KR100257833B1 - 공기-자기 복합 베어링 장치 - Google Patents

공기-자기 복합 베어링 장치 Download PDF

Info

Publication number
KR100257833B1
KR100257833B1 KR1019970067677A KR19970067677A KR100257833B1 KR 100257833 B1 KR100257833 B1 KR 100257833B1 KR 1019970067677 A KR1019970067677 A KR 1019970067677A KR 19970067677 A KR19970067677 A KR 19970067677A KR 100257833 B1 KR100257833 B1 KR 100257833B1
Authority
KR
South Korea
Prior art keywords
bushing
hemisphere
shaft
air
fixed
Prior art date
Application number
KR1019970067677A
Other languages
English (en)
Other versions
KR19990048869A (ko
Inventor
김준영
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019970067677A priority Critical patent/KR100257833B1/ko
Publication of KR19990048869A publication Critical patent/KR19990048869A/ko
Application granted granted Critical
Publication of KR100257833B1 publication Critical patent/KR100257833B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0421Passive magnetic bearings with permanent magnets on one part attracting the other part for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

축의 상부에 리세스를 구비한 스텝 베어링을 고정하고, 축의 하부에 동압 발생홈을 갖는 반구를 고정하고, 스텝 베어링과 반구 사이에 부싱을 축에 대해 회전 가능하게 삽입하며, 스텝 베어링의 하단면과 이에 대향하는 부싱의 상단면에 각각 동일한 자극이 대향하도록 마그네트를 설치한다.
이에 따라 제조원가를 감소시키고 제조공정을 보다 간단하게 할 수 있으며, 스텝 베어링에 의해 부싱의 상단면의 오염을 막을 수 있다. 또한 부싱의 틸팅에 대한 강성을 증가시켜 안정적인 회전을 확보할 수 있다. 또한 마그네트의 자기력을 조절하여 간극을 설정할 수 있어 조립이 간단하며, 작은 크기로 제작할 수 있는 이점이 있다.

Description

공기-자기 복합 베어링 장치
본 발명은 공기-자기 복합 베어링 장치에 관한 것으로, 특히 스텝 베어링과 동일 자극으로 대향되는 마그네트를 이용하여 스러스트 하중과 레이디얼 하중을 발생시켜 회전의 안정성을 획보하고 부싱의 틸팅에 대해 강성을 증가시킨 공기-자기 복합 베어링 장치에 관한 것이다.
최근 들어 정보, 컴퓨터 산업의 급격한 발달로 각종 기기를 구동시키는데 필요한 구동 모터들, 예를 들면, 레이저 프린터의 폴리건 미러 구동장치, 하드디스크의 스핀들 모터 및 VCR의 헤드 구동 모터 등은 기기의 특성상 보다 많은 데이터의 검색, 저장 및 재생을 짧은 시간에 수행하기 위해서 축 흔들림이나 축 진동이 없는 고정밀, 초고속 회전 성능을 요구하고 있다. 이에 따라서 구동모터의 축 흔들림이나 축 진동을 억제하며 안정적으로 고속 회전하는 구동 모터의 개발과 함께 이와 같은 모터 회전을 가능하게 하는 베어링 장치에 대하여 연구 개발이 추진되고 있다. 이와 같은 베어링 장치 중 특히 레이디얼 하중과 스러스트 하중을 동시에 지지하며 초고속 회전에 적합한 동압형 유체베어링 장치에 대해 연구 개발이 활발하게 진행되고 있다.
도 1은 동압형 유체 베어링 장치의 일종인 반구형 베어링 장치가 적용된 레이저 프린터의 폴리건 미러 구동장치를 나타낸 단면도이다.
도시된 바와 같이, 하부 하우징(70)에는 축(20)이 고정되며, 축(20)의 소정위치에 상부 및 하부반구(30)(35)가 소정거리 이격되어 상호 대향하도록 고정된다.
또한, 부싱(40)의 내부에는 관통공 및 반구홈(30a, 30b)이 형성되어 부싱(40)이 회전할 수 있도록 축(20)과 상부 및 하부반구(30)(35)를 수용하며, 관통공 내에는 상부 및 하부반구(30)(35)와 반구홈(30a)(30b) 사이의 간극(clearance)을 조정하기 위한 스페이서(40a)가 끼워진다. 도시되지는 않았지만, 반구홈(30a)(30b) 각각의 반구면 상에는 동압 발생홈이 축방향으로 다수개 형성된다. 또한, 부싱(40)의 외주면에는 폴리건 미러(10)와 스테이터(50) 및 로터(55)를 장착한 허브(60)가 압입되어 부싱(40)과 함께 회전한다.
스테이터(50)에 전원을 인가하면, 이에 대향한 로터(55)와의 전자기적 작용에 의해 로터(55)가 회전하며, 이에 따라 허브(60), 부싱(40)이 회전한다. 회전 초기에는 부싱(40)의 자체 중량에 의해 중력 방향으로 힘이 작용하여 부싱(40)은 하부반구(30)와 접촉하고 상부반구(35)와는 일정간격을 유지한다.
이어 부싱(40)이 회전함에 따라 상부 및 하부반구(30)(35)와 반구홈(30a, 30b) 사이의 간극을 통하여 유체가 유입되어 동압이 각각 발생한다. 이때, 하부반구(30)와 반구홈(30a) 사이의 간극이 더 작기 때문에 더 큰 동압이 발생하고 이에 따라 부싱(40)이 부상하게 된다.
이후 부싱(40)은 상호 대향한 상부 및 하부반구(30, 35) 사이에서 상하로 유동되다가 양측 반구(30)(35)와 반구홈(30a)(30b)이 이루는 간극이 동일해지는 동압 평형점에서 평형 상태를 이루면서 회전하게 된다.
그러나 이러한 방식으로 동작하는 유체 베어링 장치를 제조하기가 매우 어렵고 제조원가가 높아진다는 문제점이 있다.
먼저, 부싱 내부에 형성된 관통공에 끼우는 스페이서는 동작특성상 매우 정밀한 치수로 가공되어야 하기 때문에 베어링을 제조하는데 많은 시간과 비용이 소요되며, 스페이서에 의해 베어링 장치의 크기가 증가한다.
또한, 래핑 등의 공정을 통해 정밀하게 가공되고 동압 발생홈이 형성되는 반구면을 갖는 반구를 상하로 2개씩 사용해야 하므로 제조원가가 상승한다.
또한 외란에 의한 부싱의 틸팅(tilting)에 대한 복원력이 약하다는 문제점이 있다.
또한 상부 및 하부반구와 부싱간의 간극을 정확하게 조절해야 하기 때문에 조립효율이 떨어지고, 많은 시간이 소요되는 문제점이 있다.
따라서, 본 발명의 목적은 스페이서를 제거하고 사용되는 반구의 개수를 감소시켜 제조원가를 줄이고 크기를 감소시키는데 있다.
본 발명의 다른 목적은 외란에 의한 부싱의 틸팅에 대한 강성을 증가시켜 회전 안정성을 확보하는데 있다.
본 발명의 또 다른 목적은 조립을 간단하게 하는데 있다.
도 1은 종래의 반구 베어링 장치의 단면을 도시한 단면도이고,
도 2는 본 발명에 따른 공기-자기 베어링 장치를 도시한 일부 절단 단면도이고,
도 3은 도 2의 A부분을 확대한 단면도이고,
도 4는 본 발명의 공기-자기 베어링 장치의 동작을 설명하기 위한 개념도이고,
도 5는 본 발명의 공기-자기 베어링 장치에서 크기가 감소하는 것을 설명하기 위한 개념도이다.
본 발명에 따르면, 축의 상부에 스텝 베어링이 고정되고 축의 하부에 표면상에 다수개의 동압 발생홈들이 형성된 반구가 고정되며, 부싱의 중심에는 관통공이 형성되어 스텝 베어링 및 반구 사이에 회전 가능하게 축에 끼워진다.
스텝 베어링의 하단면에는 일정 직경과 깊이의 리세스가 형성되고 부싱의 하단면에는 상기 반구를 수용하는 반구홈이 형성되며, 부싱의 상단면에는 부싱의 원주방향으로 제 1 마그네트가 고정되고 스텝 베어링의 하단면에는 제 1 마그네크에 대해 동일한 자극이 대향하도록 스텝 베어링의 원주방향으로 제 2 마그네트가 고정된다.
바람직하게, 관통공의 내주면 상에는 에어 포켓이 형성되며, 에어 포켓은 크로스 해치 형상으로, 바람직하게, 크로스 해치의 깊이는 축과 부싱간의 간극의 1 내지 5배이다.
또한, 축과 부싱간의 간극은 10㎛정도를 유지한다.
이하, 본 발명의 바람직한 실시예에 따른 유체 베어링 장치를 첨부된 도면을 참조하여 설명한다. 또한 본 발명에서는 유체 중에서 공기를 이용한 경우를 예로 들어 설명한다.
도 2를 참조하면, 축(120)의 상부에는 스텝 베어링(150)이 고정된다. 스텝 베어링(150)은 중심부에 축(120)이 삽입되는 관통공(156)이 형성되어 링형상을 이루며, 관통공(156)을 중심으로 일정 직경과 깊이의 리세스(154)가 형성된다. 또한 리세스(154)의 가장자리를 따라 스텝 베어링(150)의 하단면에는 링형상의 제 1 마그네트(158)가 부착된다.
또한, 축(120)의 하부에는 반구(130)가 중심에 축(120)이 삽입되어 고정된다. 반구(130)의 반구면 상에는 통상의 동압 발생홈들(135)이 형성된다.
부싱(140)은 내부에 관통공(146)이 형성된 원기둥 형상으로 스텝 베어링(150)과 반구(130) 사이에 축(120)에 회전 가능하게 끼워진다. 부싱(140)과 축(120) 사이에는 작은 간극을 유지하며, 바람직하게 10㎛ 정도이다. 또한 바람직하게 부싱(140)의 직경은 스텝 베어링(150)의 직경보다 크게 형성된다.
부싱(140)의 상단면에는 원주방향을 따라 링형상의 수용홈(141)이 형성되고 이 수용홈(141)에 링형상의 제 2 마그네트(148)가 고정된다. 제 2 마그네트(148)는 압입이나 접착에 의해 수용홈(141) 내에 고정되며, 제 2 마그네트(148)의 표면과 부싱(140)의 상단면은 높이가 일치되는 것이 바람직하다. 또한 제 2 마그네트(148)는 제 1 마그네트(158)과 동일한 자극으로 대향하도록 고정되어, 이들 마그네트(148, 158)간에는 항상 척력이 작용한다. 또한 부싱(140)의 하단면에는 반구홈(142)이 형성되어 반구(130)를 수용한다.
또한, 도 3에 상세히 도시된 바와 같이, 부싱(140)의 관통공(146)의 내주면 상에는 에어 포켓(144)이 전면에 걸쳐 형성된다. 에어 포켓(144)의 형태는 크로스 해치(cross hatch;144a) 형태로서, 선삭에 의해 부싱(140) 내부에 관통공(146)을 형성한 후 내주면을 호우닝(honing) 가공하여 크로스 해칭을 생성한다. 바람직하게 크로스 해치(144a)의 깊이 D는 축(120)과 부싱(140)과의 간극의 1 내지 5배 정도이다. 크로스 해치(144a)의 깊이 D는 호우닝 가공시 적절한 범위의 입도를 갖는 호우닝 숫돌을 선택하므로서 결정될 수 있다.
한편, 부싱(140)의 외주면 상에는 도 1에 도시된 바와 같이 허브(60)가 장착되며, 다른 구성요소는 도 1을 참조하여 상기한 바와 동일하며, 이에 대한 상세한 기술을 생략한다.
이하, 이와 같은 본 발명의 바람직한 실시예에 따른 베어링 장치의 동작을 구체적으로 설명한다.
스테이터에 전원을 인가하면, 이에 대향한 로터와의 전자기적 작용에 의해 로터가 회전하며, 이에 따라 허브 및 부싱(140)이 회전한다. 회전을 시작하기 전에는 스텝 베어링(150)의 하단면에 부착된 제 1 마그네트(158)와 부싱(140)의 상단면에 부착된 제 2 마그네트(148) 사이에 작용하는 척력과 부싱(140)의 자체 중량에 의해 중력 방향으로 힘이 작용하여 부싱(140)의 하단면에 형성된 반구홈(142)은 반구(130)의 반구면과 접촉한다. 즉, 제 1 및 제 2 마그네트(148, 158)은 동일한 자극으로 대향하고 있기 때문에 척력이 형성되는데, 스텝 베어링(150)이 축(120)에 고정되어 있어 척력은 주로 부싱(140)의 이동에 영향을 미친다.
부싱(140)의 회전이 시작되면, 반구(130)와 부싱(140)의 반구홈(142) 사이의 간극을 통해 공기가 유입된다. 유입된 공기는 반구(130)의 반구면에 형성된 동압 발생홈(135)에 의해 반구홈(142)과 반구면 사이에 동압을 발생시키며, 이때, 반구홈(142)과 반구면이 간극은 매우 작아 큰 동압을 발생시켜 단시간에 부싱(140)을 부상시킨다.
이어 반구(130)와 반구홈(142) 사이의 간극을 통해 유입된 공기는 부싱(140)과 축(120) 사이의 간극을 통해 스텝 베어링(150)의 리세스(154)로 유입된다. 이때, 상기한 바와 같이, 부싱의 내부면에는 크로스 해치 형태의 에어 포켓(144)이 형성되어 동압을 발생시킨다.
통상 상대운동이 존재하는 쿠에테 플로우(Couette flow)의 경우 상대속도가 압력에너지로 변환되어 압력상승이 발생하는데, 이 경우의 압력발생량은
Figure 1019970067677_B1_M0001
여기서, L은 유체의 이동거리, υ는 이동속도, γ은 매질의 비중, λ는 마찰계수, C 는 간극을 각각 나타낸다. 따라서 간극이 작을수록, 이동속도가 클수록 또한 마찰계수가 클수록 압력발생량이 증가한다.
따라서, 본 발명에 있어서는 부싱(140)의 내부면에 형성된 에어 포켓(144)에 의해 유입된 공기의 흐름에 대한 마찰계수가 증가하기 때문에 압력발생량이 증가하며, 이에 따라 반경방향의 강성을 증가시켜 회전이 안정적으로 된다.
한편, 부싱(140)이 부상하기 시작하면서 부싱(140)의 상단면과 스텝 베어링(150)과의 간극이 작아지며, 이에 따라 제 1 및 제 2 마그네트(148, 158) 사이에 작용하는 척력의 크기가 증가하여 부싱(140)에 대해 드러스트 하중이 작용하여 부싱(140)을 밀어내린다.
이와 동시에 부싱(140)과 축(120) 사이의 간극을 통과한 공기가 스텝 베어링(150) 내부에 형성된 리세스(154)로 유입되어 외부로 유출되는 과정에서 스러스트 하중과 레이디얼 하중을 발생한다.
이를 구체적으로 설명하면, 리세스(154)는 공간 체적이 크고 스텝 베어링(150)과 부싱(140)의 상부면 사이의 간극은 공간 체적이 작기 때문에 유입된 공기가 리세스(154)로부터 스텝 베어링(150)과 부싱(140)의 상부면 사이의 간극을 통해 외부로 유출될 때, 공간 체적의 확대-축소 유동에 의해 하중이 발생된다. 이때, 발생되는 하중은 스텝 베어링(150)의 하부면과 부싱(140)의 상부면과의 간극 t에 관련하며, 간극 t가 작을수록 큰 하중을 발생하기 때문에 반구(130)의 동압 발생홈(135)에 의해 발생된 동압이 부싱(140)을 부상시켜 간극 t가 작아지게 됨에 따라 더욱 큰 하중이 발생한다.
발생된 하중은 스텝 베어링(150)과 부싱(140)에 동시에 작용하지만, 스텝 베어링(150)은 축(120)에 고정되어 있기 때문에 부싱(140)만이 하중에 영향을 받게 되어, 결과적으로 부싱(140)을 하부로 밀어내리게 된다.
부싱(140)이 하부로 밀려내려감에 따라 부싱(140)의 반구홈(132)과 반구면 사이의 간극은 작아지게 되고, 이에 따라 발생되는 동압이 증가하여 다시 부싱(140)을 부상시키게 된다. 이후 상기한 과정을 반복하면서 부싱(140)은 스텝 베어링(150)과 반구(130) 사이에서 상하로 유동되다가 부싱(140)의 양쪽 단부에서 발생되는 스러스트 하중이 평형을 이루는 상태에서 유동이 정지되어 안정적인 회전을 지속한다.
한편, 제 1 및 제 2 마그네트(148, 158)간의 척력과 스텝 베어링(150)의 리세스(154)에서의 공간 체적의 확대-축소 유동에 의해 발생되는 레이디얼 하중에 의해 회전 초기에 외란에 의한 부싱(140)의 틸팅에 대한 강성이 증가하여 회전이 안정적이다.
이와 같이 본 발명의 바람직한 실시예에 의한 베어링 장치에 따르면 여러 가지 이점을 갖는다.
먼저, 반구를 1개만 사용하므로써 제조원가가 감소하고, 제조공정을 보다 간단하게 할 수 있다. 또한, 스텝 베어링에 의해 부싱의 상단면의 오염을 막을 수 있다.
또한, 유출되는 공기에 의해 레이디얼 하중을 발생하고, 이와 함께 제 1 및 제 2 마그네트간에 척력이 작용하기 때문에 외란에 의한 부싱의 틸팅에 대한 강성이 증가하여 안정적인 회전을 확보할 수 있다.
또한 회전초기에 마그네트간의 척력과 부싱 자체의 하중을 극복하기 위한 동압을 발생시켜야 하지만, 이는 오히려 부싱을 부상시킬 때 편심율을 크게 하기 때문에 훨링(whirling)현상을 방지하여 회전을 안정시킨다.
또한 조립시에도 부싱과 스텝 베어링의 간극을 정밀하게 조절하지 않고 마그네트의 자기력을 조절하여 간극을 설정할 수 있어 조립이 간단하다.
한편, 도 5A 및 도 5B를 참조하면, 본 발명에 따른 베어링 장치에서는 부싱과 축 사이의 간극이 작은 반면, 종래의 베어링 장치에서는 스페이서를 개재하기 때문에 부싱과 축 사이의 간극이 매우 크다. 따라서 H1 = H2라고 하면, 본 발명의 베어링 장치는 반구에 대향하는 부싱의 면적이 더 크기 때문에 보다 효과적으로 동압을 발생시킨다. 또한 L1 = L2라고 하면, 본 발명에 따른 베어링 장치를 보다 작은 크기로 제작할 수 있는 이점이 있다.
상기한 바와 같이, 본 발명에 따르면, 축의 상부에 리세스를 구비한 스텝 베어링을 고정하고, 축의 하부에 동압 발생홈을 갖는 반구를 고정하고, 스텝 베어링과 반구 사이에 부싱을 축에 대해 회전 가능하게 삽입하며, 스텝 베어링의 하단면과 이에 대향하는 부싱의 상단면에 각각 동일한 자극이 대향하도록 마그네트를 설치한다.
이에 따라 제조원가를 감소시키고 제조공정을 보다 간단하게 할 수 있으며, 스텝 베어링에 의해 부싱의 상단면의 오염을 막을 수 있다. 또한 부싱의 틸팅에 대한 강성을 증가시켜 안정적인 회전을 확보할 수 있다. 또한 마그네트의 자기력을 조절하여 간극을 설정할 수 있어 조립이 간단하며, 작은 크기로 제작할 수 있는 이점이 있다.
한편, 본 발명은 부싱이 회전하는 경우를 예를 들어 설명하였지만, 축이 회전하는 경우에도 동일하게 적용될 수 있다.
그리고, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명이 당업자에 의해 다양하게 변형되어 실시될 수 있으며, 이와 같은 변형된 실시예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 이와 같은 변형된 실시예들은 첨부된 특허청구범위 안에 속한다 해야 할 것이다.

Claims (6)

  1. 유체 베어링 장치에 있어서,
    축과;
    상기 축의 상부에 고정되는 스텝 베어링과;
    상기 축의 하부에 고정되며, 표면상에 다수개의 동압 발생홈들이 형성된 반구와;
    중심에 관통공이 형성되어 상기 스텝 베어링 및 반구 사이에 회전 가능하도록 상기 축에 끼워진 부싱을 포함하며,
    상기 스텝 베어링의 하단면에는 일정 직경과 깊이의 리세스가 형성되고,
    상기 부싱의 하단면에는 상기 반구를 수용하는 반구홈이 형성되고,
    상기 부싱의 상단면에는 상기 부싱의 원주방향으로 제 1 마그네트가 고정되고, 상기 스텝 베어링의 하단면에는 상기 제 1 마그네크에 대해 동일한 자극이 대향하도록 상기 스텝 베어링의 원주방향으로 제 2 마그네트가 고정되는 것을 특징으로 하는 공기-자기 복합 베어링 장치.
  2. 제 1 항에 있어서, 상기 관통공의 내주면 상에는 에어 포켓이 형성되는 것을 특징으로 하는 공기-자기 복합 베어링 장치.
  3. 제 2 항에 있어서, 상기 에어 포켓은 크로스 해치 형상인 것을 특징으로 하는 공기-자기 복합 베어링 장치.
  4. 제 3 항에 있어서, 상기 크로스 해치의 깊이는 상기 축 및 부싱간의 간극의 1 내지 5배인 것을 특징으로 하는 공기-자기 복합 베어링 장치.
  5. 제 4 항에 있어서, 상기 축 및 부싱간의 간극은 10㎛인 것을 특징으로 하는 공기-자기 복합 베어링 장치.
  6. 제 1 항에 있어서, 상기 제 1 및 제 2 마그네트는 연속하여 이어지는 것을 특징으로 하는 공기-자기 복합 베어링 장치.
KR1019970067677A 1997-12-11 1997-12-11 공기-자기 복합 베어링 장치 KR100257833B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067677A KR100257833B1 (ko) 1997-12-11 1997-12-11 공기-자기 복합 베어링 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067677A KR100257833B1 (ko) 1997-12-11 1997-12-11 공기-자기 복합 베어링 장치

Publications (2)

Publication Number Publication Date
KR19990048869A KR19990048869A (ko) 1999-07-05
KR100257833B1 true KR100257833B1 (ko) 2000-06-01

Family

ID=19527010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067677A KR100257833B1 (ko) 1997-12-11 1997-12-11 공기-자기 복합 베어링 장치

Country Status (1)

Country Link
KR (1) KR100257833B1 (ko)

Also Published As

Publication number Publication date
KR19990048869A (ko) 1999-07-05

Similar Documents

Publication Publication Date Title
JP3609258B2 (ja) モータ
US5358339A (en) Hydrodynamic fluid bearing with liquid-radial bearing and gas-thrust bearing
US5283491A (en) Air-bearing motor assembly for magnetic recording systems
JP2000076779A (ja) 磁気ディスク装置
JPH08189525A (ja) 動圧軸受スピンドルモータ
JP2003009462A (ja) スピンドルモータ
KR100257833B1 (ko) 공기-자기 복합 베어링 장치
JP3888552B2 (ja) 段差を介した予圧発生構造の組み合わせ型動圧軸受スピンドルモータ
KR100260918B1 (ko) 반경방향의 강성을 증가시킨 공기 동압 베어링 장치
US6948854B2 (en) Fluid dynamic bearing motor optimized for radial stiffness and power consumption
KR100257834B1 (ko) 유체 베어링 장치
US20090142009A1 (en) Fluid dynamic bearing system
KR100207987B1 (ko) 자성물질을 이용한 반구 베어링 장치
KR100233010B1 (ko) 자성물질을 이용한 베어링 장치
KR100196934B1 (ko) 드러스트 베어링장치
KR19980038298A (ko) 반구 베어링 장치
KR100196933B1 (ko) 동압형 유체 베어링장치
KR100208014B1 (ko) 드러스트 베어링장치
KR100196935B1 (ko) 드러스트 베어링장치
KR200151198Y1 (ko) 베어링장치
KR101068264B1 (ko) 유체동압베어링을 갖는 스핀들 모터
KR100224604B1 (ko) 저어널 베어링장치
KR19980030901A (ko) 가변 간극을 갖는 드러스트 베어링 장치
KR19980030899A (ko) 유체 유입량을 증가시킨 유체베어링 장치
JP2004019871A (ja) 動圧軸受及びこれを備えたスピンドルモータ並びにこのスピンドルモータを用いたディスク駆動装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090226

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee