EP0687312B1 - Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells - Google Patents

Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells Download PDF

Info

Publication number
EP0687312B1
EP0687312B1 EP94906164A EP94906164A EP0687312B1 EP 0687312 B1 EP0687312 B1 EP 0687312B1 EP 94906164 A EP94906164 A EP 94906164A EP 94906164 A EP94906164 A EP 94906164A EP 0687312 B1 EP0687312 B1 EP 0687312B1
Authority
EP
European Patent Office
Prior art keywords
electrode
membrane
gas
electrode arrangement
arrangement according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94906164A
Other languages
German (de)
French (fr)
Other versions
EP0687312A1 (en
Inventor
Robert Scannell
Bernd Busse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Deutschland GmbH
Original Assignee
Heraeus Elektrochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Elektrochemie GmbH filed Critical Heraeus Elektrochemie GmbH
Publication of EP0687312A1 publication Critical patent/EP0687312A1/en
Application granted granted Critical
Publication of EP0687312B1 publication Critical patent/EP0687312B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes

Definitions

  • the invention relates to an electrode arrangement for gas-forming electrolytic processes, in particular processes in membrane cells, consisting of a flat electrode structure with at least two electrically conductive and mechanically firmly connected electrode elements, between each of which a gap is provided for gas discharge, the electrode elements along the column bearing surfaces for an ion exchange membrane or a diaphragm and edge regions adjacent to the gap are designed as a gas discharge device and their use.
  • a membrane electrolysis cell of the filter press type with pairs of planar electrodes is known, the electrodes each containing at least one open active part and a membrane being arranged between the pairs of electrodes; a seal is arranged between the electrode edge and the membrane edge; the perforated central part of the electrodes has a grid-like structure, the grid rods of the electrodes assigned in pairs being offset from one another by a maximum of half a rod width and the grid rods of an electrode being arranged such that their distance from one another is smaller than the projection of their width; the grids have a convex curvature at least on the active side, the thickness of the seal between the electrode edge and the membrane edge being equal to or less than the height of the portion of the grid rod projecting beyond the electrode edge. It turns out to be problematic that with one Such an arrangement with depletion and gas bubbles in the area of the storage surface must be expected, which has an unfavorable effect on the membrane and the electrode coating.
  • the electrolytic cell is intended for the electrolysis of an aqueous halide-containing electrolyte, such as brine, in order to produce an aqueous alkali metal hydroxide solution and halogen and hydrogen.
  • an aqueous halide-containing electrolyte such as brine
  • an electrode arrangement for gas-forming electrolysers in particular membrane electrolysers, with a vertically arranged plate electrode, a counter electrode and a membrane between the two electrodes is known; the plate electrode is divided into horizontal strips, the entire active electrode surface of which is arranged parallel and at the shortest distance from the counterelectrode, but a gap is provided between the membrane and the electrode for discharging the gas formed during the electrochemical reaction;
  • the horizontal strips in the area of their upper edge are each provided with an angled gas discharge element, on which the rising gas expands and is partly guided behind the electrode.
  • the electrode gap between the membrane and the two electrodes which is always required for gas discharge, proves to be problematic, such a relatively large electrode spacing also resulting in an increase in the cell voltage.
  • an electrode arrangement for gas-forming electrolyzers in particular for monopolar membrane electrolyzers with vertically arranged plate electrodes and counter electrodes and a membrane between plate electrode and counter electrode is known;
  • electrically conductive and electrically connected surface structures are known as pre-electrodes, which run in parallel planes to the plate electrodes.
  • the fabric serving as an electrode is in the form of perforated sheets, expanded metals, wire mesh or wire mesh, the distance between the fabrics being between 1 and 5 mm; the plate electrodes are continuously divided horizontally into several separate units in order to improve the current distribution in the membrane and to reduce the voltage drop on the surfaces facing the membrane.
  • EP-OS 0 150 018 discloses a process for the electrolysis of liquid electrolytes by means of perforated electrodes in electrolysis cells divided by ion exchange membrane, a gas space being formed laterally to the main flow direction of the electrolyte due to gas bubble formation. By bursting at the phase boundary, the resulting gas bubbles give off their gas content to the gas space adjacent to the main flow direction, which is formed in the case of plate-shaped electrodes by the rear space behind the electrode.
  • the perforated electrodes can consist of expanded metal or sheet metal strips, among other things.
  • EP-OS 0 150 018 A problem with the arrangements known from EP-OS 0 150 018 is the relatively complex construction of electrodes with gas flow-guiding elements, which are composed of individual sheet metal strips.
  • the object of the invention is to develop an electrode arrangement with an open structure, possibly with a grid-like structure, in which rapid gas bubble discharge with increased electrolyte exchange in the region between the electrode and membrane is to be achieved with a high degree of efficiency; moreover, the electrode arrangement should be easy to manufacture, its long-term stability should be increased and the catalytically active surface should be enlarged.
  • the simple manufacture of the electrode arrangement has proven to be particularly advantageous; Furthermore, the different usability can be regarded as advantageous, for example, as being supported directly on the membrane and as a cathode at a distance from the membrane.
  • FIG. 1a shows a plan view of the surface of the electrode arrangement, while FIG. 1b shows a cut-out section A from FIG. 1a; Figure 1c shows a cross section in the profile of the electrode arrangement.
  • Figure 2 shows a perspective view of a partially broken electrode arrangement
  • Figure 3 shows the use of the electrode arrangement according to the invention in a membrane electrolysis cell schematically in a fragmentary partial representation.
  • the electrode arrangement 1 made from a flat electrode sheet has a multiplicity of lamellar electrode elements 2 which are each separated from one another by a gap 3; the upper edges 4 of the electrode elements 2 are angled along a schematically represented line 5 on the side facing away from the membrane, in order to allow the gas bubbles formed in the region of the electrodes to be drawn off rapidly.
  • the schematically illustrated essentially diamond-shaped openings 8 of the expanded metal can be seen from FIG. This means that the electrochemically active electrode area increases to an area of 1.15 cm 2 compared to a closed area of, for example, 1 cm 2 by expanded metal openings.
  • Expanded metal with a web width in the range from 1.5 to 4 mm is advantageously used.
  • the long dimension of the opening (LWD) is in the range of 2 to 4.5 mm
  • the short dimension of the opening (SWD) is in the range of 1.2 to 3 mm.
  • the angle between the upper edges 4 and the plane of the electrode arrangement 1 is approximately 30 °.
  • a bevel angle in the range of 20-35 ° has proven to be advantageous.
  • Particularly suitable materials for the electrode arrangement are titanium sheet with a noble metal and non-noble metal activation or nickel sheet with a noble metal activation.
  • the electrode arrangement has proven particularly useful when used as an anode and cathode in a membrane cell for chlor-alkali electrolysis or for hydrogen oxygen generation.
  • the edge strips 6 and 7 consist of either expanded metal or continuous sheet metal.
  • the membrane lies directly on the area designated by reference number 10, while the rear area, which extends into the electrolyte space, is open for the purpose of gas discharge.
  • spacer elements are provided between the end face 10 of the electrode arrangement 1 and the ion exchange membrane, not shown, which consist of an electrolyte-resistant material, but are also not shown here.
  • FIG. 3 shows a schematic cross-sectional representation of a single membrane cell unit, only the ion exchange membrane with cathode and anode being shown in cross-section, and the representation of the associated one Peripherals such as clamping elements, power supply, gas discharge have been omitted for a better overview.
  • the anodically connected electrode 1 rests with its end face 10 directly on the surface of the diaphragm 11 shown schematically, the requirement for rapid gas discharge being clearly recognizable due to the openings 8 shown here only schematically in the region of the electrode elements .
  • a corresponding process also takes place on the opposite side of the membrane 11 by means of the cathodically connected electrode 1 '; however, it should be noted here that the cathodic electrode is arranged at a distance from the membrane for the purpose of mass exchange and stability of the membrane, for example is supported by spacer elements 13 with respect to the ion exchange membrane 11 in order to achieve a distance in the range of 1 to 3 mm; however, it is also possible to form a distance between the membrane and the cathodic electrode by means of the pressure difference.
  • gas bubbles are discharged in a vertical direction from the catholyte 14, a gas collection device (not shown here) likewise being provided.
  • the fragmentary cell vessel containing anolyte and catholyte is designated by reference number 15.
  • the membrane cell arrangement is particularly suitable for electrolysis cells for chlorine production, but it can also be used for hydrogen / oxygen production.

