EP0681735B1 - Dekontaminirungsverfahren und einrichtungen einer radioaktiven oberfläche mittels eines koherenten lichtbundels - Google Patents

Dekontaminirungsverfahren und einrichtungen einer radioaktiven oberfläche mittels eines koherenten lichtbundels Download PDF

Info

Publication number
EP0681735B1
EP0681735B1 EP94905154A EP94905154A EP0681735B1 EP 0681735 B1 EP0681735 B1 EP 0681735B1 EP 94905154 A EP94905154 A EP 94905154A EP 94905154 A EP94905154 A EP 94905154A EP 0681735 B1 EP0681735 B1 EP 0681735B1
Authority
EP
European Patent Office
Prior art keywords
liquid
decontaminated
coherent light
swept
radioactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94905154A
Other languages
English (en)
French (fr)
Other versions
EP0681735A1 (de
Inventor
Jean-Paul Gauchon
Philippe Bournot
Philippe Cité Burel - Bat. 13 à 24 CAMINAT
Arnaud Dupont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0681735A1 publication Critical patent/EP0681735A1/de
Application granted granted Critical
Publication of EP0681735B1 publication Critical patent/EP0681735B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the invention relates mainly to a method for decontaminating a radioactive surface by scanning this surface by means of a focused coherent light beam.
  • the invention also relates to installations implementing this method.
  • the surface contamination of metal parts by radioactive elements is manifested by the presence of radioactive elements in the layer of metal oxide that forms on the surface of these parts.
  • the thickness of this contaminated surface layer is generally between 1 ⁇ m and 10 ⁇ m. The purpose of decontaminating these surfaces is therefore to eliminate the thin surface layer which covers the surface of the parts.
  • a first family of known methods consists in decontaminating the surface by attacking the surface layer deposited thereon by means of a chemical agent which can in particular be in the form of acids, bases, oxidizing gels, etc.
  • a chemical agent which can in particular be in the form of acids, bases, oxidizing gels, etc.
  • document FR-A-2 656 949 illustrates the use of an oxidizing gel.
  • Patent Abstract of Japan vol. 009, No. 176 (M-398), which corresponds to the document JP-A-60 046893, also relates to the treatment of a semiconductor substrate by a laser beam. So that the parts of the substrate detached by fusion do not come to glue on this substrate, the latter is placed in a liquid such as water, capable of rapidly cooling the molten parts of the substrate.
  • the subject of the invention is precisely a new method for decontaminating a radioactive surface by means of a focused coherent light beam, the original design of which enables it to practically eliminate the redeposition of radioactive aerosols which are formed when the beam of coherent light strikes the surface to be decontaminated, so as to considerably reduce the residual contamination of this surface.
  • this result is obtained by means of a method of decontamination of a radioactive surface, by scanning this surface by means of a beam of focused coherent light, in which the surface is scanned by the beam in the presence of a liquid over the entire surface to be decontaminated.
  • the liquid can be present on this surface, either in the form of a film which one makes trickle on the surface while carrying out the scanning of this surface by the bundle, or in the form of a volume of liquid filling a container whose inner surface constitutes the surface to be decontaminated. In the latter case, the container is filled before scanning the surface by the beam.
  • the liquid is recycled and filtered during the scanning of the surface to be decontaminated.
  • the liquid used can simply consist of water.
  • an aqueous solution loaded with chemical reagent will advantageously be used. Indeed, the effectiveness of the decontamination can be further improved by a judicious choice of this chemical reagent according to the nature of the metal in which the part is made of which it is desired to decontaminate the surface and the nature of the radioactive elements deposited on this area.
  • This chemical reagent can in particular be nitric acid, at a concentration of approximately 5 moles / l.
  • the wavelength of the coherent light beam used is preferably 248 nm, 308 nm, 532 nm or 1064 nm.
  • the invention also relates to different types of installations making it possible to implement the method defined above.
  • a decontamination installation comprising a coherent light source, as well as means for directing and focusing a beam of light coherent emitted by this source on the surface to be decontaminated, so as to allow scanning of this surface by the beam, characterized in that it further comprises means for causing a film of liquid to flow over the entire surface to be decontaminated when sweeping this surface.
  • the means for trickling a film of liquid onto the surface to be decontaminated advantageously comprise a spraying ramp running along the entire length of the upper edge of the surface, a retention tank placed below the lower edge of the surface. , and a recycling circuit connecting the retention tank to the spraying boom, this recycling circuit including pumping means and liquid filtering means.
  • a decontamination installation comprising a coherent light source, as well as means for directing and focusing a beam of coherent light emitted by this source on the surface to be decontaminated. , so as to allow this surface to be scanned by the beam, characterized in that it further comprises a circuit for recycling a liquid contained in the container during the scanning of the surface to be decontaminated, this recycling circuit including pumping means and liquid filtering means.
  • the means for directing and focusing the beam on the surface to be decontaminated advantageously carry at their end a box open towards this surface and the recycling circuit takes the liquid in this box and discharges it into the container.
  • the reference 10 designates the surface to be decontaminated.
  • this surface is a flat surface which is inclined relative to the horizontal, so as to have an upper edge 10a and a lower edge 10b.
  • This example should not be considered as limiting and it will be readily understood that an installation comparable to that which will be described could be used to decontaminate a surface of different shape and / or orientation.
  • the surface to be decontaminated can be oriented either in a direction inclined relative to the horizontal as illustrated in FIG. 1, or in a vertical direction.
  • the surface to be decontaminated can be flat, cylindrical or the like.
  • an installation comparable to that illustrated in FIG. 1 could be used to decontaminate the interior surface of piping with a vertical axis.
  • the decontamination installation illustrated diagrammatically in FIG. 1 firstly comprises a source 12 of coherent light, constituted for example by a YAG type pulsed laser, possibly equipped with a doubler.
  • the coherent light source 12 When activated, the coherent light source 12 emits a coherent light beam whose wavelength is preferably 248 nm, 308 nm, 532 nm or 1064 nm.
  • the coherent light source 12 is oriented so that the beam emitted by this source is directed vertically downward in a sealed telescopic tube 14 forming a waveguide.
  • the lower end of this tube 14 is extended by a 90 ° bend 16, in which the beam of coherent light is deflected by a mirror 18.
  • the horizontal branch of the bend 16 is closed at its end by a waterproof lens 20, at through which a focused coherent light beam 21 is directed towards the surface 10.
  • the sealed telescopic tube 14 can rotate around its axis as schematically illustrated by arrow F1 in FIG. 1.
  • the variation in its length, illustrated by arrow F2 makes it possible to vary the level of the beam of focused light coming out of the lens 20.
  • the two movements illustrated by the arrows F1 and F2 allow the coherent light beam coming out of the lens 20 to scan the entire surface 10 to be decontaminated.
  • these movements are controlled by motors slaved to a programmable control unit, so that the scanning of the surface can be carried out in an automated manner.
  • the decontamination installation illustrated in FIG. 1 further comprises means for making a film of liquid trickle over the surface 10 to be decontaminated, during the scanning of this surface by the beam of coherent light.
  • these means are generally designated by the reference 22. They comprise a spraying ramp 24 placed above the upper edge 10a of the surface 10 to be decontaminated and extending over the entire length of this edge .
  • This spray bar 24 is supplied with liquid by a recycling circuit 26.
  • the recycling circuit 26 communicates the spray bar 24 with the bottom of a retention tank 28 placed below the lower edge 10b of the surface 10 to be decontaminated.
  • a pump 30 placed in the circuit 26 allows the liquid 29 present in the retention tank 28 to be conveyed to the spraying boom 24.
  • the recycling circuit 26 also includes a filter 32 which retains the radioactive elements removed from the surface by the beam of coherent light, so that the liquid flowing on the surface 10 to be decontaminated from the spray boom 24 is free of radioactive elements.
  • the retention tank 28 contains a sufficient quantity of liquid 29 so that the surface 10 to be decontaminated is completely covered with a film of liquid when the pump is actuated.
  • the liquid used can be either pure water or an aqueous solution loaded with a chemical reagent such as nitric acid or a mixture of citric and oxalic acid.
  • the pump 30 is actuated so that a film of liquid 29 trickles over the entire surface 10. Consequently, the surface radioactive layer torn from the surface 10 by the action of the coherent light beam does not redeposit on this surface, but is entrained by the liquid 29 in the retention tank 28.
  • this liquid is taken up in the tank by the pump 30 to be returned to the spray boom 24, it is cleared by the filter 32 of the radioactive elements torn from the surface.
  • the film of liquid which continuously flows over the latter therefore has, throughout the duration of the scanning, a substantially uniform composition.
  • the installation shown is designed to decontaminate the interior surfaces 10 of a swimming pool 11 for discharging or storing nuclear fuel, that is to say, both the bottom and the vertical walls of this pool.
  • an installation comparable to that illustrated in this figure can be used to decontaminate the interior surfaces of a container. different shape and function, insofar as this container can be filled with a liquid making it possible to completely cover the interior surface to be decontaminated.
  • an installation comparable to the installation shown in FIG. 2 can be used to decontaminate the interior surfaces of a water box of a steam generator used to ensure heat transfer between water from the primary circuit and water from the secondary circuit in a pressurized water reactor.
  • the installation illustrated in FIG. 2 comprises a source 12 of coherent light constituted by a pulsed laser such as a YAG laser.
  • This source 12 sends downwards and in a vertical direction a beam of coherent light into a sealed telescopic tube 14 forming a waveguide.
  • a bend 16 at right angles is placed at the bottom of the telescopic tube 14, so as to return the beam in a horizontal direction towards the side walls of the pool, under the action of a mirror 18 placed in the bend 16.
  • L 'open end of the horizontal branch of the elbow 16 is provided with a sealed lens 20 which directs a beam of coherent light focused 21 towards the side wall of the pool.
  • the telescopic nature of the tube 14 (arrow F2), associated with a degree of freedom of rotation (arrow F1) of this tube around its axis, make it possible to scan the side walls of the pool.
  • this scanning is programmed and carried out automatically by motorization systems not illustrated in FIG. 2.
  • the two above-mentioned degrees of freedom can possibly be supplemented by one or more additional degrees of freedom, for example by placing the source 12 on a trolley capable of moving in a horizontal plane in two orthogonal directions parallel to the side walls of the pool.
  • the techniques for scanning the surfaces to be decontaminated are well known, so that no detailed description is made of them.
  • the coherent light beam delivered by the source 12 can also carry out the decontamination of the substantially horizontal bottom of the swimming pool, it is in particular possible to disassemble the elbow 16 and mount the waterproof lens 20 directly at the lower end of the vertical telescopic tube 14.
  • a sealed housing 36 is fixed at the end of the horizontal branch of the elbow 16, but the side facing the surface 10 during treatment is open.
  • the installation comprises a recycling circuit 26, one end of which is connected to the housing 36, so as to draw the liquid inside the latter.
  • This recycling circuit includes a pump 30 which recycles the liquid 29 in a filter 32, before discharging it directly into the pool 11.
  • Table A gives an estimate of the average ablation depths (in ⁇ m) per pulse, when laser beams with different wavelengths are made to act on AISI 304 steel in air and under water, respectively.
  • the pulse ablation depth is significantly greater under water runoff than in air, the gain provided by the process according to the invention being variable depending on the length d wave of the laser beam.
  • the ablation depth is only multiplied by a factor of about 3.5 in the ultraviolet, while it is multiplied by a factor of 16 in the near infrared.
  • Table B presents an estimate of the average pulse ablation depths when a laser beam of wavelength 308 nm and a laser beam of wavelength 1064 nm are made to act on the contaminated surface. , respectively in air and under water, of silica or alumina parts, representative of construction materials such as concrete, and / or ceramics.
  • each pulse is 30 ns at the wavelength 308 nm and 7 ns at the wavelength of 1064 nm, the firing frequency being in all cases 1 Hz.
  • Table C shows the results of comparative decontamination tests carried out on samples of oxidized Inconel 600, contaminated with Co 60 by causing a laser beam to act on samples having similar initial activities, respectively in the presence of ambient air with suction at a flow rate of 86 m 3 / h, in the presence of a film of water on the surface of the sample at a flow rate of 50 l / h and in the presence of a film of water added 5 moles / l of nitric acid at a flow rate of 50 l / h.
  • This table C notably shows very clearly the essential gain brought by the presence of a liquid film on the surface of the decontaminated part.
  • a comparable decontamination factor (21 or 22) can be obtained for an energy density deposited five times lower (100 J / cm 2 instead 500 J / cm 2 ), replacing the film of water with a film of water with added nitric acid.
  • Table D is a table comparable to Table C, in which the samples tested were samples of AISI 304 steel coated with oxide contaminated with Co 60. The characteristics of the laser beam were also identical to those of Table C.
  • Table D shows even more clearly than Table C the influence of the nature of the liquid which covers the surface decontaminated by the laser beam. Indeed, five different samples presenting similar initial activities were treated by a laser beam respectively in the presence of ambient air with a suction at a flow rate of 86m 3 / h, in the presence of a film of water at a flow rate of 50 l / h, in the presence of a film of water to which 1.5% of citric and oxalic acids ("CITROX”) were added at a flow rate of 50 l / h, in the presence of a film of water added with 0.5 mole / l of nitric acid at a flow rate of 50 l / h and in the presence of a film of water added with 5 moles / l of nitric acid at a flow rate of 50 l / h.
  • CITROX citric and oxalic acids
  • Table E illustrates test results comparable to those given in Tables C and D, in the case where surface decontamination of samples of AISI 304 steel contaminated with Cs137 is carried out.
  • the characteristics of the laser beam used are identical to those indicated in the context of the tests illustrated in Tables C and D.
  • Table E illustrates in particular that a comparable decontamination factor (approximately 50) can be obtained with an energy density deposited approximately seven times lower (15 J / cm 2 instead of 100 J / cm 2 ) by carrying out the abrasion in the presence of a film of water added with 5 moles / l of nitric acid, rather than in carrying out the abrasion in the presence of a simple film of water.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Water Treatments (AREA)
  • Prevention Of Fouling (AREA)

Claims (11)

  1. Dekontaminierungsverfahren einer radioaktiven Oberfläche bzw. Fläche (10) durch Bestreichen dieser Fläche mittels eines fokussierten kohärenten Lichtbündels (21),
    dadurch gekennzeichnet, daß man einen Film aus Flüssigkeit (29) über die gesamte zu dekontaminierende Fläche (10) rieseln läßt und dabei das Bestreichen dieser Fläche mit dem Lichtbündel durchführt.
  2. Dekontaminierungsverfahren einer radioaktiven Fläche (10) durch Bestreichen dieser Fläche mittels eines fokussierten kohärenten Lichtbündels (21),
    dadurch gekennzeichnet, daß die zu dekontaminierende Fläche (10) eine Innenfläche eines Behälters ist und man diesen Behälter mit Flüssigkeit (29) füllt, ehe man das Bestreichen dieser Fläche mit dem Lichtbündel durchführt.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man beim Bestreichen der zu dekontaminierenden Fläche (10) die Rückführung und Filtrierung der Flüssigkeit (29) vornimmt.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die verwendete Flüssigkeit (29) Wasser ist.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die verwendete Flüssigkeit (29) eine mit einem chemischen Reagens vermischte wäßrige Lösung ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das chemische Reagens Salpetersäure ist.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das kohärente Lichtbündel (21) eine Wellenlänge von 248nm, 308nm oder 1064nm hat.
  8. Dekontaminierungsvorrichtung einer radioaktiven Fläche (10), umfassend eine Quelle (12) kohärenten Lichts sowie Einrichtungen (14, 16, 18, 20) zum Leiten bzw. Lenken und Fokussieren eines kohärenten Lichtbündels, das von dieser Quelle auf die zu dekontaminierende Fläche (10) gestrahlt wird, um ein Bestreichen dieser Fläche durch das Lichtbündel zu ermöglichen,
    dadurch gekennzeichnet, daß sie außerdem Einrichtungen (22) umfaßt, um beim Bestreichen dieser Fläche einen Film aus Flüssigkeit (29) über die gesamte zu dekontaminierende Fläche rieseln zu lassen.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Rieseleinrichtungen (22) zur Bildung eines Films aus Flüssigkeit (29) auf der zu dekontaminierenden Fläche ein Sprührohr (24) umfassen, das über die gesamte Länge eines oberen Randes (10a) der Fläche erstreckt, sowie ein Rückhaltebecken (28), angeordnet unter einem unteren Rand (10b) der Fläche, und eine Rückführungsleitung (26), die das Rückhaltebecken verbindet mit dem Sprührohr, wobei diese Rückführungsleitung Pumpeinrichtungen (30) und Filtriereinrichtungen (32) der Flüssigkeit umfaßt.
  10. Dekontaminierungsvorrichtung einer radioaktiven Fläche (10), die eine Innenfläche eines Behälters bildet, umfassend eine Quelle (12) kohärenten Lichts sowie Einrichtungen (14, 16, 18, 20) zum Leiten bzw. Lenken und Fokussieren eines kohärenten Lichtbündels, das von dieser Quelle auf die zu dekontaminierende Fläche (10) gestrahlt wird, um ein Bestreichen dieser Fläche durch das Lichtbündel zu ermöglichen,
    dadurch gekennzeichnet, daß sie außerdem eine Rückführungsleitung (26) einer Flüssigkeit (29) umfaßt, die in dem Behälter während des Bestreichens der zu dekontaminierenden Fläche enthalten ist, wobei diese Rückführungsleitung Pumpeinrichtungen (30) und Filtriereinrichtungen (32) der Flüssigkeit umfaßt.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Einrichtungen (12, 16, 18, 20) zum Leiten und Fokussieren des Lichtbündels auf die zu dekontaminierende Fläche an ihrem Ende ein Gehäuse (36) tragen, das gegen die genannte Fläche offen ist, und dadurch, daß die Rückführungsleitung (26) die Flüssigkeit (29) in diesem Gehäuse ansaugt und sie in den Behälter ausscheidet.
EP94905154A 1993-01-26 1994-01-25 Dekontaminirungsverfahren und einrichtungen einer radioaktiven oberfläche mittels eines koherenten lichtbundels Expired - Lifetime EP0681735B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9300723 1993-01-26
FR9300723A FR2700882B1 (fr) 1993-01-26 1993-01-26 Procédé et installation de décontamination d'une surface radioactive au moyen d'un faisceau de lumière cohérente.
PCT/FR1994/000089 WO1994017529A1 (fr) 1993-01-26 1994-01-25 Procede et installations de decontamination d'une surface radioactive au moyen d'un faisceau de lumiere coherente

Publications (2)

Publication Number Publication Date
EP0681735A1 EP0681735A1 (de) 1995-11-15
EP0681735B1 true EP0681735B1 (de) 1997-04-02

Family

ID=9443348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94905154A Expired - Lifetime EP0681735B1 (de) 1993-01-26 1994-01-25 Dekontaminirungsverfahren und einrichtungen einer radioaktiven oberfläche mittels eines koherenten lichtbundels

Country Status (5)

Country Link
EP (1) EP0681735B1 (de)
DE (1) DE69402414T2 (de)
ES (1) ES2102825T3 (de)
FR (1) FR2700882B1 (de)
WO (1) WO1994017529A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803118B (zh) * 2020-12-28 2023-05-21 美商西屋電器公司 用於核能電廠物體除污的自主路徑計畫及路徑執行

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777822B1 (fr) * 1998-04-23 2000-07-07 Calhene Dispositif de transfert etanche a decontamination integree, par rayonnements ultraviolets
FR2887161B1 (fr) * 2005-06-20 2007-09-07 Commissariat Energie Atomique Procede et dispositif d'ablation laser d'une couche superficielle d'une paroi, telle q'un revetement de peinture dans une installation nucleaire
FR3031116B1 (fr) * 2014-12-30 2019-07-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede ameliore de decontamination de la surface d'une piece en acier inoxydable
FR3101558B1 (fr) * 2019-10-03 2021-10-22 Onet Tech Cn Procédé pour décontaminer une pièce métallique contenant un gaz par irradiation laser dans un milieu liquide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU71852A1 (de) * 1975-02-14 1977-01-05
JPS5582780A (en) * 1978-12-16 1980-06-21 Toshiba Corp Surface processing method for metal or the like article
CA1198482A (en) * 1982-04-14 1985-12-24 Thaddeus A. Wojcik Laser decontamination method
JPS6046893A (ja) * 1983-08-25 1985-03-13 Seiko Epson Corp レ−ザ−加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FICHIER INSPEC (LONDRES GB) AN. 4171325 "LASER-CLEANING TECHNIQUES FOR REMOVAL OF SURFACE PARTICULATES" & JOURNAL OF APPLIED PHYSICS, 01.04.1992, vol. 71, NR 7, P.3515-3523, TAM ET AL. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI803118B (zh) * 2020-12-28 2023-05-21 美商西屋電器公司 用於核能電廠物體除污的自主路徑計畫及路徑執行
US11685054B2 (en) 2020-12-28 2023-06-27 Westinghouse Electric Company Llc Autonomous path planning and path execution for decontamination of nuclear power plant objects

Also Published As

Publication number Publication date
DE69402414D1 (de) 1997-05-07
DE69402414T2 (de) 1997-10-23
FR2700882B1 (fr) 1995-03-03
EP0681735A1 (de) 1995-11-15
FR2700882A1 (fr) 1994-07-29
ES2102825T3 (es) 1997-08-01
WO1994017529A1 (fr) 1994-08-04

Similar Documents

Publication Publication Date Title
EP0642846B1 (de) Verfahren und Vorrichtung zur Überwachung von Oberflächen-Laserreinigung
EP0380387B1 (de) Oberflächenreinigung mit einem Laser
EP1899082B1 (de) Verfahren und vorrichtung zum laserabtrag der oberflächenbeschichtung einer wand, beispielsweise des farbauftrags in einer kerntechnischen anlage.
FR2777810A1 (fr) Procede et dispositif de traitement de la surface interne d'une bouteille de gaz
FR2752386A1 (fr) Procede de nettoyage ou de decontamination d'un objet au moyen d'un faisceau laser ultraviolet et dispositif pour sa mise en oeuvre
EP0675769B1 (de) Verfahren und vorrichtung zur reinigung von festen körpern
EP1089833B1 (de) Verfahren zum abbeizen und keimfreimachen des inneren eines behälters und vorrichtung dafür
EP0520847B1 (de) Verfahren zum Arbeiten mit Laser in kontaminiertem Gebiet einer Kernkraftanlage und Vorrichtung zur Durchführung des Verfahrens
EP0681735B1 (de) Dekontaminirungsverfahren und einrichtungen einer radioaktiven oberfläche mittels eines koherenten lichtbundels
EP0507641B1 (de) Verfahren und Einrichtung zum Arbeiten mit Laser in einer kontaminierten Zone einer Nuklearanlage
FR2863916A1 (fr) Procede et dispositif de nettoyage d'une surface au moyen d'un faisceau laser
FR3100002A1 (fr) Procédé pour décontaminer par laser pulsé une pièce métallique comprenant à sa surface une couche d’oxydes de métaux
FR2743215A1 (fr) Procede et dispositif de restauration de l'etancheite d'organes de raccordement tels que des boites a eau d'alternateurs a refroidissement mixte eau-hydrogene
JPH04109200A (ja) レーザ除染装置
Koren et al. CO 2 laser cleaning of black deposits formed during the excimer laser etching of polyimide in air
EP0555127A1 (de) Verfahren und Einrichtung zur Dekontaminierung eines gebrauchten nuklearen Dampferzeugers
FR2774801A1 (fr) Procede et installation de decontamination de crayons de combustible nucleaire au moyen d'un faisceau laser
Costes et al. Decontamination by ultraviolet laser: The LEXDIN prototype
CA2744371C (fr) Procede d'ablation d'une couche superficielle d'une paroi, et dispositif associe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES GB LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUPONT, ARNAUD

Inventor name: CAMINAT, PHILIPPE, CITE BUREL - BAT. 13 A 24

Inventor name: BOURNOT, PHILIPPE

Inventor name: GAUCHON, JEAN-PAUL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960604

RTI1 Title (correction)
GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69402414

Country of ref document: DE

Date of ref document: 19970507

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970625

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2102825

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010108

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010126

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031022