EP0688421B1 - Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung - Google Patents

Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung Download PDF

Info

Publication number
EP0688421B1
EP0688421B1 EP94909960A EP94909960A EP0688421B1 EP 0688421 B1 EP0688421 B1 EP 0688421B1 EP 94909960 A EP94909960 A EP 94909960A EP 94909960 A EP94909960 A EP 94909960A EP 0688421 B1 EP0688421 B1 EP 0688421B1
Authority
EP
European Patent Office
Prior art keywords
enclosure
fluid
bundle
means according
intermediate space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94909960A
Other languages
English (en)
French (fr)
Other versions
EP0688421A1 (de
Inventor
Jean-Claude Fauconnier
Roland Jean-Marie Guidat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ziemann Secathen SA
Faudat Concept
Original Assignee
Ziemann Secathen SA
Faudat Concept
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ziemann Secathen SA, Faudat Concept filed Critical Ziemann Secathen SA
Publication of EP0688421A1 publication Critical patent/EP0688421A1/de
Application granted granted Critical
Publication of EP0688421B1 publication Critical patent/EP0688421B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/905Materials of manufacture

Definitions

  • the present invention relates to a heat exchange device, in particular a heat exchanger, and to a method of cooling the enclosure of such a device.
  • heat exchange device heat exchangers but also other devices such as furnaces used in the petroleum refining industry, boilers, reactors, etc.
  • FR-A-883 006 FR-A-2 131 791 2 471 569 and GB-A-527 585 exchangers constituted by a side wall such as a sheet metal ferrule, which surrounds a fitted beam to allow separate circulation and in particular against the current, of two fluids, respectively a heating fluid and a heated fluid.
  • This bundle is preferably but not exclusively formed by a set of parallel braced plates in order to delimit neighboring spaces through which these fluids pass.
  • the channels defined between the plates communicate with collectors arranged at the opposite ends of the bundle. These collectors respectively provide the inlet and / or outlet of the heating fluid and the heated fluid and communicate with conduits for supplying or discharging these fluids.
  • the plates are welded on their lateral sides and joined to the collectors which extend perpendicular to the plane of these plates, according to the height of stacking these in order to seal the circulation channels formed between them.
  • the bundle of parallel plates with its end collectors is housed inside a closed enclosure, made by means of thick metal sheets suitably boiled and comprising a side wall which surrounds the bundle leaving free between its internal surface and sides of the stack of plates a suitable space.
  • the orientation of the exchanger can be any, the side wall can be a ferrule having a generally cylindrical profile with vertical axis, extending parallel to the long side of the bundle plates which are also arranged in vertical planes inside the shell, the collectors being mounted at each end of the large dimension of the bundle.
  • the inlet and outlet conduits of the two fluids are also vertical and pass respectively through bottoms which in this case may be hemispherical or, where appropriate, elliptical, and which close the cylindrical shell at its upper and lower parts.
  • the shell can be pressurized by means of another fluid, different from that which enters the bundle to collect the calories exchanged with the heating fluid.
  • the closed enclosure thus produced plays under these conditions several roles, first of all with regard to pressure resistance vis-à-vis the outside with regard to the fluids which pass through the spaces delimited between the parallel plates and one of which fills the free space between the shell and the plate beam, secondly compression of the beam thanks to the pressure difference between the regions traversed by the one and the other fluid respectively and finally of safety confinement in the event of leakage outside the bundle of one of the fluids which passes through it, for example as a result of a defect in any of the welds which ensure the assembly of the plates together.
  • Such sealing is in fact strictly essential if at least one of the fluids and in particular that which prevails in the aforementioned free space contains a toxic or flammable gas, in particular at the temperature where it is brought during the operation of the exchanger.
  • the enclosure is thermally insulated externally so as to limit the dissipation, towards the outside, of calories coming essentially from the exchange beam by radiation in the space situated between the latter and the side wall of the enclosure, the if necessary by convection, and even by conduction in the region where the fluid supply or discharge lines cross the side wall or the bottom of the enclosure.
  • the temperature of the lateral wall of the enclosure gradually increases from the bottom up, due to the temperature gradients created in the vertical beam.
  • plates in particular between the lower part of the latter generally comprising the outlet manifold of the heating fluid and the inlet manifold of the heated fluid, both at relatively low temperature, and the upper part comprising the manifold of the heating fluid inlet and the outlet manifold of the heated fluid at a very significantly higher temperature.
  • the temperature at the base of the enclosure can be of the order of 100 ° C for example, to reach 450 ° C for example at its top, if the heating fluid enters the bundle at around 500 ° C, the fluid heated outgoing to almost 480 ° C.
  • the cold bottom of the enclosure as well as the lower part of the side wall up to a height such as the temperature of this steel. does not exceed an average of 270 ° C in normal operation.
  • the remaining part of the side wall upwards and the hot upper bottom must be made of a steel of different nature capable of withstanding significantly higher temperatures, for example a chromium-molybdenum steel, with in addition a greater thickness.
  • this material is much more expensive and more difficult to implement, which strikes considerably the overall cost price of the exchanger.
  • the object of the invention is to remedy these drawbacks and in particular to significantly reduce the cost of heat exchange devices of the type targeted by the invention.
