EP0956489A1 - Echangeur thermique a plaques - Google Patents

Echangeur thermique a plaques

Info

Publication number
EP0956489A1
EP0956489A1 EP97951314A EP97951314A EP0956489A1 EP 0956489 A1 EP0956489 A1 EP 0956489A1 EP 97951314 A EP97951314 A EP 97951314A EP 97951314 A EP97951314 A EP 97951314A EP 0956489 A1 EP0956489 A1 EP 0956489A1
Authority
EP
European Patent Office
Prior art keywords
plate
bundle
plates
heat exchanger
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97951314A
Other languages
German (de)
English (en)
Inventor
Christine Girod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alfa Laval Packinox SAS
Original Assignee
Packinox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Packinox SA filed Critical Packinox SA
Publication of EP0956489A1 publication Critical patent/EP0956489A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids

Definitions

  • the present invention relates to a plate heat exchanger for fluids and in particular a plate heat exchanger used to cool or heat at least one first fluid by heat exchange with at least one second fluid.
  • the first type of heat exchanger comprises a bundle of U-shaped tubes or a bundle of straight tubes in which one of the fluids circulates.
  • the second type of heat exchanger comprises, inside an external envelope or calender, a bundle constituted by plates shaped, for example to present corrugations and reported against each other so as to delimit a plurality of fluid passage channels along the entire length of the beam.
  • the plate bundle comprises a first set of passage channels for a first exchange fluid and a second set of passage channels for a second fluid, so that the first and the second fluid can pass through the following plate bundle its entire length.
  • the plates made of thin sheets most often made of stainless steel, provide a very large surface for exchange with the fluids and ensure heat transfer between these fluids.
  • the grille has a wall thickness allowing it to withstand the pressure of fluids introduced into the heat exchanger.
  • the first set of fluid passage channels inside the bundle is connected, via junction pipes to a first distribution and recovery circuit of the first fluid disposed outside the calender.
  • the second set of channels for the passage of the second fluid inside the bundle is connected to a second circuit for distributing and recovering the second fluid by means of junction pipes.
  • junction pipes pass through the outer casing in a sealed manner.
  • This type of plate bundle heat exchanger works with various fluids, such as for example liquids or gases or a two-phase mixture and can be used for example for the implementation of a physical or chemical process in the field of petroleum refining. , petrochemicals, chemistry and the treatment of all gases.
  • these plate heat exchangers have a circulation of fluids in the plate bundle either with parallel currents or with crossed currents.
  • the fluids circulate alternately in the channels delimited by the plates, one channel in two for one fluid and one channel in two for the other fluid.
  • At least one of the fluids may be important for at least one of the fluids to have a specific temperature profile and for example as close as possible to an isothermal profile.
  • the object of the invention is to avoid these drawbacks by proposing a plate heat exchanger between several fluids making it possible to obtain at the outlet of this exchanger for at least one of the fluids, a temperature profile as desired and in particular close to an isothermal profile.
  • the subject of the invention is a plate heat exchanger, of the type comprising a bundle of plates formed by stacking heat exchange plates provided with corrugations, characterized in that the plates delimit channels forming between them, on the one hand, at least one main circuit for at least one first fluid and, on the other hand, N secondary circuits for N fluids and extending perpendicular to said main circuit, each channel of said main circuit being disposed between two channels of the secondary circuits.
  • each plate of the bundle of plates comprises, on its longitudinal edge at the level of the inlets of the secondary fluids, plates added and provided with corrugations directed substantially perpendicularly to the longitudinal axis of the plate bundle,
  • each plate of the bundle of plates comprises, on its longitudinal edge at the outlets of the secondary fluids, plates added and provided with undulations directed substantially perpendicular to the longitudinal axis of the bundle of plates
  • each plate of the bundle of plates comprises, on its longitudinal edge at the inlets and outlets of the secondary fluids, plates added and provided with undulations directed substantially perpendicular to the longitudinal axis of the bundle of plates
  • each plate of the bundle of plates comprises, on its transverse edge at the level main fluid inlets, an added plate and provided with corrugations directed substantially in the longitudinal axis of the plate bundle
  • each plate of the plate bundle has, on its transverse edge at the main fluid outlets, an added plate and provided with corrugations directed substantially in the longitu- dinal of the plate bundle
  • each plate of the bundle of plates comprises, on its transverse edge at the level of the inlets and outlets of the main fluid, an attached plate and provided with undulations directed substantially in the longitudinal axis of the bundle of plates, the bundle of plates is arranged inside a sealed enclosure.
  • FIG. 1 is a partially cutaway perspective view of a heat exchanger according to the invention
  • FIG. 2 is a schematic view in longitudinal section of the heat exchanger according to the invention
  • FIG. 3 is a schematic perspective view of a first embodiment of the bundle of plates of the heat exchanger according to the invention
  • FIG. 4 is a schematic perspective view of a second embodiment of the bundle of plates of the heat exchanger according to the invention
  • - Fig. 5 is a schematic top view of a plate of the plate bundle.
  • a plate heat exchanger intended to carry out a heat exchange between at least a first fluid A consisting of a liquid or a gas or a biphasic mixture and N fluids circulating transversely with respect to said first fluid, consisting each by a liquid or a gas or a two-phase mixture.
