WO1994021979A1 - Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif - Google Patents

Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif Download PDF

Info

Publication number
WO1994021979A1
WO1994021979A1 PCT/FR1994/000273 FR9400273W WO9421979A1 WO 1994021979 A1 WO1994021979 A1 WO 1994021979A1 FR 9400273 W FR9400273 W FR 9400273W WO 9421979 A1 WO9421979 A1 WO 9421979A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
fluid
side wall
bundle
pipe
Prior art date
Application number
PCT/FR1994/000273
Other languages
English (en)
Inventor
Jean-Claude Fauconnier
Roland Jean-Marie Guidat
Original Assignee
Faudat Concept
Ziemann-Secathen S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faudat Concept, Ziemann-Secathen S.A. filed Critical Faudat Concept
Priority to AU62604/94A priority Critical patent/AU6260494A/en
Priority to US08/522,348 priority patent/US5695007A/en
Priority to EP94909960A priority patent/EP0688421B1/fr
Priority to DE69406112T priority patent/DE69406112T2/de
Publication of WO1994021979A1 publication Critical patent/WO1994021979A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/905Materials of manufacture

Definitions

  • the present invention relates to a heat exchange device, in particular a heat exchanger, and to a method of cooling the enclosure of such a device.
  • heat exchange device means heat exchangers but also other devices such as furnaces used in the oil refining industry, boilers, reactors, etc., in particular constituted by side wall such that a metallic ferrule ferrule, which surrounds a bundle arranged to allow the separate circulations and in particular against the current, of two fluids, respectively a heating fluid and a heated fluid, this bundle preferably being but not exclusively formed by a set of plates braced parallels in order to delimit neighboring spaces crossed by these fluids.
  • the structure of a plate exchanger of this kind is well known in the art and in particular in the field of refining and petrochemicals.
  • the bundle formed by stacking the superimposed parallel plates in which these plates are separated from one another by suitable spacing means or spacers, is traversed in opposite directions by the two fluids which exchange between them calories through the wall of these plates.
  • the channels defined between the plates communicate with collectors arranged at the opposite ends of the bundle. These collectors respectively provide the inlet and / or outlet of the heating fluid and the heated fluid and communicate with conduits for supplying or discharging these fluids.
  • the plates are welded on their lateral sides and joined to the collectors which extend perpendicular to the plane of these plates, according to the height of 1 stacking thereof to ensure the sealing of the circulation channels formed therebetween.
  • the bundle of parallel plates with its end collectors is housed inside a closed enclosure, made by means of thick metal sheets suitably boiled and comprising a side wall which surrounds the bundle leaving free between its internal surface and sides of the stack of plates a suitable space.
  • the orientation of the exchanger can be any, the side wall can be a ferrule having a generally cylindrical profile with vertical axis, extending parallel to the long side of the bundle plates which are also arranged in vertical planes inside the shell, the manifolds being mounted at each end of the large dimension of the bundle.
  • the inlet and outlet conduits of the two fluids are also vertical and pass respectively through bottoms which in this case may be hemispherical or, where appropriate, elliptical, closing the cylindrical shell at its upper and lower parts.
  • the pressure thus created in the enclosure is chosen to be equal to that of the fluid which is itself at the highest pressure, usually the fluid to be heated as it enters the bundle of plates, so that the latter be maintained compressed by the pressure difference between the two fluids.
  • the shell can be pressurized by means of another fluid, different from that which enters the bundle to collect the calories exchanged with the heating fluid.
  • the closed enclosure thus produced plays, under these conditions, several roles, in the first place of resistance to pressure vis-à-vis the outside with respect to the fluids which pass through the spaces delimited between the parallel plates and one of which fills the free space between the ferrule and the plate beam, secondly compression of the beam thanks to the pressure difference between the regions traversed by one and the other fluid respectively and finally safety confinement in the event of leakage outside the bundle of one of the fluids which passes through it, for example as a result of a defect in any of the welds which ensure the assembly of the plates together.
  • Such sealing is in fact strictly essential if at least one of the fluids and in particular that which prevails in the aforementioned free space contains a toxic or flammable gas, in particular at the temperature where it is brought during the operation of the 'exchanger.
  • the enclosure is thermally insulated externally so as to limit the dissipation, towards the outside, of calories coming essentially from the exchange beam by radiation in the space situated between the latter and the side wall of the enclosure, the if necessary by convection, and even by conduction in the region where the fluid supply or discharge lines cross the side wall or the bottom of the enclosure.
  • the temperature of the lateral wall of the enclosure gradually increases from the bottom up, due to the temperature gradients created in the vertical beam.
  • the temperature at the base of the enclosure can be of the order of 100 ° C. for example, to reach 450 ° C. for example at its upper part, if the heating fluid enters the bundle at approximately 500 ° C., the fluid heated outgoing to almost 480 ° C.
  • the cold bottom of the enclosure as well as the lower part of the side wall up to a height such as the temperature of this steel. does not exceed an average of 270 ° C in normal operation.
  • the remaining part of the side wall upwards and the hot upper bottom must be made of a steel of different nature capable of withstanding significantly higher temperatures, for example a chromium-molybdenum steel, with in addition a greater thickness.
  • this material is much more expensive and more difficult to implement, which strikes considerably the overall cost price of one exchanger.
  • the invention is based on the observation that it is possible to maintain at least certain intermediate regions of the height of the side wall at relatively moderate temperatures, allowing the use of economical material, without the efficiency of the exchanger being found significantly reduced.
  • the heat exchange device comprising a heat exchange beam defining for two exchange fluids separate paths in opposite directions, and an enclosure which contains the beam and whose internal face is exposed to thermal radiation from the beam , the enclosure comprising a side wall closed by a hot bottom on the side of the inlet of the heating fluid and the outlet of the heated fluid, and a cold bottom opposite the hot bottom, is characterized in that the enclosure is made in two parts, a cold part including the cold bottom and at least the major part of the side wall, and a hot part including the hot bottom and made of material with better heat resistance than the cold part, and in that the exchanger comprises means for discharging calories from one enclosure at least in a region of the cold part of the enclosure, which adjoins the hot part.
  • the present invention makes it possible to significantly lower the temperature reached by the side wall during operation of the exchanger and consequently to reduce the thickness of the wall and to increase the height of the part of this wall capable of be made of classic carbon steel.
  • the invention makes it possible in particular to ensure that this drop in temperature does not measurably affect the thermal performance of the exchanger, in particular because of the very small amount of heat removed.
  • the invention in particular has the result of significantly reducing the cost price of the enclosure, without harming its ability to safely and effectively perform its role with regard to the operational safety of the exchanger, the pressure resistance and sealing maintenance, even for temperatures in the bundle of plates for which the use of an ordinary steel side wall is normally prohibited.
  • the invention also relates to the means necessary for the implementation of the method and relates more particularly to heat exchangers incorporating such means. It concerns in the same way but more generally all the heat exchange devices using this process, such as for example ovens, boilers or industrial reactors.
  • the means for removing calories include direct exposure, to the outside atmosphere, of the outside face of the enclosure in said region adjoining the hot part.
  • the means for removing calories can also, in addition or alternatively, include means for circulating the fluid from the intermediate space in a closed circuit constituted by the intermediate space and at least one pipe which is in heat exchange with the external environment and connects two distinct points of the enclosure located on either side of said adjacent region.
  • the method of cooling a side wall of a sheet metal enclosure is characterized by the step of circulating the fluid present in the intermediate space through a circuit closed on itself, comprising said intermediate space and at least a pipe external to the enclosure, joined at two points distinct from it.
  • the fluid present in the intermediate space is circulated by a natural thermosyphon effect by placing the two distinct points mentioned above at two different levels along the height of the enclosure.
  • This circulation therefore allows an exchange of the calories taken from the enclosure and entrained by the fluid with the external atmosphere in which the pipe is located, the pressure drop produced during this circulation being balanced by the variation in the density. cited above.
  • the invention also relates to a heat exchange device for the implementation of this method, comprising a lateral ferrule and bottoms together forming a sheet metal metallic enclosure, containing an exchange bundle between two fluids, respectively a heating fluid and a heated fluid, preferably passing through the beam, against the current, the internal face of the side wall being exposed to thermal radiation coming from the beam through an intermediate space formed between the side wall and the beam and filled with an identical fluid or different from one of the two fluids passing through this bundle, characterized in that it comprises at least one pipe external to the enclosure and the ends of which are connected at two distinct points of said enclosure so that the pipe forms with 1 ' intermediate space a closed circuit on itself, and means for circulating in the closed circuit the fluid present nt in the intermediate space.
  • the means for circulating the fluid in the closed circuit comprise, relative to the operating position of the device, a vertical spacing between the two above-mentioned separate points of the enclosure, so as to create the conditions for establishing circulation by thermosyphon.
  • the fluid which circulates in the closed circuit is identical or different to one of the heating or heated fluids traversing the beam, and is preferably at a pressure equal to that of these fluids which is the highest.
  • the heated fluid is a two-phase mixture, in particular a mixture of a gas and a liquid
  • the fluid which circulates in the closed circuit is constituted by this mixture itself or by gas separated from said mixture.
  • one end of the external pipe is connected to the upper part of the lateral wall of the enclosure, or in a bottom, for example hemispherical or elliptical, closing this lateral wall, the other end connecting to the lower part of said side wall or in an intermediate region thereof.
  • the closed circuit comprises several external conduits, mounted in parallel on the enclosure.
  • the circuit includes a fluid outlet pipe from the enclosure and a return pipe for this fluid in the enclosure, these two pipes extending horizontally, parallel to each other, and being connected by separate tubes arranged vertically and traversed by the fluid from the top to the bottom outside of the enclosure.
  • the wall of the enclosure comprises, judiciously distributed along its height, temperature sensors whose indications make it possible to adjust manually or by 1 through an electronic control device, the opening or closing adjustment of at least one valve, mounted on the external pipe to adjust the flow rate of the fluid flowing in the closed circuit.
  • all or part of them may include valves subject to temperature measurements made by the sensors arranged on the side wall.
  • FIG. 1 is a schematic vertical sectional view of a conventional heat exchanger with welded plates, in particular of the kind used in the refining industry for the operation known as catalytic reforming.
  • FIG. 1A illustrates a variant for one enclosure of one exchanger according to Figure 1.
  • FIG. 1A illustrates a variant for one enclosure of one exchanger according to Figure 1.
  • FIG. 1B is a partial perspective view of a fraction of the bundle of plates, used in one exchanger according to Figure 1.
  • FIG. 2A illustrates an alternative embodiment of the plate bundle.
  • - Figure 3 is a vertical sectional view of an exchanger, similar to that of Figure 1, but comprising the arrangements according to the invention.
  • - Figure 3A is a variant for one enclosure of the exchanger, corresponding to Figure 3, substantially as Figure 1A corresponds to Figure 1.
  • - Figures 4, 5 and 6 are sectional views, even more schematic, of various alternative embodiments of the exchanger according to Figure 3.
  • the reference 1 designates a heat exchanger with welded plates and shell of conventional design, in particular in the petroleum industry and in particular, although not exclusively, in the refining industry, being at the outset specified that the invention as it will be described later is in no way limited to a particular application or use of such an exchanger.
  • the exchanger 1 comprises an enclosure 2 with a vertical axis, constituted by the appropriate assembly of a side wall which in the example considered is a substantially cylindrical shell 3 and two hemispherical bottoms, respectively an upper bottom 4 and a lower bottom 5.
  • the enclosure 2 is maintained in the position shown with its vertical axis by means of support feet on the ground, such as 6, welded to the lower part of the ferrule 3.
  • the section of the ferrule could be different, as well as the shape of the bottoms ending this ferrule, these bottoms can for example have an elliptical profile.
  • an exchange beam 7 which, in the embodiment shown, is more especially constituted by a stack of parallel plates such as 8.
  • These plates are preferably formed by explosion, with implementation of a process known in itself.
  • they are formed (not shown in the drawing) to present, on either side of the plane of each plate, bosses allowing mechanical support of the plates one on the other according to the thickness of the beam. according to a large number of points.
  • spacers 9 and 10 in the form of bars arranged in L are interposed between the adjacent plates so as to provide for each space which separates two successive plates of the bundle two slots 11 and 12, opposite to each other along the two opposite small sides of the plates.
  • the slots 11 and 12 of a space are further offset from those of the two neighboring spaces.
  • the spacing of the plates 8 can be achieved by spacers of different shapes, as illustrated for example in Figure 2A, where the neighboring spaces are alternately fitted with U-shaped spacers 9a and 10a facing each other, and respectively with identical spacers 9b in the form of longitudinal bars arranged along the lateral sides of the plates 8, these bars being separated by intermediate plates 10b extending perpendicular to the direction of the previous ones.
  • All the channels 13 reserved for example for the circulation of the heated fluid are joined at one of the ends of the bundle 7, mounted vertically in the enclosure 2 to an inlet manifold 15, this manifold itself being connected to a pipe 16 for admitting the fluid into the exchanger.
  • this comprises a similar manifold 17 for the outlet of the heated fluid by a discharge pipe 18, the direction of circulation of this fluid being shown diagrammatically by the arrows illustrated at the end of the pipes 16 and 18.
  • all the channels 14 are reserved for the circulation of the heating fluid and joined to an intake manifold 19 and, on the other hand, to an exhaust manifold 20, themselves connected to pipes.
  • the heating fluid entering the collector 19, for example at 500 ° C and leaving the collector 20 at approximately 125 ° C, while the fluid to be heated enters the collector 15 at 100 ° C to exit collector 17 at approximately 480 ° C.
  • the pipes 16, 18, 21 and 22 pass through the hemispherical bottoms 4 and 5 while being welded in a sealed manner to them.
  • the free space 24 formed between the beam 7 and the internal wall of the shell 3 is filled with a practically stagnant fluid, the pressure of this fluid preferably being equal to that which is the highest of the heating fluid or of the heated fluid.
  • the fluid which thus fills the enclosure 2 may be identical to the previous one or be of a different nature; in particular, if the fluid to be heated is a two-phase mixture, the fluid in the enclosure outside the bundle in space 24 may be a gaseous fraction of this mixture.
  • the fluid which reigns in the space 24 corresponds to the fluid to be heated, at the pressure of the latter when it enters the device in the pipe 16, a connecting pipe 25 being provided for this purpose between this pipe and the interior of the shell 3, after crossing the lower bottom 5.
  • a connecting pipe 25 being provided for this purpose between this pipe and the interior of the shell 3, after crossing the lower bottom 5.
  • the exchange beam 7 radiates heat in the space 24, so that the temperature to which the shell 3 and the bottoms 4 and 5 are brought, gradually rises from the part lower to the upper part of the enclosure 2.
  • the rise in temperature of the enclosure is also due to the slight convection created, especially if the fluid in the space 24 is not completely stagnant, and also at the minor conduction but nevertheless not totally negligible at the place where the conduits 16, 18, 21 and 22 cross the bottoms 4 and 5.
  • a thermal insulation 29 covers the upper bottom 4 and the ferrule 3 to minimize the thermal leaks to the outside atmosphere and to protect personnel. In general, not shown, this insulation even covers the bottom bottom 5.
  • the bottoms and the side shell cannot be made entirely using sheets of ordinary steel, in particular carbon steel, suitably boiled and assembled according to the height of the appliance.
  • the lower bottom 5 and the lower part 26 of the shell can be produced with such ordinary steel up to the level corresponding to approximately 270 ° C., however, the part upper 27 and the upper bottom 4 must necessarily be manufactured using steel sheets alloyed with chromium - molybdenum in particular. This material is more expensive and more difficult to shape, especially for sheet metal and welding. This increases the cost of the exchanger.
  • the connecting zone 28 between the two parts 26 and 27 of the shell 3 is barely a third of its height under the conditions of use envisaged.
  • FIG. 1 there is shown the outer wall of the shell with its two successive parts 26 and 27 which have a substantially constant thickness from the bottom to the top of the enclosure, between the hemispherical bottoms 4 and 5. It is then necessary to give the steel sheets used a thickness equal to that which is necessary in the zone which is brought to the highest temperature. In practice, however, it may be preferable to give the shell a progressive thickness, in particular in its part 27, by constituting the latter by means of successive elements such as 27a, 27b, 27c, as shown in FIG. 1A, presenting each one a different thickness which increases progressively that one rises according to the height of the shell as a function of the increase in the corresponding temperature. Even in this case the realization is expensive. To overcome the drawbacks thus presented by the conventional solutions, the arrangements illustrated in particular in FIG. 3 are used, in which reference numbers identical to those of the preceding figures have been used to designate from one to the other the same organs.
  • a first means consists in eliminating the thermal insulation 29 along the shell 3, so that the shell 3 cools by radiation of heat to the outside.
  • the removal of the insulation 29 relates in particular to the cold part 26 in a region 40 adjoining the hot part 27, as well as the region 41 of the shell which belongs to the hot part.
  • the insulation 29 is only maintained on the hot bottom 4 because it is generally an area accessible to personnel and where it would therefore be unacceptable to leave exposed walls whose temperature is at over 100 ° C.
  • Another means of cooling the enclosure generally consists in ensuring a continuous circulation of the fluid which reigns in the space 24 between the bundle and the internal face of the ferrule 3, so that this fluid can be suitably cooled outside and maintain the temperature of the shell at a value which is on average substantially lower than in the conventional solution.
  • the lower part 26 of the shell made of carbon steel, can be significantly larger than the part 27 of chromium-molybdenum steel.
  • the average thickness of the part 27 and therefore the amount of metal used can also be reduced overall.
  • the connection zone 28 between the parts 26 and 27 is situated much closer to the top of the shell, as close as possible to the bottom 4.
  • FIG. 3A illustrates, in a manner similar to FIG.
  • an embodiment where the part 27 of the chromium-molybdenum steel ferrule is formed of stage elements 27a and 27b, of increasing thickness from one to the next.
  • an external circuit 30 constituted by at least one pipe 31 of appropriate diameter comprising at its upper and lower ends fittings 32 and 33, substantially horizontal and parallel, which pass through the enclosure on either side of the regions 40 and 41 to respectively allow the fluid which reigns therein to be withdrawn, to flow from top to bottom in line 31 before being returned to the enclosure.
  • Line 31 extends vertically while being located in the surrounding ambient atmosphere.
  • the aforementioned circulation is carried out by natural thermosiphon due to the temperature differences of this fluid, in the zones in the upper part and in the lower part where the connections 32 and 33 open.
  • this fluid exchanges calories with the external atmosphere, to such an extent that it can absorb an adjustable part of the quantity of heat emitted in the enclosure by the beam 7 towards the ferrule 3.
  • the circulation of the fluid is due to the difference in static pressure generated by the difference in average density of this fluid between the interior and the exterior, by balancing the pressure losses created by this circulation.
  • the desired cooling effect is essential in the middle and upper parts of the shell where the temperature is the highest, which leads to optimally determining the region of the enclosure where the horizontal connector 32 crosses the latter.
  • the connector 32 can be arranged practically at the highest part of the cylindrical shell, or even come to open in the upper bottom as shown under the reference 32 '.
  • the connector 33 by which the fluid returns to the interior of the enclosure can be located in the lower part of the ferrule 3
  • the vertical pipe 31 can be provided with a solenoid valve 34, making it possible to adjust if necessary the flow rate of the fluid in this pipe.
  • this solenoid valve 34 can advantageously be controlled by the indication provided by one or more temperature sensors 35 (FIG.
  • the circuit 30 in which the fluid from the enclosure circulates may comprise several pipes 31a, 31b, 31c, joined to the enclosure by connections 32a and 33a for the pipe 31a, or alternatively 32b and 33b for the pipes 31b and 31c, the latter then being mounted in parallel with one another. All or part of these pipes may include solenoid valves 34, the sensors 35 distributed on the shell according to the height thereof, which can be joined by their connections 36 to a control unit 37 which adjusts the relative flow rates of the fluid in these various pipes and in particular allows to control the average temperature of the shell to the results of the measurements carried out.
  • the invention is not limited to the embodiments more specifically described with reference to the accompanying drawings; on the contrary, it embraces all its variants.
  • the particular structure of the heat exchange bundle is not in itself decisive for the implementation of the invention, as explained in relation to the description of Figures 2 and 2A.
  • the fluid which prevails in the space 24 between the ferrule and the beam can be chosen to so as to have characteristics allowing better absorption by the latter of the heat radiated by the beam.
  • thermosyphon effect created in the external circuit to the shell and the circulation by natural thermosyphon of the fluid which fills the space between the exchange beam and the external enclosure ensures sufficient cooling of the latter with a balanced pressure drop.
  • the external circuit has a length of around 17 m for a diameter of the external pipe of 114 mm, this in the case where the temperature gradient, as already indicated, extends between 100 and 500 ° C, the pressure drop generated with a circulation flow of the fluid representing approximately 100 Kg / h, not being greater than 10 Pa, this the latter value being by definition covered by the pressure difference created by the density difference of the fluid between the interior of the enclosure and the interior of the external circuit pipe.
  • thermosyphon coupling and the removal of insulation makes it possible to reduce the temperature from 490 ° C. to approximately 300 ° C. at the top of the shell, in which case the shell is achievable over virtually its entire height in inexpensive carbon steel.
  • the invention is applicable to exchangers arranged for example horizontally. Even in this case circulation by thermosiphon can be obtained, by connecting the external pipe to two different levels of the height of the enclosure. Circulation by thermosiphon is achievable even if the hot end of the exchanger is below, especially since there is an average temperature difference between the fluid inside the enclosure and the fluid in the pipe. external. Circulation can also be carried out, in whole or in combination with the thermosyphon effect, by a pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Le dispositif comprend une paroi latérale (3) et des fonds (4, 5) formant ensemble une enceinte métallique chaudronnée (2), contenant un faisceau d'échange (7) entre deux fluides, respectivement un fluide chauffant et un fluide chauffé, traversant le faisceau de préférence à contre-courant. Le faisceau, monté verticalement dans l'enceinte, rayonne des calories en direction de la face interne de la paroi latérale à travers un espace intermédiaire (24) ménagé entre celle-ci et le faisceau et rempli d''un fluide identique ou différent de l'un des deux fluides traversant ce faisceau. On refroidit l'enceinte d'une part en exposant la paroi latérale (3) à l'ambiance extérieure et d'autre part en faisant circuler le fluide de l'espace intermédiaire (24) par un effet de thermosiphon naturel à travers un circuit fermé sur lui-même (30), comprenant ledit espace intermédiaire et au moins une conduite (31) externe à l'enceinte, réunie à deux niveaux distincts selon la hauteur de celle-ci. Utilisation pour les échangeurs de l'industrie pétrolière.

