EP0051764B1 - Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen - Google Patents

Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen Download PDF

Info

Publication number
EP0051764B1
EP0051764B1 EP81108609A EP81108609A EP0051764B1 EP 0051764 B1 EP0051764 B1 EP 0051764B1 EP 81108609 A EP81108609 A EP 81108609A EP 81108609 A EP81108609 A EP 81108609A EP 0051764 B1 EP0051764 B1 EP 0051764B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
grooves
electrolytic cell
electrode
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81108609A
Other languages
German (de)
French (fr)
Other versions
EP0051764A1 (en
Inventor
Helmut Dr. Klotz
Ernst Tepe
Lothar Dipl.-Ing. Sesterhenn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0051764A1 publication Critical patent/EP0051764A1/en
Application granted granted Critical
Publication of EP0051764B1 publication Critical patent/EP0051764B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the present invention relates to an electrolysis cell for the electrolysis of hydrochloric acid, in particular an electrolysis cell with bipolar electrodes.
  • Such cells are assembled according to the filter press type and form a cell block that can consist of 30 to 50 individual cells. Electrodes made of graphite are usually used. Such cells are e.g. known from U.S. Patent 3,875,040.
  • the present invention therefore relates to an electrolysis cell with bipolar electrodes and electrode gaps subdivided by a diaphragm or a membrane for producing chlorine and hydrogen from hydrochloric acid, the electrodes having vertical grooves, which is characterized in that the grooves at least in the upper region of the Electrodes have a depth of 18 to 35 mm, preferably at least 20 mm, particularly preferably 25 to 32 mm.
  • the grooves preferably have a width of 2 to 3 mm.
  • the webs generated between the grooves are preferably 4 to 6 mm wide.
  • the electrodes according to the invention make it possible to reduce the distance between the electrodes and the diaphragm or membrane to 0.05 to 2 mm, preferably to less than 1 mm, the voltage between the electrodes likewise decreasing with the same current strength. This is particularly surprising because, according to the prior art, an increase in voltage due to the increased influence of the gas bubbles would be expected. For diaphragms or membranes with a tissue structure, this means that the diaphragm or membrane can lie directly on the electrode.
  • Electrode 1 shows a cell block with any number of electrode frames 1, 8, 10, 11, 12, in which the graphite electrodes 2 are held in their position by means of elastic seals 13.
  • the electrode frames are pressed against one another via clamping screws 9.
  • Power is supplied to the outer electrodes at + or -.
  • Each electrode acts as an anode 4 on one side and as a cathode 3 (bipolar) on the other side.
  • the space between two electrodes is divided into an anolyte space 5 and a catholyte space 6 by a diaphragm or membrane 7.
  • the hydrochloric acid is introduced into each electrolytic cell from below (not shown). At the top, anolyte and catholyte emerge via separate channels (not shown) in order to avoid the mixing of the gases resulting from the electrolysis.
  • Fig. 2 shows a section of a horizontal cross section through the electrolytic cell.
  • the numbers describe the same objects as in the description of FIG. 1.
  • the grooves 14 and the lamellar webs 15 of an electrode 11 produced between the grooves are shown.
  • FIG. 3 the partial section B from FIG. 2 is shown enlarged.
  • the end faces 16 of the webs 15 have flattened areas 17 near the edges, which makes it easier for the gas bubbles generated between the electrode webs 15 to pass into the space between the webs formed by the grooves.
  • Fig. 4 represents an attempt to explain the phenomenon on which the present invention is based. It is a partial section from a vertika len section through the electrolytic cell along the line CC of Fig. 2 shown.
  • the arrow 20 indicates the main flow direction of the electrolyte in the groove.
  • Chlorine is deposited on the anode side of the electrode, with chlorine gas bubbles essentially forming on the front side of the electrode, which bubbles become larger over time and detach with a size of 50 to 100 ⁇ diameter.
  • the chlorine gas bubbles which are carried away by the hydrochloric acid, coagulate and form larger bubbles. It is now assumed that the main flow 20 of hydrochloric acid is overlaid by vortices 17 and 17 '.
  • the vortices ensure that the small gas bubbles 18 are transported from the area near the diaphragm or membrane into the rear part of the groove, coagulate there or unite with larger gas bubbles 19 already present there.
  • the flow rate of the electrolyte is greatest in the rear area of the groove, where the larger gas bubbles are located, since the electrolyte is carried along by the rising gas bubbles. It is now assumed that the special depth of the grooves according to the invention favors the formation of stable vertebrae 17 due to a resonance-like effect.
  • the formation of the vortices is further favored by a small distance between the membrane or diaphragm and the electrode, since then the flow resistance between the diaphragm and the electrode is greater due to the friction, so that the flow of electrolyte is delayed here.
  • the distance between the electrode and the diaphragm or membrane should therefore preferably be smaller than the width of the grooves.
  • FIG. 5 shows a partial section of a vertical section through the electrolytic cell analogous to FIG. 4.
  • the electrode here has grooves which have a depth that increases from bottom to top.
  • the groove depth in the area of the electrolyte inlet can be 10 to 15 mm, preferably at least 12 mm, and can increase to 25 to 32 mm over the height of the electrode.
  • the naturally developing vertebrae 17 have a diameter of 10 to 15 mm. Since the gas volume in the cell increases over the height of the electrode, a groove depth is sufficient in the lower part, which corresponds approximately to the vortex diameter.
  • the electrolytic cell according to the invention not only leads to a considerable saving in specific electrical energy due to the lower voltage drop, but surprisingly, a lower chlorine content in the hydrogen is simultaneously determined.
  • the fluttering of the membrane, which is often observed with a larger electrode spacing, is eliminated, so that the service life of the membrane is significantly increased.
  • a hydrochloric acid with an HCl concentration of 20% is introduced into a test electrolysis cell with a height of 110 mm and bipolar graphite electrodes, in which the anolyte and catholyte are separated by a diaphragm.
  • the cell is operated with a current density of 5 kAjm 2 .
  • the temperature of the hydrochloric acid at the outlet is 80 ° C.
  • the electrodes had a groove width of 2.5 mm and a web width of 5 mm. The distance between the electrodes was 6 mm.
  • the diaphragm has a sheet thickness of 0.5 mm. Electrodes with different groove depths are used. The following table shows the voltage drop measured between the electrodes and the chlorine content in the hydrogen.
  • the electrode spacing is reduced to 0.5 mm with a groove depth of 20 mm.
  • the voltage drop is 1.710V.
  • the C1 2 content in H 2 is 0.2% by volume.