  • This heat exchanger is intended for example to cool the first fluid A with the N fluids or to heat this first fluid A.
  • the heat exchanger comprises a sealed enclosure 1 of elongated shape and of cross-section, for example circular.
  • This sealed enclosure 1 can be arranged vertically or horizontally. Inside the enclosure 1 is disposed a bundle of plates designated as a whole by the reference 2 and of generally parallelepipedal shape which constitutes the exchange surface necessary for the heat transfer between the fluids A, B and C.
  • the bundle of plates 2 is formed, as shown in FIG. 3, by a stack of thin metal plates 3, for example made of stainless steel.
  • the plates 3 of the plate bundle 2 are parallel to each other, and in the embodiment shown in the figures are arranged horizontally. These plates 3 can also be arranged vertically.
  • the plates 3 delimit between them channels 10A, 10B ... ION which extend over the entire surface of the bundle of plates 2.
  • channels 10A, 10B ... ION which extend over the entire surface of the bundle of plates 2.
  • the channels 10A, 10B .... 10N form, on the one hand, a main circuit for the first fluid A and, on the other hand, two secondary circuits for fluids B and C and extend dant perpendicular to the main circuit.
  • the end face 11 of the plate bundle 2 is used for the inlet of the fluid A and the end face 12 is used for the outlet of the fluid A after it has passed through the corresponding channels.
  • the lateral zone 13 of the bundle of plates 2 is divided into two zones, the zone 13a serving for the inlet of the fluid B and the area 13b serving for the outlet of the fluid C.
  • the lateral face 14 of the bundle of plates 2 is divided into two zones, the zone 14a serving for the outlet of fluid B and the area 14b serving for the inlet of fluid C.
  • Channels 10A, 10B ... 10N are independent of each other for a separate circulation of the fluids with respect to each other and over the entire surface of the plates 3 of the plate bundle 2 in order to optimize the exchange surfaces between fluids A, B and C.
  • the channel 10A is closed on the end faces 11 and 12 and also in the areas 13a and 14a of the side faces 13 and 14 while this channel 10A is open in the areas 13b and 14b of said side faces 13 and 14 to allow the circulation of fluid C in said channel 10A.
  • the channel 10B is open on the end faces 11 and 12 and, closed along the entire length of the side faces 13 and 14 to allow circulation fluid A in this channel 10B.
  • the channel 10C is closed, on the one hand, on the end faces 11 and 12 and, on the other hand, in the zones 13b and 14b of the lateral faces 13 and 14 while it is open in the zones 13a and 14a of said side faces 13 and 14 to allow the circulation of the fluid B in this channel 10C.
  • the channel 10D is open on the end faces 11 and 12 and closed along the entire length of the side faces 13 and 14 to allow the circulation of the fluid A in this channel 10D.
  • each channel of the main circuit for the fluid A is arranged between two channels of the secondary circuits for the fluids B and C.
  • the channels 10A, 10B ... 10N are closed by tongues 15, for example welded on the edges and between two corresponding plates 3.
  • the obturation of the channels 10A, 10B ... ION can be carried out by extensions formed on the edges of the plates and having edges folded down for example at 90 °, the folded edges of the adjacent plates being welded between them to form a tight connection.
  • the circulation of the fluids B and C can take place in the same direction in the bundle of plates 2.
  • the fluid B enters the bundle of plates 2 through the area 13a and exits through the area 14a and the fluid C enters the bundle of plates 2 through the area 13b and exits through the area 14b.
  • the fluid B can enter the bundle of plates 2 through the zone 13a and exit through the zone 14b and the fluid C can enter the bundle of plates 2 through zone 14a and exit through zone 13b.
  • the fluid B can enter the bundle of plates 2 through the area 13a and exit through the area 14b and the fluid C can enter the bundle of plates 2 through the area 13b and exit through the area 14a.
  • the main circuit for the fluid A is connected, at one end of the plate bundle 2 to means for admitting the fluid A and at the opposite end of said plate bundle 2 to means for outputting this fluid A after it has passed through this main circuit which is, in the embodiment shown in FIG. 3, formed by channels 10B, 10D ... 10N-1.
  • the main fluid intake means A are formed by a manifold 20 extending over the entire end face 11 of the bundle of plates 2 and connected to an inlet pipe 21 of said main fluid A, passing in leaktight manner Pregnant 1.
  • the main fluid outlet means A are formed by a manifold 22 extending over the entire end face 12 of the bundle of plates 2 and connected to an outlet pipe 23 of said main fluid A, sealingly passing through the enclosure 1.
  • the first secondary circuit for fluid B is connected to means for admitting this fluid B and to means for leaving said fluid B after it has passed through this first secondary circuit formed, in the embodiment shown in FIG. 3, through channels 10C ... ION.
  • the means for admitting the first secondary fluid B are formed by a manifold 24 extending over the entire area 13a of the lateral face 13 of the bundle of plates 2 and connected to an inlet pipe 25 of said first secondary fluid B, passing tightly through enclosure 1.
  • the means for leaving the first secondary fluid B are formed by a manifold 26 extending over the entire area 14a of the lateral face 14 of the bundle of plates 2 and connected to an outlet pipe 27 of said first secondary fluid B, passing through waterproof waterproof 1.
  • the secondary circuit for the second secondary fluid C is connected to means for admitting this fluid C and to means for leaving said fluid C after it has passed through this secondary circuit which is formed, in the exemplary embodiment shown in Fig. 3, through channels 10A,. , .10N-2.
  • the means for the outlet of the secondary fluid C are formed by a manifold 28 extending over the entire area 13b of the lateral face 13 of the bundle of plates 2 and connected to an outlet pipe 29 of the said secondary fluid C, passing tightly through the Pregnant 1.
  • Fig. 4 there is shown schematically in perspective a bundle of plates 2 intended to carry out a heat exchange between a main fluid A and four secondary fluids, respectively B, C, D and E.
  • the plates 3 of the plate bundle define between them channels 10A, 10B ... ION forming, on the one hand, a main circuit for the fluid A and, on the other hand, four secondary circuits for four fluids B, C, D and E and extending perpendicular to the main circuit.
  • Each channel 10B, 10D, 10F ... 10N-1 of the main circuit is arranged between two channels of the secondary circuits.
  • the channel 10A is closed on the end faces 11 and 12 and open in the areas 13a and 14a of the side faces 13 and 14 while it is closed in the other areas of said side faces 13 and 14 to allow the circulation of the secondary fluid B in the channel 10A over the entire surface of the bundle of plates 2.
  • the channel 10B is open on the end faces 11 and 12 and closed along the entire length of the side faces 13 and 14 to allow the circulation of the main fluid A in this channel 10B over the entire length of the bundle of plates 2.
  • the channel 10C is closed on the end faces 11 and 12 of the bundle of plates 2 as well as in the zones 13a, 14a; 13c, 14c and 13d, 14d while it is open in the areas 13b and 14b of the side faces 13 and 14 to allow the circulation of the secondary fluid C in this channel 10C.
  • the channel 10D is open on the end faces 11 and 12 of the bundle of plates 2 while it is closed along the entire length of the side faces 13 and 14 to allow the circulation of the main fluid A in this channel 10D.
  • the channel 10E is closed on the end faces 11 and 12 of the bundle of plates 2 as well as in the zones 13a, 14a; 13b, 14b and 13d and 14d while it is open in the zones 13c and 14c of the lateral faces 13 and 14 to allow the circulation of the fluid C in this channel 10E of the plate bundle 2.
  • Channel 10F of the plate bundle 2 East open on the end faces 11 and 12 of the bundle of plates 2 while it is closed along the entire length of the lateral faces 13 and 14 to allow the circulation of the fluid A in this channel 10F and over the entire length of the bundle of plates 2.
  • the channel 10G is closed on the end faces 11 and 12 of the bundle of plates 2 as well as in the zones 13a, 14a; 13b, 14b and 13c, 14c while it is open in the areas 13d and 14d to allow the circulation of the fluid E in this channel 10G and over the entire surface of the plates 3.
  • the secondary fluids B, C, D and E can circulate in the same direction inside the bundle of plates 2 or in different directions.
  • B and D can circulate in the same direction inside the bundle of plates 2 and the secondary fluids C and E can circulate against the current with respect to the secondary fluids B and D.
  • D and E can leave the bundle of plates 2 in zones of the lateral faces 13 and 14 which are not situated opposite the zones of entry of these secondary fluids.
  • the inputs and outputs of the main fluid A and the secondary fluids B, C, D and E are also connected to the inlet and outlet pipes of these fluids by manifolds, as in the embodiment shown in the Figs. 1 and 2.
  • a part of each longitudinal edge of this plate 3 has a tongue 15, for example welded to the corresponding longitudinal edge to form with the adjacent plate a lateral inlet 35 and a lateral outlet 36 for a secondary fluid.
  • the plate 3 has corrugations 4 directed substantially in the direction of the longitudinal axis of said plate 3 and, at the level of the inlet 35, corrugations 5 directed substantially transversely relative to the axis longitudinal of the plate bundle 2.
  • corrugations 5 can be formed on a plate 3a attached to the edge of the corresponding plate 3.
  • the orientation of the corrugations allows a distribution of the fluids over the entire surface of the plate bundle and optimizes the heat exchange between these fluids.
  • each plate 3 of the bundle of plates 2 may also have on its longitudinal edge at the outlet of the secondary circuits, a plate attached to this edge and having undulations directed substantially transversely to the longitudinal axis of the bundle of plates 2.
  • each plate 3 can have an attached plate and provided with corrugations, either on its longitudinal edge at the inlet of the secondary fluids, or on its longitudinal edge at the outlet of the secondary fluids or either on the two edges both at the same time. Furthermore, each plate 3 can have an attached plate and provided with corrugations, either on its transverse edge at the level of the main fluid inlet, or on its transverse edge at the level of the main fluid outlet or either transverse edges at a time.
  • the bundle of plates 2 is not placed in a sealed enclosure and in this case it comprises cover plates connected together by tie rods. With a heat exchanger according to the invention, the fluids have, at the outlet of the plate bundle, a thermal profile as desired and in particular close to an isothermal profile.
  • the heat exchanger according to the invention makes it possible to maintain the desired average outlet temperature without ever having a part of one or more of the fluids do not reach the critical temperature.
  • the heat exchanger according to the invention constitutes an additional means of thermal control of the reaction in a catalytic plate reactor and makes it possible to improve the performance of the reaction thanks to better control of the temperature field in the catalyst bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention a pour objet un échangeur thermique à plaques, du type comprenant un faisceau de plaques (2) formé par un empilement de plaques métalliques d'échange thermique munies d'ondulations, caractérisé en ce que les plaques délimitent entre elles des canaux formant, d'une part, au moins un circuit principal pour au moins un premier fluide (A) et, d'autre part, N circuits secondaires pour N fluides (B et C) et s'étendant perpendiculairement audit circuit principal, chaque canal dudit circuit principal étant disposé entre deux canaux des circuits secondaires.

Description

Echangeur thermique à plaques.
La présente invention a pour objet un echangeur thermique à plaques pour fluides et en particulier un echangeur thermique à plaques utilisé pour refroidir ou réchauffer au moins un premier fluide par échange thermique avec au moins un second fluide.
Les échangeurs thermiques sont généralement de deux types .
Le premier type d' echangeur thermique comporte un faisceau de tubes en forme de U ou un fais- ceau de tubes droits dans lequel circule un des fluides.
Mais ce type d' echangeur est d'une conception coûteuse et le rendement thermique est limité compte tenu que le nombre de tubes dépend de la place disponible qui est dans la plupart des cas restreinte. Le second type d' echangeur thermique comporte, à l'intérieur d'une enveloppe externe ou calandre, un faisceau constitué par des plaques mises en forme, par exemple pour présenter des ondulations et rapportées l'une contre l'autre de manière à délimiter une pluralité de canaux de passage de fluides suivant toute la longueur du faisceau.
Généralement, le faisceau de plaques comporte un premier ensemble de canaux de passage pour un premier fluide d'échange et un second ensemble de canaux de passage pour un second fluide, de manière que le premier et le second fluide puisse traverser le faisceau de plaques suivant toute sa longueur.
Les plaques constituées de tôles fines, le plus souvent en acier inoxydable, fournissent une très grande surface d'échange avec les fluides et assurent un transfert de chaleur entre ces fluides.
La calandre présente une épaisseur de paroi lui permettant de résister à la pression des fluides introduits dans l' echangeur de chaleur.
Le premier ensemble de canaux de passage de fluide à l'intérieur du faisceau est relié, par l'intermédiaire de conduites de jonction à un premier circuit de distribution et de récupération du premier fluide disposé à l'extérieur de la calandre.
De même, le second ensemble de canaux de passage du second fluide à l'intérieur du faisceau est relié à un second circuit de distribution et de récupéra- tion du second fluide par l'intermédiaire de conduites de jonction.
Les conduites de jonction traversent l'enveloppe extérieure de manière étanche .
Ce type d' echangeur thermique à faisceau de plaques fonctionne avec divers fluides, comme par exemple des liquides ou des gaz ou un mélange biphasique et peut être utilisé par exemple pour la mise en oeuvre de procédé physique ou chimique dans le domaine du raffinage du pétrole, de la pétrochimie, de la chimie ainsi que le traitement de tout gaz .
Habituellement, ces échangeurs thermiques à plaques ont une circulation des fluides dans le faisceau de plaques soit à courants parallèles, soit à courants croisés . Dans les échangeurs thermiques à plaques à courants croisés, les fluides circulent alternativement dans les canaux délimités par les plaques, un canal sur deux pour un fluide et un canal sur deux pour l'autre fluide . Mais avec cette conception classique, on constate que pour des profils de températures des fluides à l'entrée du faisceau de plaques constants, les profils de températures de ces fluides à la sortie dudit faisceau de plaques ne le sont pas. En effet, les profils de températures de sortie des fluides du faisceau de plaques varient d'une extrémité à l'autre de ce faisceau.
Or, dans certains procédés, il peut être important pour l'un au moins des fluides d'avoir un profil de températures spécifique et par exemple le plus proche possible d'un profil isotherme.
En effet, on sait que certains fluides peuvent subir une transformation irréversible au delà ou en deçà d'une température déterminée. D'autre part, pour un réacteur catalytique à plaques à température contrôlée, il est nécessaire d'avoir un contrôle thermique de la réaction permettant ainsi d'améliorer les performances de la réaction grâce à une meilleure maîtrise du champ des températures dans le lit de catalyseur.
L'invention a pour but d'éviter ces inconvénients en proposant un echangeur thermique à plaques entre plusieurs fluides permettant d'obtenir à la sortie de cet echangeur pour au moins l'un des fluides, un profil de températures tel que désiré et en particulier proche d'un profil isotherme.
L'invention a pour objet un echangeur thermique à plaques, du type comprenant un faisceau de plaques formé par empilement de plaques d'échange thermi- que munies d'ondulations, caractérisé en ce que les plaques délimitent entre elles des canaux formant, d'une part, au moins un circuit principal pour au moins un premier fluide et, d'autre part, N circuits secondaires pour N fluides et s'étendant perpendiculairement audit circuit principal, chaque canal dudit circuit principal étant disposé entre deux canaux des circuits secondaires. Selon d'autres caractéristiques de l'invention :
- les canaux dudit circuit principal et des circuits secondaires s'étendent sur toute la surface du faisceau de plaques, les fluides des circuits secondaires circulent dans des sens différents à l'intérieur du faisceau de plaques, - les fluides des circuits secondaires circulent à contre-courant les uns par rapport aux autres à l'intérieur du faisceau de plaques, les fluides des circuits secondaires circulent dans le même sens à l'intérieur du faisceau de plaques, chaque plaque du faisceau de plaques comporte, sur son bord longitudinal au niveau des entrées des fluides secondaires, des plaques rapportées et munies d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques,