  • the invention is based on the observation that it is possible to maintain at least certain intermediate regions of the height of the side wall at relatively moderate temperatures, allowing the use of economical material, without the efficiency of the exchanger being found significantly reduced.
  • an exchange beam with welded plates radiates relatively little heat because the external surface of the beam can be only a few tens of m 2 in the case of a beam whose internal heat exchange surface reaches 4000 at 6000 m 2 or more.
  • the heat exchange device comprising a heat exchange beam defining for two exchange fluids separate paths in opposite directions, and an enclosure which contains the beam and whose internal face is exposed to thermal radiation from the beam through an intermediate space located between the interior face of the enclosure and the bundle, the enclosure comprising a side wall closed by a hot bottom on the side of the inlet of the heating fluid and the outlet of the heated fluid, and a cold bottom opposite the hot bottom, is characterized in that the enclosure is made in two parts, a cold part including the cold bottom and at least the major part of the side wall, and a hot part including the hot bottom and made of material with better resistance to heat than the cold part, and in that the exchanger includes means for removing calories from the enclosure at least in a region of the cold part of the enclosure, which adjoins the hot part.
  • the present invention makes it possible to significantly lower the temperature reached by the side wall during the operation of the exchanger and consequently to reduce the thickness of the wall and to increase the height of the part of this wall capable of be made of classic carbon steel.
  • the invention makes it possible in particular to ensure that this drop in temperature does not measurably affect the thermal performance of the exchanger, in particular because of the very small amount of heat removed.
  • the invention in particular has the result of significantly reducing the cost price of the enclosure, without harming its ability to safely and effectively perform its role with regard to the operational safety of the exchanger, the pressure resistance and sealing maintenance, even for temperatures in the bundle of plates for which the use of an ordinary steel side wall is normally prohibited.
  • the invention also relates to the means necessary for the implementation of the method and relates more particularly to heat exchangers incorporating such means. It concerns in the same way but more generally all the heat exchange devices using this process, such as for example ovens, boilers or industrial reactors.
  • the means for removing calories include direct exposure, to the outside atmosphere, of the outside face of the enclosure in said region adjoining the hot part.
  • the means for removing the calories can also, in addition or in a variant, include means for circulating the fluid of the 'intermediate space in a closed circuit consisting of the intermediate space and at least one pipe which is in heat exchange with the external environment and connects two distinct points of the enclosure located on either side of said adjacent region.
  • the fluid present in the intermediate space is circulated by a natural thermosyphon effect by placing the two distinct points mentioned above at two different levels along the height of the enclosure.
  • This circulation therefore allows an exchange of the calories taken from the enclosure and entrained by the fluid with the external atmosphere in which the pipe is located, the pressure drop produced during this circulation being balanced by the variation of the density. cited above.
  • the fluid circulating in the closed circuit is identical or different to one of the heating or heated fluids passing through the beam, and is preferably at a pressure equal to that of these fluids which is the highest.
  • the heated fluid is a two-phase mixture, in particular a mixture of a gas and a liquid
  • the fluid which circulates in the closed circuit is constituted by this mixture itself or by gas separated from said mixture.
  • one end of the external pipe is connected to the upper part of the lateral wall of the enclosure, or in a bottom, for example hemispherical or elliptical, closing this lateral wall, the other end connecting to the lower part of said side wall or in an intermediate region thereof.
  • the closed circuit comprises several external conduits, mounted in parallel on the enclosure.
  • the circuit includes a fluid outlet pipe from the enclosure and a return pipe for this fluid in the enclosure, these two pipes extending horizontally, parallel to each other, and being connected by separate pipes arranged vertically and traversed by the fluid from the top to the bottom outside the enclosure.
  • the wall of the enclosure comprises, judiciously distributed along its height, temperature sensors whose indications make it possible to adjust manually or by means of an electronic control device, the opening or closing adjustment d '' at least one valve, mounted on the external pipe to adjust the flow rate of the fluid circulating in the closed circuit.
  • the enclosure comprises several external pipes mounted in parallel, all or part of them may include valves subject to temperature measurements made by the sensors arranged on the side wall.
  • the method of cooling a side wall of a sheet metal enclosure is characterized by the step consisting in circulating the fluid present in the intermediate space through a circuit closed on itself, comprising said intermediate space and at least one pipe external to the enclosure, joined at two distinct points thereof.
  • the reference 1 designates a heat exchanger with welded plates and a shell of conventional design, in particular in the petroleum industry and in particular, although not exclusively, in the refining industry, being from the outset specified that the invention as it will be described later is in no way limited to a specific application or use of such an exchanger.
  • the exchanger 1 comprises an enclosure 2 with a vertical axis, constituted by the appropriate assembly of a side wall which in the example considered is a substantially cylindrical shell 3 and two hemispherical bottoms, respectively an upper bottom 4 and a lower bottom 5.
  • the enclosure 2 is maintained in the position shown with its vertical axis by means of support feet on the ground, such as 6, welded to the lower part of the ferrule 3.
