracht wird.A method according to claim 7, characterized in that the heat-reflecting layer is applied to bricks before firing by spraying, co-extrusion or brushing. Verfahren zur Herstellung von Bausteinen, insbesondere Ziegeln, nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor dem Aufbringen der wärmereflektierenden Schicht als Unterlage für diese eine Glasur aufgebracht wird.Process for the production of building blocks, in particular bricks, according to one of the preceding claims, characterized in that a glaze is applied as a base for the heat-reflecting layer before the latter is applied. Verfahren zur Herstellung von Bausteinen, insbesondere Ziegeln, nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem Rohmaterial Ton eine wasserlösliche wärmereflektierende Komponente beigemischt wird, welche während des Trocknungs- und Brennprozesses an die Oberfläche auch der Hohlräume wandert und diese beschichtet.Process for the production of building blocks, in particular bricks, according to one of the preceding claims, characterized in that a water-soluble, heat-reflecting component is added to the raw material clay, which migrates to the surface of the cavities during the drying and firing process and coats them.
EP95110517A 1994-07-08 1995-07-06 Building block with insulating hollow spaces Expired - Lifetime EP0691440B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4423716 1994-07-08
DE4423716A DE4423716A1 (en) 1994-07-08 1994-07-08 Building block with heat-insulating inner cavities

Publications (2)

Publication Number Publication Date
EP0691440A1 true EP0691440A1 (en) 1996-01-10
EP0691440B1 EP0691440B1 (en) 1998-10-28

Family

ID=6522407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95110517A Expired - Lifetime EP0691440B1 (en) 1994-07-08 1995-07-06 Building block with insulating hollow spaces

Country Status (4)

Country Link
US (1) US5904963A (en)
EP (1) EP0691440B1 (en)
CA (1) CA2153471A1 (en)
DE (2) DE4423716A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749335A3 (en) * 1996-05-31 1997-12-05 Sturm Small masonry fitting parts used for construction
EP1911900A2 (en) * 2006-10-11 2008-04-16 Ziegelwerk Bellenberg Wiest GmbH &amp; Co. KG Method for relative movement of a throughflow medium and ventilating brick
FR2928946A1 (en) * 2008-03-21 2009-09-25 Cogestone France Sarl Parallelepiped insulating block i.e. bond stone, for constructing e.g. house external wall, has cores arranged in staggered rows and aligned in row between two tangents, where tangents of two contiguous rows pass through cores of other row

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203879B1 (en) * 1997-10-24 2001-03-20 Mannington Carpets, Inc. Repeating series of carpet tiles, and method for cutting and laying thereof
GR1003284B (en) * 1998-06-22 1999-12-10 6� 9 6� 0fs@� 0 5#tfs Energy-saving heat-insulation method by heat radiation and convection
DE10126793B4 (en) * 2000-10-17 2016-05-12 JUWÖ-ENGINEERING GmbH Method for equipping a perforated brick with insertion elements
EP1199417A3 (en) 2000-10-17 2003-07-16 Juwö-Engineering GmbH Building block and method for equipping a perforated brick with inserts
US20030066262A1 (en) * 2001-02-21 2003-04-10 Putnam Craig D. Hemp building material
ES2265234B2 (en) * 2004-07-29 2008-04-01 Universidad Politecnica De Madrid CERAMIC BRICK WITH HEXAGONAL HOLLOW.
CH696964A5 (en) 2006-05-23 2008-02-29 Veritec Ag Anlagen Und Geraete Method and apparatus for producing a formed building material
US8091307B2 (en) * 2009-08-18 2012-01-10 King Abdulaziz University Convection baffle for hollow blocks
US20110047924A1 (en) * 2009-09-01 2011-03-03 Antar Mohamed A Hollow brick providing thermal insulation
US8978342B2 (en) 2012-06-15 2015-03-17 Auburn University Residential radiant barrier assemblies
ES2495540B2 (en) * 2014-06-06 2015-05-11 Universidad Politécnica de Madrid Improvements related to a ceramic brick with hexagonal holes
US10563397B2 (en) 2015-10-01 2020-02-18 Universiteit Gent Structural block with increased insulation properties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR946387A (en) * 1947-04-30 1949-06-01 Essor Economique Improvements in means for thermal insulation of premises, in particular prefabricated premises
CH476181A (en) 1968-05-14 1969-07-31 Verband Schweizerischer Ziegel Building element, in particular brick
CH482882A (en) 1968-05-14 1969-12-15 Verband Schweizerischer Ziegel Building element, in particular brick
CH516057A (en) 1968-04-12 1971-11-30 Anton Dr Leitner Extruded hollow brick
FR2192226A1 (en) * 1972-07-11 1974-02-08 Debrock Marcel Hollow building blocks with insulated cavities - lined with IR reflecting lining and foam filled
EP0599283A2 (en) * 1992-11-25 1994-06-01 Raimund Rimmele Vertically perforated lightweight brick

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH86156A (en) * 1915-04-12 1920-09-01 Welte Henry Process for the production of glazed artificial stones.
DE325293C (en) * 1915-06-27 1920-09-09 Henry Welte Process for the production of metallic coatings on natural and artificial stones
GB1291567A (en) * 1968-12-16 1972-10-04 Thomas Gordon Mcnish Improvements in or relating to fibrous insulating materials
DE2124350A1 (en) * 1971-05-17 1973-01-04 Ernst W Schmidt HEAT RADIATION PROTECTION FOR FIXED ROOF COVERS
DE8427060U1 (en) * 1984-09-13 1989-10-05 KLB Klimaleichtblock Vertriebs-Gesellschaft mbH, 5450 Neuwied Wall element
DE3621114A1 (en) * 1986-06-24 1988-02-04 Rennebeck Klaus Treatment and coating of dimensionally stable, temperature-resistant, heat-resistant carrier materials
US4956217A (en) * 1988-08-28 1990-09-11 Ciba-Geigy Corportion Silicate treated honeycomb structures
DD289038A5 (en) * 1989-11-13 1991-04-18 Brennstoffinstitut,De THERMAL RADIATION ACTIVE COATING FOR CERAMIC, MINERAL, GLASS OR MIXED FIBER AND LIGHTWEIGHT FURNITURE CLOTHES OF HEATING EQUIPMENT
DD289039A5 (en) * 1989-11-13 1991-04-18 Brennstoffinstitut Freiberg,De HIGHLY TEMPERATURE-RESISTANT COATING FOR TEMPERATURE-ACTIVE COATINGS WITH VITROCERAMIC MATRIX AND METHOD FOR THE PRODUCTION THEREOF
DE4225970C1 (en) * 1991-10-24 1994-04-07 Degussa Honeycomb body powder coating - uses recirculating carrier gas with powder vol. through the honeycomb channels
DE4135055C1 (en) * 1991-10-24 1993-05-06 Degussa Ag, 6000 Frankfurt, De Efficient, reliable and uniform charging of cylindrical honeycomb member - includes passing carrier gas through honeycomb member in closed circuit, etc.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR946387A (en) * 1947-04-30 1949-06-01 Essor Economique Improvements in means for thermal insulation of premises, in particular prefabricated premises
CH516057A (en) 1968-04-12 1971-11-30 Anton Dr Leitner Extruded hollow brick
CH476181A (en) 1968-05-14 1969-07-31 Verband Schweizerischer Ziegel Building element, in particular brick
CH482882A (en) 1968-05-14 1969-12-15 Verband Schweizerischer Ziegel Building element, in particular brick
FR2192226A1 (en) * 1972-07-11 1974-02-08 Debrock Marcel Hollow building blocks with insulated cavities - lined with IR reflecting lining and foam filled
EP0599283A2 (en) * 1992-11-25 1994-06-01 Raimund Rimmele Vertically perforated lightweight brick

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 9131, Derwent World Patents Index; Class Q43, AN 91-228449 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2749335A3 (en) * 1996-05-31 1997-12-05 Sturm Small masonry fitting parts used for construction
EP1911900A2 (en) * 2006-10-11 2008-04-16 Ziegelwerk Bellenberg Wiest GmbH &amp; Co. KG Method for relative movement of a throughflow medium and ventilating brick
EP1911900A3 (en) * 2006-10-11 2011-03-09 Ziegelwerk Bellenberg Wiest GmbH & Co. KG Method for relative movement of a throughflow medium and ventilating brick
FR2928946A1 (en) * 2008-03-21 2009-09-25 Cogestone France Sarl Parallelepiped insulating block i.e. bond stone, for constructing e.g. house external wall, has cores arranged in staggered rows and aligned in row between two tangents, where tangents of two contiguous rows pass through cores of other row

Also Published As

Publication number Publication date
EP0691440B1 (en) 1998-10-28
DE59504044D1 (en) 1998-12-03
US5904963A (en) 1999-05-18
DE4423716A1 (en) 1996-01-18
CA2153471A1 (en) 1996-01-09

Similar Documents

Publication Publication Date Title
EP0691440B1 (en) Building block with insulating hollow spaces
EP2028329B1 (en) Heat insulation bricks
EP0908578A2 (en) Façade panel for a curtain wall construction
EP1097807B1 (en) Fire protecting bound mineral wool product and fire protection element comprising said product
DE2916799B1 (en) Component for heating or cooling the indoor air
DE102005008200A1 (en) Construction unit for external facade unit, has foam glass plates of single piece and formed by continuous manufacturing process, and glass connecting plate and decoration layers linked with plates in material, force and form-fit manner
EP0599283A2 (en) Vertically perforated lightweight brick
EP1231329A1 (en) Building block shaped insulation element
DE202011003283U1 (en) Ceramic insulator
DE102004043494B4 (en) Attachment shell as a heat-insulating outer shell for multi-layer masonry
DE4021081A1 (en) Hollow flat building component - comprises rigid plates held apart by distance pieces
DE3530138A1 (en) Sandwich-type building block for exterior masonry structures
DE817950C (en) Large-format perforated brick for the production of walls that are thick as a stone
DE2939832C2 (en) Wall block
DE3006393A1 (en) Porous cleaning esp. building front slab prodn. - by firing porous ceramic coated with thin non-porous ceramic layer and top glaze layer
CH688449A5 (en) Cavity wall construction and porous, perforated bricks for heat insulation and weather resistance with intervening thermally insulating slabs or mats and air gap produced by internal projections of outer leaf, with external hydrophobic light renderin
DE10005947C2 (en) masonry
DE3013520A1 (en) Ventilated aerated concrete building block - has one or two vertical outside ducts meeting horizontal inside duct
DE4133711C1 (en) Wall for lining glass melting furnace - has ceramic bricks facing furnace interior and outer bricks supporting structure
DE3120380A1 (en) Ceramic tile
CH431882A (en) Process for the production of masonry and masonry stone for carrying out the process
DE3408311A1 (en) Hollow block and process for the production thereof
EP0210456A2 (en) Hollow wall masonry
DE19735700A1 (en) Ceiling tile, produced with or without porosity medium
DE8311678U1 (en) HIGH-PERFORMANCE GRID FOR COOKING OVEN REGENERATORS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950706

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950706

17P Request for examination filed

Effective date: 19960625

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZIEGELEIEN FREIBURG & LAUSANNE AG DUEDINGEN

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980325

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB IE IT LI NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 950706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981028

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19981028

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981028

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981029

REF Corresponds to:

Ref document number: 59504044

Country of ref document: DE

Date of ref document: 19981203

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990128

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990820

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed
BERE Be: lapsed

Owner name: ZIEGELEIEN FREIBURG & LAUSANNE A.G. DUDINGEN

Effective date: 19990731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010702

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020706

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DTS ZUERICH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: DTS ZUERICH;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100805

Year of fee payment: 16

Ref country code: DE

Payment date: 20100730

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110729

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59504044

Country of ref document: DE

Effective date: 20120201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731