- chaque plaque du faisceau de plaques comporte, sur son bord longitudinal au niveau des sorties des fluides secondaires, des plaques rapportées et munies d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques, chaque plaque du faisceau de plaques comporte, sur son bord longitudinal au niveau des entrées et des sorties des fluides secondaires, des plaques rapportées et munies d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques, chaque plaque du faisceau de plaques comporte, sur son bord transversal au niveau des entrées du fluide principal, une plaque rapportée et munies d'ondulations dirigées sensiblement dans l'axe longitudinal du faisceau de plaques, chaque plaque du faisceau de plaques comporte, sur son bord transversal au niveau des sorties du fluide principal, une plaque rapportée et munie d'ondulations dirigées sensiblement dans l'axe longitu- dinal du faisceau de plaques,
- chaque plaque du faisceau de plaques comporte, sur son bord transversal au niveau des entrées et des sorties du fluide principal, une plaque rapportée et munie d'ondulations dirigées sensiblement dans l'axe longitudinal du faisceau de plaques, le faisceau de plaques est disposé à l'intérieur d'une enceinte étanche.
Les caractéristiques et avantages de l'inven- tion apparaîtront au cours de la description qui va suivre, donnée à titre d'exemple et faite en référence aux dessins annexés, sur lesquels : la Fig . 1 est une vue en perspective partiellement arrachée d'un echangeur thermique selon 1 ' invention,
- la Fig. 2 est une vue schématique en coupe longitudinale de l' echangeur thermique selon l'invention la Fig. 3 est une vue schématique en perspective d'un premier mode de réalisation du faisceau de plaques de l' echangeur thermique selon l'invention, la Fig. 4 est une vue schématique en perspective d'un second mode de réalisation du faisceau de plaques de l' echangeur thermique selon l'invention,
- la Fig. 5 est une vue de dessus schématique d'une plaque du faisceau de plaques.
Sur les Figs . 1 et 2 , on a représenté un echangeur thermique à plaques destiné à réaliser un échange thermique entre au moins un premier fluide A constitué par un liquide ou un gaz ou un mélange biphasi- que et N fluides circulant transversalement par rapport audit premier fluide, constitués chacun par un liquide ou un gaz ou un mélange biphasique.
Dans ce qui suit, on se bornera à décrire l' echangeur thermique pour un fluide principal, cet echangeur thermique pouvant également être utilisé avec plusieurs fluides principaux.
Cet echangeur thermique est destiné par exemple à refroidir le premier fluide A par les N fluides ou à réchauffer ce premier fluide A. L' echangeur thermique comprend une enceinte étanche 1 de forme allongée et de section par exemple circulaire .
Cette enceinte étanche 1 peut être disposée verticalement ou horizontalement. A l'intérieur de l'enceinte 1 est disposé un faisceau de plaques désigné dans son ensemble par la référence 2 et de forme générale parallélépipèdique qui constitue la surface d'échange nécessaire au transfert thermique entre les fluides A, B et C. Le faisceau de plaques 2 est formé, comme représenté sur la Fig. 3, par un empilement de plaques 3 métalliques de faible épaisseur et par exemple en acier inoxydable .
Ces plaques 3 sont munies d'ondulations, comme on le verra ultérieurement .
Les plaques 3 du faisceau de plaques 2 sont parallèles les unes aux autres, et dans l'exemple de réalisation représenté sur les figures sont disposées horizontalement . Ces plaques 3 peuvent également être disposées verticalement.
Les plaques 3 délimitent entre elles des canaux 10A, 10B...ION qui s'étendent sur toute la surface du faisceau de plaques 2. Dans l'exemple de réalisation représenté à la
Fig. 3 où l'échange thermique est réalisé entre un fluide principal A et deux fluides secondaires B et C, les canaux 10A, 10B....10N forment, d'une part, un circuit principal pour le premier fluide A et, d'autre part, deux circuits secondaires pour les fluides B et C et s'éten- dant perpendiculairement au circuit principal.
En se reportant à la Fig. 3, on va décrire la répartition des fluides A, B et C dans les canaux 10A, 10B, ... , ION, le fluide A circulant longitudinalement dans le faisceau de plaques 2 et les fluides B et C circulant transversalement dans ledit faisceau de plaques 2 et dans des sens opposés .
Ainsi que représenté à la Fig. 3, la face d'extrémité 11 du faisceau de plaques 2 sert à l'entrée du fluide A et la face d'extrémité 12 sert à la sortie de fluide A après son passage dans les canaux correspondants .
D'autre part, la zone latérale 13 du faisceau de plaques 2 est divisée en deux zones, la zone 13a servant à l'entrée du fluide B et la zone 13b servant à la sortie du fluide C.
De même, la face latérale 14 du faisceau de plaques 2 est divisée en deux zones, la zone 14a servant à la sortie de fluide B et la zone 14b servant à l'entrée du fluide C.
Les canaux 10A, 10B...10N sont indépendants les uns des autres pour une circulation séparée des fluides les uns par rapport aux autres et sur toute la surface des plaques 3 du faisceau de plaques 2 afin d'optimiser les surfaces d'échange entre les fluides A, B et C.
Pour cela, le canal 10A est obturé sur les faces d'extrémités 11 et 12 et également dans les zones 13a et 14a des faces latérales 13 et 14 tandis que ce canal 10A est ouvert dans les zones 13b et 14b desdites faces latérales 13 et 14 pour permettre la circulation du fluide C dans ledit canal 10A.
Le canal 10B est ouvert sur les faces d'extrémité 11 et 12 et, obturé sur toute la longueur des faces latérales 13 et 14 pour permettre la circulation du fluide A dans ce canal 10B.
Le canal 10C est obturé, d'une part, sur les faces d'extrémité 11 et 12 et, d'autre part, dans les zones 13b et 14b des faces latérales 13 et 14 tandis qu'il est ouvert dans les zones 13a et 14a desdites faces latérales 13 et 14 pour permettre la circulation du fluide B dans ce canal 10C.
Le canal 10D est ouvert sur les faces d'extrémités 11 et 12 et obturé sur toute la longueur des faces latérales 13 et 14 pour permettre la circulation du fluide A dans ce canal 10D.
Cette répartition est la même pour les autres canaux.
Ainsi, chaque canal du circuit principal pour le fluide A est disposé entre deux canaux des circuits secondaires pour les fluides B et C.
L'obturation des canaux 10A, 10B...10N est réalisée par des languettes 15 par exemple soudées sur les bords et entre deux plaques 3 correspondantes. Selon un autre mode de réalisation, l'obturation des canaux 10A, 10B...ION peut être réalisée par des prolongements ménagés sur les bords des plaques et comportant des rebords rabattus par exemple à 90°, les rebords rabattus des plaques adjacentes étant soudés entre eux pour former une liaison étanche.
Selon une variante, la circulation des fluides B et C peut s'effectuer dans le même sens dans le faisceau de plaques 2.
Dans ce cas, le fluide B entre dans le faisceau de plaques 2 par la zone 13a et sort par la zone 14a et le fluide C entre dans le faisceau de plaques 2 par la zone 13b et sort par la zone 14b.
Selon une autre variante, le fluide B peut entrer dans le faisceau de plaques 2 par la zone 13a et sortir par la zone 14b et le fluide C peut entrer dans le faisceau de plaques 2 par la zone 14a et sortir par la zone 13b.
Selon encore une autre variante, le fluide B peut entrer dans le faisceau de plaques 2 par la zone 13a et sortir par la zone 14b et le fluide C peut entrer dans le faisceau de plaques 2 par la zone 13b et sortir par la zone 14a.
Ainsi que représenté sur les figures 1 et 2, le circuit principal pour le fluide A est relié, à une extrémité du faisceau de plaques 2 à des moyens d'admission du fluide A et à l'extrémité opposée dudit faisceau de plaques 2 à des moyens de sortie de ce fluide A après son passage dans ce circuit principal qui est, dans l'exemple de réalisation représenté à la Fig. 3, formé par les canaux 10B, 10D...10N-1.
Les moyens d'admission du fluide principal A sont formés par un collecteur 20 s'étendant sur toute la face d'extrémité 11 du faisceau de plaques 2 et raccordé à une tubulure d'arrivée 21 dudit fluide principal A, traversant de manière étanche l'enceinte 1.
Les moyens de sortie du fluide principal A sont formés par un collecteur 22 s'étendant sur toute la face d'extrémité 12 du faisceau de plaques 2 et raccordé à une tubulure de sortie 23 dudit fluide principal A, traversant de manière étanche l'enceinte 1.
Le premier circuit secondaire pour le fluide B est relié à des moyens d'admission de ce fluide B et à des moyens de sortie dudit fluide B après son passage dans ce premier circuit secondaire formé, dans l'exemple de réalisation représenté sur la Fig. 3, par les canaux 10C...ION.
Les moyens d'admission du premier fluide secondaire B sont formés par un collecteur 24 s'étendant sur toute la zone 13a de la face latérale 13 du faisceau de plaques 2 et raccordé à une tubulure d'arrivée 25 dudit premier fluide secondaire B, traversant de manière étanche l'enceinte 1.
Les moyens de sortie du premier fluide secondaire B sont formés par un collecteur 26 s'étendant sur toute la zone 14a de la face latérale 14 du faisceau de plaques 2 et raccordé à une tubulure de sortie 27 dudit premier fluide secondaire B, traversant de manière étanche l' étanche 1.
De même, le circuit secondaire pour le second fluide secondaire C est relié à des moyens d'admission de ce fluide C et à des moyens de sortie dudit fluide C après son passage dans ce circuit secondaire qui est formé, dans l'exemple de réalisation représenté à la Fig. 3, par les canaux 10A, . , .10N-2. Les moyens d'admission du fluide secondaire
C sont formés par un collecteur 30 s'étendant sur toute la zone 14b de la face latérale 14 du faisceau de plaques 2 et raccordé à une tubulure d'arrivée 31 dudit fluide secondaire C, traversant de manière étanche l'enceinte 1.
Les moyens de sortie du fluide secondaire C sont formés par un collecteur 28 s'étendant sur toute la zone 13b de la face latérale 13 du faisceau de plaques 2 et raccordé à une tubulure de sortie 29 dudit fluide secondaire C, traversant de manière étanche l'enceinte 1.
Sur la Fig. 4, on a représenté schématique- ment en perspective un faisceau de plaques 2 destiné à réaliser un échange thermique entre un fluide principal A et quatre fluides secondaires, respectivement B, C, D et E.
Les plaques 3 du faisceau de plaques délimitent entre elles des canaux 10A, 10B...ION formant, d'une part, un circuit principal pour le fluide A et, d'autre part, quatre circuits secondaires pour quatre fluides B, C, D et E et s'étendant perpendiculairement au circuit principal .
Chaque canal 10B, 10D, 10F...10N-1 du circuit principal est disposé entre deux canaux des circuits secondaires .
A cet effet, le canal 10A est obturé sur les faces d'extrémité 11 et 12 et ouvert dans les zones 13a et 14a des faces latérales 13 et 14 tandis qu'il est fermé dans les autres zones desdites faces latérales 13 et 14 pour permettre la circulation du fluide secondaire B dans le canal 10A sur toute la surface du faisceau de plaques 2.
Le canal 10B est ouvert sur les faces d'extrémité 11 et 12 et obturé sur toute la longueur des faces latérales 13 et 14 pour permettre la circulation du fluide principal A dans ce canal 10B sur toute la longueur du faisceau de plaques 2.
Le canal 10C est obturé sur les faces d'extrémité 11 et 12 du faisceau de plaques 2 ainsi que dans les zones 13a, 14a ; 13c, 14c et 13d, 14d tandis qu'il est ouvert dans les zones 13b et 14b des faces latérales 13 et 14 pour permettre la circulation du fluide secondaire C dans ce canal 10C.
Le canal 10D est ouvert sur les faces d'extrémités 11 et 12 du faisceau de plaques 2 tandis qu'il est obturé sur toute la longueur des faces latérales 13 et 14 pour permettre la circulation du fluide principal A dans ce canal 10D.
Le canal 10E est obturé sur les faces d'extrémité 11 et 12 du faisceau de plaques 2 ainsi que dans les zones 13a, 14a ; 13b, 14b et 13d et 14d tandis qu'il est ouvert dans les zones 13c et 14c des faces latérales 13 et 14 pour permettre la circulation du fluide C dans ce canal 10E du faisceau de plaques 2. Le canal 10F du faisceau de plaques 2 est ouvert sur les faces d'extrémité 11 et 12 du faisceau de plaques 2 tandis qu'il est obturé sur toute la longueur des faces latérales 13 et 14 pour permettre la circulation du fluide A dans ce canal 10F et sur toute la longueur du faisceau de plaques 2.
Le canal 10G est obturé sur les faces d'extrémité 11 et 12 du faisceau de plaques 2 ainsi que dans les zones 13a, 14a ; 13b, 14b et 13c, 14c tandis qu'il est ouvert dans les zones 13d et 14d pour permettre la circulation du fluide E dans ce canal 10G et sur toute la surface des plaques 3.
Cette répartition est la même pour les autres canaux.
Les fluides secondaires B, C, D et E peuvent circuler dans le même sens à l'intérieur du faisceau de plaques 2 ou dans des sens différents.
Selon une variante, les fluides secondaires
B et D peuvent circuler dans le même sens à l'intérieur du faisceau de plaques 2 et les fluides secondaires C et E peuvent circuler à contre-courant par rapport aux fluides secondaires B et D.
Par ailleurs, les fluides secondaires B, C,
D et E peuvent sortir du faisceau de plaques 2 dans des zones des faces latérales 13 et 14 qui ne sont pas situées en face des zones d'entrée de ces fluides secondaires .
Dans le mode de réalisation représenté à la Fig. 4, les entrées et les sorties du fluide principal A et des fluides secondaires B, C, D et E sont également reliées à des tubulures d'arrivée et de sortie de ces fluides par des collecteurs, comme dans le mode de réalisation représenté sur les Figs . 1 et 2.
Sur la Fig. 5, on a représenté schématique- ment une plaque 3 du faisceau de plaques 2. Une partie de chaque bord longitudinal de cette plaque 3 comporte une languette 15, par exemple soudée sur le bord longitudinal correspondant pour former avec la plaque adjacente une entrée latérale 35 et une sortie latérale 36 pour un fluide secondaire. Ainsi que représenté sur cette figure, la plaque 3 comporte des ondulations 4 dirigées sensiblement dans le sens de l'axe longitudinal de ladite plaque 3 et, au niveau de l'entrée 35, des ondulations 5 dirigées sensiblement transversalement par rapport à l'axe longitudinal du faisceau de plaques 2.
Ces ondulations 5 peuvent être ménagées sur une plaque 3a rapportée sur le bord de la plaque 3 correspondante .
L'orientation des ondulations permet une répartition des fluides sur toute la surface du faisceau de plaques et d'optimiser l'échange thermique entre ces fluides .
Selon une variante, chaque plaque 3 du faisceau de plaques 2 peut comporter également sur son bord longitudinal au niveau de la sortie des circuits secondaires, une plaque rapportée sur ce bord et comportant des ondulations dirigées sensiblement transversalement à l'axe longitudinal du faisceau de plaques 2.
Ainsi, chaque plaque 3 peut comporter une plaque rapportée et munie d'ondulations, soit sur son bord longitudinal au niveau de l'entrée des fluides secondaires, soit sur son bord longitudinal au niveau de la sortie des fluides secondaires ou soit sur les deux bords longitudinaux à la fois. Par ailleurs, chaque plaque 3 peut comporter une plaque rapportée et munie d'ondulations, soit sur son bord transversal au niveau de l'entrée du fluide principal, soit sur son bord transversal au niveau de la sortie du fluide principal ou soit sur les deux bords transver- saux à la fois. Selon un autre mode de réalisation, le faisceau de plaques 2 n'est pas placé dans une enceinte étanche et dans ce cas il comporte des plaques de recouvrement reliées entre elles par des tirants. Avec un echangeur thermique selon l'invention, les fluides présentent, à la sortie du faisceau de plaques, un profil thermique tel que désiré et en particulier proche d'un profil isotherme.
Dans le cas des fluides subissant une trans- formation irréversible au delà ou en deçà d'une certaine température, 1 ' echangeur thermique selon l'invention permet de conserver la température moyenne de sortie souhaitée sans que jamais une partie de l'un ou des fluides n'atteignent la température critique. D'autre part, l' echangeur thermique selon l'invention constitue un moyen supplémentaire de contrôle thermique de la réaction dans un réacteur catalytique à plaques et permet d'améliorer les performances de la réaction grâce à une meilleure maîtrise du champ de températures dans le lit de catalyseur.

Claims

REVENDICATIONS 1. Echangeur thermique à plaques, du type comprenant un faisceau de plaques (2) formé par un empilement de plaques métalliques (3) d'échange thermique munies d'ondulations (4, 5), caractérisé en ce que les plaques (3) délimitent entre elles des canaux (10A, 10B...10N) formant, d'une part, au moins un circuit principal pour au moins un premier fluide (A) et, d'autre part, N circuits secondaires pour N fluides (B, C...N) et s'étendant perpendiculairement audit circuit principal, chaque canal (10B, 10D...10N-1) dudit circuit principal étant disposé entre deux canaux (10A, 10C....10N) des circuits secondaires.
2. Echangeur thermique selon la revendication 1, caractérisé en ce que les canaux (10A, 10B....10N) dudit circuit principal et des circuits secondaires s'étendent sur toute la surface du faisceau de plaques
(2) .
3. Echangeur thermique selon les revendica- tions 1 et 2, caractérisé en ce que les fluides des circuits secondaires circulent dans des sens différents à l'intérieur du faisceau de plaques.
4. Echangeur thermique selon les revendications 1 et 2, caractérisé en ce que les fluides des circuits secondaires circulent à contre-courant les uns par rapport aux autres à l'intérieur du faisceau de plaques (2) .
5. Echangeur thermique selon les revendications 1 et 2, caractérisé en ce que les fluides des circuits secondaires circulent dans le même sens à l'intérieur du faisceau de plaques (2).
6. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte, sur son bord longitudinal au niveau des entrées des fluides secondaires, une plaque rapportée et munie d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques (2) .
7. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte, sur son bord longitudinal au niveau des sorties des fluides secondaires, une plaque rapportée et munie d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques (2) .
8. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte, sur son bord longitudinal au niveau des entrées et des sorties des fluides secon- daires, une plaque rapportée et munie d'ondulations dirigées sensiblement perpendiculairement à l'axe longitudinal du faisceau de plaques (2) .
9. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte, sur son bord transversal au niveau des entrées du fluide principal, une plaque rapportée et munie d'ondulations dirigées sensiblement dans l'axe longitudinal du faisceau de plaques (2) .
10. Echangeur thermique selon la revendica- tion 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte, sur son bord transversal au niveau des sorties du fluide principal, une plaque rapportée et munie d'ondulations dirigées sensiblement dans l'axe longitudinal du faisceau de plaques (2) .
11. Echangeur thermique selon la revendication 1, caractérisé en ce que chaque plaque (3) du faisceau de plaques (2) comporte sur son bord transversal au niveau des entrées et des sorties du fluide princi- pal, une plaque rapportée et munie d'ondulations dirigées sensiblement dans l'axe longitudinal du faisceau de plaques (8) .
12. Echangeur thermique selon l'une quelconque des revendications précédentes, caractérisé en ce que le faisceau de plaques (2) est disposé à l'intérieur d'une enceinte étanche (1) .
EP97951314A 1996-12-13 1997-12-11 Echangeur thermique a plaques Withdrawn EP0956489A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9615376A FR2757257B1 (fr) 1996-12-13 1996-12-13 Echangeur thermique a plaques
FR9615376 1996-12-13
PCT/FR1997/002277 WO1998026246A1 (fr) 1996-12-13 1997-12-11 Echangeur thermique a plaques

Publications (1)

Publication Number Publication Date
EP0956489A1 true EP0956489A1 (fr) 1999-11-17

Family

ID=9498671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97951314A Withdrawn EP0956489A1 (fr) 1996-12-13 1997-12-11 Echangeur thermique a plaques

Country Status (3)

Country Link
EP (1) EP0956489A1 (fr)
FR (1) FR2757257B1 (fr)
WO (1) WO1998026246A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328746A1 (de) * 2003-06-25 2005-01-13 Behr Gmbh & Co. Kg Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung
US11826681B2 (en) 2006-06-30 2023-11-28 Deka Products Limited Partneship Water vapor distillation apparatus, method and system
US11884555B2 (en) 2007-06-07 2024-01-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
MX2011001778A (es) 2008-08-15 2011-05-10 Deka Products Lp Aparato expendedor de agua.
WO2014018896A1 (fr) 2012-07-27 2014-01-30 Deka Products Limited Partnership Commande de la conductivité dans une sortie d'eau de production destinée à un évaporateur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566310A (en) * 1946-01-22 1951-09-04 Hydrocarbon Research Inc Tray type heat exchanger
US3587731A (en) * 1968-07-22 1971-06-28 Phillips Petroleum Co Plural refrigerant tray type heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9826246A1 *

Also Published As

Publication number Publication date
WO1998026246A1 (fr) 1998-06-18
FR2757257A1 (fr) 1998-06-19
FR2757257B1 (fr) 1999-03-05

Similar Documents

Publication Publication Date Title
EP0912868B1 (fr) Installation d'echange thermique entre au moins trois fluides
EP0740949A1 (fr) Echangeur thermique à plaques
EP0688421B1 (fr) Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif
FR2824895A1 (fr) Ailette ondulee a persiennes pour echangeur de chaleur a plaques, et echangeur a plaques muni de telles ailettes
KR101065969B1 (ko) 열 교환기 하우징 및 시일
EP3479044B1 (fr) Echangeur de chaleur comprenant un dispositif de distribution d'un melange liquide/gaz
FR2912811A1 (fr) Echangeur de chaleur pour fluides a circulation en u
EP1811256B1 (fr) Installation déchange thermique
FR2999695A1 (fr) Tube plat pour echangeur de chaleur d'air de suralimentation et echangeur de chaleur d'air de suralimentation correspondant.
EP2232030B1 (fr) Refroidisseur d'air de suralimentation notamment pour vehicule automobile
EP0956489A1 (fr) Echangeur thermique a plaques
EP3019808A1 (fr) Echangeur de chaleur
EP3099994A1 (fr) Echangeur de chaleur pour véhicule automobile
EP3001133A1 (fr) Échangeur de chaleur pour véhicule automobile
EP0086162B1 (fr) Echangeur thermique à faisceau tubulaire métallique pour hautes températures
FR2773726A1 (fr) Reacteur catalytique a plaques notamment pour la production d'anhydride phtalique
FR3095265A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
EP2372288B1 (fr) Echangeur de chaleur pour un dispositif de climatisation pourvu d'extrémités réduites
JP4016375B2 (ja) 給湯用熱交換器
EP0553340A1 (fr) Echangeur a plaques.
WO2000028270A1 (fr) Echangeur thermique a plaques
EP0851998A1 (fr) Faisceau de plaques pour un echangeur thermique et echangeur thermique comportant un tel faisceau de plaques
FR2731784A1 (fr) Echangeur thermique a plaques
FR3036787A1 (fr) Echangeur thermique equipe d'une plaque plissee d'echange
FR2732759A1 (fr) Echangeur de chaleur a plaques pour fluide sous pression et utilisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 19990519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

18W Application withdrawn

Withdrawal date: 19991025