Description

"DISPOSITIF D'ECHANGE THERMIQUE ET PROCEDE DE REFROIDISSEMENT DE L'ENCEINTE D'UN TEL DISPOSITIF"
La présente invention concerne un dispositif d'échange thermique, notamment un échangeur de chaleur, et un procédé de refroidissement de l'enceinte d'un tel dispositif. Par "dispositif d'échange thermique", on entend les échangeurs de chaleur mais aussi d'autres dispositifs tels que des fours utilisés dans 1 ' industrie du raffinage pétrolier, des chaudières, des réacteurs, etc, notamment constitués par paroi latérale telle qu'une virole métallique chaudronnée, qui entoure un faisceau aménagé pour permettre les circulations séparées et en particulier à contre-courant, de deux fluides, respectivement un fluide chauffant et un fluide chauffé, ce faisceau étant de préférence mais non exclusivement formé par un ensemble de plaques parallèles entretoisées afin de délimiter des espaces voisins traversés par ces fluides. La structure d'un échangeur à plaques de ce genre est bien connue dans la technique et en particulier dans le domaine du raffinage et de la pétrochimie. Le faisceau formé par 1 ' empilement des plaques parallèles superposées dans lequel ces plaques sont séparées de l'une à l'autre par des moyens d'espacement ou entretoises appropriées, est parcouru dans des directions opposées par les deux fluides qui échangent entre eux des calories à travers la paroi de ces plaques. Les canaux définis entre les plaques communiquent avec des collecteurs disposés aux extrémités opposées du faisceau. Ces collecteurs assurent respectivement l'entrée et/ou la sortie du fluide chauffant et du fluide chauffé et communiquent avec des conduits d'amenée ou d'évacuation de ces fluides. Les plaques sont soudées sur leurs côtés latéraux et réunies aux collecteurs qui s'étendent perpendiculairement au plan de ces plaques, selon la hauteur de 1 'empilement de celles-ci afin d'assurer 1'étanchéité des canaux de circulation ménagés entre elles.
De façon usuelle, le faisceau des plaques parallèles avec ses collecteurs d'extrémité est logé à l'intérieur d'une enceinte fermée, réalisée au moyen de tôles métalliques épaisses convenablement chaudronnées et comprenant une paroi latérale qui entoure le faisceau en laissant libre entre sa surface interne et les côtés de l'empilement des plaques un espace convenable. De préférence mais de façon non exclusive, l'orientation de l'échangeur pouvant être quelconque, la paroi latérale peut être une virole présentant un profil général cylindrique à axe vertical, s'étendant parallèlement au grand côté des plaques du faisceau qui sont également disposées dans des plans verticaux à 1'intérieur de la virole, les collecteurs étant montés à chaque extrémité de la grande dimension du faisceau. Les conduits d'admission et d'évacuation des deux fluides sont également verticaux et traversent respectivement des fonds qui dans ce cas peuvent être hémisphériques ou le cas échéant elliptiques fermant la virole cylindrique à ses parties supérieure et inférieure.
En outre, on sait dans de telles réalisations établir une communication entre l'un des conduits parcourus par un des deux fluides et 1'intérieur de l'enceinte fermée, de manière que l'espace interne de celle-ci, entre sa paroi et le faisceau, soit rempli du fluide correspondant et ainsi placé à une pression égale à celle de ce dernier. De préférence, la pression ainsi créée dans l'enceinte est choisie égale à celle du fluide qui est lui- même à la pression la plus élevée, habituellement le fluide à chauffer à son entrée dans le faisceau de plaques, de sorte que celui-ci soit maintenu comprimé par la différence de pression existant entre les deux fluides. On assure ainsi la cohésion mécanique du faisceau et on évite des courts- circuits thermiques. Eventuellement, la virole peut être mise sous pression au moyen d'un autre fluide, différent de celui qui pénètre dans le faisceau pour recueillir les calories échangées avec le fluide chauffant.
L'enceinte fermée ainsi réalisée joue dans ces conditions plusieurs rôles, en premier lieu de tenue en pression vis-à-vis de l'extérieur à 1'égard des fluides qui traversent les espaces délimités entre les plaques parallèles et dont l'un remplit l'espace libre entre la virole et le faisceau des plaques, en second lieu de compression du faisceau grâce à la différence de pression entre les régions parcourues respectivement par l'un et 1'autre fluide et enfin de confinement de sécurité en cas de fuite à l'extérieur du faisceau d'un des fluides qui le traverse, à la suite par exemple d'une défectuosité de l'une quelconque des soudures qui assurent l'assemblage des plaques entre elles. Une telle étanchéité est en effet strictement indispensable si l'un au moins des fluides et en particulier celui qui règne dans l'espace libre précité contient un gaz toxique ou inflammable, •notamment à la température où il est porté au cours du fonctionnement de l'échangeur.
Pour améliorer le rendement thermique de l'échangeur, on recherche tout naturellement à minimiser les fuites thermiques, notamment les quantités de chaleur cédées par l'enceinte à l'ambiance extérieure. Ainsi, l'enceinte est calorifugée extérieurement de façon à limiter la dissipation, vers l'extérieur, de calories provenant essentiellement du faisceau d'échange par rayonnement dans l'espace situé entre celui-ci et la paroi latérale de l'enceinte, le cas échéant par convection, et même par conduction dans la région où les conduites d'amenée ou d'évacuation des fluides traversent la paroi latérale ou les fonds de l'enceinte. Or, dans une semblable enceinte calorifugée, donc n'échangeant pratiquement pas de calories avec l'extérieur, la température de la paroi latérale de l'enceinte croît progressivement du bas vers le haut, en raison des gradients de température créés dans le faisceau vertical des plaques, notamment entre la partie basse de celui-ci comportant généralement le collecteur de sortie du fluide chauffant et le collecteur d'entrée du fluide chauffé, l'un et l'autre à température relativement basse, et la partie supérieure comportant le collecteur d'entrée du fluide chauffant et le collecteur de sortie du fluide chauffé à température très sensiblement plus élevée. La température à la base de 1'enceinte peut être de l'ordre de 100°C par exemple, pour atteindre 450°C par exemple à sa partie haute, si le fluide chauffant entre dans le faisceau à environ 500°C, le fluide chauffé sortant à presque 480°C.
Dans ces conditions, on peut réaliser au moyen de tôles d'acier au carbone ordinaire et avec une épaisseur modérée le fond froid de l'enceinte ainsi que la partie inférieure de la paroi latérale jusqu'à une hauteur telle que la température de cet acier ne dépasse pas en moyenne 270°C en fonctionnement normal. Mais par contre, la partie restante de la paroi latérale vers le haut et le fond supérieur chaud doivent être réalisés en un acier de nature différente susceptible de supporter des températures notablement plus élevées, par exemple un acier au chrome - molybdène, avec en outre une épaisseur plus importante. Or, ce matériau est beaucoup plus coûteux et plus difficile à mettre en oeuvre, ce qui grève considérablement le prix de revient global de 1 ' échangeur.
Le but de * 1 ' invention est de remédier à ces inconvénients et en particulier de réduire significativement le coût des dispositifs d'échange thermique du genre visé par l'invention.
L'invention est basée sur la constatation qu'il est possible de maintenir au moins certaines régions intermédiaires de la hauteur de la paroi latérale à des températures relativement modérées, permettant l'emploi de matériau économique, sans que le rendement de 1 'échangeur se trouve significativement réduit.
Par exemple, un faisceau d'échange à plaques soudées rayonne relativement peu de chaleur car la surface externe du faisceau peut n'être que de quelques dizaines de m2 dans le cas d'un faisceau dont la surface interne d'échange thermique atteint 4000 à 6000 m2 ou plus. Ainsi, le dispositif d'échange thermique comprenant un faisceau d'échange thermique définissant pour deux fluides d'échange des trajets séparés en sens contraires, et une enceinte qui contient le faisceau et dont la face interne est exposée au rayonnement thermique en provenance du faisceau, l'enceinte comprenant une paroi latérale fermée par un fond chaud du côté de 1 ' entrée du fluide chauffant et du départ du fluide chauffé, et un fond froid opposé au fond chaud, est caractérisé en ce que l'enceinte est réalisée en deux parties, une partie froide incluant le fond froid et au moins la majeure partie de la paroi latérale, et une partie chaude incluant le fond chaud et réalisé en matériau à meilleure résistance à la chaleur que la partie froide, et en ce que 1 ' échangeur comprend des moyens pour évacuer des calories de 1 ' enceinte au moins dans une région de la partie froide de l'enceinte, qui est attenante à la partie chaude. La présente invention permet d'abaisser de façon significative la température atteinte par la paroi latérale lors du fonctionnement de 1'échangeur et par conséquent de réduire l'épaisseur de la paroi et d'augmenter la hauteur de la partie de cette paroi susceptible d'être fabriquée en acier classique au carbone. L'invention permet notamment de faire en sorte que cette baisse de température n'affecte pas de manière mesurable les performances thermiques de l'échangeur, notamment en raison de la très faible quantité de chaleur évacuée.