Description

Die vorliegende Erfindung betrifft eine Elektrolysezelle zur Elektrolyse von Salzsäure, insbesondere eine Elektrolysezelle mit bipolaren Elektroden. Solche Zellen werden nach Filterpressenart zusammengebaut und bilden einen Zellenblock, der aus 30 bis 50 Einzelzellen bestehen kann. Üblicherweise werden Elektroden aus Graphit eingesetzt. Solche Zellen sind z.B. aus der US-Patentschrift 3 875 040 bekannt.The present invention relates to an electrolysis cell for the electrolysis of hydrochloric acid, in particular an electrolysis cell with bipolar electrodes. Such cells are assembled according to the filter press type and form a cell block that can consist of 30 to 50 individual cells. Electrodes made of graphite are usually used. Such cells are e.g. known from U.S. Patent 3,875,040.

In der Vergangenheit wurden eine Vielzahl von Anstrengungen unternommen, den spezifischen Verbrauch an elektrischer Energie bei der Elektrolyse zu verringern. Ein wesentlicher Faktor, der zur Erhöhung des elektrischen Widerstandes beiträgt, ist der sich während der Elektrolyse bildende Gasvolumenanteil: Zwischen den nicht-leitenden Gasblasen wird der Elektrolyt zu engen leitenden Kanälen eingeschnürt. Es wurde daher schon frühzeitig vorgeschlagen, die Elektrodenplatten mit vertikalen Nuten als Gasabzugskanäle zu versehen.In the past, a variety of efforts have been made to reduce the specific consumption of electrical energy in electrolysis. An important factor that contributes to increasing the electrical resistance is the proportion of gas volume that forms during the electrolysis: the electrolyte is constricted into narrow conductive channels between the non-conductive gas bubbles. It was therefore proposed at an early stage to provide the electrode plates with vertical grooves as gas discharge channels.

Ferner wurde vorgeschlagen, Zwischenentgasungen vorzusehen (DE-Patentschrift 2816152).It has also been proposed to provide intermediate degassing (DE patent 2816152).

Als optimaler Elektrodenabstand vom Diaphragma bzw. der Membran wurde 6 mm bei einer Stromdichte von 4000 A/m2 angesehen (Chemie-Ingenieur-Technik, 43. Jahrgang 1971, Seite 169).6 mm at a current density of 4000 A / m 2 was regarded as the optimal electrode distance from the diaphragm or membrane (chemical engineer technology, 43rd year 1971, page 169).

In einer umfangreicheren Untersuchung über den Einfluss von Gasblasen auf den elektrischen Widerstand zwischen den Elektroden kommt Tobias zu dem Ergebnis, dass der Elektrodenabstand dann optimal gewählt ist, wenn der mittlere Volumenanteil an Gasblasen im Elektrolyten etwa 40% beträgt (Journal of the Electro Chemical Soc., Vol. 106,1959, Seite 836).In a more extensive study of the influence of gas bubbles on the electrical resistance between the electrodes, Tobias comes to the conclusion that the electrode spacing is optimally selected when the average volume fraction of gas bubbles in the electrolyte is approximately 40% (Journal of the Electro Chemical Soc. , Vol. 106, 1959, page 836).

Es wurde nun gefunden, dass der schädliche Einfluss der Gasblasen erheblich verringert werden kann, wenn die Nuten eine bestimmte Tiefe aufweisen. Offenbar stellt sich dann eine stabile Strömung in der Elektrolysezelle ein, die zu einem schnellen Abtransport der Gasblasen in die Nuten hineinführt.It has now been found that the harmful influence of the gas bubbles can be considerably reduced if the grooves have a certain depth. A stable flow in the electrolysis cell then appears, which leads to a rapid removal of the gas bubbles into the grooves.

Gegenstand der vorliegenden Erfindung ist daher eine Elektrolysezelle mit bipolaren Elektroden und durch ein Diaphragma bzw. eine Membran unterteilte Elektrodenzwischenräume zur Erzeugung von Chlor und Wasserstoff aus Salzsäure, wobei die Elektroden vertikale Nuten aufweisen, die dadurch gekennzeichnet ist, dass die Nuten zumindest im oberen Bereich der Elektroden eine Tiefe von 18 bis 35 mm, vorzugsweise mindestens 20 mm, besonders bevorzugt 25 bis 32 mm, aufweisen.The present invention therefore relates to an electrolysis cell with bipolar electrodes and electrode gaps subdivided by a diaphragm or a membrane for producing chlorine and hydrogen from hydrochloric acid, the electrodes having vertical grooves, which is characterized in that the grooves at least in the upper region of the Electrodes have a depth of 18 to 35 mm, preferably at least 20 mm, particularly preferably 25 to 32 mm.

Bevorzugt weisen die Nuten eine Breite von 2 bis 3 mm auf. Die zwischen den Nuten erzeugten Stege sind vorzugsweise 4 bis 6 mm breit. Die erfindungsgemässen Elektroden erlauben es, den Abstand zwischen den Elektroden und dem Diaphragma bzw. der Membran auf 0,05 bis 2 mm, bevorzugt auf unterhalb 1 mm, zu verringern, wobei die Spannung zwischen den Elektroden bei gleicher Stromstärke ebenfalls abnimmt. Dies ist insbesondere deswegen überraschend, weil nach dem Stand der Technik ein Spannungsanstieg aufgrund des verstärkten Einflusses der Gasblasen zu erwarten wäre. Für Diaphragmen bzw. Membranen mit Gewebestruktur bedeutet dies, dass das Diaphragma bzw. die Membran auf der Elektrode direkt aufliegen kann.The grooves preferably have a width of 2 to 3 mm. The webs generated between the grooves are preferably 4 to 6 mm wide. The electrodes according to the invention make it possible to reduce the distance between the electrodes and the diaphragm or membrane to 0.05 to 2 mm, preferably to less than 1 mm, the voltage between the electrodes likewise decreasing with the same current strength. This is particularly surprising because, according to the prior art, an increase in voltage due to the increased influence of the gas bubbles would be expected. For diaphragms or membranes with a tissue structure, this means that the diaphragm or membrane can lie directly on the electrode.

Die Erfindung wird nachstehend anhand der anliegenden Figuren näher erläutert:

  • Fig. 1 zeigt einen Querschnitt in Längsrichtung durch einen Zellenblock mit einer Vielzahl von Elektrolysezellen.
  • Fig. 2 zeigt einen Teilausschnitt aus einem Querschnitt des Zellenblocks entlang der Linie A-A der Fig. 1.
  • Fig. 3 zeigt den mit dem Kreis B bezeichneten Ausschnitt aus Fig. 2 in vergrösserter Darstellung in einer bevorzugten Ausführungsform.
  • Fig. 4 zeigt einen Teilquerschnitt der Fig. 2 entlang der Linie C-C zur Erläuterung der Elektrolytströmungen.
  • Fig. 5 zeigt einen Teilquerschnitt entsprechend Fig. 4 einer bevorzugten Ausführungsform der Erfindung.
The invention is explained in more detail below with reference to the accompanying figures:
  • Fig. 1 shows a cross section in the longitudinal direction through a cell block with a plurality of electrolytic cells.
  • FIG. 2 shows a partial section from a cross section of the cell block along the line AA of FIG. 1.
  • FIG. 3 shows the detail from FIG. 2 designated by the circle B in an enlarged representation in a preferred embodiment.
  • FIG. 4 shows a partial cross section of FIG. 2 along line CC to explain the electrolyte flows.
  • FIG. 5 shows a partial cross section corresponding to FIG. 4 of a preferred embodiment of the invention.

Fig. 1 zeigt einen Zellenblock mit einer beliebigen Anzahl von Elektrodenrahmen 1, 8, 10, 11, 12, in denen die Graphitelektroden 2 über elastische Dichtungen 13 in ihrer Lage gehalten werden. Die Elektrodenrahmen werden über Spannschrauben 9 gegeneinander gepresst. Die Stromzuführung zu den äusseren Elektroden erfolgt bei + bzw. -. Jede Elektrode wirkt auf ihrer einen Seite als Anode 4 und an der anderen Seite als Kathode 3 (bipolar). Der Zwischenraum zwischen je zwei Elektroden wird durch ein Diaphragma bzw. eine Membran 7 in einen Anolytraum 5 und einen Katholytraum 6 unterteilt. Die Salzsäure wird von unten in jede Elektrolysezelle eingeführt (nicht gezeichnet). Oben treten Anolyt und Katholyt zur Vermeidung der Vermischung der durch die Elektrolyse entstehenden Gase über getrennte Kanäle aus (nicht gezeichnet).1 shows a cell block with any number of electrode frames 1, 8, 10, 11, 12, in which the graphite electrodes 2 are held in their position by means of elastic seals 13. The electrode frames are pressed against one another via clamping screws 9. Power is supplied to the outer electrodes at + or -. Each electrode acts as an anode 4 on one side and as a cathode 3 (bipolar) on the other side. The space between two electrodes is divided into an anolyte space 5 and a catholyte space 6 by a diaphragm or membrane 7. The hydrochloric acid is introduced into each electrolytic cell from below (not shown). At the top, anolyte and catholyte emerge via separate channels (not shown) in order to avoid the mixing of the gases resulting from the electrolysis.

Fig. 2 zeigt einen Ausschnitt aus einem horizontalen Querschnitt durch die Elektrolysezelle. Die Zahlen beschreiben, soweit vorher bereits erwähnt, dieselben Gegenstände wie bei der Beschreibung der Fig. 1. In der Schnittzeichnung sind die Nuten 14 und die zwischen den Nuten erzeugten lamellenartigen Stege 15 einer Elektrode 11 dargestellt.Fig. 2 shows a section of a horizontal cross section through the electrolytic cell. As already mentioned, the numbers describe the same objects as in the description of FIG. 1. In the sectional drawing, the grooves 14 and the lamellar webs 15 of an electrode 11 produced between the grooves are shown.

In Fig. 3 ist der Teilausschnitt B aus Fig. 2 vergrössert dargestellt. In der hier dargestellten bevorzugten Ausführungsform weisen die Stirnflächen 16 der Stege 15 in der Nähe der Kanten abgeflachte Bereiche 17 auf, wodurch das Übertreten der zwischen den Elektrodenstegen 15 erzeugten Gasblasen in den durch die Nuten gebildeten Raum zwischen den Stegen erleichtert wird.In FIG. 3, the partial section B from FIG. 2 is shown enlarged. In the preferred embodiment shown here, the end faces 16 of the webs 15 have flattened areas 17 near the edges, which makes it easier for the gas bubbles generated between the electrode webs 15 to pass into the space between the webs formed by the grooves.

Fig. 4 stellt einen Erklärungsversuch des Phänomens dar, auf dem die vorliegende Erfindung beruht. Es ist ein Teilausschnitt aus einem vertikalen Schnitt durch die Elektrolysezelle entlang der Linie C-C der Fig. 2 dargestellt. Der Pfeil 20 bezeichnet die Hauptströmungsrichtung des Elektrolyten in der Nut. An der Anodenseite der Elektrode wird Chlor abgeschieden, wobei sich im wesentlichen auf der Stirnseite der Elektrode Chlorgasbläschen bilden, die im Laufe der Zeit grösser werden und sich bei einer Grösse von 50 bis 100 µ Durchmesser ablösen. Die Chlorgasblasen, die von der Salzsäure mitgenommen werden, koagulieren und bilden grössere Blasen. Es wird nun angenommen, dass die Hauptströmung 20 der Salzsäure von Wirbeln 17 und 17' überlagert werden. Die Wirbel sorgen dafür, dass die kleinen Gasblasen 18 aus dem Diaphragma- bzw. Membran-nahen Bereich in den hinteren Teil der Nut transportiert werden, dort koagulieren oder sich mit dort bereits vorhandenen grösseren Gasblasen 19 vereinigen. Die Strömungsgeschwindigkeit des Elektrolyten im hinteren Bereich der Nut, wo sich die grösseren Gasblasen befinden, ist am grössten, da der Elektrolyt hier von den aufsteigenden Gasblasen mitgenommen wird. Es wird nun angenommen, dass die erfindungsgemässe spezielle Tiefe der Nuten aufgrund eines resonanzartigen Effektes die Ausbildung stabiler Wirbel 17 begünstigt. Die Ausbildung der Wirbel wird durch einen geringen Abstand zwischen Membran bzw. Diaphragma und Elektrode noch begünstigt, da dann der Strömungswiderstand zwischen Diaphragma und Elektrode aufgrund der Reibung grösser ist, so dass die Elektrolytströmung hier verzögert wird. Bevorzugt soll daher der Abstand zwischen Elektrode und Diaphragma bzw. Membran kleiner sein als die Breite der Nuten.Fig. 4 represents an attempt to explain the phenomenon on which the present invention is based. It is a partial section from a vertika len section through the electrolytic cell along the line CC of Fig. 2 shown. The arrow 20 indicates the main flow direction of the electrolyte in the groove. Chlorine is deposited on the anode side of the electrode, with chlorine gas bubbles essentially forming on the front side of the electrode, which bubbles become larger over time and detach with a size of 50 to 100 μ diameter. The chlorine gas bubbles, which are carried away by the hydrochloric acid, coagulate and form larger bubbles. It is now assumed that the main flow 20 of hydrochloric acid is overlaid by vortices 17 and 17 '. The vortices ensure that the small gas bubbles 18 are transported from the area near the diaphragm or membrane into the rear part of the groove, coagulate there or unite with larger gas bubbles 19 already present there. The flow rate of the electrolyte is greatest in the rear area of the groove, where the larger gas bubbles are located, since the electrolyte is carried along by the rising gas bubbles. It is now assumed that the special depth of the grooves according to the invention favors the formation of stable vertebrae 17 due to a resonance-like effect. The formation of the vortices is further favored by a small distance between the membrane or diaphragm and the electrode, since then the flow resistance between the diaphragm and the electrode is greater due to the friction, so that the flow of electrolyte is delayed here. The distance between the electrode and the diaphragm or membrane should therefore preferably be smaller than the width of the grooves.

Fig. 5 zeigt einen Teilausschnitt eines vertikalen Schnitts durch die Elektrolysezelle analog Fig. 4. Es ist eine gegenüber der Darstellung in Fig. 4 bevorzugte Ausführungsform der Elektrode dargestellt. Die Elektrode weist hier Nuten auf, die eine sich von unten nach oben vergrössernde Tiefe aufweisen. Dabei kann die Nuttiefe im Bereich des Elektrolyteintritts 10 bis 15 mm, vorzugsweise mindestens 12 mm betragen, und sich über die Höhe der Elektrode auf 25 bis 32 mm vergrössern.FIG. 5 shows a partial section of a vertical section through the electrolytic cell analogous to FIG. 4. A preferred embodiment of the electrode compared to the illustration in FIG. 4 is shown. The electrode here has grooves which have a depth that increases from bottom to top. The groove depth in the area of the electrolyte inlet can be 10 to 15 mm, preferably at least 12 mm, and can increase to 25 to 32 mm over the height of the electrode.

Es wird angenommen, dass die sich natürlich ausbildenden Wirbel 17 einen Durchmesser von 10 bis 15 mm haben. Da der Gasvolumenanteil in der Zelle sich über die Höhe der Elektrode vergrössert, ist im unteren Teil eine Nuttiefe ausreichend, die etwa dem Wirbeldurchmesser entspricht.It is assumed that the naturally developing vertebrae 17 have a diameter of 10 to 15 mm. Since the gas volume in the cell increases over the height of the electrode, a groove depth is sufficient in the lower part, which corresponds approximately to the vortex diameter.

Die erfindungsgemässe Elektrolysezelle führt nicht nur aufgrund des geringeren Spannungsabfalls zu einer erheblichen Einsparung an spezifischer elektrischer Energie, sondern überraschenderweise wird gleichzeitig ein geringerer Chlorgehalt im Wasserstoff festgestellt. Dabei entfällt das bei grösserem Elektrodenabstand häufig beobachtete Flattern der Membran, so dass die Lebensdauer der Membran wesentlich erhöht wird.The electrolytic cell according to the invention not only leads to a considerable saving in specific electrical energy due to the lower voltage drop, but surprisingly, a lower chlorine content in the hydrogen is simultaneously determined. The fluttering of the membrane, which is often observed with a larger electrode spacing, is eliminated, so that the service life of the membrane is significantly increased.

Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert:The invention is illustrated by the following examples:

Beispiel 1example 1

In eine Versuchselektrolysezelle der Höhe 110 mm mit bipolaren Graphitelektroden, bei der Anolyt und Katholyt durch ein Diaphragma getrennt sind, wird eine Salzsäure mit einer HCI-Konzentration von 20% unten eingeführt. Die Zelle wird mit einer Stromdichte von 5 kAjm2 betrieben. Die Temperatur der Salzsäure beträgt beim Austritt 80 °C. Die Elektroden hatten eine Nutbreite von 2,5 mm und eine Stegbreite von 5 mm. Der Abstand zwischen den Elektroden betrug 6 mm. Das Diaphragma hat eine Tuchdicke von 0,5 mm. Es werden Elektroden mit unterschiedlicher Nuttiefe eingesetzt. In der nachfolgenden Tabelle sind der zwischen den Elektroden gemessene Spannungsabfall und der Chlorgehalt im Wasserstoff dargestellt.

Figure imgb0001
A hydrochloric acid with an HCl concentration of 20% is introduced into a test electrolysis cell with a height of 110 mm and bipolar graphite electrodes, in which the anolyte and catholyte are separated by a diaphragm. The cell is operated with a current density of 5 kAjm 2 . The temperature of the hydrochloric acid at the outlet is 80 ° C. The electrodes had a groove width of 2.5 mm and a web width of 5 mm. The distance between the electrodes was 6 mm. The diaphragm has a sheet thickness of 0.5 mm. Electrodes with different groove depths are used. The following table shows the voltage drop measured between the electrodes and the chlorine content in the hydrogen.
Figure imgb0001

Es zeigt sich, dass bei erfindungsgemässen Nuttiefen von 20 bzw. 25 mm der Spannungsabfall erheblich geringer ist bei gleichzeitig erheblich geringerem Chlorgehalt im Wasserstoff.It can be seen that with groove depths of 20 or 25 mm according to the invention, the voltage drop is considerably less with a considerably lower chlorine content in the hydrogen.

Beispiel 2Example 2

Unter sonst gleichen Bedingungen wie in Beispiel 1 wird der Elektrodenabstand bei einer Nuttiefe von 20 mm auf 0,5 mm reduziert. Es ergibt sich ein Spannungsabfall von 1,710V. Der C12-Gehalt im H2 beträgt 0,2 Vol.-%.Under otherwise the same conditions as in Example 1, the electrode spacing is reduced to 0.5 mm with a groove depth of 20 mm. The voltage drop is 1.710V. The C1 2 content in H 2 is 0.2% by volume.

Der Zusammenhang von Spannungsabfall und Nuttiefe ist in Fig. 6 noch einmal dargestellt.The relationship between voltage drop and groove depth is shown again in FIG. 6.

Claims (5)

1. An electrolytic cell with bipolar electrodes and an intermediate space between the electrodes which is subdivided by a diaphragm or membrane, for the production of chlorine and hydrogen from hydrochloric acid, the electrodes having vertical grooves, characterised in that the grooves have a depth of 18 to 35 mm at least in the upper part of the electrodes.
2. Electrolytic cell according to Claim 1, characterised in that the grooves have a width of 2 to 3 mm and the ribs formed between the grooves have a width of 4 to 6 mm.
3. Electrolytic cell according to Claims 1 or 2, characterised in that the distance between the electrodes and the diaphragm or membrane is between 0.05 and 2 mm.
4. Electrolytic cell according to one of Claims 1 to 3, characterised in that the electrodes are curved towards the grooves in the region of the edges of the end faces of the ribs.
5. Electrolytic cell according to one of Claims 1 to 4, characterised in that the grooves have a depth of 10 to 15 mm in the bottom. region of the electrodes.
EP81108609A 1980-11-06 1981-10-21 Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen Expired EP0051764B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803041897 DE3041897A1 (en) 1980-11-06 1980-11-06 SALT ACID ELECTROLYSIS CELL FOR THE PRODUCTION OF CHLORINE AND HYDROGEN
DE3041897 1980-11-06

Publications (2)

Publication Number Publication Date
EP0051764A1 EP0051764A1 (en) 1982-05-19
EP0051764B1 true EP0051764B1 (en) 1984-03-28

Family

ID=6116129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108609A Expired EP0051764B1 (en) 1980-11-06 1981-10-21 Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen

Country Status (4)

Country Link
US (1) US4402811A (en)
EP (1) EP0051764B1 (en)
JP (1) JPS6056435B2 (en)
DE (2) DE3041897A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8407871D0 (en) * 1984-03-27 1984-05-02 Ici Plc Electrode and electrolytic cell
DE4119606A1 (en) * 1991-06-14 1992-12-17 Sigri Great Lakes Carbon Gmbh METHOD AND DEVICE FOR PROCESSING WATER CONTAINING HYDROCHLORIC ACID
DE19956787A1 (en) 1999-11-25 2001-05-31 Bayer Ag Electrolysis plate
KR100464703B1 (en) * 2001-12-28 2005-01-05 김병일 borosilicate cellular glass and manufacture method of cellular glass using it
DE102006023261A1 (en) 2006-05-18 2007-11-22 Bayer Materialscience Ag Process for the production of chlorine from hydrogen chloride and oxygen
US9200375B2 (en) * 2011-05-19 2015-12-01 Calera Corporation Systems and methods for preparation and separation of products
TWI633206B (en) 2013-07-31 2018-08-21 卡利拉股份有限公司 Electrochemical hydroxide systems and methods using metal oxidation
US10266954B2 (en) 2015-10-28 2019-04-23 Calera Corporation Electrochemical, halogenation, and oxyhalogenation systems and methods
US10619254B2 (en) 2016-10-28 2020-04-14 Calera Corporation Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide
WO2019060345A1 (en) 2017-09-19 2019-03-28 Calera Corporation Systems and methods using lanthanide halide
US10590054B2 (en) 2018-05-30 2020-03-17 Calera Corporation Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3242065A (en) * 1960-12-21 1966-03-22 Oronzio De Nora Impianti Cell for electrolysis of hydrochloric acid
GB1153172A (en) * 1965-05-28 1969-05-29 Metal And Pipeline Endurance L Improvements in or relating to electrodes
US3361656A (en) * 1966-05-16 1968-01-02 Hooker Chemical Corp Wicking electrode for an electrolytic cell
US3654120A (en) * 1969-07-29 1972-04-04 Nora Int Co Electrolytic cell including bipolar electrodes with resin-impregnated holes in the electrode body
DE2209917A1 (en) * 1972-03-02 1973-09-20 Metallgesellschaft Ag Anode with electrolyte ducts - of widening cross-section to reduce diffusion flashover voltage by improved flow
DE2213603A1 (en) * 1972-03-21 1973-10-04 Georg Dr Messner METHOD AND DEVICE FOR THE ELECTROLYTIC TREATMENT OF SOLUTIONS CONTAINING HYDROGEN CHLORINE ON GRAPHITE ELECTRODES, KEEPING THE CHLORINE AND HYDROGEN GASES SEPARATED
DE2222637A1 (en) * 1972-05-09 1973-11-29 Bayer Ag SUPPORTING FRAME FOR ELECTRODES OF ELECTROLYSIS DEVICES
US4056452A (en) * 1976-02-26 1977-11-01 Billings Energy Research Corporation Electrolysis apparatus
US4013537A (en) * 1976-06-07 1977-03-22 The B. F. Goodrich Company Electrolytic cell design
US4124464A (en) * 1977-10-19 1978-11-07 Rca Corporation Grooved n-type TiO2 semiconductor anode for a water photolysis apparatus
DE2816152C2 (en) * 1978-04-14 1980-07-03 Bayer Ag, 5090 Leverkusen Process for the production of chlorine from hydrochloric acid by electrolysis and hydrochloric acid electrolysis cell
US4210511A (en) * 1979-03-08 1980-07-01 Billings Energy Corporation Electrolyzer apparatus and electrode structure therefor
US4256554A (en) * 1980-03-28 1981-03-17 Energy Development Associates, Inc. Electrolytic cell for separating chlorine gas from other gases

Also Published As

Publication number Publication date
JPS6056435B2 (en) 1985-12-10
DE3041897A1 (en) 1982-06-09
EP0051764A1 (en) 1982-05-19
US4402811A (en) 1983-09-06
JPS57108280A (en) 1982-07-06
DE3162905D1 (en) 1984-05-03

Similar Documents

Publication Publication Date Title
DE2809332C2 (en) Monopolar electrolysis cell in filter press design
DE2616614C2 (en) Electrolysis device
DD154831A5 (en) METHOD AND DEVICE FOR ELECTROLYSIS
EP0189535B1 (en) Electrolysis apparatus
DE2445579A1 (en) ELECTROLYTIC CELLS
DE4306889C1 (en) Electrode arrangement for gas-forming electrolytic processes in membrane cells and their use
EP0051764B1 (en) Hydrochloric-acid electrolytic cell for the manufacture of chlorine and hydrogen
DE2809333C2 (en) Monopolar electrolysis cell in filter press design
EP0095039A2 (en) Membrane-electrolysis cell
DE3420483A1 (en) BIPOLAR ELECTROLYSIS WITH GAS DIFFUSION CATHODE
DE2059868B2 (en) Electrode plate to be arranged vertically for gas-forming electrolysis
DD297191A5 (en) FRAME FOR FILTER PRESSURE TYPE ELECTROLYSIS AND MONOPOLAR ELECTROLYSIS TYPE FILTER PRESSURE TYPE
EP0479840B1 (en) Electrolytic cell for electrolytic processes in which gas is evolved
EP0004903B1 (en) Method for preparing chlorine by electrolysis of hydrochloric acid, and electrolytic cell therefor
DE2923818A1 (en) ELECTRODE COMPARTMENT
DD216049A5 (en) ELECTROLYSIS CELL
DE3808495C2 (en)
DE2125941C3 (en) Bipolar unit and electrolytic cell built up with it
EP0274138A1 (en) Electrode arrangement for an electrolyser producing a gas, featuring vertically disposed electrode plates
DE3005032A1 (en) METHOD FOR ELECTROLYTICALLY RECOVERING HYDROGEN
EP1133587A1 (en) Membrane electrolytic cell with active gas/liquid separation
EP0150019B1 (en) Method of electrolyzing using liquid electrolytes and porous electrodes
DD270934A5 (en) ELECTROLYTIC CELL
DE2709093A1 (en) ELECTRODE FOR THE GENERATION OF A GAS IN A CELL WITH A MEMBRANE
DE4415146C2 (en) Electrode for electrolytic cells with an ion exchange membrane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811021

AK Designated contracting states

Designated state(s): BE DE FR IT

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR IT

REF Corresponds to:

Ref document number: 3162905

Country of ref document: DE

Date of ref document: 19840503

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990915

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991021

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991027

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 20001031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST