EP0680568A1 - Ensemble palier - Google Patents

Ensemble palier

Info

Publication number
EP0680568A1
EP0680568A1 EP93903333A EP93903333A EP0680568A1 EP 0680568 A1 EP0680568 A1 EP 0680568A1 EP 93903333 A EP93903333 A EP 93903333A EP 93903333 A EP93903333 A EP 93903333A EP 0680568 A1 EP0680568 A1 EP 0680568A1
Authority
EP
European Patent Office
Prior art keywords
radial
cylindrical member
bearing
thrust
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP93903333A
Other languages
German (de)
English (en)
Inventor
Daisuke Konno
Yumiko Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of EP0680568A1 publication Critical patent/EP0680568A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves

Definitions

  • the present invention relates to a bearing device which has a liquid hydrodynamic bearing as a radial bearing, and a gas hydrodynamic bearing as a thrust bearing, and which supports a rotating object rotating at high speed. More particularly, the present invention relates to a bearing device suitable for a spindle motor used for driving a hard disk driver (hereinafter referred to as "HDD”), a laser beam printer driver (hereinafter referred to as "LBP”), a rotating drum device for a video system, etc., in which excellent rotating performance is required irrespective of the position of the motor.
  • HDD hard disk driver
  • LBP laser beam printer driver
  • the spindle motors which drive them have accordingly been demanded to have high performance. That is, it has been demanded to improve durability, cleanness and high-speed rotating performance and to minimize vibrations during rotation irrespective of the position of the motor when used, so as to be even more suitable for such HHDs.
  • Fig. 8 is a sectional view showing the structure of a conventional spindle motor for HDD.
  • a mount (base) 31 has a support shaft (spindle) 32 stood on the central portion thereof.
  • An annular thrust plate 33 is secured to the mount 31, and a radial cylindrical member 34 is concentrically secured to the support shaft 32.
  • a plurality of circumferentially equally spaced stator. coils 35 are secured to the support shaft 32 above the radial cylin-drical member 34.
  • a support member (hub) 36 having a cap-shaped configuration is provided on the support shaft 32. The ceiling portion at the upper end of the support member 36 is loosely fitted on the upper end portion of the support shaft 32.
  • the support member 36 has an annular bearing member (serving as both radial and thrust sleeves) 37 secured to the lower end portion thereof.
  • the annular member 37 has an L-shaped cross-sectional configuration.
  • the iower end surface of the bearing member 37 faces the upper surface of the thrust plate 33, while the inner peripheral surface of the annular member 37 faces the outer peripheral surface of the radial cylindrical member 34.
  • Either the lower end surface of the bearing member 37 or the upper surface of the thrust plate 33 is formed with spiral grooves for generating dynamic pressure in the thrust direction.
  • Either the inner peripheral surface of the bearing member 37 or the outer peripheral surface of the radial bearing member 34 is formed with herringbone-shaped grooves for generating dynamic pressure in the radial direction.
  • a plurality of circumferentially equally spaced rotor magnets 38 are secured to the inner periphery of the support member 36 in opposing relation to the stator coils 35.
  • the support member 36 having the rotor magnets 38 begins to rotate, and consequently a pneumatic dynamic pressure is generated between the upper surface of the thrust plate 33 and the lower end surface of the bearing member 37, and a pneumatic dynamic pressure is similarly generated between the outer peripheral surface of the radial bearing member 34 and the inner peripheral surface of the bearing member 37.
  • the upper surface of the thrust plate 33 and the lower end surface of the bearing member 37 constitute a thrust bearing
  • the outer peripheral surface of the radial bearing member 34 and the inner peripheral surface of the bearing member 37 constitute a radial bearing.
  • the support member 36 rotates while being supported by the thrust and radial bearings.
  • the above-described spindle motor suffers from the problem that, when it is operated in a horizontal position (i.e., in a direction in which the direction of gravity is perpendicular to the shaft of the motor), a moment in the radial direction is generated due to the gravity of the rotor, causing the axis of the rotor to be inclined with respect to the radial bearing, which results in an increase in the imbalance of radial magnetic force acting between the rotor magnets 38 and the stator coils 35, and in this state a rotor member is brought into local contact with the bearing.
  • the thrust plate and the radial bearing member are comprised of discrete members and are indepen ⁇ dently positioned on the mount, it is difficult to achieve the required perpendicularity between them at the time of assembly.
  • the radial cylindrical member and. the radial sleeve come in direct sliding contact with each other and hence wear is caused in the process of repeating start and stop.
  • the present invention provides a bearing device comprising a base, a spindle stood on a central portion of said base, a hub, and radial and thrust hydrodynamic bearings provided between said spindle and said hub, a radial cylindrical member secured to the base so that the spindle extends through a central portion thereof, a pair of thrust plates secured to both end surfaces, respectively, of the radial cylindrical member and each having the spindle extending through a central portion thereof, a radial sleeve rotatably supported at an inner periphery and two end surfaces thereof by an outer peripheral surface of the radial cylindrical member and opposing inner surfaces of the two thrust plates respectively and secured to the hub, in which the radial cylindrical member and the radial sleeve constitute the radial hydrodynamic bearing, cither two end portions of the radial sleeve or the opposing inner surfaces of the two thrust plates are provided with spiral grooves for generating dynamic pressure, and the two end portions of the radial
  • the small hole which is formed in the outer peripheral surface of the radial cylindrical member, may be either a through-hole that extends through the radial cylindrical member, or a hole that does not extend through the radial cylindrical member, with the inner end thereof being closed.
  • the bearing device may have a plurality of small holes which are formed in the outer peripheral surface of the radial cylindrical member at respec ⁇ tive positions equally distributed either circumferentially and/or axially.
  • the lubricating liquid sealed in the radial hydrodynamic bearing may be a lubricating liquid having a low volatility and a kinematic viscosity below 10 cSt at 40°C.
  • the lubricating liquid may contain an electri- cally conductive substance.
  • the radial sleeve may be either a rotating member or a stationary member.
  • the bearing device having the above-described arrangement may be provided with means for generating magnetic attraction force in a thrust direction with respect to one of the thrust plates counter to an applied load.
  • the radial bearing may be disposed so as to support a rotor, rotatably supported by the bearing device, over a predetermined range including the center of gravity of the rotor.
  • the radial hydrodynamic bearing is arranged in the form of a lubricating liquid hydrodynamic bearing, and the thrust hydrodynamic bearings formed in the shape of gas hydrodynami : bearings, as described above.
  • the load carrying capacity of the radial bearing improves markedly in comparison to gas hydrodynamic bearings.
  • the lubrication condition at the time of start and stop improves, so that it is possible to reduce the wear of the radial bearing.
  • the clearance of the radial bearing is minute, the lubricating liquid can hardly enter an area other than the radial hydrodynamic bearing by the action of the interfacial tension thereof.
  • each air gap which is surrounded by a chamfer portion of the radial cylindrical member, a chamfer portion of the radial sleeve and one thrust plate, is much wider than the clearances in the radial and thrust bearings, the interfacial tension of the lubricating liquid weakens in the air gap, so that the lubricating liquid cannot enter the thrust bearing clearance by passing through the air gap.
  • the air gaps function so as to seal the lubricating liquid in the clearance of the radial bearing, and it is therefore possible to prevent the lubricating liquid from entering an area other than the radial hydrodynamic bearing.
  • the lubricating liquid rises in temperature and hence increases in volume during rotation of the rotor, the excess lubricating liquid is effectively absorbed into the small holes of the radial cylindrical member.
  • the lubricating liquid lowers in temperature and hence decreases in volume.
  • the lubricating liquid is supplied from the smal] holes to compensate for the decrease in the lubricating liquid in the bearing clearance. Since at this time the lubricating liquid is present only in the radial hydrodynami : bearing, as described above, it is possible to obtain an excellent lubrication condition for the radial hydro- dynamic bearing.
  • the spacings between the opposing inner surfaces of the thrust plates and the two end surfaces of the radial sleeve are determined by the difference in height of the radial cylindrical member and the radial sleeve, these members can readily be assembled with given spacings, provided that the radial cylindrical member and the radial sleeve, which are easy to machine, are produced with the correct height.
  • the radial sleeve functions as bearing members of both the radial and thrust bearings, the number of parts required to form the whole bearing structure decreases, and the structure of the bearing device is simplified.
  • the radial sleeve can be formed as either a stationary member or a rotating member. By positioning the center of gravity of the motor rotor within a predetermined range of the bearing structure, the rotor can rotate stably irrespective of the attitude of the motor when used.
  • the lubricating liquid satisfactorily diffuses into the small holes or given portions of the bearing clearances. Accordingly, there is no possibility of the lubricating liquid being scattered as described above. Further, bearing loss is minimized, and the durability of the bearing device is improved.
  • Fig. 1 is a sectional view showing the structure of one embodiment of the bearing device according to the present- invention
  • Figs. 2(a), 2(b) are views for explanation of an opera ⁇ tion in a case where neither a radial cylindrical member nor a radial sleeve has a chamfer portion;
  • Fig. 3 is a view for explanation of an operation in a case where the radial cylindrical member and the radial sleeve are provided with respective chamfer portions, which form an air gap between the same and a thrust plate;
  • Fig. 4 shows spiral grooves for generating hydrodynamic pressure which are formed on a thrust plate
  • Fig. 5 is a sectional view showing the arrangement of a spindle motor employing the bearing device of the present invention
  • Fig. 6 is a sectional view showing the arrangement of another spindle motor employing the bearing device of the present invention
  • Figs. 7(a) to 7(f) show various forms of small holes which are formed in the radial cylindrical member
  • Fig. 8 is a sectional view showing the arrangement of a spindle motor employing a conventional bearing device. Best Mode for Carrying Out the Invention
  • Fig. 1 is a schematic sectional view showing the structure of one embodiment of the bearing device according to the present. invention.
  • a base 1 has a spindle 2 stood on the central portion thereof.
  • a radial cylindrical member 4 is fixed on the spindle 2 with the spindle 2 extending through the central portion thereof.
  • a pair of thrust plates 33 are secured to both end surfaces, respectively, of the radial cylindrical member 4.
  • the spindle 2 extends through the central portion of the upper and lower thrust plates 3.
  • a cylindrical radial sleeve 6 is secured to the inner periphery of a hub 7.
  • the radial sleeve 6 is rotatably supported at the inner peripheral surface and two end surfaces thereof by the outer peripheral surface of the radial cylindrical member 4 and the opposing inner surfaces of the two thrust plates 3, respectively.
  • the radial cylindrical member 4 and the radial sleeve 6 constitute a radial hydrodynamic bearing, while the two end portions of the radial sleeve 6 and the thrust plates 3 constitute thrust hydrodynamic bearings.
  • the radial and thrust bearings constitute the bearing device of the present- invention.
  • the opposing inner surfaces of the two thrust plates 3 are provided with grooves for generating dynamic pressure, e.g. , spiral grooves 3a, as shown in Fig. 4. Both end sur ⁇ faces of the radial sleeve 6 are smoothed.
  • the arrangement may also be such that the two end surfaces of the radial sleeve 6 are provided with grooves for generating dynamic pressure, while the opposing inner surfaces of the thrust plates 3 are smoothed.
  • the clearance between the outer peripheral surface of the radial cylindrical member 4 and tiie inner peripheral surface of the radial sleeve 6 is minute (from several microns to several tens of microns).
  • the outer peripheral surface of the radial cylindrical member 4 and the inner peripheral surface of the radial sleeve 6 are formed in the shape of smooth surfaces. As shown in Fig. 3, a chamfer portion 4a is provided on the outer periphery of each end of the radial cylindrical member 4, and another chamfer portion 6a is provided on the inner periphery of each end of the radial sleeve 6, thereby providing an air gap 13 at each axial end of the radial hydro-dynamic bearing, which is surrounded by the chamfer portion 4a, the chamfer portion 6a and the surface of one thrust plate 3 that faces these chamfer portions 4a and 6a.
  • the outer peripheral surface of the radial cylindrical member 4 is provided with small holes 8 for collecting a liquid.
  • the fluid used for generating dynamic pressure in the thrust bearings is a gas, e.g., air, while the fluid used for generating dynamic pressure in the radial bearing is a lubricating liquid.
  • the load carrying capacity of the radial bearing improves markedly in comparison to gas hydrodynamic bearings.
  • the lubrication condition at the time of start and stop improves, so that it is possible to reduce the wear of the radial cylindrical member 4 and the radial sleeve 6.
  • the clearance between the outer peripheral surface of the radial cylindrical member 4 and the inner peripheral surface of the radial sleeve 6, that is, the clearance of the radial bearing is as minute as several microns to several tens of microns, the lubricating liquid can hardly enter an area other than the area of sliding contact between the outer peripheral surface of the radial cylindrical member 4 and the inner peripheral surface of the radial sleeve 6, that is, the radial hydrodynamic bearing surface, by the action of the interfacial tension.
  • each air gap 13, which is surrounded by a chamfer portion of the radial cylindrical member 4, a chamfer portion of the radial sleeve 6 and one thrust plate 3, is larger than the above-described clearance, the interfacial tension of the lubricating liquid weakens in the air gap 13. That is, the interfacial tension in the radial clearance is cut off by the air gap 13, so that the lubricating liquid cannot- enter the thrust clearance by passing through the air gap.
  • the lubricating liquid Q enters the clearance 11 by capillarity as time goes by, as shown in Fig. 2(b). Consequently, the lubricating liquid Q unde ⁇ sirably serves as a fluid that generates dynamic pressure in the thrust hydrodynamic bearing. Therefore, the bearing loss becomes greater than in the case of the air hydrodynamic bearing, so that it becomes difficult to achieve high-speed rotation.
  • an air gap 13 having an inverted triangle-shaped cross-sectional configuration is defined between the chamber portion 4a of the radial cylindrical member 4, the chamfer portion 6a of the radial sleeve 6 and the surface of the thrust plate 3 that faces these chamber portions 4a and 6a, as shown in Fig.
  • the clearance 14 of the radial hydrodynamic bearing can be filled uniformly with a proper quantity of lubricating liquid by filling the small holes 8 of the radial cylindrical member 4 with lubricating liquid sufficiently before the assembly of the bearing device and then fitting the radial cylindrical member 4 into the radial sleeve 6. Accordingly, it becomes unnecessary to control the quantity of lubricating liquid, which is very small. Thus, the application of the lubricating liquid becomes extremely easy.
  • lubricating liquid one which has a low volatility and a kinematic viscosity below 10 cSt at 40°C is used. If the kinematic viscosity of the lubrica ⁇ ting liquid is 10 cSt or higher, bearing loss due to the viscosity of the lubricating liquid becomes large, so that it is difficult to achieve high-speed rotation. Some of the lubricating liquids that have a kinematic viscosity below 10 cSt contain a volatile component of normal -volume.
  • a lubricating liquid containing such normal volatility is employed in the bearing device of this invention, the bearing lifetime will be short because the bearing device has no function of externally supplying a lubricating liquid except for the small holes 8.
  • a lubricating liquid which has a low volatility and a kinematic viscosity below 10 cSt at 40 °C is preferably selected.
  • a hydrocarbon oil or a fluorocarbon heating media is employed as a lubricating liquid.
  • the radial hydrodynamic bearing does not necessarily need grooves for generating dynamic pressure.
  • Dynamic pressure generating grooves may be formed on the inner peripheral surface of the radial sleeve 6, with the outer peripheral surface of the radial cylindrical member 4 being smoothed.
  • dynamic pressure generating grooves may be formed on the outer peripheral surface of the radial cylindrical member 4, with the inner peripheral surface of the radial sleeve 6 being smoothed.
  • materials for members constituting bearings that is, the radial cylindrical member 4, the thrust plates 3, and the radial sleeve 6. It is possible to use any material which can be machined with a high degree of accuracy. Examples of usable materials include general metallic materials, ceramic materials, organic materials, etc.
  • the lubricating liquid may be made electrically conductive by adding an electrically conductive substance thereto. Any kind of material may be used as an electrically conductive substance. For example, at least one kind of surface-active agent or polyoxyethylene additive or graphite powder is selected as an electrically conductive substance.
  • the perpendicularity required between the thrust plates 3 and the radial cylindrical member 4 can readily be realized by bringing the two end surfaces of the radial cylindrical member 4 into contact with the opposing inner surfaces of the thrust plates 3 and clamping them together by using a fixing member (nut) 5, provided that the thrust plates 3 are produced so that the opposing inner surfaces thereof have the required flatness, and the radial cylindrical member 4 is produced so that each end surface and outer peripheral surface thereof are at right angles to each other.
  • the spacings between the opposing inner surfaces of the thrust plates 3 and the two end surfaces of the radial sleeve 6 are determined by the difference in height of the radial cylindrical member 4 and the radial sleeve 6, these spacings can readily be set at given values, provided that the radial cylindrical member 4 and the radial sleeve 6, which are easy to machine, are produced with the correct height.
  • the radial sleeve 6 functions as bearing members of both the radial and thrust bearings, the number of parts required to form the bearing device decreases, and the structure is simplified.
  • Fig. 5 is a sectional view showing the arrangement of a spindle motor that employs the bearing device of the present invention.
  • the bearing device for the spindle motor is arranged in the same way as the bearing device shown in Fig. 1. That is, the bearing device includes a base 1, a spindle 2 stood on the central portion of the base 1, a radial cylindrical member 4 having the spindle 2 extending through the central portion thereof, a pair of thrust plates 3 secured to both end surfaces, respectively, of the radial cylindrical member 4 and each having the spindle 2 extending through the central portion thereof, and a radial sleeve 6 that is rotatably supported at the inner peripheral surface and two end surfaces thereof by the outer peripheral surface of the radial cylindrical member 4 and the opposing inner surfaces of the two thrust plates 3 respectively and that is secured to the inner periphery of a hub 7.
  • the radial cylindrical member 4 and the radial sleeve 6 constitute a radial hydrodynamic bearing, while the two end portions of the radial sleeve 6 and the thrust plates 3 constitute thrust hydrodynamic bearings.
  • the base 1, the spindle 2, the radial cylindrical member 4 and the thrust plates 3 are formed as rotating members.
  • a chamfer portion is formed on the outer periphery of each end of the radial cylindrical member 4, and another chamfer portion is formed on the inner periphery of each end of the radial sleeve 6 (see Fig. 3), thereby forming an air gap 13 at each axial end of the radial hydrodynamic bearing, which is defined between the chamfer portions and the surface of one thrust plate 3 that faces these chamber portions.
  • small holes 8 are provided in the outer peripheral surface of the radial cylindrical member 4. The diameter _. of the small holes 8 is 0.8 mm.
  • a lubricating liquid is employed as a fluid for generating dynamic pressure in the radial hydrodynamic bearing, while a gas, e.g.
  • FIG. 5 air, is employed as a fluid for generating dynamic pressure in the thrust hydrodynamic bearings.
  • reference numeral 16 in Fig. 5 denotes a nut used to secure the thrust plates 3 and the radial cylindrical member 4 to the spindle 2.
  • a back yoke 12 may be secured to the outer periphery of the base 1. Alternatively, the back yoke 12 may be formed integrally with the base 1.
  • a plurality of circumferentially equally spaced stator coils 9 (including a stator core) are secured to the outer periphery of the hub 7.
  • a plurality of circumferentially equally spaced rotor magnets 15. are secured to the inner peripheral surface of the back yoke 12 in opposing relation to the stator coils 9. The lower end of the hub 7 is secured to the mount 10.
  • the motor rotor which comprises the back yoke 12 having the rotor magnets 15 secured to the inner peripheral surface thereof, rotates. That is, the motor rotor, which comprises the base 1 and the back yoke 12, rotates in a state where the outer peripheral surface of the radial cylindrical member 4, which is secured to the spindle 2, is rotatably supported by the inner peripheral surface of the radial sleeve 6, while the opposing inner surfaces of the thrust plates 3, which are secured to both ends, respectively, of the radial cylindrical member 4, are rotatably supported by both end surfaces of the radial sleeve 6.
  • the axial magnetic centers of the stator coils 9 and the rotor coils 15 are offset from each other by d so that magnetic attraction force acts in the thrust direction counter to the applied load.
  • the rotor can rotate stably irrespective of the attitude of the motor when used.
  • Fig. 6 is a sectional view showing the arrangement of another spindle motor that employs the bearing device of the present invention.
  • the bearing device for the spindle motor is arranged in the same way as the bearing devices shown in Figs. 1 and 5. That is, the bearing device includes a base 1, a spindle 2 stood on the central portion of the base 1, a radial cylindrical member 4 having the spindle 2 extending through the central portion thereof, a pair of thrust plates 3 secured to both end surfaces, respectively, of the radial cylindrical member 4 and each having the spindle 2 extending through the central portion thereof, and a radial sleeve 6 that is rotatably supported at the inner peripheral surface and two end surfaces thereof by the outer peripheral surface of the radial cylindrical member 4 and the opposing inner surfaces of the two thrust plates 3 respectively and that is secured to the inner periphery of a hub 7.
  • the radial cylindrical member 4 and the radial sleeve 6 constitute a radial hydrodynamic bearing, while the two end portions of the radial sleeve 6 and the thrust plates 3 constitute thrust hydrodynamic bearings.
  • the base 1, the spindle 2 and the radial cylindrical member 4 are formed as stationary members (in the same way as in the arrangement shown in Fig. 1).
  • a chamfer portion is formed on the outer periphery of each end of the radial cylindrical member 4, and another chamfer portion is formed on the inner periphery of each end of the radial sleeve 6, thereby forming an air gap 13 at each axial end of the radial hydrodynamic bearing, which is defined between the chamfer portions and the surface of one thrust plate 3 that faces these chamber portions.
  • small holes 8, the inner ends of which are closed, are provided in the outer peripheral surface of the radial cylindrical member 4. The diameter ⁇ of the small holes 8 is 0.5 mm.
  • a lubricating liquid is employed as a fluid for generating dynamic pressure in the radial hydrodynamic bearing, while a gas, e.g.
  • Fig. 6 air, is employed as a fluid for generating dynamic pressure in the thrust hydrodynamic bearings.
  • the bearing device shown in Fig. 6 is substan ⁇ tially the same as the bearing devices shown in Figs. 1 and 5.
  • reference numeral 17 in Fig. 6 denotes a bolt used to secure the thrust plates 3 and the radial cylindrical member 4 to the spindle 2.
  • a plurality of circumferentially equally spaced stator coils 9 (including a stator core) are secured to the outer periphery of the base ] .
  • a plurality of ci rcumfcrentiaJ 1y equally spaced rotor magnets 15 are secured to the inner peripheral surface of the hub 7 in opposing relation to the stator coils 9. That is, the hub 7 constitutes a back yoke.
  • the hub 7 rotates in a state where the inner peripheral surface of the radial sleeve 6 is rotatably supported by the outer peripheral surface of the radial cylindrical member 4, which is secured to the spindle 2, while the two end surfaces of the radial sleeve 6 are rotatably supported by the opposing inner surfaces of the thrust plates 3, which are secured to the two ends, respectively, of the radial cylindrical member 4.
  • the spindle motor arranged as shown in Fig. 6, as in Fig. 5, the axial magnetic centers of the stator coils 9 and the rotor coils 15 are offset from each other by d so that magnetic attraction force acts in the thrust direction counter to the applied load.
  • the center of gravity G of the rotor (comprising the hub 7, the radial sleeve 6, the rotor magnets 15, magnetic disk, etc.) is positioned within a predetermined range of the bearing structure.
  • the small holes 8 are through-holes that extend through the radial cylindrical member 4, the smal l holes 8 are not necessarily limited to such through-holes.
  • the small holes 8 may be holes that do not extend through the radial cylind ⁇ rical member 4, that is, they may be holes the inner ends of which are closed, as shown in Fig. 6.
  • the small holes 8 may be tapered.
  • the small holes 8 may be formed in various positions, as shown in Figs. 7(a) to 7(f). That is, in Fig. 7(a), a pair of small through-holes 8 are formed in the right and left portions, respectively, of the radial cylindrical member 4. In Fig.
  • a pair of small through-holes 8 are formed in the right and left por ⁇ tions, respectively, of the radial cylindrical member 4 at respective positions which are axially offset from each other.
  • two pairs of small through-holes 8 are formed in the right and left portions, respectively, of the radial cylindrical member 4 at two axially spaced positions.
  • four small through-holes 8 are formed in four circumferentially equally spaced portions, respectively, of the radial cylindrical member 4.
  • four small through-holes 8 are formed in four circumferentially equally spaced portions, respectively, of the radial cylindrical member 4 at two axially spaced positions.
  • Figs. 7(a) to 7(f) each show plan and sectional views of the radial cylind ⁇ rical member 4.
  • the bearing device has a radial hydrodynamic bearing arranged in the form of a lubricating liquid hydrodynamic bearing, and thrust hydrodynamic bearings formed in the form of gas hydrodynamic bearings.
  • the load carrying capacity of the radial bearing improves markedly in com ⁇ parison to gas hydrodynamic bearings.
  • the lubrication condition at the time of start and stop improves, so that it is possible to reduce the wear of the radial bearing.
  • the bearing device is excellent in durability and cleanness and provides high-speed rotating performance.
  • the bearing device of the present invention is suitable for a spindle motor in which these performances are demanded.
  • the radial sleeve can be formed as either a stationary member or a rotating member.
  • the rotor can rotate stably irrespective of the attitude of the motor when used. Accordingly, it is possible to realize a bearing device suitable for a spindle motor which is demanded to exhibit stable rotating performance irrespective of the attitude of the motor when used.
  • an electrically conductive liquid is employed as a lubricating liquid
  • static electricity produced on a magnetic recording medium in HDD for example, can be effectively grounded to the stationary side (ground) by virtue of the conducting function of the electrically conductive liquid. Accordingly, it is possible to prevent accumulation of static electricity in between the magnetic recording medium and the head.
  • the bearing device is suitable for a spindle motor for driving HDD or other similar device. .
  • (6) By providing a means for producing magnetic attraction force in the thrust direction counter to the applied load, it is possible to reduce the load applied in the thrust direction by the weight of the rotor when a spindle motor is operated in a vertical position.

Abstract

Ensemble palier convenant à un moteur à broche et comprenant une base, une broche verticale placée sur une partie centrale de la base, un élément cylindrique radial (4) fixé sur la broche, une paire de plaques de butée (3) fixée aux deux surfaces extrêmes de l'élément cylindrique radial, et un manchon radial (6) soutenu rotatif par les plaques de butée (3) et l'élément cylindrique (4), de sorte qu'un palier hydraulique radial est formé par l'élément cylindrique radial (4) et le manchon radial (6), et des paliers de butée hydrauliques sont formés par les deux parties terminales du manchon radial (6) et les plaques de butée (3). Un gaz est utilisé comme fluide de génération de pression dynamique dans les paliers de butée hydrauliques. Le palier radial présente un très faible dégagement, et une partie chanfreinée est ménagée sur le pourtour externe de chaque extrémité de l'élément cylindrique radial (4), tandis qu'une autre partie chanfreinée est prévue sur le pourtour interne de chaque extrémité du manchon radial (6), ce qui produit un intervalle (13) au niveau de chaque extrémité axiale du palier hydrodynamique radial, qui est entouré par les parties chanfreinées et une plaque de butée (3). Un liquide lubrifiant est utilisé comme fluide de génération de pression dynamique dans le palier radial, des petits trous (8) étant ménagés dans la surface circonférentielle externe de l'élément cylindrique radial (4) afin de recueillir le fluide lubrifiant, et ce dernier étant hermétiquement enfermé dans le dégagement du palier radial grâce à la présence des intervalles (13).
EP93903333A 1993-02-09 1993-02-09 Ensemble palier Ceased EP0680568A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1993/000166 WO1994018464A1 (fr) 1993-02-09 1993-02-09 Ensemble palier

Publications (1)

Publication Number Publication Date
EP0680568A1 true EP0680568A1 (fr) 1995-11-08

Family

ID=14070114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93903333A Ceased EP0680568A1 (fr) 1993-02-09 1993-02-09 Ensemble palier

Country Status (5)

Country Link
EP (1) EP0680568A1 (fr)
DE (2) DE9390304U1 (fr)
GB (1) GB2290355B (fr)
NL (1) NL9320055A (fr)
WO (1) WO1994018464A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045629B4 (de) * 2004-09-21 2008-07-03 Minebea Co., Ltd. Fluiddynamisches Lagersystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL145932B (nl) * 1965-05-21 1975-05-15 Tno Aero- of hydrodynamisch rotatieleger.
US3439961A (en) * 1967-04-07 1969-04-22 Singer General Precision Bifluid hydrodynamic bearing
DE3439081A1 (de) * 1983-10-27 1985-06-13 Ferrofluidics Corp., Nashua, N.H. Ferrofluiddichtung
JPS612915A (ja) * 1984-06-15 1986-01-08 Canon Inc 回転装置
US4934836A (en) * 1988-08-18 1990-06-19 Nippon Seiko Kabushiki Kaisha Dynamic pressure type fluid bearing device
US5114245A (en) * 1989-07-17 1992-05-19 Nippon Seiko Kabushiki Kaisha Dynamic pressure bearing device
US5141338A (en) * 1989-11-10 1992-08-25 Matsushita Electric Industrial Co., Ltd. Dynamic pressure type fluid bearing apparatus
JPH03163216A (ja) * 1989-11-20 1991-07-15 Nippon Seiko Kk 流体軸受装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9418464A1 *

Also Published As

Publication number Publication date
NL9320055A (nl) 1995-12-01
DE4397188T1 (de) 1996-01-11
GB2290355A (en) 1995-12-20
GB9515610D0 (en) 1995-10-11
DE9390304U1 (de) 1995-11-23
WO1994018464A1 (fr) 1994-08-18
GB2290355B (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US5358339A (en) Hydrodynamic fluid bearing with liquid-radial bearing and gas-thrust bearing
US5142173A (en) Bearing structure
EP0410293B1 (fr) Moteur arbre
EP0392500B1 (fr) Moteur à broche
US6307293B1 (en) Motor having a hydrodynamic pressure bearing
US5289067A (en) Bearing device
US5969448A (en) Electric spindle motor
US6339270B1 (en) Motor for driving storage disks, and storage disk drive device provided therewith
US7466050B2 (en) Brushless motor and method of manufacturing the same
US6250808B1 (en) Motor having a plurality of dynamic pressure bearings
US6955469B2 (en) Dynamic pressure bearing device
WO2005046029A1 (fr) Moteur
KR100618832B1 (ko) 스핀들 모터
WO1994018464A1 (fr) Ensemble palier
JPH09144758A (ja) 動圧軸受装置及びそれを用いたディスク駆動装置
JP2800278B2 (ja) 動圧軸受装置
KR20040074676A (ko) 하드 디스크 드라이브용 스핀들 모터
JPS6360247B2 (fr)
JPS59188351A (ja) 動圧型軸受モ−タ
KR100753491B1 (ko) 저널베어링 간극이 다른 유체동압베어링모터
JP2001124059A (ja) 動圧型軸受ユニット
KR100207987B1 (ko) 자성물질을 이용한 반구 베어링 장치
KR100233010B1 (ko) 자성물질을 이용한 베어링 장치
KR20030090560A (ko) 유체동압 베어링 모터
KR100257833B1 (ko) 공기-자기 복합 베어링 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960913

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19970303