L'invention a notamment pour résultat de réduire notablement le prix de revient de l'enceinte, sans nuire à ses facultés d'assurer de façon sûre et efficace son rôle à l'égard de la sécurité de fonctionnement de l'échangeur, de la tenue en pression et du maintien de 1'étanchéité, même pour des températures dans le faisceau des plaques pour lesquelles l'emploi d'une paroi latérale en acier ordinaire est normalement prohibé.
L'invention concerne également les moyens nécessaires à la mise en oeuvre du procédé et vise plus particulièrement les échangeurs thermiques incorporant de tels moyens. Elle concerne de la même manière mais de façon plus générale tous les appareils d'échange thermique utilisant ce procédé, du genre par exemple des fours, chaudières ou réacteurs industriels.
De préférence, les moyens pour évacuer des calories comprennent l'exposition directe, à l'ambiance extérieure, de la face extérieure de 1'enceinte dans ladite région attenante à la partie chaude.
Lorsque l'enceinte renferme un fluide dans un espace intermédiaire situé entre la face intérieure de l'enceinte et le faisceau, les moyens pour évacuer les calories peuvent également, en complément ou en variante, comprendre des moyens pour faire circuler le fluide de l'espace intermédiaire dans un circuit fermé constitué par 1'espace intermédiaire et au moins une conduite qui est en échange thermique avec 1'ambiance extérieure et relie deux points distincts de l'enceinte situés de part et d'autre de ladite région attenante.
Ainsi, selon un second objet de l'invention, le procédé de refroidissement d'une paroi latérale d'une enceinte métallique chaudronnée, cette paroi étant fermée à chaque extrémité par un fond et contenant un faisceau d'échange entre deux fluides, respectivement un fluide chauffant et un fluide chauffé, traversant le faisceau de préférence à contre-courant, celui-ci rayonnant des calories en direction de la face interne de la paroi latérale dans un espace intermédiaire ménagé entre celle-ci et le faisceau et rempli d'un fluide identique ou différent de l'un des deux fluides traversant ce faisceau, est caractérisé par l'étape consistant à faire circuler le fluide présent dans l'espace intermédiaire à travers un circuit fermé sur lui- même, comprenant ledit espace intermédiaire et au moins une conduite externe à l'enceinte, réunie à deux points distincts de celle-ci.
De préférence, on fait circuler le fluide présent dans 1'espace intermédiaire par un effet de thermosiphon naturel en plaçant les deux points distincts précités à deux niveaux différents le long de la hauteur de l'enceinte.
Le fluide qui règne dans 1'espace intermédiaire entre le faisceau et la face interne de la paroi latérale, chauffé principalement par convection et de façon plus réduite par rayonnement à partir du faisceau des plaques, se refroidit alors dans la conduite externe à l'enceinte, située dans 1'atmosphère et à la température environnante ambiante. Il en résulte un déplacement de ce fluide et une circulation continue de celui-ci dans le circuit fermé ainsi réalisé, consécutivement à la variation de la masse volumique de ce fluide en fonction des températures, respectivement dans 1 ' espace intermédiaire et dans la conduite externe. Cette circulation permet dès lors un échange des calories prélevées dans l'enceinte et entraînées par le fluide avec 1 ' atmosphère externe dans laquelle se situe la conduite, la perte de charge produite au cours de cette circulation étant équilibrée par la variation de la masse volumique précitée.
L'invention concerne également un dispositif d'échange thermique pour la mise en oeuvre de ce procédé, comprenant une virole latérale et des fonds formant ensemble une enceinte métallique chaudronnée, contenant un faisceau d'échange entre deux fluides, respectivement un fluide chauffant et un fluide chauffé, traversant le faisceau de préférence à contre-courant, la face interne de la paroi latérale étant exposée au rayonnement thermique en provenance du faisceau à travers un espace intermédiaire ménagé entre la paroi latérale et le faisceau et rempli d'un fluide identique ou différent de l'un des deux fluides traversant ce faisceau, caractérisé en ce qu'il comporte au moins une conduite externe à 1 ' enceinte et dont les extrémités sont raccordées à deux points distincts de ladite enceinte de manière que la conduite forme avec 1 ' espace intermédiaire un circuit fermé sur lui-même, et des moyens pour faire circuler dans le circuit fermé le fluide présent dans l'espace intermédiaire. De préférence, les moyens pour faire circuler le fluide dans le circuit fermé comprennent, relativement à la position de service du dispositif, un espacement vertical entre les deux points distincts précités de l'enceinte, de manière à créer les conditions d'établissement d'une circulation par thermosiphon.
Selon le cas, le fluide qui circule dans le circuit fermé est identique ou différent à l'un des fluides chauffant ou chauffé parcourant le faisceau, et est de préférence à une pression égale à celle de ces fluides qui est la plus élevée.
Eventuellement, lorsque le fluide chauffé est un mélange biphasique, notamment un mélange d'un gaz et d'un liquide, le fluide qui circule dans le circuit fermé est constitué par ce mélange lui-même ou bien par du gaz séparé dudit mélange .
Selon diverses variantes de réalisation, l'une des extrémités de la conduite externe est raccordée à la partie supérieure de la paroi latérale de l'enceinte, ou dans un fond, par exemple hémisphérique ou elliptique, fermant cette paroi latérale, l'autre extrémité se raccordant à la partie inférieure de ladite paroi latérale ou en une région intermédiaire de celle-ci.
Dans un mode d'exécution particulier du dispositif considéré, où la paroi latérale de 1 ' enceinte s 'étend par exemple avec son axe vertical, le circuit fermé comporte plusieurs conduites externes, montées en parallèle sur l'enceinte. De préférence, le circuit comporte une canalisation de sortie du fluide hors de l'enceinte et une canalisation de retour de ce fluide dans l'enceinte, ces deux canalisations s'étendant horizontalement, parallèlement l'une à l'autre, et étant raccordées par des tubulures distinctes disposées verticalement et parcourues par le fluide du haut vers le bas à 1 ' extérieur de 1 'enceinte. Avantageusement, la paroi de l'enceinte comporte, judicieusement répartis selon sa hauteur, des capteurs de température dont les indications permettent d'ajuster manuellement ou par 1 ' intermédiaire d'un dispositif électronique de commande, le réglage d'ouverture ou de fermeture d'au moins une vanne, montée sur la conduite externe pour ajuster le débit du fluide circulant dans le circuit fermé. Dans le cas où l'enceinte comporte plusieurs conduites externes montées en parallèles, tout ou partie d'entre elles peuvent comporter des vannes asservies aux mesures de température effectuées par les capteurs disposés sur la paroi latérale.
D'autres caractéristiques du procédé et du dispositif, objets de la présente invention, apparaîtront encore à travers la description qui suit de plusieurs exemples de réalisation, donnés à titre indicatif et non limitatif, en référence aux dessins annexés sur lesquels :
- La Figure 1 est une vue schématique en coupe verticale d'un échangeur classique à plaques soudées, notamment du genre de ceux en usage dans 1 ' industrie du raffinage pour l'opération connue sous le terme de reformation catalytique.
- La figure 1A illustre une variante pour 1 ' enceinte de 1 ' échangeur selon la Figure 1. - La Figure 2 est une vue en perspective partielle d'une fraction du faisceau des plaques, utilisé dans 1 ' échangeur selon la Figure 1.
- La Figure 2A illustre une variante de réalisation du faisceau des plaques.
- La Figure 3 est une vue en coupe verticale d'un échangeur, analogue à celui de la Figure 1, mais comportant les dispositions conformes à l'invention. - La Figure 3A est une variante pour 1 'enceinte de l' échangeur, correspondant à la Figure 3, sensiblement comme la Figure 1A correspond à la Figure 1. - Les Figures 4, 5 et 6 sont des vues en coupe, encore plus schématiques, de diverses variantes de réalisation de l'échangeur selon la Figure 3. Sur la Figure 1, la référence 1 désigne un échangeur thermique à plaques soudées et à calandre de conception classique, notamment dans l'industrie du pétrole et en particulier, quoique non exclusivement, dans l'industrie du raffinage, étant dès l'abord précisé que l'invention telle qu'elle sera décrite plus loin ne se limite nullement à une application ou une utilisation particulière d'un tel échangeur.
L'échangeur 1 comporte une enceinte 2 à axe vertical, constituée par l'assemblage approprié d'une paroi latérale qui dans l'exemple considéré est une virole sensiblement cylindrique 3 et de deux fonds hémisphériques, respectivement un fond supérieur 4 et un fond inférieur 5. L'enceinte 2 est maintenue dans la position représentée avec son axe vertical au moyen de pieds d'appui au sol, tels que 6, soudés à la partie inférieure de la virole 3. En variante, la section de la virole pourrait être différente, de même que la forme des fonds terminant cette virole, ces fonds pouvant par exemple avoir un profil elliptique.
A l'intérieur de celle-ci est logé un faisceau d'échange 7 qui, dans l'exemple de réalisation représenté, est plus spécialement constitué par un empilement de plaques parallèles telles que 8. Ces plaques sont de préférence formées par explosion, avec mise en oeuvre d'un procédé en lui-même connu. De préférence, elles sont formées (de manière non représentée sur le dessin) pour présenter de part et d'autre du plan de chaque plaque, des bossages permettant un appui mécanique des plaques l'une sur 1'autre selon 1'épaisseur du faisceau selon un grand nombre de points. De préférence, comme le montre schématiquement la Figure 2, des entretoises 9 et 10, se présentant sous la forme de barrettes disposées en L sont interposées entre les plaques voisines de manière à ménager pour chaque espace qui sépare deux plaques successives du faisceau deux fentes 11 et 12, opposées l'une à l'autre selon les deux petits côtés opposés des plaques. Les fentes 11 et 12 d'un espace sont en outre décalées par rapport à celles des deux espaces voisins.
Bien entendu, la disposition ci-dessus n'a pas en elle-même un caractère exclusif, l'écartement des plaques 8 pouvant être réalisé par des entretoises de formes différentes, comme illustré par exemple sur la Figure 2A, où les espaces voisins sont alternativement équipés d'entretoises en U 9a et 10a en regard l'une de l'autre, et respectivement d'entretoises identiques 9b sous forme de barrettes longitudinales disposées le long des côtés latéraux des plaques 8, ces barrettes étant séparées par des plaquettes intermédiaires 10b s'étendant perpendiculairement à la direction des précédentes.
Ces dispositions en elles-mêmes classiques, quelles que soient les formes adoptées pour les entretoises d'écartement, réalisent entre les plaques des canaux de circulation voisins, respectivement 13 et 14 (Figure 1) , réservés à la circulation de deux fluides échangeant entre eux des calories à travers les plaques de 1'empilement du faisceau, l'un de ces fluides étant un fluide chauffant et l'autre un fluide à chauffer, ces fluides pouvant être à l'état liquide ou gazeux ou encore biphasique, selon les conditions d'emploi de 1'échangeur, la nature de ces fluides et les températures en présence. Les canaux 13 et 14 sont alternativement imbriqués dans le faisceau entre les plaques successives, les barrettes entretoises 9 et 10 étant retournées de l'une à l'autre de 180° .
Tous les canaux 13 réservés par exemple à la circulation du fluide chauffé sont réunis à l'une des extrémités du faisceau 7, monté verticalement dans l'enceinte 2 à un collecteur d'entrée 15, ce collecteur étant lui-même raccordé à une conduite 16 d'admission du fluide dans l'échangeur. A la partie supérieure du faisceau, celui-ci comporte un collecteur analogue 17 pour la sortie du fluide chauffé par une conduite d'évacuation 18, le sens de la circulation de ce fluide étant schématisé par les flèches illustrées à l'extrémité des conduites 16 et 18. De la même manière, tous les canaux 14 sont réservés à la circulation du fluide chauffant et réunis à un collecteur d'admission 19 et à l'opposé, à un collecteur d'évacuation 20, eux- mêmes raccordés à des conduites, respectivement 21 et 22, le sens de cette circulation étant à nouveau schématisé par les flèches illustrées à l'extrémité de ces conduites. Ces dernières, ainsi que les conduites 16 et 18, sont avantageusement munies de soufflets de dilatation 23 permettant de tolérer leurs variations dimensionnelles par rapport à l'enceinte formée de la virole 3 et des fonds 4 et
•5, en raison des différences de température des fluides qui les parcourent, le fluide chauffant entrant dans le collecteur 19, par exemple à 500°C et sortant du collecteur 20 à environ 125°C, tandis que le fluide à chauffer entre dans le collecteur 15 à 100°C pour sortir du collecteur 17 à approximativement 480°C.
Les conduites 16, 18, 21 et 22 traversent les fonds hémisphériques 4 et 5 en étant soudées de façon étanche à ceux-ci.
Enfin et selon une disposition en elle-même connue, l'espace libre 24 ménagé entre le faisceau 7 et la paroi interne de la virole 3 est rempli d'un fluide pratiquement stagnant, la pression de ce fluide étant de préférence égale à celle qui est la plus élevée du fluide chauffant ou du fluide chauffé. Le fluide qui remplit ainsi l'enceinte 2 peut être identique au précédent ou être de nature différente; en particulier, si le fluide à chauffer est un mélange biphasique, le fluide dans l'enceinte à l'extérieur du faisceau dans l'espace 24 peut être une fraction gazeuse de ce mélange.
Dans l'exemple illustré sur la Figure 1, le fluide qui règne dans 1 'espace 24 correspond au fluide à chauffer, à la pression de celui-ci à son entrée dans l'appareil dans la conduite 16, une canalisation de liaison 25 étant prévue à cet effet entre cette conduite et 1 ' intérieur de la virole 3 , après traversée du fond inférieur 5. En variante, on peut également prévoir de ménager directement dans la conduite 16 un ou plusieurs orifices tels que 25a, réalisant l'égalisation des pressions souhaitée. Bien entendu, si le fluide amené à l'intérieur de l'enceinte 2 est différent du fluide à réchauffer, son introduction dans cette enceinte est réalisée par une canalisation distincte. Dans une réalisation de ce genre, le faisceau d'échange 7 rayonne de la chaleur dans l'espace 24, de telle sorte que la température à laquelle sont portés la virole 3 et les fonds 4 et 5, s'élève progressivement depuis la partie inférieure jusqu'à la partie supérieure de l'enceinte 2. L'élévation de température de 1 ' enceinte est également due à la légère convection créée, surtout si le fluide dans l'espace 24 n'est pas totalement stagnant, et également à la conduction mineure mais néanmoins non totalement négligeable à l'endroit où les conduites 16, 18, 21 et 22 traversent les fonds 4 et 5. Une isolation thermique 29 recouvre le fond supérieur 4 et la virole 3 pour minimiser les fuites thermiques vers l'ambiance extérieure et pour protéger le personnel. En général, de manière non représentée, cette isolation recouvre même le fond inférieur 5. Les fonds et la virole latérale ne peuvent pas être réalisés en totalité à l'aide de tôles d'un acier ordinaire, notamment un acier au carbone, convenablement chaudronnées et assemblées selon la hauteur de l'appareil. Par exemple, pour des fluides qui comportent une part importante d'hydrogène, le fond inférieur 5 et la partie basse 26 de la virole peuvent être réalisés avec un tel acier ordinaire jusqu'au niveau correspondant à 270°C environ, mais, la partie supérieure 27 et le fond supérieur 4 doivent nécessairement être fabriqués au moyen de tôles d'acier allié au chrome - molybdène notamment. Ce matériau est plus cher et plus difficile à façonner, en particulier à chaudronner et à souder. Ceci accroît le coût de 1'échangeur. Sur la Figure 1, la zone de liaison 28 entre les deux parties 26 et 27 de la virole 3 se situe à peine au tiers de sa hauteur dans les conditions d'emploi envisagées.
Sur la Figure 1, on a représenté la paroi externe de la virole avec ses deux parties successives 26 et 27 qui présentent une épaisseur sensiblement constante du bas vers le haut de l'enceinte, entre les fonds hémisphériques 4 et 5. Il est alors nécessaire de donner aux tôles d'acier utilisées une épaisseur égale à celle qui est nécessaire dans la zone qui est portée à la température la plus élevée. En pratique toutefois, il peut être préférable de donner à la virole une épaisseur progressive, en particulier dans sa partie 27, en constituant cette dernière au moyen d'éléments successifs tels que 27a, 27b, 27c, comme représenté sur la Figure 1A, présentant chacune une épaisseur différente qui croît au fur et à mesure que l'on s'élève selon la hauteur de la virole en fonction de l'accroissement de la température correspondante. Même dans ce cas la réalisation est coûteuse. Pour pallier les inconvénients ainsi présentés par les solutions classiques, on met en oeuvre les dispositions illustrées notamment sur la Figure 3, sur laquelle on a repris des chiffres de référence identiques à ceux des figures précédentes pour désigner de l'une à l'autre les mêmes organes.
