EP0680521B1 - Eisenmetallgusswerkstoffe, insbesondere für walzrollen - Google Patents

Eisenmetallgusswerkstoffe, insbesondere für walzrollen Download PDF

Info

Publication number
EP0680521B1
EP0680521B1 EP94900231A EP94900231A EP0680521B1 EP 0680521 B1 EP0680521 B1 EP 0680521B1 EP 94900231 A EP94900231 A EP 94900231A EP 94900231 A EP94900231 A EP 94900231A EP 0680521 B1 EP0680521 B1 EP 0680521B1
Authority
EP
European Patent Office
Prior art keywords
alloy
steel
carbide particles
iron
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94900231A
Other languages
English (en)
French (fr)
Other versions
EP0680521A1 (de
Inventor
David Wragg
Paul Herbert Hewitt
Jack Nutting
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sheffield Forgemasters Ltd
Original Assignee
Sheffield Forgemasters Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB929224271A external-priority patent/GB9224271D0/en
Priority claimed from GB939315356A external-priority patent/GB9315356D0/en
Application filed by Sheffield Forgemasters Ltd filed Critical Sheffield Forgemasters Ltd
Publication of EP0680521A1 publication Critical patent/EP0680521A1/de
Application granted granted Critical
Publication of EP0680521B1 publication Critical patent/EP0680521B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • C22C1/055Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds using carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides

Definitions

  • This invention relates to cast iron or steel, herein defined as "engineering ferrous metals”. More particularly, this invention relates to a rolling mill roll comprising cast iron or steel.
  • US-A-5,023,145 discloses an alloy having a substantially uniform distribution of three carbide aggregates in which a uniform distribution of the three carbides is achieved by using a relatively heavier binder material with a relatively lighter carbide rendering the resultant aggregates relatively similar in density.
  • EP-A-0386515 discloses a process for manufacture of a metallic compound body using an electro slag refining process in the course of which solid alloy-carbide particles in the form of tungsten carbide are added to the melt.
  • WO 91/16466 discloses an iron based alloy having dispersed therein tungsten carbide particles.
  • WO 93/03192 discloses adding, to an iron based melt, iron-coated alloy carbide particles (WTiC) of matching density (7 to 7.9g/cm 3 .
  • An object of the invention is to provide a new and improved method of making an engineering ferrous metal whereby the above mentioned problems are overcome or are reduced and a further object of the invention is to provide a new and improved engineering ferrous metal product having a desired carbide content which is not limited by thermo-dynamic considerations.
  • wetting we mean the ability of the liquid engineering ferrous metal to wet the coating metal. More particularly, for example, where the interfacial tension between the liquid engineering ferrous metal and the solid coating metal is such that the contact angle there between is 0° - 90°.
  • a density which matches we mean a density lying in the range 6-8 gms per cc. This is to be compared with a typical density of 7 gms per cc. for cast iron and steel. More preferably, the alloy carbide particles have a density of ⁇ 5% of the density of the engineering ferrous metal to which they are added.
  • the weltability of the coated particles and the density of the alloy carbide particles each promote a uniform distribution of the carbide particles in the liquid engineering ferrous metal which is retained when the metal solidifies.
  • uniform distribution we mean an even distribution throughout the section of a casting made of the engineering ferrous metal with no significant segregation.
  • the solid carbide particles are not orientated in any direction and are distributed across all phases of the micro-structure.
  • the coating metal preferably comprises iron or an iron carbon alloy, but may comprise an alloy of two or more elements selected from the group comprising iron, nickel, copper, titanium and carbon, or may be nickel or copper and usual incidentals.
  • the coating metal may comprise nitrogen, for example up to about 0.1% nitrogen.
  • the coating is iron, then because iron has a higher melting point than the engineering ferrous metal to which it is to be added, which would inhibit wettability, it is preferred to add an appropriate amount of at least one alloying element such as carbon, nickel, copper or titanium to the iron to produce an alloy having a melting point which matches the operating temperature of the ferrous metal.
  • alloying element such as carbon, nickel, copper or titanium
  • operating temperature is defined herein as the temperature of the engineering ferrous metal at which the coated carbide particles are added.
  • the iron coating may contain up to 3.5% carbon.
  • the coated alloy carbide particles may be added to the engineering ferrous metal and permitted to dwell therein sufficiently long for carbon from the engineering ferrous metal to diffuse into the coating and so produce a composition which has a melting point which matches the operating temperature of engineering ferrous metal.
  • the carbide particles have a matching density as described above when the particles are left in the molten engineering ferrous metal for a dwell time long enough for carbon to diffuse into the coating to cause the melting points to match.
  • the composition of the coating metal may be such as to provide a melting point which is more than 30°C below the operating temperature of the engineering ferrous metal to which the coated particles are added.
  • the coated alloy carbide particles may be added to the liquid engineering ferrous metal either in the melting furnace or in a ladle into which the metal has been poured from the melting furnace, or in the stream of metal being poured from the melting furnace to the ladle, or in the stream of metal being poured from the ladle into a mould.
  • the coated alloy carbide particles in the melting furnace so as to maximise the dwell time of the alloy carbide particles in the ferrous metal prior to the onset of solidification.
  • the melting furnace is an induction furnace, since an induction furnace provides good stirring of the melt.
  • titanium of the carbide oxidises to form titanium oxide which can react with silicon from the furnace lining to form a hard crust on the metal surface which may entrap the carbide particles and reduce their distribution in the molten metal.
  • the coated alloy carbide particles may be added to the ferrous engineering metal melt in the form of a powder comprising powder particles having a particle size up to 2mm and preferably of about 500 micro-meters (microns) and containing alloy carbide particles having a particle size of up to 10 micro-meters (microns) and preferably in the range 1-5 micro-meters (microns) and more preferably 2-5 micro-meters (microns).
  • a powder comprising powder particles having a particle size up to 2mm and preferably of about 500 micro-meters (microns) and containing alloy carbide particles having a particle size of up to 10 micro-meters (microns) and preferably in the range 1-5 micro-meters (microns) and more preferably 2-5 micro-meters (microns).
  • the powder particles may comprise:- 25% coating metal. 30% Ti 35% W Balance Carbon (including up to 3.5% free carbon) and usual incidentals.
  • the coating metal may comprise iron such as alpha iron and may comprise wholly or substantially wholly alpha iron and up to 3.5% free carbon.
  • Such a coating metal has a melting point of about 1520°C and hence the powder is suitable for adding to engineering ferrous metal having an operating temperature of about 1500°C or above.
  • the coating metal may comprise an alloy of iron, nickel and carbon.
  • the powder and alloy carbide particles may be of the same size as mentioned above and the powder particles may comprise:- 27% coating metal. 30% Ti 35% W Balance Carbon (including up to 0.5% free carbon) and usual incidentals.
  • the coating material may comprise an alloy of iron, nickel and carbon: 59% nickel 41% iron and up to 0.5% free carbon and usual incidentals.
  • Such a coating metal has a melting point of about 1420°C and is particularly suitable for adding to engineering ferrous metals having an operating temperature of below about 1500°C.
  • the coating metal may be an alloy of either iron, nickel and copper or iron and copper with or without carbon in each case to provide a lower melting point.
  • the coating metal contains significant amounts of carbon, for example, 2 - 3.5%
  • carbon content of the powder is preferably reduced to less than about 0.5% in order to minimise the softening effect.
  • the coating metal contains nickel a similar softening effect can occur even though the coating metal has relatively low carbon, e.g. 0.5%. This softening effect can be overcome or reduced by adjusting the chemical composition of the engineering ferrous metal.
  • coated alloy carbide particles may he added during an electroslag remelting operation.
  • the microstructure may comprise matrix and carbide which have resulted from phase transformation of the engineering ferrous metal; said carbide being referred to herein, as mentioned hereinbefore, as "transformation carbide”.
  • the discrete alloy carbide particles preferably have a higher hardness than the transformation carbide present in the microstructure.
  • the discrete alloy carbide particles may increase the hardness of the engineering ferrous metal by virtue of the law of mixtures and/or the phase transformation of the engineering ferrous metal may be modified and enhanced by the presence of the discrete alloy carbide particles.
  • the discrete alloy carbide particles may be distributed in the matrix and/or the transformation carbide.
  • the discrete alloy carbide particles may be uniformly distributed in the microstructure.
  • the alloy carbide particles may have a hardness of about 3,000 vpn.
  • the alloy carbide is preferably selected from the group comprising chromium, molybdenum, titanium, tungsten, niobium, vanadium or mixed carbides thereof such as Cr 7 C 3 , (CrMo) 7 C 3 or mixed carbo-nitrides.
  • the carbide may be a mixed tungsten titanium carbide of the kind (TiW)C where the ratio of titanium to tungsten is about 1:1 by weight.
  • the alloy carbide may comprise Ti and W in the ratio range: 1:1 to 1:1.17
  • the alloy carbide may contain nitrogen, for example up to about 0.1% nitrogen.
  • the alloy carbide preferably comprises:- 42% Ti 49% W 9% C ans usual residuals
  • the alloy carbide may contain up to 0.1% nitrogen.
  • the alloy carbide particles have a very low co-efficient of thermal expansion compared to the co-efficient of thermal expansion of engineering ferrous metals. Accordingly, if relatively large alloy carbide particles were present in the engineering ferrous metals this would give rise to high stresses on cooling, causing dislocations to form, and leading to thermal fatigue.
  • the alloy carbide particles preferably have a maximum dimension of up to 10 microns and preferably 1-5 microns and more preferably 2-5 microns.
  • the amount of alloy carbide particles added is such as to achieve up to 20% by volume of alloy carbide particles in the solid metal.
  • the alloy carbide content may be in the range 0.1 to 20% by volume, and may be in the range 1 to 20% and more preferably 3 to 10% when a hardening effect based on the law of mixtures is provided.
  • the alloy carbide content may be lower, e.g. down, for example from about 1%, to about 0.5% or 0.1% or less when a hardening effect based on a modification of the transformation of the microstructure is provided.
  • the engineering ferrous metal preferably has a carbon content lying in the range 0.3 - 3.8%.
  • the engineering ferrous metals may contain chromium and may have a chromium content which is greater than or equal to 1%.
  • the engineering ferrous metal may contain nitrogen, for example up to 0.1% nitrogen.
  • coating metal, and/or the alloy carbide and/or the engineering ferrous metal contains nitrogen it is considered that titanium carbonitrides may be precipitated in the microstructure of the engineering ferrous metal.
  • the total nitrogen content of all the components may be limited to about 0.1% nitrogen.
  • the engineering ferrous metal may have a composition falling within one of the following ranges: Indefinite Chill such as: T.C. Si Mn Ni Cr Mo Cu V 3.00 0.70 0.40 3.0 0.8 0.15 0.10 up to 3.50 1.20 1.40 5.5 2.0 0.50 1.00 0.50 Chromium Irons such as: T.C. Si Mn Ni Cr Mo Cu V 2.00 0.40 0.40 0.40 10.00 0.50 0.10 0.10 3.00 2.00 1.50 1.50 20.00 3.00 2.00 0.50 0.50 High Alloy Steels such as: T.C. Si Mn Ni Cr Mo V W 0.50 0.40 0.40 0.10 5.00 0.50 0.00 0.00 1.50 0.80 1.00 1.00 15.00 5.00 5.00 5.00 Tool Steels such as: T.C.
  • Indefinite Chill such as: T.C. Si Mn Ni Cr Mo Cu V 3.00 0.70 0.40 3.0 0.8 0.15 0.10 up to 3.50 1.20 1.40 5.5 2.0 0.50 1.00 0.50
  • Chromium Irons such as: T.C. Si M
  • Such a steel may be used for the finishing stands, of a hot strip steel mill.
  • Medium Alloy Steels such as : T.C. Si Mn Ni Cr Mo V W 0.30 0.40 0.40 0.10 2.00 0.10 0.10 0.10 1.50 0.80 1.00 1.00 5.00 0.50 0.50 0.50 0.50
  • Low Alloy Steels such as: T.C. Si Mn Ni Cr Mo V W 0.30 0.40 0.40 0.10 0.10 0.10 0.10 0.10 1.50 0.80 1.00 1.00 2.00 0.50 0.50 0.50 0.50
  • S.G. Irons such as: T.C. Si Mn Ni Cr Mo Cu 2.50 0.90 0.10 0.10 0.00 0.00 0.00 3.70 3.00 1.00 5.00 1.00 2.00 2.00
  • Nitrogen for example up to 0.1%, may also be present where appropriate.
  • a rolling mill roll having at least an outer part which comprises an engineering ferrous metal according to the second aspect of the invention or an engineering ferrous metal made according to the first aspect of the invention.
  • a metal made according to the first aspect of the invention or according to the second aspect of the invention is cast to make at least an outer part of the rolling mill roll.
  • the rolling mill roll may be a composite rolling mill roll of the kind having a core and an outer shell with, optionally, at least one intermediate layer, in which the shell comprises said outer part.
  • the alloy carbide particles may be introduced into a molten engineering ferrous metal of which the shell is to be formed and then the engineering ferrous metal with the alloy carbide particles therein may be poured into a mould.
  • the carbide particles may be introduced into the mould under a protective atmosphere of inert gas such as argon, or under a vacuum.
  • the composite roll may be made by centrifugal casting.
  • a roll may be made by performing an electroslag remelting operation on a consumable electrode which comprises an inner body provided with an external cladding comprising a hollow element containing said coated alloy carbide particles.
  • the inner body may be tubular or solid.
  • the hollow element may comprise a sleeve or a plurality of discrete hollow elements such as tubes.
  • the material inside the or each hollow element may also comprise a powder alloy ingredient(s).
  • the powder of the alloy element may have a mesh size of less than 3mm, but may have a mesh size up to 5mm and may lie in the range 2 - 5mm.
  • Each hollow element or hollow sleeve may comprise steel, such as mild steel or stainless steel.
  • the cladding comprises discrete elements
  • at least one of the elements may be of different composition to the other elements.
  • the inner body may be of constant composition throughout its cross-section or it may be of varying composition across at least part of its cross-section.
  • the droplets of molten coated alloy carbide or of molten coated alloy carbide and alloy ingredient from the hollow elements because of their spatial and temperature proximity to the mould wall, solidify relatively rapidly at or adjacent to the mould wall whereby the region of the re-melted ingot adjacent the mould wall has a relatively high and uniform distribution of alloy carbide or carbide and alloy ingredient.
  • the alloy carbide particles do not wholly melt they are trapped in the melt adjacent the mould wall as it solidifies relatively rapidly.
  • the melting point of the alloy ingredient and/or of the alloy carbides may be greater than the melting point of the slag and of the inner part of the consumable electrode.
  • the outer part of the ingot may be hardened by a dispersion hardening effect of the alloy carbides.
  • the outer part of the rolled ingot may be hardened, additionally, or alternatively, by a secondary hardening heat treatment operation.
  • the electroslag remelting operation may be performed to provide a roll comprising an inner part having a first composition and a surface part having a second composition which is different from the first composition and the metal of the roll between the inner part and the surface part having a composition which changes from the first composition to the second composition without discontinuity. This may be achieved by inter-relating the voltage, and current and the slag composition of the electroslag remelting operation so that the molten bath is relatively flat.
  • the cooling rate of the mould may be adjusted as may be the rate of movement of the mould.
  • the electroslag remelting operation may he performed to provide a roll of substantially uniform composition throughout the cross-section of the roll.
  • ESR electroslag remelting
  • the roll may be a composite roll made by ESR cladding or spray cladding.
  • ESR cladding an arbor is clad using the electroslag re-melting method either utilising a wire feed as the stock material or a hollow electrode.
  • the coated particles may he introduced by a powder feed into the molten pool.
  • either a powder feed may be used, or preferably, the coated particles may be incorporated into the hollow electrode during the primary melting and casting operation in a similar way to the production of the shell metal described above.
  • the coated particles may be incorporated into a spray deposited layer. It is possible to produce a spray deposited layer hardened by the coated carbide particles of sufficient depth to provide the full working life of a rolling mill roll.
  • a roll may be made by monobloc static casting where a roll is made simply by filling a stationary mould with a single engineering ferrous metal.
  • a roll may be made by a double poured static casting method wherein a roll is made by first partly filling a mould up to the top of a barrel part of the roll with an engineering ferrous metal of a desired composition for an outer shell part of the roll, made by the method of the first aspect of the invention or according to the second aspect of the invention which is provided with carbide particles, and, when an outer part of the shell metal has solidified, a metal of a desired core composition is fed into the bottom of the mould to dilute the first metal until a predetermined amount of metal has been displaced from an overflow between the ends and generally about halfway up, an upper journal part of the mould, the overflow is then closed and filling of the mould with the second metal is completed.
  • a roll is made by casting an ingot of metal made according to the first aspect of the invention or according to the second aspect of the invention and then forging the ingot to provide a forged roll followed by heat treating the forged roll.
  • a roll according to the present invention fulfils a market demand which has hitherto not been satisfactorily met by providing a roll having greater fracture toughness and spall resistance as well as having improved wear resistance.
  • a roll embodying the present invention is intended for use in the finishing stands of hot and cold strip mills. It may be used for roughing stands in hot strip mills and for other flat rolling purposes.
  • a roll having said outer part made of the engineering ferrous metals listed below are intended for use in the respective applications specified.
  • the core may be flake, compact/vermicular or nodular cast iron, steel or other suitable material.
  • Alloy carbide particles having a density which matches the parent metal results in the alloy carbide particles being distributed evenly throughout the section of the shell and not being centrifuged to the bore.
  • Engineering ferrous metals made by a method embodying the first aspect of the invention or according to the second aspect of the invention may be usefully used in other spin casting processes, for example, for producing liners for diesel engines and pipes such as for gas or oil, or other spin cast articles. Such as hollow sleeves for use in beam mills and other sections.
  • a metal made according to the first aspect of the invention or according to the second aspect of the invention is poured into a spin casting mould and a spin casting operation is performed thereon.
  • the invention is not limited to products made by spin or centrifugal casting.
  • the invention may be applied to a wide range of engineering ferrous metals for many purposes.
  • the engineering ferrous metals can be cast into conventional ingot moulds and subsequently forged into components, for example rolling mill rolls.
  • Rolls manufactured in this way would typically be hardened to a martensitic or bainite structure and would be used for the cold rolling of steel. For these applications a uniform structure is required to impart a uniform finish to the cold rolled product.
  • an engineering ferrous metal melt comprising an indefinite chill type iron having the following composition was made in conventional manner in an induction furnace. Carbon 3.3% Silicon 0.85% Manganese 0.50% Nickel 2.3% Chromium 1.1% Molybdenum 0.1% Sulfur 0.050% Phosphorus 0.060% Iron and usual incidentals Balance
  • a powder comprising alloy carbide particles surrounded by an iron coating with a carbon content of 3.00% were added to the melt in the melting furnace in an amount equivalent to 10% weight.
  • the powder particles had a particle size of up to 500 microns and comprised:- 25% Alpha Iron 30% Ti 35% W Balance C (of which 3% was free carbon) and usual incidentals.
  • the alloy carbide particles had an average particle size of up to 10 microns and comprised a solid solution of 30% Ti and 35% W carbides and had a density of about 7 so as to match that of the iron.
  • the above mentioned operating temperature is higher than the usual temperature to which metal of the above composition is heated before tapping because the coating metal of the powder has a melting point of about 1520°C and it is desirable that the metal be as hot as possible.
  • a temperature of higher than about 1500°C is not possible because of the tendency to "whiten" the indefinite chill iron.
  • the melt was then allowed to remain in the furnace for about 15 minutes to recover its operating temperature of approximately 1500°C.
  • the molten metal was then poured into a ladle and then transferred in the ladle from the melting furnace to a conventional spin casting plant shown in Figure 1 where the metal was poured from the ladle into the spin casting plant to form a shell S of the above described metal in conventional manner.
  • a composite rolling mill roll metal of suitable composition such as nodular cast iron, would then be poured to form a core C.
  • the present example was concerned with providing a shell, i.e. a tubular product, and so the core metal was not poured.
  • the dwell time of the metal in the furnace after adding the carbide particles was about 15 minutes to allow for temperature recovery and the dwell time in the ladle before pouring into the spin casting plant was about 15 minutes. Hence, in the present example about 30 minutes elapsed after adding the carbide particles and before casting. If desired the dwell time may be longer, e.g. 1 hour or 1.5 hours or more, or may be less.
  • the added carbide particles are distributed relatively uniformly on a macroscopic scale throughout the thickness of the shell. It is particularly to be noted that the carbide particles are not segregated at grain boundaries but are distributed relatively uniformly throughout the microstructure irrespective of the phases present as a result of phase transformation during solidification and cooling. It will be also seen from Figure 7 that the microstructure is of the same nature as in a comparison base material of the same composition but without alloy carbide particle addition.
  • the duplex nature of the carbides with a dark core suggests that the outer part of the carbide is W rich, and the inner Ti rich.
  • the alloy carbide dispersion is uniform throughout the sample section and has an "area fraction" of about 5%, corresponding to a "volume fraction” of 5%. Whilst there is some evidence of clustering of the particles there are only a few particles in each cluster and the clustering is independent of the position of the particles in the engineering ferrous metal.
  • alloy carbide particles had been displaced ahead of the solidification interface, that is to say, the alloy carbide particle distribution was independent of the underlying microstructure.
  • the carbide particle size lay in the range 2 - 5 microns.
  • the hardness of the sample was tested and found to be VHN 30 810 and the hardness of a sample cut from the comparison roll was found to be VHN 30 650.
  • a composite roll comprising a shell made of Indefinite chill cast iron and a nodular cast iron core was made by a spin casting technique similar to that of Example I except that in this case a finished roll was made by pouring nodular cast iron core C after completion of the shell forming stage.
  • the shell metal had the following composition:- T.C. - 3.40 Silicon - 0.85 Magnesium - 0.51 Nickel - 4.13 Chromium - 1.63 Molybdenum 0.46 Sulfur 0.13 Phosphorus 0.35 Copper 0.06 Lead 0.0013 Vanadium 0.021 Titanium 0.175 Iron and usual incidentals Balance
  • This metal was again made in an induction furnace and the metal in the induction furnace was heated above the melting point of the metal to the normal operating temperature, which, for example, is approximately 200°C above the liquidus temperature.
  • the liquidus temperature was 1215°C and the operating temperature was 1460°C.
  • the induction furnace was provided with a cover and argon was fed into the interior of the cover but may be injected into the melt.
  • the induction coil was turned off.
  • the powder of coated alloy carbide particles was then injected into the melt by blowing through a lance with argon or in any other desired manner.
  • any other inert gas may be used, or the closed space above the melt in the induction furnace may be connected to a vacuum and particles may be added in any desired manner, for example by gravity feed, particularly where the vacuum is provided.
  • the induction coil was then turned on so that the melt was mixed.
  • Other techniques to avoid oxidation may be used such as, use of a flux or addition of the coated alloy carbide powder as a cored wire, although the flux may inhibit dispersion of particles in the melt and a cored wire would be expensive.
  • the powder of coated alloy carbide particles comprises:- 27% coating metal 30% Ti 35% W Balance C (of which 0.5% was free carbon) and usual incidentals.
  • the coating metal comprised 59% Ni and 41% iron (including up to 0.5% free carbon and usual residuals).
  • the metal was poured into a ladle where it remained at a temperature corresponding to the liquidus temperature plus about 170 - 180°C and then the metal was cast into the mould of the spin casting plant wherein the temperature was the liquidus temperature plus about 80 - 110°C.
  • the precise temperature depends upon the size, the smaller moulds being hotter and the larger cooler.
  • FIG. 9 is an optical D.I.C. (differential interference contrast) micrograph at x 300 magnification, unetched, of a sample taken from the middle of the shell and shows a matrix with graphite flakes and small uniformly and randomly distributed alloy carbide particles.
  • the microstructure was similar to that of Example I with the alloy coated particles being distributed throughout the matrix and the transformation carbide.
  • U.T.S. (ultimate tensile stress) test was performed on another sample from the shell and this showed the sample had a U.T.S. (Ultimate tensile stress) of 600 - 700 MPa.
  • An indefinite chill cast iron of the same composition but without the alloy carbide particles has a U.T.S. (ultimate tensile stress) of 385-493 MPa.
  • a composite roll comprising a shell of High Chromium iron and a nodular cast iron core was made by the spin casting technique of Example II using an argon atmosphere.
  • the shell metal had the following composition:- T.C. 2.95 Si 1.63 S 0.035 P 0.040 Mn 0.95 Ni 0.77 Cr 17.28 Mo 2.08 Ca 0.93 Pb 0.0081 V 0.031 Fe and usual residuals Balance
  • the powder coated alloy carbide was as described in Example I.
  • the powder was added to the metal in amounts equivalent to 10% by weight. 5% by weight was present in the solid metal.
  • the metal has a liquidus temperature of 1255°C and was heated to an operating temperature of 1560°C.
  • the temperatures in the ladle and in the spin casting plant were related to the liquidus temperature similarly as in Example II the temperature on adding to the spin casting plant being 1345°C. After solidification of the roll samples were taken as in Example II.
  • Figure 10 is a scanning election microscope micrograph at x 350 magnification of a sample taken from the middle of the shell.
  • Figure 11 is a similar micrograph but at x 3000 magnification. It will be seen that the discrete added alloy carbide particles are randomly and uniformly distributed and are present in both the matrix and in the transformation carbide. The carbide had largely separated into dark angular titanium rich particles about 1-10 micron in size and pinkish, rounded tungsten-rich particles generally less than about 5 micron in size. EDAX (energy dispersive X-ray) analysis revealed that the tungsten-rich particles also contains high levels of molybdenum whilst the metal itself contains low levels of titanium and tungsten in solution, both in the matrix and the transformation carbide. This points to the dissolution of the alloy carbide particles of (TiW)C in the melt, or at least their tungsten-rich outer layers, followed by their reprecipitation after solidification.
  • a U.T.S. (ultimate tensile stress) test was performed on a similar sample from the shell and this showed the sample had a U.T.S. (ultimate tensile stress) of 800-850 MPa.
  • a high chromium iron of the same composition but without the alloy carbide addition has a U.T.S. (ultimate tensile stress) of 740-830 MPa.
  • carbide particles of the same kind as described hereinbefore in connection with the first example were added to the melt in the melting furnace in an amount equivalent to 10% by weight.
  • the metal was then allowed to remain in the furnace as before to recover its tapping temperature and an ingot was then cast.
  • This ingot was then step forged in an open die forge to form a round bar in three reductions as follows:
  • the resultant forging was heat treated to simulate a conventional forged roll heat treatment.
  • Micrographs were taken at a magnification of x400 at different positions and on transverse and longitudinal sections. These showed that the forging had a substantially uniform microstructure throughout Figure 8 is an example of one of these micrographs taken on a longitudinal section.
  • FIG. 13 An electroslag remelting apparatus is shown in Figure 13 and is of essentially conventional kind comprising a cylindrical water cooled mould 10 which is movable vertically upwardly or downwardly.
  • An electrode holder 11 holds, for example by being welded thereto, the upper end of a consumable electrode 12. Initially, the bottom end of the consumable electrode is immersed in molten slag 30 contained between a bottom plate 13 and the wall of the mould 10. Electric current is then passed to cause the lower end of the electrode to melt and as the droplets of metal fall from the lower end of the electrode 12 they pass through the slag and are refined and then solidify to form an ingot 14.
  • the consumable electrode 12 comprises an inner body 120 having welded to its external surface 121 a hollow cladding 122 which comprises a plurality of discrete tubular elements 123 in the form of tubes 124 containing powder 125.
  • the inner body 120 is made of low alloy steel, cast iron or mild steel such as 0.2% carbon steel.
  • the tubes 124 are made of mild steel in the present example but may be made of stainless steel and if desired the tubes may be made of high alloy steel or cast iron or indeed in any material of suitable composition such as Carbon 0.5% - 3% Aluminium 0.0% - 1% Molybdenum 0.5% - 5% Vanadium 0.0% - 12% Chromium 0.5% - 15% Tungsten 0.0% - 8% Silicon 0.0% - 3% Titanium 0.0% - 8% Nickel 0.0% - 5% Iron and usual residuals - balance.
  • the tubes have a composition lying in the range:- Carbon 0.5% - 3% Aluminium 0.0% - 0.1% Molybdenum 0.5% - 5.0% Vanadium 0.1% - 12% Chromium 0.5% - 15% Tungsten 0.1% - 8% Silicon 0.0% - 3% Titanium 0.1% - 8% Nickel 0.1% - 5% Iron and usual residuals - balance.
  • the tube may have the following composition: Carbon 1 % Molybdenum 2.5% Vanadium 0.7% Chromium 14% Iron and usual residuals - Balance
  • the inner body may comprise a low alloy steel which may comprise: Carbon 0.4% Chromium 1% Nitrogen up to 0.1% Iron and usual residuals - Balance
  • the tubes may comprise other relatively high alloy metal such as:- Carbon 3% Molybdenum 5% Vanadium 8% Nickel 2% Iron and usual residuals - balance Carbon 1% Vanadium 12% Iron and usual residuals - balance Carbon 2% Tungsten 5% Titanium 5% Iron and usual residuals - balance Carbon 3% Silicon 2% Iron and usual residuals - balance
  • the inner body may comprise other relatively low alloy metal such as:- Carbon 0.2% Chromium 0.5% or Carbon 3% Silicon 2% or plain cast iron or mild steel.
  • the tubes may be provided solely to hold the powder 125 so could be composed of material of the same composition as the inner body or indeed may be made of suitable non-metallic material, such as silica, of a melting point so as to melt in the bath at a desired rate to release the alloying addition.
  • suitable non-metallic material such as silica
  • the above described materials are applicable to hollow cladding of any suitable configuration.
  • the tubes have the following composition: Carbon 0.2% Iron and usual residuals - balance
  • the powder comprises a mixture of coated alloy carbide particles as described hereinbefore in connection with Example I (but may be any of the other coated alloy carbide particles described hereinbefore) and of particles of an alloying ingredient or ingredients.
  • the powder may comprise:- Carbon up to 10% (with 5% as graphite) Tungsten 35-40% Titanium 30-40% Iron, carbide and usual residuals - balance
  • Some of the carbon is combined with the Tungsten and the Titanium as intermetallic compound but the Tungsten and Titanium are combined as a solid solution and a proportion of the Carbon present is as free graphite.
  • the powder mixture has the following composition: Chromium 2% Tungsten 40% Titanium 40% Molybdenum 1% Vanadium 1% Carbon 6% Iron, carbide and usual residuals Balance
  • the powder mixture has the following composition:- Chromium 2% Tungsten 35% Titanium 30% Molybdenum 1% Vanadium 1% Carbon 6% Iron, carbide and usual residuals Balance
  • one or more of the alloying elements may be present in the powder mixture, either as elements or combined with the carbon as inter-metallic compound or alloy.
  • the powder may be made of a powdered alloy of any one of the compositions or range of compositions described as being suitable for the tubes mentioned above or may be made of alloy of other compositions or of components which provide such compositions.
  • the amount of carbide particles added is such as to achieve up to 1-20% by volume of carbide particles in the surface part.
  • the tubes 124 in the present example are 16mm OD (outside diameter), 13mm ID (inside diameter) but may lie in the range from 6mm ID (inside diameter) to 28mm ID with appropriate (outside diameter) OD.
  • the tubes are provided with restrictions at intervals along their length so as to hold discrete amounts of carbide powder at positions along the length of the tubes, for example, such restrictions may be provided every 10cm.
  • restrictions are provided by crimping the tubes so as to close or substantially to close their bore but, of course, such restrictions may be provided in any other desired way.
  • the tubes 124 are attached to the inner body 120 so as to extend longitudinally thereof parallel to the longitudinal axis of the inner body but, if desired, a single tube or tubes may be wound helically around the inner body or one or more tubes may extend circumferentially around the body so as to lie in a plane which is perpendicular to the longitudinal axis of the inner body so long as the tubes are of the correct size to hold the correct amount of powder to be released into the melt at the longitudinal position of the body.
  • one or more tubes may be arranged to extend around the inner body in a plane or respective plane which is inclined to the longitudinal axis of the inner body at less than a right angle.
  • the cladding may comprise a hollow sleeve, for example, a sleeve comprising inner and outer generally cylindrical walls inter-connected by generally annular shaped walls with the space between the walls containing powder as described hereinbefore and the sleeve being mounted, for example, by welding or by virtue of being a push fit on the inner body.
  • the hollow sleeve is provided with restrictions in its wall at suitable positions along the length of the sleeve so as to divide the powder into discrete amounts for release into the melt pool sequentially as the sleeve and inner body are melted.
  • the melting point of an alloy added with the carbides for example Tungsten, Titanium solid solution, which can at least partly melt in the melt bath and of the alloy carbides are greater than the melting point of the slag 30 and of the inner body 120 of the consumable electrode 12.
  • the melting point of the cladding tube/sleeve metal of the tubes and/or of any alloy ingredient may be 40"C below the melting point of the inner part 20 and 60°C above the melting point of the slag 30.
  • the melting point of the tubes 22 is, in the present example, 1530°C.
  • the inner part may have a melting point lying in the range 1160"C to 1600°C and the cladding may have a melting point lying in the range 1160°C to 1600°C.
  • the melting point of the inner and outer parts may differ by 20°C to 60°C.
  • the slag may have a melting point which differs from the lower of the melting point of the inner part and the cladding by 20°C to 60°C.
  • the mould is water cooled to a temperature lying in the range of 15°C to 65°C and the molten metal pool 31 has a temperature lying in the range 1400°C to 1600°C may be in the range 1160°C to 1600°C.
  • the voltage and current used in the electroslag remelting operation are manipulated so that there is a relatively high voltage and a relatively low current, or vice versa and in addition the composition of the slag is adjusted so as to provide a relatively viscous slag. As a result turbulence in the slag and the melt pool are minimised so that a desired composition gradient is achieved.
  • the voltage and current used are manipulated so that the floor of the melt pool is relatively flat.
  • the metal droplets leaving the cladding of the electrode are more dense than the metal droplets leaving the inner body of the electrode when they are more highly alloyed. This results in the droplets from the cladding of the electrode falling downwardly adjacent to the wall of the mould and, because the floor of the melt pool is relatively flat, there is relatively little tendency for these droplets to run towards the middle of the melt pool before they have solidified as a result of their spatial and temperature proximity to the mould wall.
  • the composition of the slag is adjusted to reduce the ionic capacity of the slag by adjusting the balance of the silicon, calcium and aluminium in the slag to reduce the tendency for electromagnetic stirring as well as the composition of the slag being adjusted to provide a relatively higher viscosity.
  • the slag has the following composition:- 33 1 / 3 % CaO, 33 1 / 3 % CaF 2 , 33 1 / 3 % Al 2 0 3 .
  • the slag may have a composition of 20% CaO, 80% CaF 2 , 0% Al 2 0 3 .
  • the cooling rate provided by the water cooling to the mould may be adjusted by adjusting the raw temperature of the mould to lie in the range 15°C to 65°C. In addition, the rate of movement of the mould may also be adjusted.
  • the electrode has a diameter which is about 0.9% of the diameter of the mould cavity.
  • the electrode is arranged so that approximately 20%, by weight, of the electrode comprises cladding and the balance is provided by the inner body. This ratio may lie in the range 1% to 40%.
  • the melting point of the cladding has been described as being lower than the melting point of the metal of the inner body, if desired this may be reversed.
  • droplets of liquid metal are solid particles of the metal carbide which does not melt, from the tubes 124 and powder 125 fall generally vertically downwardly and because of the relatively close spatial and temperature proximity to the wall of the mould 110 the droplets solidify relatively rapidly, at or adjacent to the mould wall and the carbide particles are trapped by the solidifying melt adjacent the mould wall, so that the metal at the surface of the ingot 14 has a relatively high uniform distribution of alloy and alloy carbides as well as having a composition of matrix substantially similar to the composition of the metal of the tubes 124.
  • the metal droplets falling from the middle of the bottom of the inner part fall vertically downwardly and thus the metal solidifying at the centre of the ingot has a composition substantially similar to the composition of the inner part of the electrode.
  • metal from the cladding is of greater density than the metal from the inner body as this causes the droplets to fall downwardly adjacent to the mould wall together and by the hereinbefore mentioned precautions to avoid mixing, low slag viscosity, low slag electromagnetic stirring and a relatively flat melt pool base.
  • the ingot has a relatively uniform transition region between the inner part and the surface part.
  • the ingot, and hence any resulting product such as a roll as described hereinbefore, has an elastic modulus which increases in direct proportion to the amount of the distribution of the alloy/alloy carbide through the ingot cross-section.
  • composition at the surface of the ingot is: Carbon 0.5% Molybdenum 0.2% Vanadium 0.9% Tungsten 1.2% Chromium 0.5% Titanium 0.15% Iron, carbide and usual residuals balance
  • composition at the centre of the ingot is: Carbon 0.5% Molybdenum 0.1% Tungsten 0.3% Titanium 0.03% Vanadium 0.2% Chromium 0.5% Iron, carbide and usual residuals balance
  • the variation in composition is believed to arise due to the relatively higher diffusion of chromium and carbon compared with the relatively lower diffusion and more dense tungsten and titanium.
  • composition gradient does not exceed 40% per 100mm in the radial direction and this condition applies with any position along the longitudinal extent of the roll.
  • the electroslag remelting apparatus and method of operation described in connection with Example V may also used but with the operating conditions modified so as to aim to provide a uniform composition roll, for example the voltage and current used manipulated so that the floor of the melt pool is relatively deep.
  • the operating conditions modified so as to aim to provide a uniform composition roll for example the voltage and current used manipulated so that the floor of the melt pool is relatively deep.
  • conventional operating conditions and slag compossations were used.
  • An electrode comprising an inner part, with an outer cladding of tubular configuration both made of low carbon steel was made with the space therebetween containing alloy carbide powder as described in connection with Example V. Quantities were calculated for a target addition of 1 wt%.
  • EDAX energy dispersive X-ray
  • the low carbon steel of this example contained about 0.1% nitrogen it is considered that at least some of this nitrogen has formed titanium carbo-nitride particles and hence that at least some of the above mentioned carbide particles comprise such titanium carbo-nitride particles which may also contain tungsten.
  • compositions are expressed herein in % by weight.
  • references to particle size are to the largest dimension of the largest particle unless otherwise described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Metal Rolling (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Articles (AREA)
  • Continuous Casting (AREA)

Claims (51)

  1. Verfahren zur Herstellung einer Walzwerkwalze, welches die Schritte umfaßt, daß zu flüssigem Gußeisen oder Stahl feste Legierungscarbidteilchen zugegeben werden und man danach das Gußeisen oder den Stahl fest werden läßt, wobei die Legierungcarbidteilchen eine Dichte von 6 bis 8 g pro cm3 aufweisen, die mit derjenigen des Gußeisens oder Stahls zusammenpaßt, und die festen Carbidteilchen mit einem Metall beschichtet sind, das zuläßt, daß Benetzung zwischen den Teilchen und dem flüssigen Gußeisen oder Stahl auftritt, und daß besagtes Metall gegossen wird, um wenigstens einen äußeren Teil besagter Walze bereitzustellen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Beschichtungsmetall Eisen umfaßt oder eine Eisen-Kohlenstoff-Legierung oder eine Legierung aus zwei oder mehr Elementen, die ausgewählt sind aus der Gruppe, die Eisen, Nickel, Kupfer, Titan und Kohlenstoff umfaßt, oder Nickel oder Kupfer und übliche Nebenbestandteile, und/oder Stickstoff.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Beschichtungsmetall einen Schmelzpunkt besitzt, der innerhalb von ungefähr 20°-30°C der Temperatur des technischen Eisenmetalls liegt, bei der besagte beschichtete Carbidteilchen zugegeben werden.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Legierungscarbidteilchen mit Eisen oder mit einer Eisenlegierung, die einen niedrigeren Kohlenstoffgehalt aufweist als derjenige des Gußeisens oder Stahls, zu dem sie zugegeben werden, beschichtet werden und die beschichteten Legierungscarbidteilchen zum Gußeisen oder Stahl zugegeben und darin ausreichend lange belassen werden, damit Kohlenstoff aus dem Gußeisen oder Stahl in die Beschichtung hinein diffundiert und so eine Zusammensetzung erzeugt, die einen Schmelzpunkt hat, der mit der Betriebstemperatur des Gußeisens oder Stahls zusammenpaßt.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen zum flüssigen Gußeisen oder Stahl entweder im Schmelzofen oder in einer Pfanne, in die das Metall aus dem Schmelzofen gegossen worden ist, oder im Metallstrom, der aus dem Schmelzofen in die Pfanne gegossen wird, oder im Metallstrom, der aus der Pfanne in eine Form gegossen wird, zugegeben werden.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen im Schmelzofen zugegeben werden.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen zum Gußeisen oder Stahl in einer inerten Umgebung zugegeben werden.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen zur Gußeisen- oder Stahlschmelze in der Form eines Pulvers zugegeben werden, das Pulverteilchen mit einer Teilchengröße von bis zu 2 mm und vorzugsweise etwa 500 Mikrometern (500 Mikrons) umfaßt und Legierungscarbidteilchen mit einer Teilchengröße von bis zu 10 Mikrometern (10 Mikrons) und vorzugsweise im Bereich 1-5 Mikrometer (1,5 Mikrons) und bevorzugter 2,5 Mikrometer (2-5 Mikrons) enthält.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen zur Gußeisen- oder Stahlschmelze in der Form eines Pulvers zugegeben werden, wobei die Pulverteilchen umfassen: 25% Beschichtungsmetall 30% Ti 35% W Rest Kohlenstoff (einschließlich bis zu 3,5 % freier Kohlenstoff) und übliche Nebenbestandteile
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Beschichtungsmetall vollständig oder im wesentlichen vollständig Alpha-Eisen und bis zu 3,5 % freien Kohlenstoff umfaßt.
  11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen zur Gußeisen- oder Stahlschmelze in der Form eines Pulvers zugegeben werden, wobei die Pulverteilchen umfassen: 27% Beschichtungsmetall 30% Ti 35% W Rest Kohlenstoff (einschließlich bis zu 0,5 % freier Kohlenstoff) und übliche Nebenbestandteile
  12. Verfahren nach einem der Ansprüche 1 bis 8 oder Anspruch 11, dadurch gekennzeichnet, daß das Beschichtungsmetall eine Legierung aus Eisen, Nickel und Kohlenstoff umfaßt.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Legierung aus Eisen, Nickel und Kohlenstoff umfaßt: 59% Nickel 41% Eisen und bis zu 0,5 % freien Kohlenstoff und übliche Nebenbestandteile
  14. Verfahren nach einem der Ansprüche 1 bis 4 oder einem der Ansprüche 8 bis 13, sofern abhängig von einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die beschichteten Legierungscarbidteilchen während eines Elektroschlacke-Umschmelzprozesses zugegeben werden.
  15. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Legierungscarbid ausgewählt ist aus der Gruppe, die aus Chrom-, Molybdän-, Titan-, Wolfram-, Niob-, Vanadium- oder Mischcarbiden derselben besteht, wie etwa Cr7C3, (CrMo)7C3 oder gemischten Carbonitriden derselben.
  16. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Carbid ein gemischtes wolfiam-Titan-Carbid der Art (TiW)C ist, wobei das Gewichtsverhältnis von Titan zu Wolfram etwa 1:1 beträgt und vorzugsweise im Verhältnisbereich liegt:
       1:1 bis 1:1.17
  17. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Legierungscarbidteilchen eine maximale Abmessung von bis zu 10 Mikrometern (10 Mikrons) und vorzugsweise 1-5 Mikrometer (1-5 Mikrons) und bevorzugter 2-5 Mikrometer (2-5 Mikrons) besitzen.
  18. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die zugegebene Menge an Legierungscarbidteilchen derart ist, daß bis zu 20 %, vorzugsweise bis zu 5 bis 20 %, volumenbezogen, Legierungscarbidteilchen im festen Metall erreicht werden.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß der Legierungscarbidgehalt im Bereich 0,1 bis 20 Vol.-% und bevorzugter 3 bis 10 % liegt, wenn eine Härtungswirkung auf der Basis des Gesetzes der Mischungen bereitgestellt wird.
  20. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß der Legierungscarbidgehalt im Bereich von 1 bis etwa 0,5 Vol.-% oder von I bis etwa 0,1 Vol.-% oder weniger liegt, wenn eine Härtungswirkung auf der Basis einer Modifikation der Transformation der Mikrostruktur bereitgestellt wird.
  21. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gußeisen oder der Stahl ausgewählt ist aus der Gruppe, die Eisen, Chromeisen, Hochlegierungseisen, Werkzeugstahl, Mittellegierungsstahl, Niederlegierungsstahl, S.G.-Eisen, Stahl oder Gußeisen umfaßt, mit einem Kohlenstoffgehalt, der im Bereich 0,3 bis 3,8 % liegt, und die Stickstoff bis zu 0,1 % enthalten können.
  22. Walzwerkwalze mit wenigstens einem äußeren Teil, der ein Gußeisen- oder Stahlprodukt umfaßt, das eine Kohlenstofflegierung mit einer Mikrostruktur umfaßt, die aus Phasentransformation bei Abkühlung hervorgegangen ist und darin dispergiert diskrete Legierungscarbidteilchen aufweist, wobei das Legierungscarbid eine solche Zusammensetzung hat, daß die Dichte des Legierungscarbids, die im Bereich von 6 bis 8 g pro cm3 liegt, mit derjenigen des Gußeisens oder Stahls zusammenpaßt.
  23. Walzwerkwalze nach Anspruch 22, dadurch gekennzeichnet, daß die Mikrostruktur eine Matrix und Transformationscarbid umfaßt, die aus Phasentransformation des technischen Eisenmetalls hervorgegangen sind.
  24. Walzwerkwalze nach Anspruch 23, dadurch gekennzeichnet, daß die diskreten Legierungscarbidteilchen in der Matrix verteilt sind.
  25. Walzwerkwalze nach Anspruch 23 oder Anspruch 24, dadurch gekennzeichnet, daß die diskreten Legierungscarbidteilchen im Transformationscarbid verteilt sind.
  26. Walzwerkwalze nach einem der Ansprüche 22 bis 25, dadurch gekennzeichnet, daß die diskreten Legierungscarbidteilchen gleichförmig in der Mikrostruktur verteilt sind.
  27. Walzwerkwalze nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Legierungscarbid ausgewählt ist aus der Gruppe, die Chrom-, Molybdän-, Titan-, Wolfram-, Niob-, Vanadium- oder Mischcarbide derselben umfaßt, wie etwa Cr7C3, (CrMo)7C3 oder gemischte Carbonitride derselben.
  28. Walzwerkwalze nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Carbid ein gemischtes Wolfram-Titan-Carbid der Art (TiW)C ist, wobei das Gewichtsverhältnis von Titan zu Wolfram etwa 1:1 beträgt und vorzugsweise im Verhältnisbereich liegt:
       1:1 bis 1:1,17
  29. Walzwerkwalze nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Legierungscarbidteilchen eine maximale Abmessung von bis zu 10 Mikrometern (10 Mikrons) und vorzugsweise 1-5 Mikrometer (1.5 Mikrons) und bevorzugter 2-5 Mikrometer (2-5 Mikrons) aufweisen.
  30. Walzwerkwalze nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die zugegebene Menge an Legierungscarbidteilchen derart ist, daß bis zu 20 %, vorzugsweise bis zu 5 bis 20 %, volumenbezogen, Legierungscarbidteilchen im festen Metall erreicht werden.
  31. Walzwerkwalze nach Anspruch 30, dadurch gekennzeichnet, daß der Legierungscarbidgehalt im Bereich 0,1 bis 20 Vol.-% und bevorzugter 3 bis 10 % liegt, wenn eine Härtungswirkung auf der Basis des Gesetzes der Mischungen bereitgestellt wird.
  32. Walzwerkwalze nach Anspruch 30, dadurch gekennzeichnet, daß der Legierungscarbidgehalt im Bereich von 1 bis etwa 0,5 Vol.-% oder von 1 bis etwa 0,1 Vol.-% oder weniger liegt, wenn eine Härtungswirkung auf der Basis einer Modifikation der Transformation der Mikrostruktur bereitgestellt wird.
  33. Walzwerkwalze nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gußeisen oder der Stahl ausgewählt ist aus der Gruppe, die Eisen, Chromeisen, Hochlegierungsstahl, Werkzeugstahl, Mittellegierungsstahl, Niederlegierungsstahl, S.G.-Eisen, Stahl oder Gußeisen umfaßt, mit einem Kohlenstoffgehalt, der im Bereich 0,3-3,8 % liegt, und die Stickstoff bis zu 0,1 % enthalten können.
  34. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Walzwerkwalze eine Verbundwalzwerkwalze der Art ist, die einen Kern und einen Außenmantel aufweist, mit fakultativ wenigstens einer Zwischenschicht, wobei der Mantel besagten äußeren Teil umfaßt.
  35. Walzwerkwalze nach einem der Ansprüche 22 bis 33, dadurch gekennzeichnet, daß die Walzwerkwalze eine Verbundwalzwerkwalze der Art ist, die einen Kern und einen Außenmantel aufweist, mit fakultativ wenigstens einer Zwischenschicht, wobei der Mantel besagten äußeren Teil umfaßt.
  36. Verfahren nach Anspruch 34, dadurch gekennzeichnet, daß die Legierungscarbidteilchen in ein geschmolzenes technisches Eisenmetall eingebracht werden, aus der der Mantel hergestellt werden soll, und anschließend das technische Eisenmetall mit den Legierungscarbidteilchen darin in eine Form gegossen wird.
  37. Verfahren nach Anspruch 34 oder Anspruch 36, dadurch gekennzeichnet, daß die Verbundwalze durch Schleuderguß hergestellt wird.
  38. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Walze hergestellt wird, indem ein Elektroschlacke-Umschmelzprozeß an einer selbstverzehrenden Elektrode durchgeführt wird, die einen Innenkörper umfaßt, der mit einer äußeren Plattierung versehen ist, die ein hohles Element umfaßt, das besagte beschichtete Legierungscarbidteilchen enthält.
  39. Verfahren nach Anspruch 38, dadurch gekennzeichnet, daß das hohle Element auch einen Pulverlegierungsbestandteil enthält.
  40. Verfahren nach Anspruch 38 oder Anspruch 39, dadurch gekennzeichnet, daß der Elektroschlacke-Umschmelzprozeß durchgeführt wird, um eine Walze bereitzustellen, die einen inneren Teil mit einer ersten Zusammensetzung und einen Oberflächenteil mit einer zweiten Zusammensetzung umfaßt, die verschieden ist von der ersten Zusammensetzung, und das Metall der Walze zwischen dem inneren Teil und dem Oberflächenteil eine Zusammensetzung aufweist, die sich von der ersten Zusammensetzung zur zweiten Zusammensetzung ohne Diskontinuität ändert.
  41. Verfahren nach Anspruch 38 oder Anspruch 40, dadurch gekennzeichnet, daß der Elektroschlacke-Umschmelzprozeß durchgeführt wird, um eine Walze mit im wesentlichen gleichförmiger Zusammensetzung über den gesamten Querschnitt der Walze bereitzustellen.
  42. Verfahren nach Anspruch 34 oder Anspruch 36, dadurch gekennzeichnet, daß die Walze durch Elektroschlacke-Umschmelzplattierung oder Spritzplattierung hergestellt wird.
  43. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die Walze durch Monoblockstatikguß durch Füllen einer stationären Form mit einem einzigen Gußeisen oder Stahl hergestellt wird.
  44. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß eine Walze durch ein Doppelgießstatikgußverfahren hergestellt wird.
  45. Verfahren nach einem der Ansprüche 34, 36, 37 bis 39 oder Ansprüche 42 bis 44, dadurch gekennzeichnet, daß der Kern schuppenförmiges, kompaktes, vernizuläres oder noduläres Gußeisen oder Stahl umfaßt.
  46. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß es das Gießen eines Gußblockes aus besagtem Metall und anschließendes Schmieden des Gußblockes, um eine geschmiedete Walze bereitzustellen, gefolgt von Wärmebehandlung der geschmiedeten Walze, umfaßt.
  47. Walzwerkwalze nach einem der Ansprüche 22 bis 33 oder 35, dadurch gekennzeichnet, daß die Walzwerkwalze eine geschmiedete Walze ist.
EP94900231A 1992-11-19 1993-11-19 Eisenmetallgusswerkstoffe, insbesondere für walzrollen Expired - Lifetime EP0680521B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB9224271 1992-11-19
GB929224271A GB9224271D0 (en) 1992-11-19 1992-11-19 Engineering ferrous metals
GB939315356A GB9315356D0 (en) 1993-07-23 1993-07-23 Engineering ferrous metals
GB9315356 1993-07-23
PCT/GB1993/002380 WO1994011541A1 (en) 1992-11-19 1993-11-19 Engineering ferrous metals, in particular cast iron and steel

Publications (2)

Publication Number Publication Date
EP0680521A1 EP0680521A1 (de) 1995-11-08
EP0680521B1 true EP0680521B1 (de) 2001-03-14

Family

ID=26302007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94900231A Expired - Lifetime EP0680521B1 (de) 1992-11-19 1993-11-19 Eisenmetallgusswerkstoffe, insbesondere für walzrollen

Country Status (11)

Country Link
EP (1) EP0680521B1 (de)
JP (1) JPH08506143A (de)
KR (1) KR950704526A (de)
AT (1) ATE199747T1 (de)
AU (1) AU5530494A (de)
BR (1) BR9307499A (de)
DE (1) DE69330035T2 (de)
DK (1) DK0680521T5 (de)
ES (1) ES2155087T3 (de)
GB (1) GB2289288B (de)
WO (1) WO1994011541A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253577A1 (de) * 2002-11-15 2004-05-27 Ab Skf Verfahren zur Herstellung eines dispersionsgehärteten Eisenwerkstoffs

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0871784B2 (de) * 1995-06-06 2006-06-07 Akers International Ab Endlose gu walze hergestellt durch zusatz von niob
EP0779966A4 (de) * 1995-06-07 1998-07-22 Lockheed Martin Energy Sys Inc Unverbleite, umweltfreundliche und sichere projektil- und explosivstoff-container
AT405944B (de) * 1996-04-19 1999-12-27 Holderbank Financ Glarus Verfahren zum reduzieren von oxidischen schlacken
EP1022353A1 (de) * 1999-01-21 2000-07-26 Basf Aktiengesellschaft Verfahren zur Herstellung metallbeschichteter Hartstoffe
AT408666B (de) 1999-04-22 2002-02-25 Weinberger Eisenwerk Gusswerkstoff und verfahren zu dessen herstellung
SE522667C2 (sv) * 2000-05-16 2004-02-24 Proengco Tooling Ab Förfarande för framställning av en legering baserad på järn innehållande kromkarbid med inlöst volfram och en sådan legering
WO2003042419A1 (es) * 2001-11-13 2003-05-22 Fundacion Inasmet Fabricación de productos en materiales metalicos estructurales reforzados con carburos
BE1018129A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Impacteur composite pour concasseurs a percussion.
BE1018130A3 (fr) * 2008-09-19 2010-05-04 Magotteaux Int Materiau composite hierarchique.
DE102009005537A1 (de) * 2009-01-20 2010-07-29 Nano-X Gmbh Verfahren zum Modifizieren von Metallschmelzen
EP2531631B1 (de) * 2010-02-01 2018-09-12 Weir Minerals Australia Ltd Metalllegierungen für anwendungen mit hoher schlagfestigkeit
AU2011213543A1 (en) * 2010-02-05 2012-08-30 Weir Minerals Australia Ltd Hard metal materials
KR101360536B1 (ko) * 2011-12-27 2014-02-10 주식회사 포스코 마르텐사이트계 스테인리스 강판의 제조방법
CN105397068B (zh) * 2015-11-06 2018-02-16 姜向群 电渣熔铸三金属复合耐磨锤头的制作方法
CN111172448B (zh) * 2018-11-12 2021-09-24 中国科学院金属研究所 一种厚大断面高均质塑料模具钢制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550725A1 (de) * 1991-07-26 1993-07-14 London Scandinavian Metall Metallmatrixlegierungen.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO117628B (de) * 1964-09-11 1969-09-01 Corning Glass Works
DE3315125C1 (de) * 1983-04-27 1984-11-22 Fried. Krupp Gmbh, 4300 Essen Verschleissbestaendiger Verbundkoerper und Verfahren zu seiner Herstellung
EP0386515A3 (de) * 1989-03-04 1990-10-31 Fried. Krupp Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung metallischer, hochverschleissbeständige Bereiche aufweisender Verbundkörper und Vorrichtung zur Durchführung des Verfahrens
US5023145A (en) * 1989-08-21 1991-06-11 Bimex Corporation Multi carbide alloy for bimetallic cylinders
US5030519A (en) * 1990-04-24 1991-07-09 Amorphous Metals Technologies, Inc. Tungsten carbide-containing hard alloy that may be processed by melting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550725A1 (de) * 1991-07-26 1993-07-14 London Scandinavian Metall Metallmatrixlegierungen.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253577A1 (de) * 2002-11-15 2004-05-27 Ab Skf Verfahren zur Herstellung eines dispersionsgehärteten Eisenwerkstoffs
DE10253577B4 (de) * 2002-11-15 2011-05-19 Ab Skf Verfahren zur Herstellung eines dispersionsgehärteten Eisenwerkstoffs

Also Published As

Publication number Publication date
DE69330035D1 (de) 2001-04-19
EP0680521A1 (de) 1995-11-08
GB2289288A (en) 1995-11-15
JPH08506143A (ja) 1996-07-02
DE69330035T2 (de) 2001-06-21
GB9510006D0 (en) 1995-07-12
BR9307499A (pt) 1999-06-01
WO1994011541A1 (en) 1994-05-26
DK0680521T5 (da) 2001-06-11
ES2155087T3 (es) 2001-05-01
KR950704526A (ko) 1995-11-20
GB2289288B (en) 1997-04-16
ATE199747T1 (de) 2001-03-15
DK0680521T3 (da) 2001-04-17
AU5530494A (en) 1994-06-08

Similar Documents

Publication Publication Date Title
EP0680521B1 (de) Eisenmetallgusswerkstoffe, insbesondere für walzrollen
Boccalini et al. Solidification of high speed steels
US5225007A (en) Method for wear-resistant compound roll manufacture
KR0178818B1 (ko) 내마모성 및 시징 저항성 열간 압연용 로울
US7226493B2 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
US6001495A (en) High modulus, low-cost, weldable, castable titanium alloy and articles thereof
EP0309587B1 (de) Verschleissfeste verbundwalze und verfahren zu ihrer herstellung
US5972129A (en) Process for smelting a titanium steel and steel obtained
US4531974A (en) Work-hardenable austenitic manganese steel and method for the production thereof
US5720830A (en) Engineering ferrous metals and method of making thereof
US4000010A (en) Roll and process for producing same
EP0911421B1 (de) Verbundwalze zum kaltwalzen
US20060230876A1 (en) Method for producing alloy ingots
WO1991019824A1 (en) Composite roll for use in rolling and manufacture thereof
Medovar et al. Features and Restrictions of Electroslag Remelting with Silica‐Bearing Slags for Lightweight High Manganese Steel
JP4523230B2 (ja) 強化された耐久性工具鋼、その製造方法、前記鋼でできた部材の製造方法、およびその得られた部材
CA2223785C (en) Cast iron indefinite chill roll produced by the addition of niobium
JP2004183102A (ja) 機械構造用の鋼、この鋼からなる部品の熱間成形方法、および、これによる部品
KR20020012556A (ko) 강 냉간 성형 공구와 이의 용도 및 제조방법
Vaish et al. Electroslag remelting-Its status, mechanism and refining aspects in the production of quality steels
WO1994026942A1 (en) Engineering ferrous metal products and electroslag refining method of making such products
JPH0390270A (ja) 熱間圧延用作業ロールの製造法及び圧延方法
JP3030077B2 (ja) 耐クラック性に優れた耐摩耗複合ロール及びその製造方法
JP3746610B2 (ja) 高温での耐摩耗性にすぐれるハイス系鋳鉄材
AU684708B2 (en) Rolls for metal shaping

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19960917

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SHEFFIELD FORGEMASTERS LIMITED

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: FERROUS METAL ALLOYS, IN PARTICULAR FOR CASTING ROLLING MILL ROLLS

17Q First examination report despatched

Effective date: 19960917

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010314

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010314

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010314

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010314

REF Corresponds to:

Ref document number: 199747

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69330035

Country of ref document: DE

Date of ref document: 20010419

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2155087

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010615

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011119

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011119

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030210

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030213

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20030214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030226

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030311

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031201

BERE Be: lapsed

Owner name: *SHEFFIELD FORGEMASTERS LTD

Effective date: 20031130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040602

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051119