  • the section of the ferrule could be different, as well as the shape of the bottoms ending this ferrule, these bottoms can for example have an elliptical profile.
  • an exchange beam 7 which, in the embodiment shown, is more especially constituted by a stack of parallel plates such as 8.
  • These plates are preferably formed by explosion, with implementation of a process known in itself.
  • they are formed (not shown in the drawing) to present on either side of the plane of each plate, bosses allowing mechanical support of the plates one on the other according to the thickness of the beam according to a large number of points.
  • spacers 9 and 10 in the form of bars arranged in L are interposed between the adjacent plates so as to provide for each space which separates two successive plates of the bundle two slots 11 and 12, opposite to each other along the two opposite small sides of the plates.
  • the slots 11 and 12 of a space are further offset from those of the two neighboring spaces.
  • the spacing of the plates 8 can be achieved by spacers of different shapes, as illustrated for example in Figure 2A, where the neighboring spaces are alternately fitted with U-shaped spacers 9a and 10a facing each other, and respectively with identical spacers 9b in the form of longitudinal bars arranged along the lateral sides of the plates 8, these bars being separated by intermediate plates 10b extending perpendicular to the direction of the previous ones.
  • All the channels 13 reserved for example for the circulation of the heated fluid are joined at one of the ends of the bundle 7, mounted vertically in the enclosure 2 to an inlet manifold 15, this manifold itself being connected to a pipe 16 for admitting the fluid into the exchanger.
  • this comprises a similar manifold 17 for the outlet of the heated fluid by a discharge pipe 18, the direction of circulation of this fluid being shown diagrammatically by the arrows illustrated at the end of the pipes 16 and 18.
  • all the channels 14 are reserved for the circulation of the heating fluid and joined to an intake manifold 19 and, on the other hand, to an exhaust manifold 20, themselves connected to pipes, respectively 21 and 22, the direction of this circulation being again shown diagrammatically by the arrows illustrated at the end of these pipes.
  • the latter, as well as the lines 16 and 18, are advantageously provided with expansion bellows 23 making it possible to tolerate their dimensional variations with respect to the enclosure formed by the shell 3 and the bottoms 4 and 5, due to the temperature differences of the fluids which pass through them, the heating fluid entering the collector 19, for example at 500 ° C and leaving the collector 20 at approximately 125 ° C, while the fluid to be heated enters the collector 15 at 100 ° C to exit the collector 17 at approximately 480 ° C.
  • the pipes 16, 18, 21 and 22 pass through the hemispherical bottoms 4 and 5 while being welded in a sealed manner to them.
  • the free space 24 formed between the beam 7 and the internal wall of the shell 3 is filled with a practically stagnant fluid, the pressure of this fluid preferably being equal to that which is the highest of the heating fluid or of the heated fluid.
  • the fluid which thus fills the enclosure 2 may be identical to the previous one or be of a different nature; in particular, if the fluid to be heated is a two-phase mixture, the fluid in the enclosure outside the bundle in space 24 may be a gaseous fraction of this mixture.
  • the fluid which reigns in space 24 corresponds to the fluid to be heated, at the pressure of the latter when it enters the device in line 16, a connecting pipe 25 being provided for this purpose between this pipe and the inside of the shell 3, after crossing the lower bottom 5.
  • a connecting pipe 25 being provided for this purpose between this pipe and the inside of the shell 3, after crossing the lower bottom 5.
  • the fluid brought inside the enclosure 2 is different from the fluid to be heated, its introduction into this enclosure is carried out by a separate pipe.
  • the exchange beam 7 radiates heat in the space 24, so that the temperature to which the shell 3 and the bottoms 4 and 5 are brought, gradually rises from the part lower to the upper part of the enclosure 2.
  • the rise in temperature of the enclosure is also due to the slight convection created, especially if the fluid in the space 24 is not completely stagnant, and also at the minor conduction but nevertheless not totally negligible at the place where the conduits 16, 18, 21 and 22 cross the bottoms 4 and 5.
  • a thermal insulation 29 covers the upper bottom 4 and the ferrule 3 to minimize the thermal leaks to the outside atmosphere and to protect personnel. In general, not shown, this insulation even covers the bottom bottom 5.
  • the bottoms and the side shroud cannot be made entirely using sheets of ordinary steel, in particular carbon steel, suitably boiled and assembled according to the height of the appliance.
  • the lower bottom 5 and the lower part 26 of the shell can be produced with such ordinary steel up to the level corresponding to approximately 270 ° C., however, the part upper 27 and the upper bottom 4 must necessarily be manufactured using steel sheets alloyed with chromium - molybdenum in particular. This material is more expensive and more difficult to shape, especially for sheet metal and welding. This increases the cost of the exchanger.
  • the connecting zone 28 between the two parts 26 and 27 of the shell 3 is barely a third of its height under the conditions of use envisaged.
  • FIG. 1 there is shown the outer wall of the shell with its two successive parts 26 and 27 which have a substantially constant thickness from the bottom to the top of the enclosure, between the hemispherical bottoms 4 and 5. It is then necessary to give the steel sheets used a thickness equal to that which is necessary in the zone which is brought to the highest temperature. In practice, however, it may be preferable to give the shell a progressive thickness, in particular in its part 27, by constituting the latter by means of successive elements such as 27a, 27b, 27c, as shown in FIG. 1A, presenting each one a different thickness which increases progressively that one rises according to the height of the shell as a function of the increase in the corresponding temperature. Even in this case the realization is expensive.
  • a first means consists in eliminating the thermal insulation 29 along the shell 3, so that the shell 3 cools by radiation of heat to the outside.
  • the removal of the insulation 29 relates in particular to the cold part 26 in a region 40 adjoining the hot part 27, as well as the region 41 of the shell which belongs to the hot part.
  • the insulation 29 is only maintained on the hot bottom 4 because it is generally an area accessible to personnel and where it would therefore be unacceptable to leave exposed walls whose temperature is at over 100 ° C.
  • Another means of cooling the enclosure generally consists in ensuring a continuous circulation of the fluid which reigns in the space 24 between the bundle and the internal face of the ferrule 3, so that this fluid can be suitably cooled outside and maintain the temperature of the shell at a value which is on average substantially lower than in the conventional solution.
  • FIG. 3A illustrates, in a manner similar to FIG. 1A seen above, an embodiment where the part 27 of the chromium-molybdenum steel ferrule is formed of stepped elements 27a and 27b, of increasing thickness from one to the next.
  • an external circuit 30 constituted by at least one pipe 31 of appropriate diameter comprising at its upper and lower ends fittings 32 and 33, substantially horizontal and parallel, which pass through the enclosure on either side of the regions 40 and 41 to respectively allow the fluid which reigns therein to be withdrawn, to flow from top to bottom in line 31 before being returned to the enclosure.
  • Line 31 extends vertically while being located in the surrounding ambient atmosphere.
  • the aforementioned circulation is carried out by natural thermosiphon due to the temperature differences of this fluid, in the zones in the upper part and in the lower part where the connections 32 and 33 open.
  • this fluid exchanges calories with the external atmosphere, to such an extent that it can absorb an adjustable part of the quantity of heat emitted in the enclosure by the beam 7 towards the ferrule 3.
  • the circulation of the fluid is due to the difference in static pressure generated by the difference in average density of this fluid between the interior and the exterior, by balancing the pressure losses created by this circulation.
  • the desired cooling effect is essential in the middle and upper parts of the shell where the temperature is the highest, which leads to optimally determining the region of the enclosure where the horizontal connector 32 crosses the latter.
  • the connector 32 can be arranged practically at the highest part of the cylindrical shell, or even come to open in the upper bottom as shown under the reference 32 '.
  • the connector 33 by which the fluid returns inside the enclosure can be located in the lower part of the shell 3 ( Figure 4), or in any other place and in particular in its middle part ( Figure 5) .
  • the vertical pipe 31 can be provided with a solenoid valve 34, making it possible to adjust the flow of the fluid in this pipe if necessary.
  • this solenoid valve 34 can advantageously be controlled by the indication provided by one or more temperature sensors 35 (FIG. 5) which measure the temperature of the external face of the shell 3 and are connected by appropriate connections 36 to the actuator of the corresponding solenoid valve.
  • knowing the temperatures of the enclosure at different levels of its shell can make it possible to act on one or more manually operated valves.
  • the circuit 30 in which the fluid from the enclosure circulates may comprise several pipes 31a, 31b, 31c, joined to the enclosure by connections 32a and 33a for the pipe 31a, or alternatively 32b and 33b for the pipes 31b and 31c, the latter then being mounted in parallel with one another. All or part of these pipes may include solenoid valves 34, the sensors 35 distributed on the shell according to the height thereof, which can be joined by their connections 36 to a control unit 37 which adjusts the relative flow rates of the fluid in these various pipes and in particular allows to control the average temperature of the shell to the results of the measurements carried out.
  • the invention is not limited to the embodiments more specifically described with reference to the accompanying drawings; on the contrary, it embraces all its variants.
  • the particular structure of the heat exchange bundle is not in itself decisive for the implementation of the invention, as explained in relation to the description of Figures 2 and 2A.
  • the fluid which prevails in the space 24 between the ferrule and the beam can be chosen to so as to have characteristics allowing better absorption by the latter of the heat radiated by the beam.
  • thermosyphon effect created in the external circuit to the shell and the circulation by natural thermosyphon of the fluid which fills the space between the exchange beam and the external enclosure ensures sufficient cooling of the latter with a balanced pressure drop.
  • the external circuit has a length of approximately 17 m for a diameter of the external pipe of 114 mm, this in the case where the temperature gradient, as already indicated, extends between 100 and 500 ° C, the pressure drop generated with a circulation flow of the fluid representing approximately 100 Kg / h, not being greater than 10 Pa, this last value being by definition covered by the pressure difference created by the density difference of the fluid between the interior of the enclosure and the interior of the external circuit pipe.
  • thermosyphon coupling and the removal of insulation makes it possible to reduce the temperature from 490 ° C. to approximately 300 ° C. at the top of the shell, in which case the shell is achievable over virtually its entire height in inexpensive carbon steel.
  • the invention is applicable to exchangers arranged for example horizontally. Even in this case circulation by thermosiphon can be obtained, by connecting the external pipe to two different levels of the height of the enclosure. Circulation by thermosiphon is possible even if the hot end of the exchanger is at the bottom, especially since there is a difference in average temperature between the fluid inside the enclosure and the fluid in the pipe. external. Circulation can also be carried out, in whole or in combination with the thermosyphon effect, by a pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (23)

  1. Vorrichtung für den Wärmeaustausch, die ein Wärmeaustauschbündel (7) enthält, das für zwei Austauschflüssigkeiten zwei getrennte in umgekehrten Richtungen laufende Wege definiert, sowie eine Kammer (2), die das Bündel enthält, und deren inneren Seite der thermischen Strahlung aus dem Bündel durch einen Zwischenraum, den zwischen der Innenseite der Kammer (2) und dem Bündel (14) gelegt ist, ausgesetzt wird, worin die Kammer (2) eine Seitenwand (3) umfaßt, die mit einem heißen Boden (4) auf der Eindringunsseite der Heizflüssigkeit und auf der Abflußseite der geheitzten Flüssigkeit geschlossen ist, sowie einen kalten Boden (5), den dem heißen Boden entgegengesetzt ist, dadurch gekennzeichnet, daß die Kammer aus zwei Teilen gestaltet ist, ein kalter Teil (26) den kalten Boden (5) und zumindest der größte Teil der Seitenwand (3) enthält, und ein heißer Teil (27), der den heißen Boden (4) enthält, und der aus einem Material mit einer Wärmebeständigkeit besteht, die höher als diejenige des kalten Teils ist, und daß die Vorrichtung (1) ihre eigenen Mittel (31) enthält, um Kalorien aus der Kammer zu evakuieren, und zwar in einen Bereich (40) des kalten Teils (26) der Kammer, der an den heißen Teil (27) angrenzt.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Wärmeisolation (29) auf eine bestimmte Fläche von dem heißen Ende der Kammer (2) aus aufweist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Mittel um Kalorien zu evakuieren, die äußere Seite des besagten angrenzenden Bereiches (40) unmittelbar der äußeren Umgebung ausgesetzt wird.
  4. Vorrichtung nach einer der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Kammer (2) eine Flüssigkeit im besagten Zwischenraum enthält, und daß die Mittel, um die Kalorien zu evakuieren Mittel (30) umfassen, um die Flüssigkeit des Zwischenraums in einem geschlossenen Kreis, der aus dem Zwischenraum (24) und zumindest einer Leitung (31) besteht, die Wärme mit der Umgebung austauscht und zwei getrennten Stellen (32, 33) der Kammer verbindet, die auf beiden Seiten des besagten angrenzenden Bereiches (40) liegen , in Umlauf zu bringen.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Mittel, um die Flüssigkeit im geschlossenen Kreis in Umlauf zu bringen, einen mit Bezug auf die Betriebsstellung der Vorrichtung senkrechten Abstand zwischen die beiden getrennten vorerwähnten Stellen (32, 33) der Kammer enthalten, so daß die für einen Umlauf durch Thermosiphon Aufstellungsvoraussetzungen gestaltet werden.
  6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das eine der Enden (32) der äußeren Leitung (31) mit einem oberen Teil der Seitenwand (3) der Kammer (2), oder mit dem oberen Boden der Kammer verbunden ist, während das andere Ende (33) mit einem unteren Teil der besagten Seitenwand oder mit einem Zwischenbereich derselben verbunden ist.
  7. Vorrichtung nach irgendeiner der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß der geschlossene Kreis mehrere äußere Leitungen (31a, 31b, 31c...) enthält, die auf die Kammer in Parallelschaltung aufgestellt werden.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der geschlossene Kreis (30) eine Leitung (32) für den Ausfluß der Flüssigkeit aus der Kammer und eine Leitung für den Rückfluß (33) dieser Flüssigkeit in die Kammer enthält, worin diese zwei Leitungen waagerecht und parallel liegen, und durch getrennte, senkrecht angeordnete und von der Flüssigkeit außerhalb der Kammer durchgeflossene Verbindungsrohrleitungen (31) verbunden sind.
  9. Vorrichtung nach irgendeiner der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Durchmesser der Leitungen (31, 32, 33) des Kreises (30) so angepaßt ist, daß das Gleichgewicht des im Kreis hergestellten Thermosiphons zugesichert wird.
  10. Vorrichtung nach einer der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß sie ein Mittel (34) für die Leistungssteuerung in der Leitung (31) enthält.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß das Mittel für die Leistungssteuerung einer thermostatischen Ausführungsform gehört, die aus zumindest einem Sensor (35) für die Temperatur der Kammer (2) gesteuert wird.
  12. Vorrichtung nach irgendeiner der Ansprüche 4 bis 11, dadurch gekennzeichnet, daß die Kammer (2) Temperatursensoren (35) umfaßt, die fachgemäß ihrer Höhe nach verteilt sind, und deren Angaben es erlauben, mit der Hand oder über eine elektronische Steuerungsvorrichtung, die Regelung der Öffnung oder der Schließung von zumindest einer Klappe (34) anzupassen, die um die Leistung der im Kreis (30) durchfließenden Flüssigkeit anzupassen auf der äußeren Leitung (31) montiert ist.
  13. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die Kammer (2) Temperatursensoren (35) umfaßt, die fachgemäß ihrer Höhe nach verteilt sind, und deren Angaben es erlauben, mit der Hand oder über eine elektronische Steuerungsvorrichtung, die Regelung der Öffnung oder der Schließung von Klappen anzupasssen, die um die Leistung der im Kreis (30) durchfließenden Flüssigkeit anzupassen in den äußeren Leitungen (31a, 31b, 31c) montiert sind.
  14. Vorrichtung nach einer der Ansprüche 1 bis 13, worin die Seiten gegenüber dem Bündel (7) und der Seitenwand (3) eine Flächenbehandlung um den Wärmeaustausch durch Ausstrahlung zwischen dem Bündel und der Seitenwand anzupassen umfassen.
  15. Vorrichtung nach einer der Ansprüche 1 bis 14, worin die Flüssigkeit im Zwischenraum (24) zwischen dem Bündel und der Seitenwand um eine verbesserte Wärmeaufnahme aus der Bündelstrahlung zu erlauben gewählt ist.
  16. Vorrichtung nach einer der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß das Austauschbündel (7) senkrecht in der Kammer montiert ist.
  17. Vorrichtung nach einer der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß sie eine Wärmeaustauschvorrichtung darstellt.
  18. Verfahren für die Abkühlung einer Seitenwand (3) einer kupfergeschmiederten metallischen Kammer (2), worin diese Seitenwand an den beiden Enden mit einem Boden (4, 5) geschlossen ist, und die ein Austauschbündel (7) zwischen zwei Flüssigkeiten enthält, und zwar jeweils einer Wärmeflüssigkeit und einer aufgewärmten Flüssigkeit, die durch das Bündel vorzugsweise in umgekehrten Richtungen durchfließen, und worin das Bündel senkrecht in der Kammer montiert ist und Kalorien in Richtung auf die Innenseite der Seitenwand in einen Zwischenraum (24) ausstrahlt, der zwischen der Seitenwand und dem Bündel angeordnet ist und mit einer Flüssigkeit eingefüllt ist, die gleich oder anders als jene der zwei Flüssigkeiten ist, die durch dieses Bündel durchfließen, dadurch gekennzeichnet, daß das Verfahren eine Durchflußstufe für die im Zwischenraum anwesende Flüssigkeit umfaßt, und zwar durch einen geschlossenen Kreis (30), der den besagten Zwischenraum und zumindest eine Leitung (31) einschließt, die außer der Kammer liegt und mit zwei getrennten Stellen derselben verbunden ist.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die im Zwischenraum (24) anwesende Flüssigkeit einem Durchfluß ausgesetzt wird, und zwar über eine natürliche Thermosiphonswirkung, wobei man die zwei besagten getrennten Stellen an zwei verschiedenen Niveaus an der Höhe der Kammer stellt.
  20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß die Flüssigkeit, die durch den geschlossenen Kreis (30) durchfließt einem Druck ausgesetzt wird, der dem höheren Druck zwischen denjenigen der Wärmeflüssigkeit und der aufgewärmten Flüssigkeit gleich ist.
  21. Verfahren nach einer der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß als aufgewärmte Flüssigkeit eine zweiphasige Mischung angewendet wird, und daß im geschlossenen Kreis ein von der besagten Mischung getrenntes Gas durchgeflossen wird.
  22. Verfahren nach einer der Ansprüche 18 bis 21, dadurch gekennzeichnet, daß zumindest eine in der Leitung (31, 31a) eingebaute Klappe (34) eingerichtet wird.
  23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, daß die Temperatur zumindest an einer Stelle der Kammer abgelesen wird, und daß die Klappe (34) so eingerichtet wird, daß der Durchfluß in der Leitung (31) in Abhängigkeit von der abgelesenen Temperatur erhöht wird.
EP94909960A 1993-03-17 1994-03-14 Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung Expired - Lifetime EP0688421B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9303061 1993-03-17
FR9303061A FR2702831B1 (fr) 1993-03-17 1993-03-17 Procédé et dispositif de refroidissement de l'enceinte d'un échangeur thermique.
PCT/FR1994/000273 WO1994021979A1 (fr) 1993-03-17 1994-03-14 Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif

Publications (2)

Publication Number Publication Date
EP0688421A1 EP0688421A1 (de) 1995-12-27
EP0688421B1 true EP0688421B1 (de) 1997-10-08

Family

ID=9445054

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94909960A Expired - Lifetime EP0688421B1 (de) 1993-03-17 1994-03-14 Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung

Country Status (6)

Country Link
US (1) US5695007A (de)
EP (1) EP0688421B1 (de)
AU (1) AU6260494A (de)
DE (1) DE69406112T2 (de)
FR (1) FR2702831B1 (de)
WO (1) WO1994021979A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732759B1 (fr) * 1995-04-04 1997-07-04 Packinox Sa Echangeur de chaleur a plaques pour fluide sous pression et utilisation
US6308795B2 (en) 1998-12-03 2001-10-30 Caterpillar Inc. Radiator mounting arrangement for a work machine
US6793028B2 (en) 1999-05-11 2004-09-21 Caterpillar S.A.R.L. Mounting arrangement for a radiator assembly of a work machine
FR2801376B1 (fr) * 1999-11-24 2002-02-01 Air Liquide Echangeur thermique a plaques muni d'une enveloppe de pressurisation
MX2007008365A (es) * 2001-01-10 2007-09-21 Compactgtl Plc Reactor catalitico.
US6615912B2 (en) 2001-06-20 2003-09-09 Thermal Corp. Porous vapor valve for improved loop thermosiphon performance
DE10226204A1 (de) * 2002-06-13 2003-12-24 Ballard Power Systems Druckentlasteter Reaktor-/Wärmeübertrageraufbau
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
FR2869979B1 (fr) * 2004-05-06 2006-08-04 Packinox Sa Echangeur thermique a plaques
US7373771B2 (en) * 2004-07-09 2008-05-20 Pratt & Whitney Canada Corp. Cooling arrangement for an accessory gearbox and method of cooling
GB2422004A (en) 2005-01-07 2006-07-12 Hiflux Ltd Plate heat exchanger
AT501207A1 (de) * 2005-07-28 2006-07-15 Zweimueller Peter Dipl Ing Vorrichtung zur erzeugung von reinem dampf
US20070029077A1 (en) * 2005-08-02 2007-02-08 Mirolli Mark D Hybrid heat exchanger
US8752615B2 (en) 2008-01-08 2014-06-17 General Electric Company Methods and systems for controlling temperature in a vessel
ATE554361T1 (de) * 2009-04-28 2012-05-15 Abb Research Ltd Wärmerohr mit gewundenem rohr
EP2246654B1 (de) * 2009-04-29 2013-12-11 ABB Research Ltd. Mehrreihiger Thermosyphon-Wärmetauscher
EP2848101B1 (de) 2012-05-07 2019-04-10 Phononic Devices, Inc. Thermoelektrische wärmetauscherkomponente mit wärmeverteilungsschutzklappe und optimalem thermischem grenzflächenwiderstand
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US20180244127A1 (en) * 2017-02-28 2018-08-30 General Electric Company Thermal management system and method
US10175003B2 (en) 2017-02-28 2019-01-08 General Electric Company Additively manufactured heat exchanger
NL2019792B1 (en) * 2017-10-24 2019-04-29 Micro Turbine Tech B V Heat exchanger comprising a stack of cells and method of manufacturing such a heat exchanger
CN115435615B (zh) * 2022-09-26 2023-12-22 江苏曙光压力容器有限公司 一种具有传热强化效果的波纹管换热器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR958699A (de) * 1942-05-22 1950-03-17
FR984248A (fr) * 1948-06-18 1951-07-03 Air Preheater échangeur de chaleur à haute température et à double enveloppe
FR1092115A (fr) * 1953-02-28 1955-04-19 Sulzer Ag échangeur de chaleur
FR1161500A (fr) * 1956-09-28 1958-09-01 Stein & Roubaix échangeur thermique à faisceaux tubulairees multiples
DE1931222A1 (de) * 1969-06-20 1970-12-23 Schmidt Sche Heissdampf Stehender Roehrenwaermeaustauscher,insbesondere zum Kuehlen frischer Spalt- und/oder Synthesegase
GB1411472A (en) * 1973-01-06 1975-10-29 Clarke Chapman Ltd Method of and apparatus for heat exchange
DE2431478A1 (de) * 1974-07-01 1976-01-22 Uhde Gmbh Friedrich Waermetauscher zum einbau in eine atomreaktor-anlage
US4207944A (en) * 1978-02-15 1980-06-17 Joseph Oat Corporation Heat exchanger for withstanding cyclic changes in temperature
JPS57196094A (en) * 1981-05-28 1982-12-01 Babcock Hitachi Kk Heat exchanger
SU1145232A1 (ru) * 1983-11-29 1985-03-15 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Вертикальный пленочный теплообменник
JPS60200090A (ja) * 1984-03-23 1985-10-09 Mitsubishi Heavy Ind Ltd 冷却ジヤケツトを有する熱交換器
DE3905140A1 (de) * 1989-02-20 1990-08-23 Dieter Dipl Ing Wallstein Waermetauscher

Also Published As

Publication number Publication date
US5695007A (en) 1997-12-09
FR2702831A1 (fr) 1994-09-23
AU6260494A (en) 1994-10-11
WO1994021979A1 (fr) 1994-09-29
DE69406112T2 (de) 1998-04-30
DE69406112D1 (de) 1997-11-13
EP0688421A1 (de) 1995-12-27
FR2702831B1 (fr) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0688421B1 (de) Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung
EP3405723B1 (de) Kondensationswärmetauscher mit einer wärmetauschervorrichtung
CA2742639C (fr) Reacteur echangeur a tubes baionnettes et a tubes de fumees suspendus a la voute superieure du reacteur
EP3270087B1 (de) Behälter eines wärmespeicher- und -abgabesystems, der mindestens eine doppelwand aus beton umfasst
FR2527302A1 (fr) Tuyaux de transport de fluides isoles au vide
FR3054027A1 (fr) Conteneur d'un systeme de stockage et de restitution de la chaleur comportant au moins deux modules en beton
EP0022714A1 (de) Mit einem Flüssigmetall gekühlter schnelle Neutronen-Kernreaktor mit einem System zum Abführen der Restwärme
EP0246942A1 (de) Rohrbündelwärmetauscher mit doppelwandigem Rohrboden
EP0163564B1 (de) Schneller Neutronenkernreaktor mit Dampferzeuger, integriert im Behälter
EP0395457B1 (de) Verfahren und Gerät zur Heizung eines Gases durch aufeinanderfolgende Wärmetauscher
FR3038376B1 (fr) Dispositif de stockage d'energie par materiau a changement de phase et son procede de stockage
EP0006800B1 (de) Mit flüssigem Metall gekühlter schneller Kernreaktor
EP0117191B1 (de) Dampferzeuger für einen flüssigmetallgekühlten nuklearen Reaktor
FR2533355A1 (fr) Circuit caloporteur secondaire pour un reacteur nucleaire refroidi par un metal liquide et generateur de vapeur adapte a un tel circuit
FR2880106A1 (fr) Dispositif d'echange de chaleur entre deux fluides comportant des couches de mousse metallique
FR2482707A1 (fr) Installation de chauffage
EP0020264A1 (de) Wärmetauscher des Teil-Modul-Typs für Kernreaktor
FR2666875A1 (fr) Machine frigorifique a adsorption-desorption sur zeolithes utilisant des echangeurs en profile d'aluminium.
BE665355A (de)
EP0206921B1 (de) Wärmetauscher mit koaxialen U-Rohren und Zwischenkreislauf von neutralem Gas und schneller Neutronenreaktor mit solchem Wärmetauscher
FR3098288A1 (fr) Système de stockage et de récupération de chaleur à l’axe horizontal
FR3099564A1 (fr) Module d’échangeur de chaleur à deux circuits de fluides, notamment échangeur de chaleur de réacteur nucléaire
EP2770288B1 (de) System zur Speicherung und Entnahme von Wärmeenergie, die in einem Fluid enthalten ist
WO1998026246A1 (fr) Echangeur thermique a plaques
WO2023110685A1 (fr) Dispositif d echange thermique comprenant des dispositifs limiteurs de debit, systeme de conditionnement d air et vehicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19960220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19971008

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971008

REF Corresponds to:

Ref document number: 69406112

Country of ref document: DE

Date of ref document: 19971113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020318

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020327

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020429

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST