EP0679115A1 - Magnetisches rühren mittels wechselstrom für das kontinuierliche giessen vom metallen. - Google Patents

Magnetisches rühren mittels wechselstrom für das kontinuierliche giessen vom metallen.

Info

Publication number
EP0679115A1
EP0679115A1 EP94904542A EP94904542A EP0679115A1 EP 0679115 A1 EP0679115 A1 EP 0679115A1 EP 94904542 A EP94904542 A EP 94904542A EP 94904542 A EP94904542 A EP 94904542A EP 0679115 A1 EP0679115 A1 EP 0679115A1
Authority
EP
European Patent Office
Prior art keywords
stirring
magnetic field
rotating magnetic
meniscus
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94904542A
Other languages
English (en)
French (fr)
Other versions
EP0679115B2 (de
EP0679115B1 (de
Inventor
Leonid Beitelman
Joseph A Mulcahy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Inc
Original Assignee
J Mulcahy Enterprises Inc
Mulcahy J Enterprises Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21713965&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0679115(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by J Mulcahy Enterprises Inc, Mulcahy J Enterprises Inc filed Critical J Mulcahy Enterprises Inc
Publication of EP0679115A1 publication Critical patent/EP0679115A1/de
Application granted granted Critical
Publication of EP0679115B1 publication Critical patent/EP0679115B1/de
Publication of EP0679115B2 publication Critical patent/EP0679115B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • the present invention relates to the continuous casting of metals and alloys, for example, steel.
  • Electromagnetic stirring of liquid steel within the mold is broadly employed in continuous casting mainly to improve quality of the strand surface/sub-surface and solidification structure (i.e., structure refinement, soundness and chemical homogeneity) .
  • the two most common practices of continuous steel casting impose entirely opposite requirements to the stirring conditions within the region of molten metal near its free surface at the mold top, i.e. the meniscus region. Accordingly, casting mainly Al-killed steel grades via a submerged entry nozzle under mold powder requires meniscus stability in order to prevent disruption of mold lubrication and powder entrapment into the cast body.
  • a rotary stirring motion at the meniscus causes meniscus depression in the centre, waves, and excessive erosion of the casting nozzle when stirring intensity exceeds a certain level.
  • casting of Si-Mn deoxidized steel with an open stream is often accompanied by the defects of cast product surface. Pinholes, blowholes, surface slag entrapment and subsurface inclusions are examples of those surface defects.
  • an intensive stirring motion of the molten metal is required in the meniscus region. The same requirement applies for casting low deoxidized, or so-called rimming substitute steel.
  • overly intensive stirring motion of the meniscus may cause undesirable deterioration of the surface by producing deep oscillation marks and lappings.
  • the main drawback of this method is that the induction coil adjacent to the meniscus region provides only a deceleration of the stirring velocity produced by EMS. In the case when an intensive stirring action within the meniscus region is required, this method would need to relinquish its decelerating action by de- energizing the coil. The coil is not intended to enhance stirring action if the need of such enhancement arises, for the reasons discussed above.
  • W is the angular stirring velocity
  • R is the radius of the stirred pool g is the acceleration due to gravity
  • the depth of meniscus depression h approaches zero when the angular stirring velocity at the meniscus caused by EMS is equalized by counter-stirring angular velocity produced by a braking induction coil.
  • Another possible way of alleviating the problem of meniscus instability and decreasing stirring motion at the surface is an application of a strong horizontal D.C. magnetic field to the meniscus region.
  • a strong horizontal D.C. magnetic field produces an electromagnetic (Lorentz) force directed opposite to the liquid metal motion and thereby reduces that motion velocity, providing a quiescent surface.
  • An application of this concept is described in the U.S. Patent No. 4,933,005 of June 12, 1990, assigned to the assignee hereof.
  • An electromagnetic volume force will be produced in either of two situations, firstly, when an A.C. rotating magnetic field interacts with liquid metal which is in the state of complete rest, the metal will be set into a motion with a velocity lower than that of the A.C. field; and, secondly, when a stationary, i.e. D.C. magnetic field, interacts with liquid metal already in motion.
  • the volumetric magnetic force is proportional to velocity slip, i.e., the difference between the velocities of magnetic field and liquid metal, in accord
  • is the electrical conductivity of liquid metal
  • B is the magnetic flux density
  • W f is the angular velocity of magnetic field
  • W m is the angular velocity of liquid metal
  • R is the radius of liquid metal pool
  • an electromagnetic A.C. coil similar to but smaller than that of a main electromagnetic stirrer installed downstream is arranged around the mold in the meniscus area.
  • This device is in essence another induction stirrer, similar to the main stirrer which is arranged axially symmetrical around the mold and farther down from the meniscus.
  • the coil in the upper part of the mold is intended to counterbalance and equalize, or enhance, depending on specific objectives, the stirring motion in the adjacent volume of liquid metal, the metal motion which is originated by the main stirrer. Therefore, the working function of this stirrer is to modify the pattern and/or intensity of the stirring induced by the main stirrer and henceforth the device performing that function will be called A.C. magnetic stirring modifier or A.C. MSM.
  • the action of the A.C. MSM is typically contained within the upper portion of molten metal pool, comprising approximately 10 to 15 percent of its volume confined by the mold.
  • both the A.C. MSM and M-EMS operate at a common frequency determined by the parameters of the mold.
  • the current supplied to both sets of the coils can be of the same variable value or it can be controlled separately.
  • the invention is broadly applicable to all electroconductive materials, i.e. metals and alloys, which can be electromagnetically stirred and where control of stirring intensity is required within some region or regions without interference with stirring within other regions of the liquid pool.
  • the invention is applicable to a wide variety of spacial orientation of a vessel containing the molten method.
  • a casting mold may be arranged vertically, inclined or horizontally.
  • Figure 1 is a schematic of an arrangement of an A.C. magnetic stirring modifier and an electromagnetic stirrer (EMS) , with respect to a casting mold in accordance with one embodiment of the invention
  • Figure 2 is a schematic representation of the magnetic flux density axial profiles for the A.C. magnetic stirring modifier and the EMS of Figure 1 and the axial profile of rotational stirring velocity produced thereby;
  • Figure 3 is a graphical representation of the relationship of meniscus depression without and with an A.C. magnetic stirring modifier at varying current of an EMS
  • Figure 4 is a single-line diagram of possible electrical connections for the induction coils of the A.C. magnetic stirrer modifier and the EMS of Figure 1
  • Figure 5 is an elevational sectional view of the mechanical arrangement of the A.C. MSM and the EMS within the mold housing and corresponding to the schematic arrangement of Figure 1.
  • Figure 1 is a schematic depiction of an arrangement of an A.C. MSM and an EMS within a mold housing assembly of a continuous casting machine 10 in accordance with one embodiment of the present invention.
  • Figure 5 is a more detailed depiction of the mechanical elements of the mold assembly.
  • a series of induction coils 12, is arranged equally spaced around the periphery of a vertical casting mold 14, at its lower portion to comprise an A.C. electromagnetic stirrer (EMS).
  • a casting ceramic tube 18 is axially located with respect to the strand of molten metal 16, when casting with a submerged entrance nozzle is being performed.
  • A.C. MSM induction coils 20, are equally spaced around the vertical mold 14, adjacent to a free upper surface or meniscus 22 of the strand of molten metal 16.
  • the EMS coils 12 are designed to induce a strong rotational flow of molten metal in the strand of molten metal 16 within the mold 14.
  • the intensity of this rotational flow is characterized by its rotational velocity U R which, in turn, depends on the parameters comprising the expression: ,
  • a maximum value of rotational velocity is attained within and about the region of molten metal defined by a characteristic length of stirrer L which corresponds to a magnetic flux density B distribution along stirring axis.
  • a typical magnetic flux density distribution for the two sets of induction coils 12 and 20 are shown in Figure 2.
  • the value of the maximum stirring velocity within and about the active stirring zone L and the rate of its axial attenuation within the metal 16 determine the stirring velocity at the meniscus area 22 in the absence of other effects.
  • the stirring velocity value and its lengthwise axial range depend on the stirrer length L, the radius of the stirred pool R, and the roughness of the solidification interface with liquid metal. Accordingly, it is difficult to quantitatively and accurately predict the stirring velocity at the meniscus, based upon the design and operating parameters of the EMS coils 12 and the distance from EMS neutral axis to the meniscus.
  • the stirring velocity at the meniscus generally is about 0.5 to 0.7 (about 50 to 70 percent) of maximum stirring velocity value while the EMS coils 12 are located at a lowest position with respect to the meniscus. Therefore, a substantial stirring action can be expected at the meniscus area produced by the EMS coils even if the latter is located at the farthest possible distance from the meniscus. Meniscus depression and, more generally, turbulence at this location manifest themselves as a result of this stirring action.
  • the meniscus depression depth is strongly correlated to the angular stirring velocity at the meniscus.
  • the meniscus stirring velocity and depression are proportional to the current supplied to the EMS coils 12, as shown schematically in Figure 3.
  • the meniscus depression for industrial systems can range from approximately 6 to 27 mm, for example.
  • the induction coils 20 of A.C. MSM are energized, to induce a stirring action within the liquid metal at the meniscus opposite to that caused by the EMS coils 12. All the previous considerations with respect to a rotary movement of liquid metal are applicable to the stirring produced by the A.C. MSM coils 20.
  • the A.C. MSM coils 20 are substantially smaller and require less power for their operation than the EMS coils 12 due to a much less stirring velocity expected for them to produce to counteract the rotational motion at the meniscus induced by the EMS coils 12.
  • the A.C. MSM coils 20 are energized from a power supply common with the EMS coils 12, as shown by single line diagrams in Figure 4.
  • Schemes I and II appearing in Figure 4 show the A.C. MSM and EMS coils 20 and 12 respectively connected in series and, therefore, operating at the time same current and frequency supplied from a common power source.
  • the coil connections presented in Scheme I provide for unidirectional rotating magnetic fields produced by both the EMS and A.C. MSM coils. This mode of operation is employed for enhancing the stirring motion at the meniscus area by the A.C. MSM coils 20.
  • the coil connections presented in Scheme II provide for counter-rotating magnetic fields and cause counter-rotating liquid metal motions in the areas corresponding to the EMS and A.C. MSM coils.
  • the current level supplied to the A.C. MSM coils 20 may have an independent control from that of the EMS coils 12, as shown by Scheme III in Figure 4.
  • This arrangement allows for independent control of stirring actions of either of the EMS or the A.C. MSM coils regardless of the directional pattern of stirring, namely unirotational or counter-rotational.
  • the independent control of stirring motion at the meniscus provided by the use of the A.C. MSM coils 20 enables a greater flexibility of the stirring process control with a possibility of achieving equalization of the opposite stirring motions at the meniscus, and minimization of its depression, as illustrated in Figure 3.
  • the line OA corresponds to the meniscus depression caused by the stirring induced by EMS coils 12 without being opposed or added by A.C. MSM stirring.
  • the line OD represents meniscus depression associated with isolated stirring action induced by the A.C. MSM coils 20.
  • the meniscus depression In order to equalize the stirring velocities caused by the EMS and A.C. MSM coils, the meniscus depression must be of the same value in either of the situations. For example, if the meniscus depression caused by EMS stirring corresponds to the level A, then counter-rotational stirring provided by A.C. MSM stirring should have corresponding meniscus depression, i.e. level D.
  • the line OC is the resultant of two opposite stirring actions produced respectively by the EMS and AC MSM coils and equalized at the meniscus.
  • the line AB represents the resultant of two unidirectional stirring actions.
  • the range of stirring enhancement expressed through the meniscus depression can be adjusted in accordance with the casting practice requirements, so that the stirring intensity of EMS is fully utilized.
  • the present invention provides an improved method of controlling disturbance of the free surface of molten steel or other metal or alloy being cast through a mold and caused by electromagnetic stirring applied to the liquid metal, to minimize such disturbance or achieve an enhanced, within a single casting unit stirring motion at the meniscus, by employing an induction modifier in the form of an electromagnetic stirrer adjacent to the location of the meniscus. Modifications are possible within the scope of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Furnace Details (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
EP94904542A 1993-01-15 1994-01-14 Magnetisches rühren mittels wechselstrom für das kontinuierliche giessen vom metallen Expired - Lifetime EP0679115B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US506293A 1993-01-15 1993-01-15
US5062 1993-01-15
PCT/CA1994/000018 WO1994015739A1 (en) 1993-01-15 1994-01-14 A.c. magnetic stirring modifier for continuous casting of metals

Publications (3)

Publication Number Publication Date
EP0679115A1 true EP0679115A1 (de) 1995-11-02
EP0679115B1 EP0679115B1 (de) 1997-06-25
EP0679115B2 EP0679115B2 (de) 2004-09-15

Family

ID=21713965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94904542A Expired - Lifetime EP0679115B2 (de) 1993-01-15 1994-01-14 Magnetisches rühren mittels wechselstrom für das kontinuierliche giessen vom metallen

Country Status (6)

Country Link
EP (1) EP0679115B2 (de)
AT (1) ATE154767T1 (de)
CA (1) CA2153995C (de)
DE (1) DE69403950T3 (de)
ES (1) ES2106501T5 (de)
WO (1) WO1994015739A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1288900B1 (it) * 1996-05-13 1998-09-25 Danieli Off Mecc Procedimento di colata continua con campo magnetico pulsante e relativo dispositivo
DE102005042370A1 (de) 2005-09-07 2007-03-15 Sms Demag Ag Bauteil für eine Stranggießkokille und Verfahren zur Herstellung des Bauteils
US20090242165A1 (en) * 2008-03-25 2009-10-01 Beitelman Leonid S Modulated electromagnetic stirring of metals at advanced stage of solidification
CN103170606B (zh) * 2011-12-23 2015-08-26 北京有色金属研究总院 双重强制均匀化制备金属浆料的装置及其加工成形方法
CN108971460A (zh) * 2018-08-22 2018-12-11 上海大学 一种脉冲耦合电磁场细化金属凝固组织的方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT189751B (de) * 1952-08-27 1957-05-10 Verfahren zum Gießen, insbesondere zum Stranggießen von Metallen
AT184313B (de) 1953-07-30 1956-01-10 Boehler & Co Ag Geb Verfahren und Vorrichtung zum kontinuierlichen Gießen, insbesondere von schwer schmelzbaren Metallen
DE1583601A1 (de) 1967-07-05 1970-09-17 Demag Elektrometallurgie Gmbh Verfahren und Vorrichtung zum Kuehlen eines schmelzfluessigen Metallstranges
FR2391015A1 (fr) * 1977-05-18 1978-12-15 Siderurgie Fse Inst Rech Perfectionnement au procede de coulee continue centrifuge de produits metalliques et dispositif de mise en oeuvre
GB2109724A (en) * 1981-11-20 1983-06-08 British Steel Corp Improvements in or relating to electromagnetic stirring in the continuous casting of steel
JPS58100955A (ja) * 1981-12-11 1983-06-15 Kawasaki Steel Corp 連続鋳造鋳型内溶鋼の撹拌方法およびその装置
JPS5989649U (ja) 1982-12-04 1984-06-18 三菱重工業株式会社 連続鋳造用電磁撹拌装置
DE3819492A1 (de) * 1988-06-08 1989-12-14 Voest Alpine Ind Anlagen Knueppel- bzw. vorblock-stranggiesskokille
US4933005A (en) * 1989-08-21 1990-06-12 Mulcahy Joseph A Magnetic control of molten metal systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9415739A1 *

Also Published As

Publication number Publication date
ES2106501T5 (es) 2005-03-01
DE69403950T3 (de) 2005-03-10
DE69403950T2 (de) 1997-12-11
DE69403950D1 (de) 1997-07-31
CA2153995A1 (en) 1994-07-21
ES2106501T3 (es) 1997-11-01
EP0679115B2 (de) 2004-09-15
CA2153995C (en) 2000-11-07
WO1994015739A1 (en) 1994-07-21
EP0679115B1 (de) 1997-06-25
ATE154767T1 (de) 1997-07-15

Similar Documents

Publication Publication Date Title
US5699850A (en) Method and apparatus for control of stirring in continuous casting of metals
US7735544B2 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
Beitelman Effect of mold EMS design on billet casting productivity and product quality
JP4824502B2 (ja) 電磁場を用いる金属垂直連続鋳造方法とその実施のための鋳造設備
RU2266798C2 (ru) Способ и устройство для непрерывной разливки металлов в кристаллизатор
AU2003286222B2 (en) Method and device for controlling flows in a continuous slab casting ingot mould
EP1021262A1 (de) Verfahren und vorrichtung zur kontrolle des metallflusses während des stranggiessens unter verwendung elektromagnetischer felder
JPH10305353A (ja) 鋼の連続鋳造方法
EP0679115B2 (de) Magnetisches rühren mittels wechselstrom für das kontinuierliche giessen vom metallen
US6021842A (en) Electromagnetic device for use with a continuous-casting mould
JP2006281218A (ja) 鋼の連続鋳造方法
JPH0523804A (ja) 鋼のスラブ用鋳片の製造方法
Garnier The Clifford Paterson Lecture, 1992 Magentohydrodynamics in material processing
JP2005238276A (ja) 電磁攪拌鋳造装置
EP0531851A1 (de) Verfahren und Vorrichtung zum magnetischen Rühren der Schmelze in einer Zweirollengiessanlage
JPH01150450A (ja) 流し込みストランドの非凝固部分の取扱い方法及び装置
CA1334337C (en) Magnetic streamlining and flow control in tundishes
US7237597B2 (en) Method and device for continuous casting of metals in a mold
JP3491099B2 (ja) 静磁場を用いた鋼の連続鋳造方法
JPH0819840A (ja) 連続鋳造方法
JP2000158108A (ja) 鋼の連続鋳造方法
JPH0238303B2 (de)
JPH10305358A (ja) 鋼の連続鋳造方法
KR960003711B1 (ko) 연속 슬랩 주조방법
WO1993004801A1 (en) Method and apparatus for the electromagnetic stirring of molten metals in a wheel caster

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960701

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970625

Ref country code: LI

Effective date: 19970625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970625

Ref country code: DK

Effective date: 19970625

Ref country code: CH

Effective date: 19970625

Ref country code: BE

Effective date: 19970625

Ref country code: AT

Effective date: 19970625

REF Corresponds to:

Ref document number: 154767

Country of ref document: AT

Date of ref document: 19970715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 69403950

Country of ref document: DE

Date of ref document: 19970731

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970925

Ref country code: PT

Effective date: 19970925

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2106501

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980114

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980114

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CONCAST STANDARD AG

Effective date: 19980318

Opponent name: ASEA BROWN BOVERI AB

Effective date: 19980320

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980731

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ABB INC.

27A Patent maintained in amended form

Effective date: 20040915

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20040928

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120227

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120221

Year of fee payment: 19

Ref country code: IT

Payment date: 20120227

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120222

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69403950

Country of ref document: DE

Effective date: 20130801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130115