Abstract

An electrode arrangement for gas-forming electrolytic processes in membrane cells has a flat electrode containing blade-like electrode components (2), in which neighbouring electrode components are separated by a gap (3). To improve gas dissipation from the electrode/membrane region, the blade-like electrode components have an expanded metal structure in which the apertures improve the passage of the gas. The electrode components have angled upper edges (4) to assist vertical gas dissipation. The electrode arrangement is particularly suitable as an anodically connected electrode laid directly on the ion exchange membrane, but may also be used as a cathode at a distance from the membrane.

Description

Die Erfindung betrifft eine Elektrodenanordnung für gasbildende elektrolytische Prozesse, insbesondere Prozesse in Membran-Zellen, aus einer flächenhaften Elektrodenstruktur mit wenigstens zwei elektrisch leitend und mechanisch fest miteinander verbundene Elektrodenelementen, zwischen denen jeweils ein Spalt zur Gasableitung vorgesehen ist, wobei die Elektrodenelemente entlang der Spalte Auflageflächen für eine Ionenaustauschermembran oder ein Diaphragma aufweisen und an den Spalt angrenzende Kantenbereiche als Gasableitungsvorrichtung ausgebildet sind und deren Verwendung.The invention relates to an electrode arrangement for gas-forming electrolytic processes, in particular processes in membrane cells, consisting of a flat electrode structure with at least two electrically conductive and mechanically firmly connected electrode elements, between each of which a gap is provided for gas discharge, the electrode elements along the column bearing surfaces for an ion exchange membrane or a diaphragm and edge regions adjacent to the gap are designed as a gas discharge device and their use.

Aus der DE-CS 32 19 704 ist eine Membran-Elektrolysezelle vom Filterpressentyp mit paarweise flächenhaften Elektroden bekannt, wobei die Elektroden jeweils mindestens einen durchbrochenen aktiven Mitteilteil enthalten und zwischen den paarweisen Elektroden eine Membran angeordnet ist; dabei ist jeweils zwischen Elektrodenrand und Membranrand eine Dichtung angeordnet; der durchbrochene Mittelteil der Elektroden hat einen gitterähnlichen Aufbau, wobei die Gitterstäbe der paarweise zugeordneten Elektroden um maximal eine halbe Stabbreite gegeneinander versetzt sind und die Gitterstäbe einer Elektrode so angeordnet sind, daß ihr Abstand untereinander kleiner als die Projektion ihrer Breite ist; die Gitterstäbe weisen zumindest an der Aktivseite eine konvexe Wölbung auf, wobei die Dicke der Dichtung zwischen Elektrodenrand und Membranrand gleich oder geringer ist als die Höhe des über den Elektrodenrand ragenden Gitterstabanteils. Als problematisch erweist es sich, daß bei einer solchen Anordnung mit einer Abreicherung und mit Gasblasen im Bereich der Ablagefläche gerechnet werden muß, woraus sich ungünstige Auswirkungen auf Membran und Elektrodenbeschichtung ergeben.From DE-CS 32 19 704 a membrane electrolysis cell of the filter press type with pairs of planar electrodes is known, the electrodes each containing at least one open active part and a membrane being arranged between the pairs of electrodes; a seal is arranged between the electrode edge and the membrane edge; the perforated central part of the electrodes has a grid-like structure, the grid rods of the electrodes assigned in pairs being offset from one another by a maximum of half a rod width and the grid rods of an electrode being arranged such that their distance from one another is smaller than the projection of their width; the grids have a convex curvature at least on the active side, the thickness of the seal between the electrode edge and the membrane edge being equal to or less than the height of the portion of the grid rod projecting beyond the electrode edge. It turns out to be problematic that with one Such an arrangement with depletion and gas bubbles in the area of the storage surface must be expected, which has an unfavorable effect on the membrane and the electrode coating.

Die Elektrolysezelle ist für die Elektrolyse eines wässrigen halogenidhaltigen Elektrolyts, wie beispielsweise Sole vorgesehen, um eine wässrige Alkalimetallhydroxid-Lösung und Halogen und Wasserstoff herzustellen.The electrolytic cell is intended for the electrolysis of an aqueous halide-containing electrolyte, such as brine, in order to produce an aqueous alkali metal hydroxide solution and halogen and hydrogen.

Bei solchermaßen aufgebauten Zellen muß im Bereich der Berührungsstelle zwischen Elektrode und Membran mit einer Abreicherung von Chlorid gerechnet werden, woraus sich eine Verringerung der Langzeitstabilität ergeben kann.In the case of cells constructed in this way, a depletion of chloride must be expected in the area of contact between the electrode and membrane, which may result in a reduction in long-term stability.

Aus der EP-PS 0 102 099 ist eine Elektrodenanordnung für gasbildende Elektrolyseure, insbesondere Membran-Elektrolyseure, mit vertikal angeordneter Plattenelektrode, einer Gegenelektrode und einer Membran zwischen beiden Elektroden bekannt; die Plattenelektrode ist dabei in horizontale Streifen geteilt, deren gesamte aktive Elektrodenfläche parallel und im kürzesten Abstand zur Gegenelektrode angeordnet ist, wobei jedoch zwischen Membran und Elektrode ein Spalt zur Ableitung des bei der elektrochemischen Umsetzung entstehenden Gases vorgesehen ist; zur Gasableitung des aus dem Elektrodenspalt aufsteigenden Gases sind die horizontalen Streifen im Bereich ihrer Oberkante jeweils mit einem abgewinkelten Gasableitungsorgan versehen,an dem das aufsteigende Gas expandiert und zum Teil hinter die Elektrode geführt wird.From EP-PS 0 102 099 an electrode arrangement for gas-forming electrolysers, in particular membrane electrolysers, with a vertically arranged plate electrode, a counter electrode and a membrane between the two electrodes is known; the plate electrode is divided into horizontal strips, the entire active electrode surface of which is arranged parallel and at the shortest distance from the counterelectrode, but a gap is provided between the membrane and the electrode for discharging the gas formed during the electrochemical reaction; For the gas discharge of the gas rising from the electrode gap, the horizontal strips in the area of their upper edge are each provided with an angled gas discharge element, on which the rising gas expands and is partly guided behind the electrode.

Als problematisch erweist sich der hierbei stets zur Gasableitung erforderliche Elektrodenspalt zwischen der Membran und den beiden Elektroden, wobei ein solch verhältnismäßig großer Elektrodenabstand auch eine Erhöhung der Zellspannung zur Folge hat.The electrode gap between the membrane and the two electrodes, which is always required for gas discharge, proves to be problematic, such a relatively large electrode spacing also resulting in an increase in the cell voltage.

Aus der DE-OS 36 40 584 ist eine Elektrodenanordnung für gasbildende Elektrolyseure, insbesondere für monopolare Membranelektrolyseure mit vertikal angeordneten Plattenelektroden sowie Gegen-Elektroden und einer Membran zwischen Plattenelektrode und Gegenelektrode bekannt; auf der der Membran zugekehrten Fläche der Plattenelektroden sind elektrisch leitende und mit den Plattenelektroden elektrisch leitend verbundene Flächengebilde als Vorelektroden bekannt, die in parallelen Ebenen zu den Plattenelektroden verlaufen.From DE-OS 36 40 584 an electrode arrangement for gas-forming electrolyzers, in particular for monopolar membrane electrolyzers with vertically arranged plate electrodes and counter electrodes and a membrane between plate electrode and counter electrode is known; On the surface of the plate electrodes facing the membrane, electrically conductive and electrically connected surface structures are known as pre-electrodes, which run in parallel planes to the plate electrodes.