Dans ce cas, on prévoit d'associer l'enceinte 2 avec des moyens permettant de refroidir cette enceinte. Dans l'exemple représenté, ces moyens sont au nombre de deux en combinaison, mais chacun d'eux pourrait être mis en oeuvre séparément. Un premier moyen consiste à supprimer l'isolation thermique 29 le long de la virole 3, de manière que la virole 3 se refroidisse par rayonnement de chaleur vers l'extérieur. La suppression de l'isolation 29 concerne en particulier la partie froide 26 dans une région 40 attenante à la partie chaude 27, ainsi que la région 41 de la virole qui appartient à la partie chaude. Dans l'exemple, l'isolation 29 n'est maintenue que sur le fond chaud 4 car il s'agit en général d'une zone accessible au personnel et où il serait par conséquent inadmissible de laisser apparentes des parois dont la température serait à plus de 100°C.
Un autre moyen de refroidissement de l'enceinte consiste d'une manière générale à assurer une circulation en continu du fluide qui règne dans l'espace 24 entre le faisceau et la face interne de la virole 3, de telle sorte que ce fluide puisse être convenablement refroidi à 1'extérieur et maintenir la température de la virole à une valeur qui est en moyenne sensiblement moins élevée que dans la solution classique. II en résulte que la partie basse 26 de la virole, réalisée en acier au carbone, peut être notablement plus grande que la partie 27 en acier au chrome - molybdène. En outre, l'épaisseur moyenne de la partie 27 et par suite la quantité de métal utilisée peuvent également être globalement réduites. La zone de liaison 28 entre les parties 26 et 27 est située beaucoup plus près du sommet de la virole, au plus près du fond 4. La Figure 3A illustre, de façon analogue à la Figure 1A vue plus haut, une réalisation où la partie 27 de la virole en acier au chrome - molybdène est formée d'éléments étages 27a et 27b, d'épaisseur croissante de l'un au suivant. Pour réaliser la circulation en continu du fluide baignant 1'espace 24, on prévoit selon l'invention d'associer l'enceinte 2 à un circuit extérieur 30, constitué par au moins une conduite 31 de diamètre approprié comportant à ses extrémités haute et basse des raccords 32 et 33, sensiblement horizontaux et parallèles, qui traversent l'enceinte de part et d'autre des régions 40 et 41 pour respectivement permettre au fluide qui règne dans celle-ci d'être prélevé, de circuler de haut en bas dans la conduite 31 avant d'être renvoyé dans l'enceinte. La conduite 31 s'étend verticalement en étant située dans l'atmosphère ambiante environnante. La circulation précitée s'effectue par thermosiphon naturel en raison des différences de température de ce fluide, dans les zones en partie supérieure et en partie inférieure où débouchent les raccords 32 et 33.
Dans son parcours, ce fluide échange des calories avec l'atmosphère externe, dans une mesure telle qu'il puisse absorber une partie ajustable de la quantité de chaleur émise dans l'enceinte par le faisceau 7 vers la virole 3. La circulation du fluide est due à la différence de pression statique générée par 1 ' écart de masse volumique moyenne de ce fluide entre l'intérieur et l'extérieur, en équilibrant les pertes de charge créées par cette circulation. L'effet de refroidissement recherché est essentiel dans les parties médiane et supérieure de la virole où la température est la plus élevée, ce qui conduit à déterminer de façon optimale la région de l'enceinte où le raccord horizontal 32 traverse cette dernière. Ainsi et comme représenté sur la Figure 4, le raccord 32 peut être disposé pratiquement à la partie la plus haute de la virole cylindrique, ou encore venir déboucher dans le fond supérieur comme représenté sous la référence 32' . De même, le raccord 33 par lequel le fluide retourne à 1 ' intérieur de 1 ' enceinte peut être localisé dans la partie basse de la virole 3
(Figure 4) , ou en tout autre endroit et notamment dans sa partie médiane (Figure 5) . Notamment lorsque la conduite 31 est utilisée en combinaison avec une suppression au moins partielle de l'isolant 29, on peut prévoir que la circulation à travers la conduite 31 assure un complément réglable de refroidissement de l'enceinte, pour stabiliser celle-ci à un régime de température déterminé, malgré notamment les variations des conditions climatiques, auxquelles est exposée la face extérieure, non isolée, de la virole. Ainsi, de façon avantageuse mais non nécessaire dans toutes les circonstances d'utilisation, la conduite verticale 31 peut être munie d'une électrovanne 34, permettant d'ajuster s ' il y a lieu le débit du fluide dans cette conduite. Par ailleurs, cette électrovanne 34 peut être avantageusement pilotée par 1 ' indication fournie par un ou plusieurs capteurs de température 35 (Figure 5) qui mesurent la température de la face externe de la virole 3 et sont raccordés par des connexions appropriées 36 au servomoteur de 1'électrovanne correspondante. Dans une version simplifiée, la connaissance des températures de l'enceinte à différents niveaux de sa virole peut permettre d'agir sur une ou plusieurs vannes à commande manuelle.
Dans une autre variante illustrée sur la Figure 6, le circuit 30 dans lequel circule le fluide de l'enceinte peut comporter plusieurs conduites 31a, 31b, 31c, réunies à l'enceinte par des raccords 32a et 33a pour la conduite 31a, ou encore 32b et 33b pour les conduites 31b et 31c, ces dernières étant alors montées en parallèle l'une à l'autre. Tout ou partie de ces conduites peut comporter des électrovannes 34, les capteurs 35 répartis sur la virole selon la hauteur de celle-ci, pouvant être réunis par leurs connexions 36 à une centrale de commande 37 qui ajuste les débits relatifs du fluide dans ces diverses conduites et notamment permet d'asservir la température moyenne de la virole aux résultats des mesures effectuées.
Bien entendu, l'invention ne se limite pas aux exemples de réalisation plus spécialement décrits en référence aux dessins annexés; elle en embrasse au contraire toutes les variantes. En particulier, la structure particulière du faisceau d'échange thermique n'est pas en elle-même déterminante pour la mise en oeuvre de l'invention, comme exposé en relation avec la description des Figures 2 et 2A. De même, on peut prévoir d'améliorer le résultat obtenu en aménageant les faces en regard du faisceau des plaques et de la virole, notamment pour leur donner un état de surface propre à limiter encore l'effet du rayonnement thermique entre le faisceau et la virole, en réduisant par conséquent la montée en température de la virole. De même, le fluide qui règne dans l'espace 24 entre la virole et le faisceau peut être choisi de manière à présenter des caractéristiques autorisant une meilleure absorption par celui-ci de la chaleur rayonnée par le faisceau.
Dans tous les cas, l'effet de thermosiphon créé dans le circuit externe à la virole et la circulation par thermosiphon naturelle du fluide qui remplit l'espace entre le faisceau d'échange et 1'enceinte externe assurent un refroidissement suffisant de cette dernière avec une perte de charge équilibrée. A titre indicatif, avec une virole présentant un diamètre de 1'ordre de 2 m et une hauteur voisine de 13 m, le circuit extérieur comporte une longueur d'environ 17 m pour un diamètre de la conduite externe de 114 mm, ceci dans le cas où le gradient de températures, comme déjà indiqué, s'étend entre 100 et 500°C, la perte de charge générée avec un débit de circulation du fluide représentant environ 100 Kg/h, n'étant pas supérieure à 10 Pa, cette dernière valeur étant par définition couverte par la différence de pression créée par la différence de masse volumique du fluide entre l'intérieur de l'enceinte et 1'intérieur de la conduite du circuit externe. Avec ces données, on constate un abaissement significatif de la température de la virole, pouvant égaler ou même dépasser 100°C, ceci sans affecter de manière significative le transfert thermique entre les deux fluides, le rapport de la quantité de chaleur évacuée par le thermosiphon à celle échangée dans l'appareil étant, dans l'exemple ci-dessus, de l'ordre de un pour mille. La suppression de 1'isolation au moins sur une partie de la hauteur de la virole permet également une réduction significative de la température de la virole. Ainsi, dans un exemple concret, le couplage thermosiphon et suppression d'isolation permet de ramener la température de 490°C à environ 300°C au sommet de la virole, auquel cas la virole est réalisable sur pratiquement toute sa hauteur en acier au carbone peu coûteux.
L'invention est applicable aux échangeurs disposés par exemple horizontalement. Même dans ce cas la circulation par thermosiphon peut être obtenue, en raccordant la conduite externe à deux niveaux différents de la hauteur de l'enceinte. La circulation par thermosiphon est réalisable même si l'extrémité chaude de 1'échangeur est en bas, dès lors notamment qu'il y a une différence de température moyenne entre le fluide à 1'intérieur de 1'enceinte et le fluide dans la conduite externe. La circulation peut aussi être réalisée, en totalité ou en combinaison avec l'effet de thermosiphon, par une pompe.

Claims

REVENDICATIONS
1. Dispositif d'échange thermique comprenant un faisceau d'échange thermique (7) définissant pour deux fluides d'échange des trajets séparés en sens contraires, et une enceinte (2) qui contient le faisceau et dont la face interne est exposée au rayonnement thermique en provenance du faisceau, l'enceinte (2) comprenant une paroi latérale (3) fermée par un fond chaud (4) du côté de l'entrée du fluide chauffant et du départ du fluide chauffé, et un fond froid (5) opposé au fond chaud, caractérisé en ce que l'enceinte est réalisée en deux parties, une partie froide (26) incluant le fond froid (5) , et au moins la majeure partie de la paroi latérale (3) , et une partie chaude (27) incluant le fond chaud (4) et réalisé en matériau à meilleure résistance à la chaleur que la partie froide, et en ce que le dispositif (1) comprend des moyens (31) pour évacuer des calories de 1'enceinte au moins dans une région (40) de la partie froide (26) de 1'enceinte qui est attenante à la partie chaude (27) .
2. Dispositif selon la revendication 1, caractérisé par une isolation thermique (29) sur une certaine surface à partir de l'extrémité chaude de l'enceinte (2) .
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que les moyens pour évacuer des calories comprennent l'exposition directe de la face extérieure de ladite région attenante (40) , à 1'ambiance extérieure.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que l'enceinte (2) renferme un fluide dans un espace intermédiaire situé entre la face intérieure de l'enceinte (2) et le faisceau (14) , et en ce que les moyens pour évacuer les calories comprennent des moyens (30) pour faire circuler le fluide de l'espace intermédiaire dans un circuit fermé constitué par 1'espace intermédiaire (24) et au moins une conduite (31) qui est en échange thermique avec 1'ambiance extérieure et relie deux points distincts (32, 33) de l'enceinte situés de part et d'autre de ladite région attenante (40) .
5. Procédé de refroidissement d'une paroi latérale (3) d'une enceinte métallique chaudronnée (2) , cette paroi latérale étant fermée à chaque extrémité par un fond (4, 5) et contenant un faisceau d'échange (7) entre deux fluides, respectivement un fluide chauffant et un fluide chauffé, traversant le faisceau de préférence à contre-courant, celui-ci étant monté verticalement dans 1'enceinte et rayonnant des calories en direction de la face interne de la paroi latérale dans un espace intermédiaire (24) ménagé entre celle-ci et le faisceau et rempli d'un fluide identique ou différent de l'un des deux fluides traversant ce faisceau, caractérisé en ce que le procédé comprend 1'étape consistant à faire circuler le fluide présent dans 1'espace intermédiaire à travers un circuit fermé sur lui- même (30) , comprenant ledit espace intermédiaire et au moins une conduite (31) externe à l'enceinte, réunie à deux points distincts de celle-ci.
6. Procédé selon la revendication 5, caractérisé en ce qu'on fait circuler le fluide présent dans l'espace intermédiaire (24) par un effet de thermosiphon naturel en plaçant les deux points distincts précités à deux niveaux différents le long de la hauteur de 1'enceinte.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'on soumet le fluide qui circule dans le circuit fermé (30) à une pression égale à celle des fluides chauffant et chauffé qui est la plus élevée.
8. Procédé selon l'une des revendications 5 à
7, caractérisé en ce qu'on met en oeuvre comme fluide chauffé un mélange biphasique et on fait circuler dans le circuit fermé du gaz séparé dudit mélange.
9. Procédé selon l'une des revendications 5 à
8, caractérisé en ce qu'on règle au moins une vanne (34) installée dans la conduite (31, 31a) .
10. Procédé selon la revendication 9, caractérisé en ce qu'on relève la température en au moins un point de 1'enceinte et on règle la vanne (34) de façon à faire croître le débit dans la conduite (31) en fonction de la température relevée.
11. Dispositif d'échange de chaleur pour la mise en oeuvre d'un procédé selon l'une des revendications 5 à 10 comprenant une paroi latérale
(3) et des fonds (4, 5) formant ensemble une enceinte métallique chaudronnée (2) , contenant un faisceau d'échange (7) entre deux fluides, respectivement un fluide chauffant et un fluide chauffé, traversant le faisceau de préférence à contre-courant, celui-ci étant monté verticalement dans l'enceinte, la face interne de la paroi latérale étant exposée au rayonnement thermique en provenance du faisceau à travers un espace intermédiaire (24) ménagé entre la paroi latérale et le. faisceau et rempli d'un fluide identique ou différent de l'un des deux fluides traversant ce faisceau, caractérisé en ce qu'il comporte au moins une conduite (31) externe à l'enceinte et dont les extrémités (32, 33) sont raccordées à deux points distincts de ladite enceinte de manière que la conduite (31) forme avec l'espace intermédiaire un circuit fermé sur lui-même (30) , et des moyens pour faire circuler dans le circuit fermé le fluide présent dans l'espace intermédiaire (24).
12. Dispositif selon la revenications 4 ou 11, caractérisé en ce que les moyens pour faire circuler le fluide dans le circuit fermé comprennent, relativement à la position de service du dispositif, un espacement vertical entre les deux points distincts précités (32, 33) de l'enceinte, de manière à créer les conditions d'établissement d'une circulation par thermosiphon.
13. Dispositif selon la revendication 4, 11 ou 12, caractérisé en ce que l'une des extrémités (32) de la conduite externe (31) est raccordée à une partie supérieure de la paroi latérale (3) de l'enceinte (2) , ou au fond supérieur de l'enceinte, l'autre extrémité (33) se raccordant à une partie inférieure de ladite paroi latérale ou en une région intermédiaire de celle-ci.
14. Dispositif selon l'une quelconque des revendications 4 et 11 à 13, caractérisé en ce que le circuit fermé comporte plusieurs conduites externes (31a, 31b, 31c ...), montées en parallèle sur 1 'enceinte.
15. Dispositif selon la revendication 14, caractérisé en ce que le circuit fermé (30) comporte une canalisation (32) de sortie du fluide hors de l'enceinte et une canalisation de retour
(33) de ce fluide dans l'enceinte, ces deux canalisations s 'étendant horizontalement, parallèlement l'une à l'autre, et étant raccordées par des tubulures de liaison distinctes (31) disposées verticalement et parcourues par le fluide à l'extérieur de l'enceinte.
16. Dispositif selon l'une quelconque des revendications 4 et 11 à 15, caractérisé en ce que le diamètre des conduites (31, 32, 33) du circuit (30) est adapté de manière à assurer l'équilibre du thermosiphon créé dans le circuit.
17. Dispositif selon l'une des revendications 4 et 11 à 16, caractérisé par un moyen (34) de commande du débit dans la conduite (31) .
18. Dispositif selon la revendication 17, caractérisé en ce que le moyen de commande de débit est du type thermostatique piloté à partir d'au moins un capteur (35) de la température de 1 'enceinte (2) .
19. Dispositif selon l'une quelconque des revendications 4 et 11 à 16, caractérisé en ce que l'enceinte (2) comporte, judicieusement répartis selon sa hauteur, des capteurs de température (35) dont les indications permettent d'ajuster manuellement ou par l'intermédiaire d'un dispositif électronique de commande, le réglage d'ouverture ou de fermeture d'au moins une vanne (34), montée sur la conduite externe (31) pour ajuster le débit du fluide circulant dans le circuit (30) .
20. Dispositif selon la revendication 14 ou 15, caractérisé en ce que l'enceinte (2) comporte, judicieusement répartis selon sa hauteur, des capteurs de température (35) dont les indications permettent d'ajuster manuellement ou par l'intermédiaire d'un dispositif électronique de commande, le réglage d'ouverture ou de fermeture de vannes disposées dans les conduites externes (31a, 31b, 31c) pour ajuster le débit du fluide circulant dans le circuit (30) .
21. Echangeur thermique comportant un dispositif selon l'une quelconque des revendications 1 à 4 et 11 à 20.
22. Echangeur thermique selon la revendication 21, dans lequel les faces en regard du faisceau (7) et de la paroi latérale (3) comportent un traitement de surface pour ajuster les échanges thermiques par rayonnement entre le faisceau et la paroi latérale.
23. Echangeur thermique selon la revendication
21 ou 22, dans lequel le fluide dans l'espace intermédiaire (24) entre le faisceau et la paroi latérale est choisi pour permettre une absorption améliorée de la chaleur rayonnee par le faisceau.
PCT/FR1994/000273 1993-03-17 1994-03-14 Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif WO1994021979A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU62604/94A AU6260494A (en) 1993-03-17 1994-03-14 Heat exchanger device and method for cooling the inner chamber therof
US08/522,348 US5695007A (en) 1993-03-17 1994-03-14 Heat exchanger device and method for cooling the inner chamber thereof
EP94909960A EP0688421B1 (fr) 1993-03-17 1994-03-14 Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif
DE69406112T DE69406112T2 (de) 1993-03-17 1994-03-14 Wärmeaustauschvorrichtung und verfahren zur kühlung der aussenwand dieser vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/03061 1993-03-17
FR9303061A FR2702831B1 (fr) 1993-03-17 1993-03-17 Procédé et dispositif de refroidissement de l'enceinte d'un échangeur thermique.

Publications (1)

Publication Number Publication Date
WO1994021979A1 true WO1994021979A1 (fr) 1994-09-29

Family

ID=9445054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000273 WO1994021979A1 (fr) 1993-03-17 1994-03-14 Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif

Country Status (6)

Country Link
US (1) US5695007A (fr)
EP (1) EP0688421B1 (fr)
AU (1) AU6260494A (fr)
DE (1) DE69406112T2 (fr)
FR (1) FR2702831B1 (fr)
WO (1) WO1994021979A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732759A1 (fr) * 1995-04-04 1996-10-11 Packinox Sa Echangeur de chaleur a plaques pour fluide sous pression et utilisation
FR2801376A1 (fr) * 1999-11-24 2001-05-25 Air Liquide Echangeur thermique a plaques muni d'une enveloppe de pressurisation
EP1593925A1 (fr) * 2004-05-06 2005-11-09 Packinox Échangeur thermique à plaques

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308795B2 (en) 1998-12-03 2001-10-30 Caterpillar Inc. Radiator mounting arrangement for a work machine
US6793028B2 (en) 1999-05-11 2004-09-21 Caterpillar S.A.R.L. Mounting arrangement for a radiator assembly of a work machine
MX2007008365A (es) * 2001-01-10 2007-09-21 Compactgtl Plc Reactor catalitico.
US6615912B2 (en) 2001-06-20 2003-09-09 Thermal Corp. Porous vapor valve for improved loop thermosiphon performance
DE10226204A1 (de) * 2002-06-13 2003-12-24 Ballard Power Systems Druckentlasteter Reaktor-/Wärmeübertrageraufbau
US7013956B2 (en) * 2003-09-02 2006-03-21 Thermal Corp. Heat pipe evaporator with porous valve
US7373771B2 (en) * 2004-07-09 2008-05-20 Pratt & Whitney Canada Corp. Cooling arrangement for an accessory gearbox and method of cooling
GB2422004A (en) 2005-01-07 2006-07-12 Hiflux Ltd Plate heat exchanger
AT501207A1 (de) * 2005-07-28 2006-07-15 Zweimueller Peter Dipl Ing Vorrichtung zur erzeugung von reinem dampf
US20070029077A1 (en) * 2005-08-02 2007-02-08 Mirolli Mark D Hybrid heat exchanger
US8752615B2 (en) 2008-01-08 2014-06-17 General Electric Company Methods and systems for controlling temperature in a vessel
EP2246653B1 (fr) * 2009-04-28 2012-04-18 ABB Research Ltd. Thermosiphon à tube torsadé
EP2246654B1 (fr) * 2009-04-29 2013-12-11 ABB Research Ltd. Échangeur thermique à thermosiphon à rangs multiples
WO2013169774A2 (fr) 2012-05-07 2013-11-14 Phononic Devices, Inc. Composant d'échangeur de chaleur thermoélectrique comprenant un couvercle d'étalement de la chaleur protecteur et une résistance d'interface thermique optimale
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US20180244127A1 (en) * 2017-02-28 2018-08-30 General Electric Company Thermal management system and method
US10175003B2 (en) 2017-02-28 2019-01-08 General Electric Company Additively manufactured heat exchanger
NL2019792B1 (en) * 2017-10-24 2019-04-29 Micro Turbine Tech B V Heat exchanger comprising a stack of cells and method of manufacturing such a heat exchanger
CN115435615B (zh) * 2022-09-26 2023-12-22 江苏曙光压力容器有限公司 一种具有传热强化效果的波纹管换热器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984248A (fr) * 1948-06-18 1951-07-03 Air Preheater échangeur de chaleur à haute température et à double enveloppe
FR1092115A (fr) * 1953-02-28 1955-04-19 Sulzer Ag échangeur de chaleur
FR1161500A (fr) * 1956-09-28 1958-09-01 Stein & Roubaix échangeur thermique à faisceaux tubulairees multiples
DE1931222A1 (de) * 1969-06-20 1970-12-23 Schmidt Sche Heissdampf Stehender Roehrenwaermeaustauscher,insbesondere zum Kuehlen frischer Spalt- und/oder Synthesegase
GB1411472A (en) * 1973-01-06 1975-10-29 Clarke Chapman Ltd Method of and apparatus for heat exchange
FR2417738A1 (fr) * 1978-02-15 1979-09-14 Oat Corp Joseph Echangeur de chaleur a tubes paralleles
JPS57196094A (en) * 1981-05-28 1982-12-01 Babcock Hitachi Kk Heat exchanger
JPS60200090A (ja) * 1984-03-23 1985-10-09 Mitsubishi Heavy Ind Ltd 冷却ジヤケツトを有する熱交換器
WO1990009555A1 (fr) * 1989-02-20 1990-08-23 Dieter Wallstein Echangeur de chaleur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR958699A (fr) * 1942-05-22 1950-03-17
DE2431478A1 (de) * 1974-07-01 1976-01-22 Uhde Gmbh Friedrich Waermetauscher zum einbau in eine atomreaktor-anlage
SU1145232A1 (ru) * 1983-11-29 1985-03-15 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Вертикальный пленочный теплообменник

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR984248A (fr) * 1948-06-18 1951-07-03 Air Preheater échangeur de chaleur à haute température et à double enveloppe
FR1092115A (fr) * 1953-02-28 1955-04-19 Sulzer Ag échangeur de chaleur
FR1161500A (fr) * 1956-09-28 1958-09-01 Stein & Roubaix échangeur thermique à faisceaux tubulairees multiples
DE1931222A1 (de) * 1969-06-20 1970-12-23 Schmidt Sche Heissdampf Stehender Roehrenwaermeaustauscher,insbesondere zum Kuehlen frischer Spalt- und/oder Synthesegase
GB1411472A (en) * 1973-01-06 1975-10-29 Clarke Chapman Ltd Method of and apparatus for heat exchange
FR2417738A1 (fr) * 1978-02-15 1979-09-14 Oat Corp Joseph Echangeur de chaleur a tubes paralleles
JPS57196094A (en) * 1981-05-28 1982-12-01 Babcock Hitachi Kk Heat exchanger
JPS60200090A (ja) * 1984-03-23 1985-10-09 Mitsubishi Heavy Ind Ltd 冷却ジヤケツトを有する熱交換器
WO1990009555A1 (fr) * 1989-02-20 1990-08-23 Dieter Wallstein Echangeur de chaleur

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 51 (M - 457) 28 February 1986 (1986-02-28) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 47 (M - 196)<1192> 24 February 1983 (1983-02-24) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2732759A1 (fr) * 1995-04-04 1996-10-11 Packinox Sa Echangeur de chaleur a plaques pour fluide sous pression et utilisation
FR2801376A1 (fr) * 1999-11-24 2001-05-25 Air Liquide Echangeur thermique a plaques muni d'une enveloppe de pressurisation
EP1103774A1 (fr) * 1999-11-24 2001-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Echangeur thermique à plaques muni d'une enveloppe de pressurisation
EP1593925A1 (fr) * 2004-05-06 2005-11-09 Packinox Échangeur thermique à plaques
FR2869979A1 (fr) * 2004-05-06 2005-11-11 Packinox Sa Echangeur thermique a plaques

Also Published As

Publication number Publication date
EP0688421A1 (fr) 1995-12-27
FR2702831A1 (fr) 1994-09-23
US5695007A (en) 1997-12-09
DE69406112T2 (de) 1998-04-30
AU6260494A (en) 1994-10-11
DE69406112D1 (de) 1997-11-13
EP0688421B1 (fr) 1997-10-08
FR2702831B1 (fr) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0688421B1 (fr) Dispositif d&#39;echange thermique et procede de refroidissement de l&#39;enceinte d&#39;un tel dispositif
EP3405723B1 (fr) Echangeur de chaleur à condensation muni d&#39;un dispositif d&#39;échanges thermiques
EP2580534B1 (fr) Absorbeur pour recepteur solaire et recepteur solaire comportant au moins un tel absorbeur
CA2742639C (fr) Reacteur echangeur a tubes baionnettes et a tubes de fumees suspendus a la voute superieure du reacteur
EP3270088A1 (fr) Conteneur d&#39;un systeme de stockage et de restitution de la chaleur comportant au moins deux modules en beton
FR2527302A1 (fr) Tuyaux de transport de fluides isoles au vide
BE1011016A3 (fr) Echangeur de chaleur convectif a contre-courant.
EP0022714A1 (fr) Réacteur nucléaire à neutrons rapides refroidi par un métal liquide et muni d&#39;un système d&#39;évacuation de la puissance résiduelle
EP0163564B1 (fr) Reacteur nucléaire à neutrons rapides à générateur de vapeur intégré dans la cuve
EP0395457B1 (fr) Procédé et appareil de chauffage d&#39;un flux de fluide gazeux par échanges thermiques successifs
FR3038376B1 (fr) Dispositif de stockage d&#39;energie par materiau a changement de phase et son procede de stockage
EP0117191B1 (fr) Générateur de vapeur pour un réacteur nucléaire refroidi par du métal liquide
FR2880106A1 (fr) Dispositif d&#39;echange de chaleur entre deux fluides comportant des couches de mousse metallique
FR2469667A1 (fr) Chauffe-eau
FR2533355A1 (fr) Circuit caloporteur secondaire pour un reacteur nucleaire refroidi par un metal liquide et generateur de vapeur adapte a un tel circuit
FR2666875A1 (fr) Machine frigorifique a adsorption-desorption sur zeolithes utilisant des echangeurs en profile d&#39;aluminium.
FR2482707A1 (fr) Installation de chauffage
EP0553340B1 (fr) Echangeur a plaques
EP0020264A1 (fr) Echangeur de chaleur du type semi-modulaire pour réacteur nucléaire
FR3117042A1 (fr) Dispositif de distillation présentant une consommation énergétique réduite
FR3099564A1 (fr) Module d’échangeur de chaleur à deux circuits de fluides, notamment échangeur de chaleur de réacteur nucléaire
FR3088418A1 (fr) Collecteur de fluide a coques multiples pour echangeur de chaleur avec circulation entre les coques d&#39;un fluide distinct de celui de collecte
EP0956489A1 (fr) Echangeur thermique a plaques
EP0206921B1 (fr) Echangeur de chaleur à tubes en U coaxiaux à écoulement intermédiaire de gaz neutre et réacteur nucléaire à neutrons rapides comportant des échangeurs de ce type
FR3098288A1 (fr) Système de stockage et de récupération de chaleur à l’axe horizontal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08522348

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994909960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994909960

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1994909960

Country of ref document: EP