EP0683536B1 - Assemblage de plaque de refroidissement pour une pile de cellules à combustible - Google Patents

Assemblage de plaque de refroidissement pour une pile de cellules à combustible Download PDF

Info

Publication number
EP0683536B1
EP0683536B1 EP95201280A EP95201280A EP0683536B1 EP 0683536 B1 EP0683536 B1 EP 0683536B1 EP 95201280 A EP95201280 A EP 95201280A EP 95201280 A EP95201280 A EP 95201280A EP 0683536 B1 EP0683536 B1 EP 0683536B1
Authority
EP
European Patent Office
Prior art keywords
plate
thermal expansion
cooler assembly
coefficient
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95201280A
Other languages
German (de)
English (en)
Other versions
EP0683536A1 (fr
Inventor
Richard D. Breault
Ronald G. Martin
Robert P. Roche
Glenn W. Scheffler
Joseph J. O'brien
Michael J. Rajpolt, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLC Srl
UTC Power Corp
Original Assignee
CLC Srl
International Fuel Cells Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLC Srl, International Fuel Cells Corp filed Critical CLC Srl
Publication of EP0683536A1 publication Critical patent/EP0683536A1/fr
Application granted granted Critical
Publication of EP0683536B1 publication Critical patent/EP0683536B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/905Materials of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • This invention relates to a coolant plate for use in a fuel cell assembly, and more particularly to a coolant plate that possesses enhanced heat transfer characteristics, is non-porous and is resistant to thermally-induced stresses.
  • Coolant plate structures for fuel cell stack assemblies typically include a metal serpentine coolant flow tube which is embedded in a conductive plate formed from a carbon/binder mixture.
  • the conductive plates have been formed from carbon particles which are essentially spheroidal in configuration; and the binder is a fluorocarbon resin which is hydrophobic, and which imparts hydrophobic characteristics to the coolant plate.
  • the plates are homogeneous mixtures of carbon and binder in the through plane.
  • Another problem that resides in the prior art coolant plate assemblies relates to the ability of the carbon particle-binder mixture to adhere to the serpentine metal coolant tube.
  • a durable intimate bond is desired between the carbon particles and the metal tube.
  • Such a bond has not, however, been consistently produced by the carbon particle-hydrophobic binder system used in the prior art.
  • One solution to the bond problem has been to coat the metal coolant tube with a resin layer so that the resin component in the plate will bond to a similar resin on the tube. This approach results in an acceptable bond but produces less efficient heat transfer to the coolant because of the resin layer on the coolant tube.
  • Still another problem attendant to the prior art coolant plate assemblies relates to the difference in the CTE of the metal tube as compared to the carbon particle component of the assembly.
  • the dilemma facing the stack designer involves the need to minimize thermal stress when a graphite-binder/metal composite component contacts a graphite-binder component.
  • the CTE of the metal component is different from the CTE of the graphite-binder components so the designer is faced with the problem of how to tailor the graphite-binder portion of the coolant plate to so as to minimize thermal stress between the various components of the stack.
  • This invention relates to the formation of a coolant plate complex which includes a serpentine metal coolant flow tube embedded in a graphite particle-binder plate.
  • the graphite particles used in the plate are graphite flakes.
  • Flake graphites are differentiated from synthetic graphites in several ways. Flake graphites are flake-like in particle shape, as opposed to more spheroidal shapes or needle-like shapes found within the synthetic graphite family. The flake-like shape results in molded articles with significantly higher densities, and therefore lower porosities, versus synthetic grades. This is due to the stacking effect achieved with flake materials under the influence of molding pressures. This has the effect of reducing the resin demand, that is to say, reducing the quantity of resin required to "glue" the structure together. This effect has several advantages.
  • the coolant plate complex includes a metal, preferably stainless steel, serpentine coolant circulating tube which has its exterior surface roughened so as to Stain improved adhesion between the graphite flake-binder and the coolant tube components of the plate complex. This helps to prevent cracking of the graphite flake-binder plate component during thermal cycles, while at the same time providing excellent heat transfer from the molded cooler material to the coolant tubes.
  • the plate component is also formed with a thermally graded graphite flake-binder mixture so that the plate component possesses different CTE values at its upper and lower surfaces than in its middle portion. The problems found in the prior art resulting from thermal stress are thus ameliorated in the coolant plate complex of this invention.
  • FIG. 1 a portion of a flow field/separator plate/coolant plate sub-assembly adapted for use in a phosphoric acid fuel cell stack.
  • the sub-assembly is denoted generally by the numeral 2 and includes a first electrode flow field plate 4 for one cell in the stack, and a second electrode flow field plate 6 for an adjacent cell in the stack.
  • the plates 4 and 6 include grooves 8 and 10 respectively through which the reactants flow.
  • First and second electrically conductive carbon separator plates 12 and 14 are disposed adjacent to the sides of each flow field plate 4 and 6 respectively which are distal of the grooves 8 and 10.
  • the coolant plate assembly 16 includes a serpentine metal coolant flow passage tube 18 which is embedded in a holder plate 20 formed from graphite flakes bonded together by a hydrophobic resin such as Fluorinated ethylene propylene polymer (FEP).
  • FEP Fluorinated ethylene propylene polymer
  • the exterior surface 22 of the coolant tube 18 is roughened so as to provide improved adhesion to the graphite flake-binder plate.
  • the surface roughening may be supplied by flame spraying, sand blasting, or the like.
  • the improved adhesion helps prevent cracking of the plate 20 during thermal cycling, and improves adhesion with the holder plate. Heat transfer is improved in the absence of the separate resin layer on the tube 18.
  • the edges of the holder plate 20 are protected against acid penetration by means of a corrosion-resistant acid-impermeable layer 27.
  • the layer 27 can be formed from a tape of fluorethylene polymer, or polytetrafluorethylene which has an adhesive layer which provides adhesion of the tape to the plate 20.
  • the layer 27 can comprise a corrosion-resistant material such as a fluorel elastomer which is coated onto the plate 20 and bonded in situ during initial stack heat-up. In either case, the plate 20 will be protected from acid penetration during stack operation.
  • FIG. 2 illustrates the graded nature of the holder plate 20.
  • the plate 20 is divided into three internal zones 21, 23 and 25 as seen in the through-plane direction.
  • the separator plate 12 is bonded to the zone 21 by a fluoropolymer resin layer 13; and the separator plate 14 is bonded to the zone 25 by a fluoropolymer resin layer 15.
  • the coolant tube 18 is contained in the zone 23.
  • the zones 21 and 25 are made from a graphite flake-binder formulation which imparts a lower CTE to the zones 21 and 25; and the zone 23 is made from a graphite flake-binder formulation which imparts a higher CTE to the zone 23.
  • the lower CTE zones 21 and 25 are more compatible with the CTE of the separator plates 12 and 14; and the higher CTE of the zone 23 is more compatible with the CTE of the steel coolant tube 18.
  • the zones 21 and 25 may, for example, be formed from a mixture which imparts a CTE of 3.6 - 5.4 ppm/degree C (2-3 ppm/degree F).; and the zone 23 may be formed from a mixture which imparts a CTE of 7,2 - 10.8 ppm/degree C (4-6 ppm/degree F).
  • the coolant plate assembly of this invention will provide improved thermal cycling stability and will provide improved heat transfer and improved cooling capacity.
  • the use of the flake graphite constituent in the coolant tube holder plate results in a component that has longer operating life.
  • Other thermoplastic polymers such as polyphenylene sulfide, and thermosetting polymers such as phenolic can be used to form the molded cooler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Claims (11)

  1. Assemblage de refroidissement pour une stabilisation dans une pile de cellules à combustible, ledit assemblage de refroidissement comprenant :
    (a) un conduit tubulaire destiné à contenir le courant d'écoulement d'un liquide de refroidissement ; et
    (b) un moyen de revêtement composé d'un mélange de particules de graphite/polymère jouant le rôle de liant, ledit moyen de refroidissement entourant ledit conduit tubulaire.
  2. Assemblage de refroidissement selon la revendication 1, caractérisé en ce que ledit mélange de particules/polymère est lié audit conduit tubulaire.
  3. Assemblage de refroidissement selon la revendication 2, caractérisé en ce que ledit conduit tubulaire est un tube de métal possédant une surface extérieure rugueuse qui peut être mise en oeuvre de façon à augmenter la cohésion entre le mélange de particules de graphite/polymère et le tube.
  4. Assemblage de refroidissement selon la revendication 3, caractérisé en ce que ledit tube de métal possède une configuration de serpentin.
  5. Assemblage de refroidissement selon la revendication 1, caractérisé en ce que ledit mélange de particules de graphite/polymère jouant le rôle de liant est formulé de façon à fournir sur ledit moyen de revêtement des zones de surface séparées, lesquelles zones de surface ayant un coefficient d'expansion thermique compatible avec un coefficient d'expansion thermique des composés du carbone sur la pile qui est en contact avec lesdites zones de surface de l'assemblage de refroidissement ; et ledit mélange de particules de graphite/polymère étant également formulé de façon à fournir dans ledit moyen de revêtement une zone interne qui a un coefficient d'expansion thermique plus élevé que lesdites zones de surface et qui est compatible avec le coefficient d'expansion thermique dudit conduit tubulaire, de façon à minimiser les efforts induits thermiquement entre les éléments internes adjacents de la pile durant le cycle thermique de la pile.
  6. Assemblage de refroidissement selon la revendication 1, caractérisé en ce qu'il comprend en outre une couche en matériau résistant à la corrosion, imperméable aux acides et formant les bords latéraux dudit moyen de revêtement, ladite couche de matériau pouvant être mise en oeuvre de façon à protéger ledit moyen de revêtement contre la pénétration d'un acide.
  7. Assemblage de refroidissement selon la revendication 3, caractérisé en ce que ledit moyen de revêtement est un plaquage moulé autour dudit conduit tubulaire et intimement lié audit conduit tubulaire en raison de la rugosité externe dudit conduit.
  8. Assemblage de refroidissement selon la revendication 7, caractérisé en ce que ledit mélange de particules de graphite/polymère jouant le rôle de liant est formulé de façon à fournir sur ledit plaquage des zones de surface séparées, lesquelles zones de surface ayant un coefficient d'expansion thermique compatible avec un coefficient d'expansion thermique des composés du carbone sur la pile qui est en contact avec lesdites zones de surface de l'assemblage de refroidissement ; et ledit mélange de particules de graphite/polymère étant également formulé de façon à foumir dans ledit plaquage dans lequel ledit conduit tubulaire est disposé, une zone interne qui a un coefficient d'expansion thermique plus élevé que lesdites zones de surface et qui est compatible avec le coefficient d'expansion thermique dudit conduit tubulaire, de façon à minimiser les efforts induits thermiquement entre les éléments internes adjacents de la pile durant le cycle thermique de la pile.
  9. Assemblage de refroidissement selon la revendication 7, caractérisé en ce qu'il comprend en outre une couche en matériau résistant à la corrosion, imperméable aux acides et formant les bords latéraux dudit plaquage, ladite couche de matériau pouvant être mise en oeuvre de façon à protéger ledit plaquage contre la pénétration d'un acide.
  10. Assemblage de refroidissement selon la revendication 1, caractérisé en ce que ledit moyen de revêtement est un plaquage formé dudit mélange de particules de graphite/polymère jouant le rôle de liant, ledit mélange étant moulé sous forme d'un plaquage, et formulé de façon à fournir dans ledit plaquage des zones de surface séparées, lesquelles zones de surface ayant un coefficient d'expansion thermique compatible avec un coefficient d'expansion thermique des composés du carbone de la pile qui est en contact avec lesdites zones de surface de l'assemblage de refroidissement, et ledit mélange de particules de graphite/polymère jouant le rôle de liant étant également formulé de façon à fournir une zone interne dans ledit plaquage, ladite zone interne ayant un coefficient d'expansion thermique plus élevé que lesdites zones de surface ; et caractérisé en ce que ledit conduit tubulaire est un tube de métal et possède un coefficient d'expansion thermique qui est compatible avec le coefficient d'expansion thermique de ladite zone interne dans ledit plaquage, ledit plaquage étant formulé de façon à minimiser les efforts induits thermiquement entre les éléments internes adjacents de la pile durant le cycle thermique de la pile.
  11. Assemblage de refroidissement selon la revendication 10, caractérisé en ce qu'il comprend en outre une couche en matériau résistant à la corrosion, imperméable aux acides et formant les bords latéraux dudit plaquage, ladite couche de matériau pouvant être mise en oeuvre de façon à protéger ledit plaquage contre la pénétration d'un acide.
EP95201280A 1994-05-20 1995-05-16 Assemblage de plaque de refroidissement pour une pile de cellules à combustible Expired - Lifetime EP0683536B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24658194A 1994-05-20 1994-05-20
US246581 1994-05-20

Publications (2)

Publication Number Publication Date
EP0683536A1 EP0683536A1 (fr) 1995-11-22
EP0683536B1 true EP0683536B1 (fr) 2000-01-19

Family

ID=22931275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95201280A Expired - Lifetime EP0683536B1 (fr) 1994-05-20 1995-05-16 Assemblage de plaque de refroidissement pour une pile de cellules à combustible

Country Status (6)

Country Link
US (1) US6050331A (fr)
EP (1) EP0683536B1 (fr)
JP (1) JP3585992B2 (fr)
AT (1) ATE189081T1 (fr)
DE (1) DE69514567T2 (fr)
ES (1) ES2145208T3 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558955A (en) * 1994-10-07 1996-09-24 International Fuel Cells Corporation Cathode reactant flow field component for a fuel cell stack
JP3968610B2 (ja) * 1998-05-27 2007-08-29 Smc株式会社 半導体処理液用冷却加熱装置
WO2000044059A1 (fr) * 1999-01-21 2000-07-27 Asahi Glass Company, Limited Pile a combustible a electrolyte polymere solide
US6383677B1 (en) 1999-10-07 2002-05-07 Allen Engineering Company, Inc. Fuel cell current collector
US6777126B1 (en) 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
US6817096B2 (en) * 2000-01-11 2004-11-16 Cool Options, Inc. Method of manufacturing a heat pipe construction
US6602626B1 (en) 2000-02-16 2003-08-05 Gencell Corporation Fuel cell with internal thermally integrated autothermal reformer
DE10007763B4 (de) * 2000-02-20 2017-04-06 General Motors Corp. (N.D.Ges.D. Staates Delaware) Brennstoffzellenanordnung
WO2001071842A2 (fr) 2000-03-17 2001-09-27 Allen Engineering Company, Inc. Ensemble empile de piles a combustible
DE10154242A1 (de) * 2001-11-07 2003-05-22 Ticona Gmbh Kühlvorrichtung für elektrische Einrichtungen und Verwendung von Polymeren in Kühlkreisläufen
US20040018407A1 (en) * 2002-07-25 2004-01-29 Frano Barbir Electrochemical cell stack design
DE10254797B4 (de) * 2002-11-22 2004-11-18 GEA Luftkühler GmbH Wärmeaustauscher
US6772617B1 (en) 2003-01-24 2004-08-10 Gencell Corporation Method and apparatus for in-situ leveling of progressively formed sheet metal
WO2004083472A2 (fr) 2003-03-18 2004-09-30 Liquidmetal Technologies, Inc. Plaques de collecteur de courant a base d'alliages amorphes a solidification en masse
US6976769B2 (en) * 2003-06-11 2005-12-20 Cool Options, Inc. Light-emitting diode reflector assembly having a heat pipe
US7073340B2 (en) * 2003-10-20 2006-07-11 Waukesha Electric Systems Cryogenic compressor enclosure device and method
US20050112436A1 (en) * 2003-11-25 2005-05-26 Carol Jeffcoate Methods and devices for heating or cooling fuel cell systems
ATE527714T1 (de) * 2004-12-29 2011-10-15 Utc Power Corp Brennstoffzellenanordnung mit separatorplatte
US8758958B2 (en) 2004-12-29 2014-06-24 Clearedge Power, Llc Fuel cell separator plate assembly
WO2010087814A1 (fr) * 2009-01-27 2010-08-05 Utc Power Corporation Ensemble pile à combustible comprenant des plaques de transport d'eau poreuses et une plaque de refroidissement non poreuse
KR20100114686A (ko) * 2009-04-16 2010-10-26 삼성전자주식회사 복수 개의 발전 모듈들을 갖는 연료 전지 스택 및 연료 전지 시스템
BRPI0924235B1 (pt) * 2009-05-06 2021-11-16 Mmc Copper Products Oy Metodo para a fabricaqao de um elemento de refrigeraqao para reatores pirometalurgicos e elemento de refrigeraqao para reatores pirometalurgicos
KR101019794B1 (ko) * 2009-05-11 2011-03-04 주식회사 경동나비엔 보일러의 연소실 냉각구조
CN102511091B (zh) * 2009-06-18 2014-09-24 江森自控帅福得先进能源动力系统有限责任公司 具有带有热管理部件的电池单元托盘的电池模块
DE112011105762T5 (de) * 2011-10-25 2014-12-11 Doosan Fuel Cell America, Inc. Säurebeständige monolithische Brennstoffzellen-Kühlerbaueinheit
US9685666B2 (en) * 2011-10-25 2017-06-20 Doosan Fuel Cell America, Inc. Molded coolant plate assembly with integral reactant flow fields and thermal dam
WO2015103548A1 (fr) 2014-01-03 2015-07-09 Quantumscape Corporation Système de gestion thermique pour des véhicules ayant un groupe motopropulseur électrique
US11011783B2 (en) 2013-10-25 2021-05-18 Quantumscape Battery, Inc. Thermal and electrical management of battery packs
US9834114B2 (en) 2014-08-27 2017-12-05 Quantumscape Corporation Battery thermal management system and methods of use
US11264625B2 (en) 2018-09-12 2022-03-01 Fuelcell Energy, Inc. Two-phase water cooling in an electrochemical hydrogen separator
US11050069B2 (en) 2019-08-22 2021-06-29 Doosan Fuel Cell America, Inc. Fuel cell cooler plate

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3498371A (en) * 1967-06-12 1970-03-03 Alfred E Zygiel Heat transfer device
US3801374A (en) * 1969-01-08 1974-04-02 United Aircraft Corp Graphite and vinylidene fluoride structures for fuel cells
US4152482A (en) * 1978-05-10 1979-05-01 The United States Of America As Represented By The United States Department Of Energy Anisotropic fibrous thermal insulator of relatively thick cross section and method for making same
US4355684A (en) * 1979-06-13 1982-10-26 The Dow Chemical Company Uniaxially compressed vermicular expanded graphite for heat exchanging
US4233369A (en) * 1979-10-29 1980-11-11 United Technologies Corporation Fuel cell cooler assembly and edge seal means therefor
US4471837A (en) * 1981-12-28 1984-09-18 Aavid Engineering, Inc. Graphite heat-sink mountings
JPS58117654A (ja) * 1982-01-05 1983-07-13 Toshiba Corp 燃料電池積層体用冷却板
JPS58166663A (ja) * 1982-03-26 1983-10-01 Mitsubishi Electric Corp 燃料電池用温度調節装置
US4583583A (en) * 1983-06-02 1986-04-22 Engelhard Corporation Fuel cell crimp-resistant cooling device with internal coil
US4574112A (en) * 1983-12-23 1986-03-04 United Technologies Corporation Cooling system for electrochemical fuel cell
JPS61140070A (ja) * 1984-12-12 1986-06-27 Hitachi Ltd 燃料電池
JPS62229766A (ja) * 1986-03-31 1987-10-08 Toshiba Corp 燃料電池
EP0250345B1 (fr) * 1986-06-16 1991-03-13 Le Carbone Lorraine Contact thermique à fort coefficient de transfert et applications au refroidissement d'une structure soumise à un flux thermique intense
JPH0638339B2 (ja) * 1986-07-16 1994-05-18 三菱電機株式会社 燃料電池用冷却装置
JPS6398963A (ja) * 1986-10-15 1988-04-30 Toshiba Corp 燃料電池の冷却プレ−トの製造方法
US4946892A (en) * 1987-10-05 1990-08-07 Ucar Carbon Technology Corporation Composites of in-situ exfoliated graphite
JPH01169877A (ja) * 1987-12-25 1989-07-05 Fuji Electric Co Ltd 燃料電池のシール構造
JPH01294365A (ja) * 1988-02-04 1989-11-28 Fuji Electric Co Ltd 燃料電池の冷却板構造
US4987175A (en) * 1988-11-21 1991-01-22 Battelle Memorial Institute Enhancement of the mechanical properties by graphite flake addition
KR970011322B1 (ko) * 1990-04-11 1997-07-09 소시에떼나쇼날르엘프 아뀌뗀느 활성복합물
US5285845A (en) * 1991-01-15 1994-02-15 Nordinvent S.A. Heat exchanger element

Also Published As

Publication number Publication date
ES2145208T3 (es) 2000-07-01
JPH0845515A (ja) 1996-02-16
DE69514567T2 (de) 2000-08-31
EP0683536A1 (fr) 1995-11-22
US6050331A (en) 2000-04-18
JP3585992B2 (ja) 2004-11-10
DE69514567D1 (de) 2000-02-24
ATE189081T1 (de) 2000-02-15

Similar Documents

Publication Publication Date Title
EP0683536B1 (fr) Assemblage de plaque de refroidissement pour une pile de cellules à combustible
EP0786155B1 (fr) Composant reactif de champ de propagation de cathode pour un ensemble de piles a combustible
US4233369A (en) Fuel cell cooler assembly and edge seal means therefor
US4301222A (en) Separator plate for electrochemical cells
US4360485A (en) Method for making improved separator plates for electrochemical cells
WO2000030202A1 (fr) Plaque collectrice pour pile a combustible et procede de fabrication correspondant
US6607857B2 (en) Fuel cell separator plate having controlled fiber orientation and method of manufacture
US20070164483A1 (en) Method for manufacturing a separator plate for PEM fuel cells
CN1316659C (zh) 固体高分子型燃料电池用隔板及其制备方法
KR930000656B1 (ko) 플레이트 열교환기와 이 플레이트 열교환기용 플레이트엘레멘트의 제조방법
TW200405599A (en) Mesh reinforced fuel cell separator plate
CA2373897A1 (fr) Compose de separateur de piles a combustible, separateur de piles a combustible et methode de fabrication, et pile a combustible a electrolyte a polymere solide
EP1491589A1 (fr) Moule en resine conductrice
JPH0831231A (ja) 導電性成形品
KR100502873B1 (ko) 연료 전지 스택
EP3111496B1 (fr) Composant de pile à combustible comprenant du graphite lamellaire
JP2005216678A (ja) 燃料電池用セパレータ
JP7432065B2 (ja) セパレータおよびその製造方法
US9685666B2 (en) Molded coolant plate assembly with integral reactant flow fields and thermal dam
Christ 6.5. 10 Expanded Graphite and Graphite Foils
KR20230173711A (ko) 연료 전지용 세퍼레이터 및 그 제조 방법
MXPA01005063A (en) Fuel cell collector plate and method of fabrication
US20140295300A1 (en) Acid Resistant, Monolithic Fuel Cell Cooler Assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: LT;SI

17P Request for examination filed

Effective date: 19960319

17Q First examination report despatched

Effective date: 19970219

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000119

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000119

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000119

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000119

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000119

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000119

REF Corresponds to:

Ref document number: 189081

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69514567

Country of ref document: DE

Date of ref document: 20000224

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000419

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000614

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2145208

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010411

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010423

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010517

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050516