Das als Elektrode dienende Flächengebilde ist in Form von Lochblechen, Streckmetallen, Drahtgeweben oder Drahtgeflechten gebildet, wobei der Abstand der Flächengebilde zwischen 1 und 5 mm beträgt; die Plattenelektroden sind in mehrere getrennte Einheiten horizontal durchgehend geteilt, um eine Verbesserung der Stromverteilung in der Membran und eine Verringerung des Spannungsabfalls auf den der Membran zugekehrten Flächen zu erzielen.The fabric serving as an electrode is in the form of perforated sheets, expanded metals, wire mesh or wire mesh, the distance between the fabrics being between 1 and 5 mm; the plate electrodes are continuously divided horizontally into several separate units in order to improve the current distribution in the membrane and to reduce the voltage drop on the surfaces facing the membrane.

Als problematisch erweist sich bei solchen Elektroden die Abreicherung von Chlorid, insbesondere im Bereich der Berührungsstelle zwischen Elektrode und Ionenaustauschermembran, woraus sich eine Verringerung der Langzeitstabilität ergibt.With such electrodes, the depletion of chloride proves to be problematic, especially in the area of contact between the electrode and the ion exchange membrane, which results in a reduction in long-term stability.

Weiterhin ist aus der EP-OS 0 150 018 ein Verfahren zum Elektrolysieren von flüssigen Elektrolyten mittels durchbrochener Elektroden in durch Ionenaustauschermembran geteilten Elektrolysezellen bekannt, wobei aufgrund von Gasblasenbildung seitlich zur Hauptfließrichtung des Elektrolyten ein Gasraum entsteht. Die entstehenden Gasblasen geben durch Zerplatzen an der Phasengrenze ihren Gasinhalt an den seitlich zur Hauptfließrichtung angrenzenden Gasraum ab, welcher bei plattenförmigen Elektroden durch den rückwärtigen Raum hinter der Elektrode gebildet wird. Die durchbrochenen Elektroden können unter anderem aus Streckmetallen oder Blechstreifen bestehen.Furthermore, EP-OS 0 150 018 discloses a process for the electrolysis of liquid electrolytes by means of perforated electrodes in electrolysis cells divided by ion exchange membrane, a gas space being formed laterally to the main flow direction of the electrolyte due to gas bubble formation. By bursting at the phase boundary, the resulting gas bubbles give off their gas content to the gas space adjacent to the main flow direction, which is formed in the case of plate-shaped electrodes by the rear space behind the electrode. The perforated electrodes can consist of expanded metal or sheet metal strips, among other things.

Als problematisch erweist sich bei den aus der EP-OS 0 150 018 bekannten Anordnungen der verhältnismäßig aufwendige Aufbau von Elektroden mit gasströmungsleitenden Elementen, die aus einzelnen Blechstreifen zusammengesetzt sind.A problem with the arrangements known from EP-OS 0 150 018 is the relatively complex construction of electrodes with gas flow-guiding elements, which are composed of individual sheet metal strips.

Die Erfindung stellt sich die Aufgabe, eine Elektrodenanordnung mit offener Struktur, gegebenenfalls mit gitterähnlichem Aufbau, zu entwickeln, wobei im Betrieb eine rasche Gasblasenableitung mit erhöhtem Elektrolytaustausch im Bereich zwischen Elektrode und Membran bei einem hohen Wirkungsgrad erzielt werden soll; darüberhinaus soll die Elektrodenanordnung einfach herzustellen sein, ihre Langzeitstabilität erhöht werden und eine Vergrößerung der katalytisch aktiven Oberfläche erzielt werden.The object of the invention is to develop an electrode arrangement with an open structure, possibly with a grid-like structure, in which rapid gas bubble discharge with increased electrolyte exchange in the region between the electrode and membrane is to be achieved with a high degree of efficiency; moreover, the electrode arrangement should be easy to manufacture, its long-term stability should be increased and the catalytically active surface should be enlarged.

Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sowie deren Verwendung sind in den Ansprüchen 2 bis 10 angegeben.The object is achieved by the characterizing features of claim 1. Further advantageous embodiments of the invention and their use are specified in claims 2 to 10.

Als vorteilhaft erweist sich insbesondere die einfache Fertigung der Elektrodenanordnung; weiterhin ist die unterschiedliche Einsetzbarkeit beispielsweise als direkt an der Membran abstützend als auch als Kathode im Abstand zur Membran als vorteilhaft anzusehen. Darüberhinaus ist es möglich aufgrund der mit Streckmetallöffnungen versehenen Elektroden einen raschen Gasabgang zu erzielen; bei elektrochemischen Zellen mit der erfindungsgemäßen Elektrode läßt sich eine verhältnismäßig niedrige Zellspannung gegenüber üblichen Membranzellen erzielen, woraus sich erhebliche Energieeinsparungen ergeben.The simple manufacture of the electrode arrangement has proven to be particularly advantageous; Furthermore, the different usability can be regarded as advantageous, for example, as being supported directly on the membrane and as a cathode at a distance from the membrane. In addition, it is possible to achieve a rapid gas discharge due to the electrodes provided with expanded metal openings; in electrochemical cells with the electrode according to the invention, a relatively low cell voltage can be achieved compared to conventional membrane cells, which results in considerable energy savings.

Im folgenden ist der Gegenstand anhand der Figuren 1a, 1b, 1c, 2 und 3 näher erläutert.The subject is explained in more detail below with reference to FIGS. 1a, 1b, 1c, 2 and 3.

Figur 1a zeigt eine flächenhafte Draufsicht auf die Elektrodenanordnung, während Figur 1b einen herausgebrochenen Ausschnitt A aus Figur 1a darstellt; Figur 1c zeigt einen Querschnitt im Profil der Elektrodenanordnung.FIG. 1a shows a plan view of the surface of the electrode arrangement, while FIG. 1b shows a cut-out section A from FIG. 1a; Figure 1c shows a cross section in the profile of the electrode arrangement.

Figur 2 zeigt in einer perspektivischen Darstellung eine teilweise aufgebrochene Elektrodenanordnung, während Figur 3 den Einsatz der erfindungsgemäßen Elektrodenanordnung in einer Membranelektrolysezelle schematisch in bruchstückhafter Teildarstellung zeigt.Figure 2 shows a perspective view of a partially broken electrode arrangement, while Figure 3 shows the use of the electrode arrangement according to the invention in a membrane electrolysis cell schematically in a fragmentary partial representation.

Gemäß Figur 1a weist die aus einem flächenhaften Elektrodenblech hergestellte Elektrodenanordnung 1 eine Vielzahl von lamellenförmig angeordneten Elektrodenelementen 2 auf, die jeweils durch einen Spalt 3 voneinander getrennt sind; die Oberkanten 4 der Elektrodenelemente 2 sind entlang einer schematisch dargestellten Linie 5 auf der der Membran abgewandten Seite abgewinkelt, um einen raschen Gasabzug der im Bereich der Elektroden entstehenden Gasblasen zu ermöglichen. Anhand der Figur 1b sind die schematisch dargestellten im wesentlichen rautenförmigen Öffnungen 8 des Streckmetalls erkennbar, wobei trotz der Ausnehmungen eine Erhöhung der aktiven Oberfläche im Bereich von 1,1 bis 1,3 zu erzielen ist; dies bedeutet, daß sich die elektrochemisch wirksame Elektrodenfläche durch Streckmetallöffnungen gegenüber einer geschlossenen Fläche von beispielsweise 1 cm2 auf eine Fläche von 1,15 cm2 erhöht.According to FIG. 1a, the electrode arrangement 1 made from a flat electrode sheet has a multiplicity of lamellar electrode elements 2 which are each separated from one another by a gap 3; the upper edges 4 of the electrode elements 2 are angled along a schematically represented line 5 on the side facing away from the membrane, in order to allow the gas bubbles formed in the region of the electrodes to be drawn off rapidly. The schematically illustrated essentially diamond-shaped openings 8 of the expanded metal can be seen from FIG. This means that the electrochemically active electrode area increases to an area of 1.15 cm 2 compared to a closed area of, for example, 1 cm 2 by expanded metal openings.

Vorteilhafterweise wird Streckmetall mit einer Stegbreite im Bereich von 1,5 bis 4 mm eingesetzt. Die lange Abmessung der öffnung (LWD) liegt im Bereich von 2 bis 4,5 mm, die kurze Abmessung der Öffnung (SWD) im Bereich von 1,2 bis 3 mm.Expanded metal with a web width in the range from 1.5 to 4 mm is advantageously used. The long dimension of the opening (LWD) is in the range of 2 to 4.5 mm, the short dimension of the opening (SWD) is in the range of 1.2 to 3 mm.

Aufgrund der Öffnungen im Bereich der katalytisch aktiven Elektrodenfläche läßt sich eine bessere Durchmischung des Elektrolytgasblasengemischs mit besserer Gasblasenableitung erzielen, woraus sich eine Verbesserung der Langzeitstabilität im Bereich von Membran und anodisch geschalteter Elektrode ergibt; die anodisch geschaltete Elektrode liegt dabei direkt auf der Membran auf.Due to the openings in the area of the catalytically active electrode surface, better mixing of the electrolyte gas bubble mixture with better gas bubble discharge can be achieved, which results in an improvement in long-term stability in the area of the membrane and anodically switched electrode; the anodically connected electrode lies directly on the membrane.

Wie aus Figur lc zu ersehen ist, liegt der Winkel zwischen den Oberkanten 4 und der Ebene der Elektrodenanordnung 1 bei ca. 30°. Als vorteilhaft hat sich ein Abkantungswinkel im Bereich von 20-35° erwiesen.As can be seen from FIG. 1c, the angle between the upper edges 4 and the plane of the electrode arrangement 1 is approximately 30 °. A bevel angle in the range of 20-35 ° has proven to be advantageous.

Als Werkstoffe für die Elektrodenanordnung sind insbesondere Titanblech mit einer Edelmetall und Nichtedelmetall Aktivierung bzw. Nickelblech mit Edelmetallaktivierung geeignet.Particularly suitable materials for the electrode arrangement are titanium sheet with a noble metal and non-noble metal activation or nickel sheet with a noble metal activation.

Die Elektrodenanordnung hat sich insbesondere beim Einsatz als Anode und Kathode in einer Membranzelle für die Chlor-Alkali-Elektrolyse oder für die Wasserstoff-Sauerstofferzeugung bewährt.The electrode arrangement has proven particularly useful when used as an anode and cathode in a membrane cell for chlor-alkali electrolysis or for hydrogen oxygen generation.

Die Randstreifen 6 und 7 bestehen entweder aus Streckmetal oder zusammenhängendem Blech.The edge strips 6 and 7 consist of either expanded metal or continuous sheet metal.

Anhand der Figur 2 sind die zur Gasableitung erforderlichen Öffnungen 8 innerhalb der Elektrodenelemente 2 sowie die durch Spalt 3 und abgewinkelte Oberkanten 4 mögliche Auftrennung des Gas-Elektrolytgemisches in einen Elektrolytteil und in einen abzuführenden Gasanteil erkennbar. Falls die Elektrode anodisch geschaltet wird, liegt die Membran unmittelbar auf dem mit Bezugsziffer 10 bezeichneten Flächenbereich an, während der rückwärtige, in den Elektrolytraum sich erstreckende Bereich zwecks Gasabführung offen ist. Im Falle einer kathodischen Schaltung der Elektrode sind zwischen der Stirnseite 10 der Elektrodenanordnung 1 und der nicht dargestellten Ionenaustauschermembran Distanzelemente vorgesehen, die aus elektrolytbeständigem Werkstoff bestehen, hier jedoch ebenfalls nicht dargestellt sind.2 shows the openings 8 required for gas discharge within the electrode elements 2 and the separation of the gas-electrolyte mixture into an electrolyte part and into a gas portion to be discharged, which is possible due to gap 3 and angled upper edges 4. If the electrode is switched anodically, the membrane lies directly on the area designated by reference number 10, while the rear area, which extends into the electrolyte space, is open for the purpose of gas discharge. In the case of a cathodic circuit of the electrode, spacer elements are provided between the end face 10 of the electrode arrangement 1 and the ion exchange membrane, not shown, which consist of an electrolyte-resistant material, but are also not shown here.

Figur 3 zeigt in einer schematischen Querschnittsdarstellung eine einzige Membranzelleneinheit, wobei lediglich die Ionenaustauschermembran mit Kathode und Anode im Querschnitt dargestellt ist, und auf die Darstellung der zugehörigen Peripherie wie Spannelemente, Stromzuführung, Gasableitung zwecks besserer Übersicht verzichtet wurde.FIG. 3 shows a schematic cross-sectional representation of a single membrane cell unit, only the ion exchange membrane with cathode and anode being shown in cross-section, and the representation of the associated one Peripherals such as clamping elements, power supply, gas discharge have been omitted for a better overview.

Wie der Figur 3 zu entnehmen ist, liegt die anodisch geschaltete Elektrode 1 mit ihrer Stirnseite 10 unmittelbar an der Oberfläche der schematisch dargestellten Membran 11 an, wobei aufgrund der hier nur schematisch dargestellten Öffnungen 8 im Bereich der Elektrodenelemente die Erfordernis einer raschen Gasableitung gut erkennbar ist. Die hier nicht dargestellten Gasblasen strömen aufgrund ihres gegenüber dem Anolyten 12 verringerten spezifischen Gewichtes in vertikaler Richtung nach oben und werden dort von hier nicht dargestellten Auffangvorrichtungen gesammelt und weitergeleitet. Ein entsprechender Prozeß findet auch auf der gegenüberliegenden Seite der Membran 11 mittels der kathodisch geschalteten Elektrode 1' statt; hier ist jedoch zu beachten, daß die kathodische Elektrode zwecks Stoffaustausch und Stabilität der Membran im Abstand zur Membran angeordnet ist, beispielsweise durch Distanzelemente 13 gegenüber der Ionenaustauschermembran 11 abgestützt ist, um einen Abstand im Bereich von 1 bis 3 mm zu erzielen; es ist jedoch auch möglich, mittels Druckdifferenz einen Abstand zwischen Membran und kathodischer Elektrode zu bilden. Auch hier tritt eine Ableitung von Gasblasen in vertikaler Richtung aus dem Katholyten 14 auf, wobei ebenfalls eine hier nicht dargestellte Gassammelvorrichtung vorgesehen ist. Das Anolyt und Katholyt enthaltende bruchstückhaft dargestellte Zellengefäß ist mit Bezugsziffer 15 bezeichnet.As can be seen in FIG. 3, the anodically connected electrode 1 rests with its end face 10 directly on the surface of the diaphragm 11 shown schematically, the requirement for rapid gas discharge being clearly recognizable due to the openings 8 shown here only schematically in the region of the electrode elements . The gas bubbles, not shown here, flow upwards in the vertical direction due to their reduced specific weight compared to the anolyte 12 and are collected and forwarded there by collecting devices, not shown here. A corresponding process also takes place on the opposite side of the membrane 11 by means of the cathodically connected electrode 1 '; however, it should be noted here that the cathodic electrode is arranged at a distance from the membrane for the purpose of mass exchange and stability of the membrane, for example is supported by spacer elements 13 with respect to the ion exchange membrane 11 in order to achieve a distance in the range of 1 to 3 mm; however, it is also possible to form a distance between the membrane and the cathodic electrode by means of the pressure difference. Here, too, gas bubbles are discharged in a vertical direction from the catholyte 14, a gas collection device (not shown here) likewise being provided. The fragmentary cell vessel containing anolyte and catholyte is designated by reference number 15.

Die Membranzellenanordnung ist insbesondere für Elektrolysezellen zur Chlorerzeugung geeignet, jedoch kann sie auch zur Wasserstoff/Sauerstofferzeugung dienen.The membrane cell arrangement is particularly suitable for electrolysis cells for chlorine production, but it can also be used for hydrogen / oxygen production.

Claims (10)

  1. An electrode arrangement for gas-forming electrolytic processes, in particular processes in membrane cells, of an areal electrode structure with at least two electrode elements connected with each other in an electrically conducting and mechanically secure manner, between which in each case a gap is provided for gas discharge, in which the electrode elements along the gaps have bearing surfaces for an ion exchanger membrane or a diaphragm and edge regions adjoining the gap are constructed as a gas discharge device, characterised in that at least the bearing surfaces of the electrode elements (2) have liquid and gas permeable regions.
  2. An electrode arrangement according to Claim 1, characterised in that the bearing surfaces of the electrode elements (2) lie in one plane.
  3. An electrode arrangement according to Claim 1 or 2, characterised in that in their entire surface region, the electrode elements (2) have liquid and gas permeable regions.
  4. An electrode arrangement according to one of Claims 1 to 3, characterised in that the electrode element (2) is formed from expanded metal.
  5. An electrode arrangement according to Claim 4, characterised in that the ratio of the electrocatalytically effective surface to the geometric surface of the electrode element (2) lies in the range of 0.9:1 to 2.0:1.
  6. An electrode arrangement according to one of Claims 1 to 5, characterised in that the electrode elements are connected with each other by at least two outer marginal strips (6, 7) lying opposite each other, in which the electrode elements (2) and the outer marginal strips (6, 7) consist of an electrode plate which is areally cohesive.
  7. An electrode arrangement according to one of Claims 1 to 3, characterised in that the electrode element consists of porous or microporous metal.
  8. An electrode arrangement according to Claim 7, characterised in that the electrode element consists of sintered titanium or sintered nickel.
  9. An electrode arrangement according to Claim 7 or 8, characterised in that the maximum expansion of the pores lies in the region of the maximum expansion of the gas bubbles.
  10. The use of the electrode arrangement according to one of Claims 1 to 9 as anode or cathode of a membrane cell.
EP94906164A 1993-03-05 1994-01-28 Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells Expired - Lifetime EP0687312B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4306889 1993-03-05
DE4306889A DE4306889C1 (en) 1993-03-05 1993-03-05 Electrode arrangement for gas-forming electrolytic processes in membrane cells and their use
PCT/EP1994/000240 WO1994020649A1 (en) 1993-03-05 1994-01-28 Electrode arrangement for gas-forming electrolytic processes in membrane cells and its use

Publications (2)

Publication Number Publication Date
EP0687312A1 EP0687312A1 (en) 1995-12-20
EP0687312B1 true EP0687312B1 (en) 1997-01-08

Family

ID=6482002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94906164A Expired - Lifetime EP0687312B1 (en) 1993-03-05 1994-01-28 Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells

Country Status (17)

Country Link
US (1) US5660698A (en)
EP (1) EP0687312B1 (en)
JP (1) JPH08507327A (en)
AU (1) AU679038B2 (en)
BG (1) BG99882A (en)
BR (1) BR9405884A (en)
CA (1) CA2154692A1 (en)
CZ (1) CZ284530B6 (en)
DE (2) DE4306889C1 (en)
ES (1) ES2097032T3 (en)
NO (1) NO953111L (en)
PL (1) PL177633B1 (en)
SA (1) SA94140724B1 (en)
SK (1) SK108395A3 (en)
TW (1) TW325927U (en)
WO (1) WO1994020649A1 (en)
ZA (1) ZA941191B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1279069B1 (en) * 1995-11-22 1997-12-04 Permelec Spa Nora IMPROVED ELECTRODE TYPE FOR ION EXCHANGE MEMBRANE ELECTROLYZERS
US5849164A (en) * 1996-06-27 1998-12-15 Eltech Systems Corporation Cell with blade electrodes and recirculation chamber
DE19816334A1 (en) * 1998-04-11 1999-10-14 Krupp Uhde Gmbh Electrolysis apparatus for the production of halogen gases
SK286563B6 (en) * 1999-01-08 2009-01-07 Moltech Invent S.A. Aluminium electrowinning cells with oxygen-evolving anodes
US10916674B2 (en) * 2002-05-07 2021-02-09 Nanoptek Corporation Bandgap-shifted semiconductor surface and method for making same, and apparatus for using same
DE10333853A1 (en) * 2003-07-24 2005-02-24 Bayer Materialscience Ag Electrochemical cell
DE102004023161A1 (en) * 2004-05-07 2005-11-24 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Electrolysis cell with multilayer expanded metal cathodes
US9040012B2 (en) 2009-02-17 2015-05-26 Mcalister Technologies, Llc System and method for renewable resource production, for example, hydrogen production by microbial electrolysis, fermentation, and/or photosynthesis
JP5547752B2 (en) * 2009-02-17 2014-07-16 マクアリスター テクノロジーズ エルエルシー Apparatus and method for controlling nucleation during electrolysis
US8075750B2 (en) * 2009-02-17 2011-12-13 Mcalister Technologies, Llc Electrolytic cell and method of use thereof
EP2398938B1 (en) * 2009-02-17 2016-04-06 McAlister Technologies, LLC Apparatus and method for gas capture during electrolysis
CN102395710B (en) 2009-02-17 2015-02-11 麦卡利斯特技术有限责任公司 Electrolytic cell and method of use thereof
DE102010021833A1 (en) * 2010-05-28 2011-12-01 Uhde Gmbh Electrode for electrolysis cell
US20130034489A1 (en) * 2011-02-14 2013-02-07 Gilliam Ryan J Electrochemical hydroxide system and method using fine mesh cathode
US9222178B2 (en) 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
US8808512B2 (en) 2013-01-22 2014-08-19 GTA, Inc. Electrolyzer apparatus and method of making it
US9127244B2 (en) 2013-03-14 2015-09-08 Mcalister Technologies, Llc Digester assembly for providing renewable resources and associated systems, apparatuses, and methods
JP2016014381A (en) * 2014-07-03 2016-01-28 ナブテスコ株式会社 Vehicular air compression device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1581348A (en) * 1976-08-04 1980-12-10 Ici Ltd Bipolar unit for electrolytic cell
DE3219704A1 (en) * 1982-05-26 1983-12-01 Uhde Gmbh, 4600 Dortmund MEMBRANE ELECTROLYSIS CELL
DE3228884A1 (en) * 1982-08-03 1984-02-09 Metallgesellschaft Ag, 6000 Frankfurt VERTICALLY ARRANGED PLATE ELECTRODE FOR GAS GENERATING ELECTROLYSIS
DE3345530A1 (en) * 1983-07-13 1985-06-27 Basf Ag, 6700 Ludwigshafen GAS-DEVELOPING METAL ELECTRODE FOR ELECTROLYSIS CELLS
DE3401637A1 (en) * 1984-01-19 1985-07-25 Hoechst Ag, 6230 Frankfurt METHOD FOR ELECTROLYZING LIQUID ELECTROLYTE
DE3640584A1 (en) * 1986-11-27 1988-06-09 Metallgesellschaft Ag ELECTRODE ARRANGEMENT FOR GAS-GENERATING ELECTROLYSISTS WITH VERTICALLY ARRANGED PLATE ELECTRODES
DE4119836A1 (en) * 1991-06-12 1992-12-17 Arnold Gallien ELECTROLYSIS CELL FOR GAS DEVELOPING OR GAS-CONSUMING ELECTROLYTIC PROCESSES AND METHOD FOR OPERATING THE ELECTROLYSIS CELL

Also Published As

Publication number Publication date
CZ225695A3 (en) 1996-04-17
AU5999694A (en) 1994-09-26
PL177633B1 (en) 1999-12-31
EP0687312A1 (en) 1995-12-20
BR9405884A (en) 1995-12-12
DE4306889C1 (en) 1994-08-18
DE59401542D1 (en) 1997-02-20
BG99882A (en) 1996-02-29
CZ284530B6 (en) 1998-12-16
WO1994020649A1 (en) 1994-09-15
JPH08507327A (en) 1996-08-06
NO953111D0 (en) 1995-08-08
US5660698A (en) 1997-08-26
TW325927U (en) 1998-01-21
ES2097032T3 (en) 1997-03-16
AU679038B2 (en) 1997-06-19
SK108395A3 (en) 1997-05-07
PL310407A1 (en) 1995-12-11
CA2154692A1 (en) 1994-09-15
NO953111L (en) 1995-08-08
ZA941191B (en) 1994-09-20
SA94140724B1 (en) 2005-09-12

Similar Documents

Publication Publication Date Title
EP0687312B1 (en) Electrode arrangement for gas-forming electrolytic processes in membrane or diaphragm cells
DE3051012C2 (en)
DE2809332C2 (en) Monopolar electrolysis cell in filter press design
DE2847955C2 (en) Process for producing halogens by electrolysis of aqueous alkali metal halides
DE2656650A1 (en) BIPOLAR ELECTRODE FOR AN ELECTROLYSIS CELL
EP0189535B1 (en) Electrolysis apparatus
DE2856882C2 (en)
DE4120679A1 (en) METHOD FOR EFFECTIVELY OPERATING ELECTROLYSIS CELLS AND ELECTROLYSIS CELL FOR GAS-DEVELOPING AND GAS-CONSUMING ELECTROLYTIC PROCESSES
DE3025662A1 (en) ELECTROLYTIC CELL
DE2059868B2 (en) Electrode plate to be arranged vertically for gas-forming electrolysis
EP0059931A1 (en) Electrolyzer for alkaline water electrolysis, and process for its manufacture
EP0095039A2 (en) Membrane-electrolysis cell
DE2430444A1 (en) BIPOLAR ELECTROLYSIS CELLS WITH PERFORATED METAL LANODES
DE2800205A1 (en) ELECTROLYTIC CELL WITH A MEMBRANE
EP0097991B1 (en) Membrane-electrolysis cell with vertically arranged electrodes
EP0102099B1 (en) Vertical electrode plate for gas-forming electrolyzers
EP0274138B1 (en) Electrode arrangement for an electrolyser producing a gas, featuring vertically disposed electrode plates
DE2538000B2 (en) Bipolar electrode construction for a membrane-free electrolysis cell
EP0051764B1 (en) Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen
DE19740673C2 (en) Electrolysis apparatus
DE3808495C2 (en)
DE10203689A1 (en) Cathodic current distributor for electrolytic cells
EP0150019B1 (en) Method of electrolyzing using liquid electrolytes and porous electrodes
DE2709093A1 (en) ELECTRODE FOR THE GENERATION OF A GAS IN A CELL WITH A MEMBRANE
DE3519272C1 (en) Electrode structure for electrochemical cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960318

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970131

REF Corresponds to:

Ref document number: 59401542

Country of ref document: DE

Date of ref document: 19970220

ITF It: translation for a ep patent filed

Owner name: 0403;03RMFSOCIETA' ITALIANA BREVETTI S.P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2097032

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19971217

Year of fee payment: 5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980122

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990129

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990202

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050128

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070110

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980131

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070111

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131