EP0678186A1 - Element echangeur de chaleur, procede et dispositif pour le fabriquer. - Google Patents

Element echangeur de chaleur, procede et dispositif pour le fabriquer.

Info

Publication number
EP0678186A1
EP0678186A1 EP94904677A EP94904677A EP0678186A1 EP 0678186 A1 EP0678186 A1 EP 0678186A1 EP 94904677 A EP94904677 A EP 94904677A EP 94904677 A EP94904677 A EP 94904677A EP 0678186 A1 EP0678186 A1 EP 0678186A1
Authority
EP
European Patent Office
Prior art keywords
tube
turns
dies
axis
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94904677A
Other languages
German (de)
English (en)
Other versions
EP0678186B1 (fr
Inventor
Mer Joseph Le
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giannoni France
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0678186A1 publication Critical patent/EP0678186A1/fr
Application granted granted Critical
Publication of EP0678186B1 publication Critical patent/EP0678186B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F2001/027Tubular elements of cross-section which is non-circular with dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means

Definitions

  • the present invention relates to a heat exchanger element. It also relates to the method of manufacturing this element as well as the device used to manufacture it. Finally, the invention also relates to a heat exchanger or a heat recovery unit using this type of element.
  • a heat exchanger element is traditionally formed from one or more tubes inside which circulates a first heat transfer fluid, for example water. In operation, the element is exposed to the thermal action of a second heat transfer fluid, for example air or combustion gases. The function of the element is to transfer heat from one of the two fluids to the other.
  • the function of the exchanger element is to heat the water circulating in the tubes from the hot gases resulting from the combustion of a gas burner.
  • the function of the exchanger element is to cool the engine water from the cold outside air, which is propelled by the fan in the form of a wind against the element.
  • the best possible yield is sought, this with a cost price and in a space which are, on the contrary, the lowest possible.
  • the tubes have an oblong, flattened section, the major axis of which extends radially with respect to the axis of the burner. These tubes are spaced from each other by a gap which allows combustion gases to pass, but constitutes an explosion-proof barrier.
  • the Japanese patent abstract No. 63 220 091 relates to a heat exchanger element which consists of a helically wound tube in which a heat transfer fluid circulates.
  • the tube has a flattened and oval cross section, the major axis of which is perpendicular to the axis of the propeller, an acute angle is formed with respect to the latter.
  • This device performs a heat exchange between a fluid outside the tube, in particular air flowing radially from the outside towards the inside of the winding, and the inside fluid.
  • the main objective of the invention is to overcome these drawbacks, by proposing a heat exchanger element which is both extremely efficient in terms of efficiency, which is priced at low cost, can be easily mass produced, while being extremely compact.
  • Another object of the invention is to provide an element which can easily be associated with other identical or similar elements, so as to be able to meet all the needs of the clientele, both in terms of size and that of heat transfer capacity.
  • the heat exchanger element according to the invention consists of a tube of thermally conductive material, for example metallic, wound in a helix, in which is intended to circulate a heat transfer fluid, this element having a flattened and oval cross section whose major axis is substantially perpendicular to the axis of the helix or forms an acute angle with respect to the latter, each turn of the tube having planar faces which are spaced from the faces of the adjacent turn of a gap of constant height.
  • the height of the gap separating two adjacent turns is significantly smaller than the thickness of said cross section, and the spacing between two adjacent turns is calibrated by means of spacers.
  • the thickness of the flattened tube is 3 to 10 times greater than the thickness of the space between turns.
  • a primary role of the spacers is to ensure consistency of the transparency of the exchanger element.
  • a second role - not least - is to prevent deformations of the wall of the flattened tube which can result from significant variations in internal pressure.
  • These spacers are bosses, or corrugations, formed in the wall of the tube, on at least one of the flat faces; - Said bosses extend radially relative to the axis of the propeller;
  • the internal edge of the turns is embossed, in order to produce turbulence of the fluid before they pass between the turns, which has the effect of further increasing the quality of heat exchange.
  • a cylindrical tube is bent helically; b) it is filled with a fluid; c) the wall of the tube is crushed so as to give it a flattened and oval section, the major axis of which is substantially perpendicular to the axis of the propeller, while simultaneously reducing the pitch of this propeller; d) maintaining, during step c), the fluid contained in the tube at a substantially constant and controlled pressure, so as to prevent the collapse of its wall.
  • shaping dies are used which have, in hollow, imprints of shape complementary to the bosses, or corrugations, intended to play the role of spacer between the turns and, at the end of the operation, the fluid contained in the tube is subjected to a high pressure to force its wall to conform to the shape of these imprints.
  • a device which can be used to carry out this method comprises: a press comprising a fixed sole and a movable plate;
  • - actuation means used to move the movable plate relative to the fixed base; - two sets of complementary half-dies, of generally semi-circular shape, capable of being positioned between the turns of the tube to be formed, these two sets being positioned, in the working position, between the fixed sole and the movable plate.
  • One of these assemblies is movable as a block and can be removed from the press for the establishment of the tube to be formed, and - at the end of the operation - for the removal of the tube formed;
  • the device comprises cylinders used to separate the half-dies from each other;
  • the device includes means for sealingly closing the two ends of the tube during forming, and for introducing a fluid under very high pressure therein.
  • a heat exchanger using at least one element according to the invention is arranged in the vicinity of the burner in a position such that the combustion gases pass through the interstices separating its turns.
  • it comprises several elements according to the invention, at least one of which is crossed by the combustion gases from the inside to the outside, while at least one other element is crossed by these gases in the opposite direction.
  • a subject of the invention is also a heat recovery unit for a boiler, which comprises at least one element according to the invention, in which circulates water to be heated, and which is exposed to the flow of burnt (and hot) gases. escaping from the boiler.
  • FIG. 1 is a general view, in perspective and partially cut away in one of the turns, of an element according to the invention
  • FIG. 1 is a side view of the element of Figure 1;
  • FIG. 3 is a detail view showing the juxtaposition of two turns constituting the element, these two turns being cut transversely by the plane III-III of Figure 4;
  • FIG. 1 The figure is a partial side view of the turns of Figure 3;
  • - Figure 5 is a side view of a round tube (circular section) helically preformed, from which the element is made;
  • - Figure 6 is a perspective view of a "standard” forming half-die which is used for the manufacture of the element;
  • - Figure 7 is a cross and radial section of the matrix of Figure 6;
  • - Figure 8 is a particular half-matrix, involved in the forming of one of the end turns of the element;
  • FIG. 9 is a schematic front view, partially cut away, of the element forming device
  • FIG. 10 is a schematic view, partially broken away, of the movable assembly of half-dies
  • - Figure 1 1 shows, seen in the separation plane of the two sets of half-dies, one of these sets inside the press, the latter being in the closed position, but empty (this is ie in the absence of a tube);
  • - Figures 1 1A and 1 1B are schematic views, respectively from above and in cross section along the plane BB of Figure 1 1A, of the mounting of a half-matrix on guide columns, this mounting allowing a slight inclination lateral of the matrix;
  • - Figure 12 is a sectional view of the device for sealingly introducing a fluid inside the tube during forming;
  • - Figure 13 is a schematic view showing a tube being preformed on a tube winding mandrel;
  • - Figure 14 shows the press in the open position, a preformed tube having been introduced therein before the forming operation;
  • FIG. 16 is a section showing, partially, the device of Figure 12 during operation
  • FIG. 16A is an end view of one of the ends of the tube constituting the element formed
  • FIG. 17 is a view similar to Figure 14, showing the open press, at the end of forming;
  • FIG. 18 shows, in axial section, a gas boiler heat exchanger equipped with a burner and comprising several elements similar to that of Figure 1;
  • FIG. 19 and 20 schematically show alternative designs of this heat exchanger
  • - Figure 21 is a schematic view showing a heat recovery unit using elements according to the invention
  • FIGS. 24 and 24A are schematic top views of two exchangers according to the invention, showing two possible arrangements of the end portions of the exchanger;
  • - Figures 25 and 25A show possible variants as to the shape and arrangement of the corrugations provided on the flat face of a turn;
  • - Figure 26 is a cross section of two adjacent turns, in an embodiment according to which the two flat faces of each turn are provided with bosses forming spacers;
  • FIG. 27 shows, in axial section, a double winding exchanger, composed of two elements whose coils are nested one inside the other;
  • FIG. 28 is a schematic top view of an assembly formed of two concentric elements
  • Figure 28A is a partial side view (a single turn) of the assembly of Figure 28;
  • FIG. 29 is a top view of a variant of the element of Figure 1;
  • - Figure 30 is a schematic sectional view of the element of Figure 29, along the section plane XXX-XXX of this figure; - Figure 30A is a sectional detail of two adjacent turns;
  • FIG. 31 and 31A are schematic detail views showing the tooling and illustrating the forming operation which makes it possible to produce the element of Figure 29;
  • FIG. 32 schematically represents a heat exchanger which has several elements conforming to that of FIG. 29.
  • the heat exchanger element 1 shown in Figures 1 to 4 consists of an oval and flattened section tube wound in a helix so that the major axis of its cross section is substantially perpendicular to the axis XX 'of l 'propeller.
  • This tube is preferably made of metal, for example stainless steel. It consists of a number of turns 10, for example four in number, whose large flat faces, referenced 11, are spaced from the faces of the adjacent turn by a gap of constant height. This height is significantly less than the thickness of the flat turns.
  • the end portions 14, 14 ′ of the tube, rectilinear, extend tangentially towards the outside, and end in cylindrical ends 15, 1 ′. The transition between the flattened parts 14 and the cylindrical end pieces 15 takes place gradually.
  • Each turn carries, on one of its flat faces, bosses (or corrugations) 12 formed in the wall of the tube, arranged substantially radially with respect to the axis XX '.
  • bosses or corrugations
  • Each boss 12 comes to bear against the flat face (not provided with bosses) of the adjacent turn.
  • These bosses have a definite height which serve as spacers, precisely calibrating the height of the interstices separating the turns.
  • bosses 12 located on one of the outer turns of the winding are intended to come to bear against the turn with a smooth flat face of another element, when combined, by stacking them coaxially , several identical or similar elements.
  • the external faces of the two external turns of the winding are situated substantially in planes P, P '(see FIG. 2) which are parallel to each other and perpendicular to the axis XX'. Thanks to this arrangement, it is possible to stack several elements coaxially while maintaining a constant spacing of all the turns, whether or not they belong to the same element. Of course, this arrangement assumes a gradual variation in the thickness of the outer turns of the winding, as can be seen in particular in Figure 2. Furthermore, to obtain this flatness, a recess 16 must be provided in the most thick end coils, so as to allow the end portions 14, 14 'to pass.
  • Solder points for example brazing 17, are advantageously provided at the periphery of the winding to maintain the latter in a state of slight axial compression, which ensures the correct application of all the turns against each other. others.
  • the internal edge of the turns has a regularly embossed wall, these bosses being intended to disturb the flow of the fluid passing between the turns in order to improve the heat exchange, as will be explained below.
  • An element is then obtained, still wound in a helix, but with a noticeably smaller pitch, of the order of 6 to 6.5 mm.
  • the mean diameter of the winding remains unchanged (around 210 mm).
  • the width of the turns 10, referenced J_ in Figure 3 is of the order of 24 mm.
  • Their thickness is of the order of 5 to 6 mm.
  • the height h of the gap separating the turns, which also corresponds to the height of the bosses 12, is of the order of 0.5 to 1.5 mm.
  • the winding 100 shown in FIG. 5 is produced from a cylindrical tube preformed into a helix.
  • 101 and 101 ′ have been designated its rectilinear end portions, which extend tangentially with respect to the propeller and are intended to constitute the ends 14, 15 and respectively 14 ′, 15 ′ of the element.
  • the turns of the winding 100 have been designated by the reference 102.
  • the internal edge of the tube is embossed, so as to present ring segments 103 corresponding to corrugations of the wall of the tube.
  • this boss 103 can be obtained by winding the tube on a mandrel of diameter slightly too small compared to the winding that it is desired to obtain.
  • FIGS. 6 and 7 show a "standard" half-matrix intended to be used for the shaping of the element, in association with other identical or similar half-matrices. It is intended to carry out the shaping of an intermediate half-turn.
  • the half-matrix 2 shown has a general semi-circular shape. It has a semi-annular external part 20, of rectangular section, which is extended inwards by another annular part 21 of smaller thickness.
  • the upper and lower faces 24 of the part 21 are flat. They are the ones that will be used to crush the tube, in order to give it a flattened shape, as will be explained below.
  • one of the faces 24 in this case in the lower face when the half-matrix 2 is in the working position, substantially horizontal, is hollowed out a series of radial recesses whose shape is complementary to that of the bosses 12 that one wishes to achieve in the wall of the element.
  • the part 21 of thinner thickness is connected to the outer semi-annular part 20 by a flange 23.
  • drilled holes 22 which, as will be seen later, are intended to receive guide columns. These holes are slightly elongated, forming apertures whose major axis is parallel to the diametrical plane constituting the joint face 29 of the half-matrix.
  • the ends of the elongated holes 22 are semi-cylindrical.
  • the half-matrix 2 'represented in FIG. 8 is similar to that which has just been described, and that is why the corresponding elements have been assigned the same reference sign, but with the prime index ('). It is the lower matrix of one of the two sets of half-matrices which will be described later, and more precisely of the mobile assembly.
  • This half-matrix is used for shaping one of the ends of the winding, the end which comprises a rectilinear section and a cylindrical end-piece.
  • the face of the central part 21 ' which is used for crushing the tube extends only over a quarter of circumference and is extended by a rectilinear portion 25'. The latter opens at the level of the part 20 ′ in a semi-cylindrical cavity 26 ′.
  • the half-matrix intended to cooperate with the half-matrix 2 ′ has, on its lower face, a complementary configuration, and in particular a part with semi-cylindrical groove coming to penetrate into the part 26 ′ to constitute a circular channel coming fit against the end portion of the tube, and contain it during forming, as will be explained later.
  • the device shown in Figure 9, referenced 3 consists of a hydraulic press comprising a horizontal fixed sole 30 carried by a frame 31, and a movable plate 32; the latter is also arranged horizontally, above the sole 30. It is fixed to a plate 340 mounted at the end of the rod 34 of a hydraulic cylinder 33. The latter is mounted on an element 310 of the fixed frame.
  • the jack 33 is a relatively powerful double-acting jack, the extension of which causes the plate 32 to be lowered and brought closer to the sole 30 (closing of the press) while its retraction causes the plate 32 to rise ( press opening).
  • the tool associated with this press essentially comprises two sets of half-dies 2A and 2B of the type described above.
  • the first assembly 2A is fixed and permanently mounted between the sole 30 and the plate 32.
  • the other assembly 2B is mobile. It is fixed to a carriage 4, for example mounted on rollers, which can be moved in translation by means of a double-acting pneumatic or hydraulic cylinder 40, the rod of which is connected by a connecting piece 41 to the carriage 4.
  • the mobile assembly has been artificially represented in the two extreme positions that it can occupy, the working position inside the press and a separated position - referenced 2B '- which, as will be seen further, allows to set up the tube to be formed, then to remove the formed element.
  • the carriage 4 is supported by a horizontal guide 42.
  • Figure 9 there is shown in broken lines the element 41 and the rod of the cylinder 40 when the latter is in the extended position, assembly 2B 'away from the press.
  • each upper half-die has a side 29 in abutment with the lower half-die, and so on.
  • Each set of half-dies is guided in translation, in the vertical direction, by vertical rods - or columns - 200. It is for example provided three guide columns per set, regularly distributed. However, in order to make the figures easier to read, only one column 200A, respectively 200B has been shown in FIG. 9 for each of the sets 2A, respectively 2B.
  • the two upper half-matrices which serve to form one of the ends of the element, consist of a single piece 2 "fixed permanently to the plate 32.
  • Half of this matrix 2" which comes in correspondence with the half-dies constituting the mobile assembly 2B has imprints similar to that of the part 2 ′ which has been described with reference to FIG. 8, because it serves to form the upper end of the element, and in particular the cylindrical end cap.
  • the dies 2A can be separated from each other using a series of suitable jacks, not shown.
  • three pneumatic cylinders are provided, regularly distributed around the periphery of the set of half-dies, and coming to actuate the upper half-die 2A.
  • Connecting elements between the half-dies are provided so that the lifting of the upper matrix correlatively and successively causes the lifting of each of the dies, this with a well-defined spacing.
  • Such an arrangement avoids having to resort to a set of jacks for each half-die.
  • a similar arrangement, schematically represented in FIG. 10, is provided for lifting the half-dies 2B of the mobile assembly. This lifting is carried out using a jack 43 whose vertical rod (not shown) is fixed to the carriage 4. The body of the jack is fixed to the upper matrix 2B. This leads, through a 14
  • connecting piece 290 the half-matrix located below, but not the lowest movable half-matrix, located just above the fixed half-matrix 2 '. Indeed, it is moved by a set of jacks 44 independently of the others, for a reason which will be explained later.
  • the lower and upper half-dies are supported respectively against the sole 30 and against the plate 32 by horizontal flat faces, perpendicular to the working direction of the press. These half-dies have a slightly bevelled shape, so that they are applied against the other half-dies according to planes inclined laterally, as can be seen in FIG. 1 1. It is this inclination which makes it possible to respect the propeller pitch. This provision is of course valid for the two sets of half-dies, but in opposite directions.
  • the device 5 shown in FIG. 12 essentially comprises a body 50, of generally cylindrical shape, and a pneumatic cylinder 51 coaxial with the body 50 to which it is fixed. Along the axis of the assembly 50-51 can slide a rod 52 integral with a piston 521 moving inside the cylinder 51, and whose free end carries a head 520, also cylindrical, capable of s' fit without play inside the end 101 of the tube to be formed.
  • the rod 52 is traversed by a central bore 522 which is connected by suitable means to a conduit 56 connected to a hydraulic unit H at high pressure, via a control valve 560.
  • the piston 52 1 is double effect, and suitable conduits 57, 57 ′, which are connected to a distribution valve 570 make it possible to bring compressed air on one side or the other of the piston, from an air source tablet AC.
  • Valve 570 is designed to bring the chamber on one side of the piston to atmospheric pressure when the other chamber is under pressure, and vice versa.
  • the head 520 is surrounded by a part 54 in the form of a sleeve, forming an integral part of the body 50, the space 55 separating the wall of the head 520 from the internal wall of this sleeve corresponding to the wall thickness of the tube.
  • In the space 55, behind the head 520 are provided j anointed sealing. These are deformable rings 53, liable to deform radially as a result of the recoil of the rod 52.
  • the half-dies 2 'and 2B intended for the shaping of one of the end portions of the element, which are also partially represented in FIG. 12, have indentations which include complementary semi-cylindrical portions 260, 260' able to be applied against the outer wall of the sleeve 54.
  • the indentations 26, 26 ' are intended to contain the outer wall of the tube, in its cylindrical portion and in its connection portion with the flat part, during forming.
  • the imprints 28 serve to form the bosses in the wall of the tube.
  • the helical preforming of the cylindrical tube is illustrated in FIG. 13.
  • This shaping is done conventionally, when cold, on a mandrel 6 of generally cylindrical shape, carried by a rotary axis 60, as symbolized by the arrow F.
  • a helical groove 61 In the wall of the cylinder 6 is formed a helical groove 61, of semi-cylindrical section. Its radius corresponds to the radius of the tube.
  • the pitch of the groove corresponds to the pitch of the tubular winding 100 that it is desired to obtain.
  • One 101 of the end portions of the tube is made integral with the rotary mandrel 6, and the tube is guided by suitable means on the mandrel. After shaping, the winding is extracted by unscrewing, that is to say rotating the mandrel in the opposite direction while the tube is immobilized.
  • the press and its tools are brought first of all to the state shown in FIG. 14, open press (cylinder 33 retracted) and movable assembly of half-dies spaced from the press (cylinder 40 in extension).
  • the cylinders 43 and 44 are extended so that all of the half-dies 2B are in the mutual spacing position; similarly, the jacks ensuring the spacing of the half-mat ⁇ ces 2A are extended.
  • the carriage 4 has means, not shown, for retaining the device 5 in the axial direction, after it has fitted into the tube.
  • the tightness of the connection is obtained by actuation of the piston 521 in the backward direction, ensuring the compression of the seals 53.
  • the jack 40 is then retracted, in order to move the carriage 4 to bring the mobile assembly of the half-dies, as well as the tube 100 retained by it, inside the press. During this movement, the half-turns not contained in the half-dies 2B are inserted between the half-dies 2A. Each turn of the tube is thus perfectly trapped between complete dies.
  • the press is then put into action, by extension of the hydraulic cylinder 33, the movable plate 32 of the press engaging on the guide rods 200.
  • a liquid is introduced into the tube.
  • One of the devices 5 is designed to bring this liquid, for example oil or water, while the other device 5, provided at the other end of the tube, allows the escape of air initially present in the tube.
  • the liquid is then trapped in the tube, by means of valves suitable for moderate pressure, for example of the order of 10 ° Pascal (10 bars). A calibrated valve ensures that this pressure remains constant throughout the first phase of the process.
  • Figure 15 is designated by the reference L l the liquid, at moderate and controlled pressure, which is contained in the tube. It will be noted by observing this figure the presence between two adjacent dies, in the annular portions 20, of an elastically deformable washer 210. In practice, several of these washers are regularly distributed over the entire circumference of the dies. They are housed in circular grooves made in the lower matrix. Their function will be explained later.
  • the pressure of the liquid is then dropped, and it is expelled from the tube using compressed air.
  • the movable plate 32 is then raised.
  • the elastic stroke of the washers is chosen so that the mutual spacing of the dies is slightly greater than the depth of the recesses 28, which allows the extraction of the tube formed 100 "(arrow A3, FIG. 15C).
  • the mobile assembly of mobile half-dies is then moved away from the press, and brought into the position of FIG. 17. There is no difficulty in removing from the press the part of cylindrical end piece 15 of the upper coil of the press, since the die 2 ", which participated in the shaping of this nozzle, is lifted with the plate 32.
  • the piston rod 52 is advanced, by air intake behind the piston 521 on each side of the device 5, which allows the tube ends of these devices to be extracted. These are removed.
  • the jack 44 is then extended to separate the penultimate half-matrix 2B from the lowest matrix 2'B. This spacing is sufficient to allow the passage of the cylindrical endpiece 15 '.
  • the jacks 43 are not actuated, so as not to deform the turns of the formed tube, the pitch of which is substantially smaller than the pitch of the initial preformed tube.
  • the element 1 can be removed manually, by a horizontal translational movement. It then suffices to make the brazing points 17 to obtain the finished element.
  • the exchanger 8 shown in the figure comprises a cylindrical burner 7, of axis XX ', mounted inside a hollow body 8.
  • the latter has a generally cylindrical shape and is provided with a bottom 84 having a flange (or sleeve) 80 coaxial with the axis of the burner, through which the mixture of gas and air to be burned.
  • the exhaust of the burnt gases is done by a flange (or cuff) 81 disposed at the opposite end of the body 8.
  • the burner 7 is immobilized against the bottom 84 by means of a flange 83 retained by threaded rods 85.
  • the cylindrical burner 7 has a length substantially shorter than the length of the body 8.
  • a ceramic disc 82 also fixed to the threaded rods 85.
  • the disc 82 the diameter of which is slightly larger than that of the burner 7, comparti ⁇ lies inside the body 8 in two spaces 800, 801 located respectively at the level of the burner and beyond it.
  • This exchanger is equipped with four elements 1 according to the invention, stacked coaxially on each other and arranged inside the body 8. Their diameter is a little larger than the diameter of the burner.
  • the diameter of the disc 82 corresponds substantially, apart from the engagement clearance, to the internal diameter of the elements 1, so that the edge of the disc comes into contact with the element 1 e.
  • the burner 7 has an annular wall pierced with a multitude of small holes arranged radially and allowing the passage of the air + gas mixture. Combustion takes place outside the burner, the base of the flames being against the external wall 71 of the burner.
  • Reference 70 has designated an electrode, of a type well known per se, used for igniting the burner and controlling the flame.
  • the wall 71 of the burner is located a short distance from the internal edge of the turns of the elements 1, for example approximately 20 mm from this edge.
  • the boiler concerned is a domestic condensing boiler, which is used to heat water.
  • the cold water (EF) arrives via a conduit 149 and is connected by two bypass conduits 150c, 150b to the inlet portions of the two elements le, respectively l b.
  • the outputs of these two elements are connected, via two taps 150'c and 1 50'd to a pipe 1 51 'which, in turn, brings water, via two taps 1 50' a and 150 'b respectively to the two elements la and l b.
  • the water leaves these two elements by two diversions 150a, 1 50b connecting to a pipe 151 for evacuating hot water (EC).
  • the connections of the various conduits to the end caps (cylindrical) of each element are made in a conventional manner, by connections known per se.
  • the elements are therefore connected in parallel two by two, and the two pairs are connected in series.
  • the air-gas mixture (GA) is brought through the flange 80 inside the burner. Combustion takes place on the outer wall 71 thereof.
  • the hot gases from combustion the temperature of which, for information, is of the order of 1100 ° C., escape radially and pass through the interstices, of well calibrated height, separating the turns from the elements la, lb and of part of it.
  • the flow is very regular given the uniformity of thickness of the interstices.
  • the heat transfer from the burnt gases to water is particularly efficient.
  • the partially cooled gases After their passage from the inside to the outside of the elements l a, l b and partially the, the partially cooled gases arrive in the annular space located inside the body 8, but outside the exchanger. They will then cross the interstices between the turns of the element l d and the other part of the element le, from the outside to the inside, as symbolized by the arrows H2. A large part of their residual heat is thus transferred to the liquid circulating in the exchanger. Finally, these gases, the temperature of which has dropped for example to around 50 ° C., escape through the collar 81, as symbolized by the arrows H3. Of course, this flange is connected to a discharge pipe, for example to a chimney pipe.
  • the circulation of water in the exchanger is counter-current to the circulation of gases.
  • the cold water is first of all preheated by the flow H2, then heated by the flow Hl.
  • the water temperature is brought from ambient temperature to a temperature of the order of 60 ° C.
  • the presence of the disc 82 prevents the direct passage of the gases inside the exchanger from space 800 to space 801.
  • all of the exchanger elements 1 surrounds the burner 7. There is therefore no preheating of the water circulating in the exchanger.
  • the air + gas mixture arrives via the collar 80 inside the burner 7 (arrows HO). After combustion, the hot gases pass radially, from the inside to the outside, the turns of the exchanger (arrows Hl). They are evacuated through the collar 81 (arrows H2). Note the presence, at the base of the body 8 of the exchanger of a connector 86 which allows the evacuation of condensates.
  • FIG. 20 there are provided six juxtaposed (or stacked) exchanger elements coaxially, referenced l a, lb, ic, l d, le and lf. These elements are distributed in pairs, in this case la-l b, lc-l d and l e-lf. Each pair forms a parallel arrangement in terms of water circulation. The three pairs are connected in series.
  • This boiler has a general configuration similar to that shown in Figure 18.
  • the space 800 which corresponds to the location of the burner, there are three elements, in this case the elements la, l b and le. Opposite the space 801 which is on the other side of the shutter disc 82, the elements l d and the are arranged.
  • This device performs in a way two successive preheats of the water, which makes it particularly efficient.
  • the device represented in FIG. 21 is a heat recovery unit intended to be placed at the outlet of a conventional boiler, or of any another device that releases gases at a temperature sufficient to heat a fluid, such as water.
  • a fluid such as water.
  • This outlet has a flange 90 into which is fitted the flange 80 for input of the body 8 of the device, the output flange of which is designated 81.
  • the body 8 has a generally cylindrical shape. Inside the latter, and coaxially, is mounted a set of exchanger elements according to the invention, for example four elements referenced l a, l b, l e and l d.
  • the element 1 placed on the side of the device 9 is placed against the inlet wall of the body 8. At the other end, the interior space of the exchanger is closed off by a partition 89.
  • the hot gases arrive inside the exchanger, and are divided into gas blades which cross the interstices of the different elements 1, as symbolized by the arrows j_l.
  • the heat is thus transferred from the gases to the liquid circulating inside the exchanger.
  • the cooled gases then pass through the annular space situated outside the exchanger and exit the device through the flange 81 (arrows 12).
  • the device comprises two heat exchangers 1, 1 ', each formed of a stack of three elements according to the invention.
  • the two exchangers are arranged parallel to each other inside the same body 8.
  • the hot gases 30 leaving the device 9 firstly penetrate inside the exchanger 1. They s 'escape radially from the inside to the outside of it (arrows 31). They then pass through the exchanger 1 ′, this time from the outside to the inside (arrows 32) to then be evacuated (arrows 33).
  • the two exchangers are connected in series, the water circulating in the opposite direction to the gases, that is to say passing first through element 1 'then element 1.
  • the device illustrated in FIG. 23 consists of a parallel mounting of two devices similar to that of FIG. 21.
  • the device comprises two exchangers 1 "each composed of a stack of elements in accordance with the invention.
  • the gas flow hot KO leaving the device 9 is subdivided into two flows K l which are each brought inside a 1 "exchanger.
  • the hot air passes through the interstices separating the turns of each exchanger from the inside to the outside (arrows K2).
  • the cooled gases are grouped together to escape from the device by the flange 81 (arrow K3).
  • different configurations providing series and / or parallel mounting of several exchangers can be provided, depending on the required heat exchange characteristics and the space available at the outlet of the device 9.
  • FIG. 24A there has been shown in FIG. 24A an arrangement according to which the end portions 14, 14 ′ are located directly above each other and intersect at right angles.
  • the bosses 12, which calibrate the spacing between the turns, do not necessarily have a radial arrangement.
  • bosses 12 ' arranged obliquely, that is to say forming an acute angle u_ relative to the radial direction.
  • the bosses 12 "have an arcuate shape and their general direction is also slightly inclined relative to the radial direction, in the manner of the fins of a turbine.
  • Such an arrangement of the bosses has the effect of orienting the flow of air escaping from the interstices between the turns, and of forming a vortex capable, under certain conditions, of improving the mixing and circulation of gases.
  • a series of bosses 12a, 12b is provided on each of the two flat faces of the turns. This arrangement can be advantageous if it is desired that the distance between the turns is relatively large.
  • the heat exchanger element is a double pitch element, formed by the interweaving one into the other of two similar windings 1, 1 '. In such an arrangement, which remains within the framework of the present invention, each turn of one of the elements is located opposite a turn of the other element.
  • the embodiment of Figures 28 and 28A comprises two elements according to the invention which are coaxial.
  • the outer element 1E has turns 10E whose winding diameter is greater than that of the turns 10J_ of the inner element IL,
  • the end turns of the outer element 1J_ have wall recesses 16E sufficiently wide to allow the sections 14E and 14j_ of the two elements 1E and H. to pass respectively.
  • the two elements can advantageously be welded to one another.
  • the advantage of such an arrangement is that the heat exchange surface is further increased.
  • Element 1 which is the subject of the variant shown in Figures 29 and 30 differs essentially from that of Figure 1 by the fact that the main axes of the straight sections (flattened and oval) of the turns 10 are not perpendicular to the axis XX 'of the winding, but form an acute angle _y_ with the latter. In the example shown, this angle v_ is equal to 45 °.
  • the wall of the tube carries corrugations 12 (not shown in FIGS. 30 and 30A so as not to burden them unnecessarily) which serve as spacers calibrating the spacing (h) between turns, which is significantly smaller than the thickness (e) of the crushed tube (see Figure 30A).
  • FIG. 31 shows the section of the half-dies 2 "which can be used to shape the starting helical tube 100 in order to obtain such a configuration. They have a thin annular part 20" of flat section and conical shape, whose half-angle at the top is equal to v. Of course, the part 20 "carries imprints (not shown) corresponding to the corrugations that it is desired to form.
  • the heat exchanger 8 ' shown in Figure 32 whose axis XX' has a vertical arrangement, uses six elements conforming to that of Figures 29 and 30, mounted coaxially (along XX ') and connected in series.
  • the four upper elements l a, l b, le, l d have turns whose taper diverges downwards.
  • the two lower elements le, lf have an inverted conicity (angle at the top directed downwards).
  • a sheet metal piece 83 'interposed between the two series of elements ensures their perfect positioning at the place of their taper reversal.
  • the exchanger shown equips a gas boiler which comprises a cylindrical burner 80 'with surface combustion, arranged coaxially within the series of upper elements (la, lb, le, ld).
  • the outer wall of the exchanger is referenced 800 '.
  • the fluid to be heated for example water, flows through the elements from bottom to top, that is to say in the following order: lf, le, ld, le, lb, l a.
  • the air / gas mixture A + G is brought from above to the inside of the burner 80 ′, the combustion taking place on the external surface of the latter.
  • the burnt and hot gases escape radially outwards, as symbolized by the arrows L1.
  • FIG. 32 shows how the arrangement with inverted conicities of the elements la, lb, le, ld on the one hand and le, lf on the other hand naturally directs and channels the flow of hot gases, as well as the condensates, from top to bottom inside the exchanger.
  • the exchanger elements according to the invention can find different applications, the fluid circulating inside the element not necessarily being a liquid, and the external fluid not necessarily being a gas.

Abstract

Cet élément échangeur de chaleur consiste en un tube enroulé en hélice (1) dans lequel est destiné à circuler un fluide caloporteur, cet élément possédant une section droite aplatie et ovale dont le grand axe est sensiblement perpendiculaire à l'axe (XX') de l'hélice ou forme un angle aigu par rapport à ce dernier, chaque spire (10) du tube possédant des faces planes (11) qui sont écartées des faces de la spire adjacente d'un interstice de hauteur (h) constante, sensiblement plus faible que l'épaisseur de la section droite aplatie du tube, et il est prévu des entretoises (12) qui calibrent l'espacement entre spires. Echange thermique entre deux fluides.

Description

ELEMENT ECHANGEUR DE CHALEUR, PROCEDE ET DISPOSITIF POUR LE FABRIQUER
La présente invention concerne un élément échangeur de chaleur. Elle a également pour objet le procédé de fabrication de cet élément ainsi que le dispositif servant à le fabriquer. Enfin, l'invention a également pour objet un échangeur ou un récupérateur de chaleur utilisant ce type d'élément.
Un élément échangeur de chaleur est traditionnellement formé d'un ou de plusieurs tubes à l'intérieur desquels circule un premier fluide caloporteur, par exemple de l'eau. En fonctionnement, l'élément est exposé à l'action thermique d'un second fluide caloporteur, par exemple de l'air ou des gaz de combustion. La fonction de l'élément est de transférer de la chaleur de l'un des deux fluides à l'autre.
Ainsi, par exemple, dans le cas d'une chaudière à gaz, la fonction de l'élément échangeur est de réchauffer de l'eau circulant dans les tubes à partir des gaz chauds résultant de la combustion d'un brûleur à gaz.
Dans le cas d'un radiateur automobile, la fonction de l'élément échangeur est de refroidir l'eau du moteur à partir de l'air froid extérieur, lequel est propulsé par le ventilateur sous forme d'un vent contre l'élément. Dans toutes les applications, on recherche le rendement le meilleur possible, ceci avec un prix de revient et sous un encombrement qui soient, au contraire, les plus faibles possibles.
Pour obtenir un échange de chaleur important entre les fluides situés à l'extérieur et à l'intérieur des tubes, il est nécessaire d'avoir une surface de transfert thermique la plus grande possible. Ceci conduit généralement à utiliser des tubes très longs, repliés en serpentin, sur lesquels on vient parfois fixer des ailettes (plaques planes). Malheureuse¬ ment, un tel agencement va à rencontre à la fois de la compacité et du prix de fabrication, car la pose et la fixation - généralement par soudure - des ailettes sur les tubes est une opération longue et coûteuse. Il a été proposé par ailleurs, par le document FR-A-2 476 808, d'entourer un brûleur radial d'une nappe de tubes rectilignes, disposés selon les génératrices d'un cylindre coaxial au brûleur. Ces tubes sont fixés à chacune de leurs extrémités à des caissons collecteurs d'eau. Les tubes ont une section oblongue, aplatie, dont le grand axe s'étend radialement par rapport à l'axe du brûleur. Ces tubes sont espacés les uns des autres d'un interstice qui laisse passer les gaz de combustion, mais constitue une barrière antidéflagration.
Si cette disposition possède probablement l'avantage d'assurer un transfert thermique convenable des gaz de combustion au liquide circulant dans les tubes, elle ne résoud cependant pas le problème lié au coût de fabrication, dans la mesure où il est nécessaire de souder chacun des tubes, à ses deux extrémités, aux caissons collecteurs.
L'abrégé de brevet japonais N° 63 220 091 concerne un élément échangeur de chaleur qui consiste en un tube enroulé en hélice dans lequel circule un fluide caloporteur. Le tube possède une section droite aplatie et ovale, dont le grand axe est perpendiculaire à l'axe de l'hélice, on forme un angle aigu par rapport à ce dernier. Ce dispositif réalise un échange thermique entre un fluide extérieur au tube, notamment de l'air circulant radialement de l'extérieur vers l'intérieur de l'enroulement, et le fluide intérieur.
Ce document ne donne cependant pas d'information sur les dimensions relatives d'épaisseur du tube et de hauteur d'interstice entre les spires de l'enroulement. Il ne contient pas non plus d'indication sur la constance de la hauteur d'interstice.
Or, il est essentiel pour obtenir un échange thermique réellement performant, d'une part que la hauteur d'interstice soit très faible par rapport à l'épaisseur de la spire, et d'autre part que cette hauteur soit parfaitement calibrée et constante tout au long de l'enroule- ment. A défaut l'écoulement du fluide extérieur n'est pas uniforme, et le transfert thermique est mauvais car non homogène.
Le principal objectif de l'invention est de pallier ces inconvénients, en proposant un élément échangeur de chaleur qui soit à la fois extrêment performant sur le plan du rendement, qui soit d'un prix de revient faible, pouvant être fabriqué facilement en grande série, tout en étant extrêmement compact.
Un autre objectif de l'invention est de prévoir un élément qui puisse aisément être associé à d'autres éléments identiques ou similaires, de manière à pouvoir faire face à tous les besoins de la clientèle, aussi bien sur le plan de l'encombrement que celui de la capacité de transfert thermique.
L'élément échangeur de chaleur selon l'invention consiste en un tube en matériau thermiquement conducteur, par exemple métallique, enroulé en hélice, dans lequel est destiné à circuler un fluide caloporteur, cet élément possédant une section droite aplatie et ovale dont le grand axe est sensiblement perpendiculaire à l'axe de l'hélice ou forme un angle aigu par rapport à ce dernier, chaque spire du tube possédant des faces planes qui sont écartées des faces de la spire adjacente d'un interstice de hauteur constante.
Conformément à l'invention, la hauteur de l'interstice séparant deux spires adjacentes est sensiblement plus faible que l'épaisseur de ladite section droite, et l'espacement entre deux spires voisines est calibré au moyen d'entretoises. De préférence, l'épaisseur du tube aplati est de 3 à 10 fois plus grande que l'épaisseur de l'espace entre spires. Ainsi, le fluide qui s'écoule entre les spires affecte la forme d'une lame de faible épaisseur, qui lèche les grandes faces du tube au cours de son passage, avec transfert thermique efficace. Par ailleurs, la présence des entretoises calibre écartement inter-spires, assurant un caractère rigoureusement constant de l'épaisseur de cette lame de fluide en toute zone de passage de l'élément, ce qui est essentiel sur le plan du rendement thermique.
Ainsi un premier rôle des entretoises est d'assurer une constance de la transparence de l'élément échangeur. Un second rôle - non des moindres - est de prévenir les déformations de paroi du tube aplati pouvant résulter de variations sensibles de la pression interne.
Par ailleurs, selon un certain nombre de caractéristiques additionnelles possibles, mais non limitatives de cet élément :
- ces entretoises sont des bossages, ou corrugations, formées dans la paroi du tube, sur l'une au moins des faces planes ; - lesdits bossages s'étendent radialement par rapport à l'axe de l'hélice ;
- les deux extrémités du tube se prolongent tangentiellement par des tronçons se raccordant à des portions formant embouts cylindriques ;
- les faces planes externes de ces spires d'extrémité sont situées sensiblement dans des plans parallèles entre eux, et perpendiculaires à l'axe de l'hélice.
Ainsi, grâce à la disposition ci-dessus, on peut empiler plusieurs éléments à la suite les uns des autres, coaxialement, et l'interstice séparant deux élément possédera les mêmes caractéristiques, quant à leur hauteur, que les interstices entre deux spires d'un même élément.
Dans un mode de réalisation, le bord interne des spires est bosselé, pour réaliser une turbulence du fluide avant leur passage entre les spires, ce qui a pour effet d'augmenter encore la qualité d'échange de la chaleur.
La fabrication d'un tel élément se fait, conformément au procédé selon l'invention, de la façon suivante : a) on cintre hélicoîdalement un tube cylindrique ; b) on le remplit d'un fluide ; c) on écrase la paroi du tube de manière à lui donner une section aplatie et ovale, dont le grand axe est sensiblement perpendiculaire à l'axe de l'hélice, tout en réduisant simultanément le pas de cette hélice ; d) on maintient, durant l'étape c), le fluide contenu dans le tube à une pression sensiblement constante et contrôlée, de manière à empêcher l'affaissement de sa paroi.
De préférence, on utilise à l'étape c) décrite ci-dessus, des matrices de formage qui possèdent, en creux, des empreintes de forme complémentaire des bossages, ou corrugations, destinés à jouer le rôle d'entretoise entre les spires et, à la fin de l'opération, on soumet le fluide contenu dans le tube à une pression élevée pour forcer sa paroi à épouser la forme de ces empreintes.
Un dispositif pouvant être utilisé pour mettre en oeuvre ce procédé, dispositif qui fait également partie de la présente invention, comprend : une presse comportant une semelle fixe et un plateau mobile ;
- des moyens d'actionnement servant à déplacer le plateau mobile par rapport à la semelle fixe ; - deux ensembles de demi-matrices complémentaires, de forme générale semi-circulaire, aptes à venir se positionner entre les spires du tube à former, ces deux ensembles étant positionnés, en position de travail, entre la semelle fixe et le plateau mobile.
Selon un certain nombre de caractéristiques avantageuses, mais non limitatives :
- l'un de ces ensembles est mobile en bloc et peut être écarté de la presse en vue de la mise en place du tube à former, et - en fin d'opération - de l'enlèvement du tube formé ;
- ces demi-matrices possèdent des faces planes servant à l'écrasement du tube, ces faces étant inclinées (en cours de formage) par rapport à un plan perpendiculaire à l'axe de l'hélice ;
- les demi-matrices constitutives de chaque demi-ensemble sont guidées les unes par rapport aux autres au moyen de colonnes ;
- ces colonnes passent dans des trous allongés formés dans les matrices, qui autorisent leur inclinaison latérale ;
- le dispositif comporte des vérins servant à écarter les demi-matrices les unes des autres ;
- le dispositif comporte des moyens servant à obturer de manière étanche les deux extrémités du tube au cours du formage, et à y introduire un fluide sous très forte pression.
Dans un mode de réalisation possible d'un échangeur de chaleur utilisant au-moins un élément conforme à l'invention, ce dernier est disposé au voisinage du brûleur dans une position telle que les gaz de combustion passent dans les interstices séparant ses spires. Dans un perfectionnement de ce type d'échangeur, il comporte plusieurs éléments selon l'invention, dont l'un au moins est traversé par les gaz de combustion de l'intérieur vers l'extérieur, tandis qu'un autre élément au moins est traversé par ces gaz en sens inverse. L'invention a également pour objet un récupérateur de chaleur pour chaudière, qui comporte au moins un élément seion l'invention, dans lequel circule de l'eau à réchauffer, et qui est exposé au flux des gaz brûlés (et chauds) s'échappant de la chaudière. D'autres caractéristiques et avantages de l'invention apparaî¬ tront de la description et des dessins annexés qui en présentent des modes de réalisation préférentiels.
Sur ces dessins :
- la figure 1 est une vue générale, en perspective et avec arrachement partiel dans l'une des spires, d'un élément conforme à l'invention ;
- la figure 2 est une vue de côté de l'élément de la figure 1 ;
- la figure 3 est une vue de détail montrant la juxtaposition de deux spires constitutives de l'élément, ces deux spires étant coupées transversalement par le plan III— III de la figure 4 ;
- la figure est une vue de côté partielle des spires de la figure 3 ;
- la figure 5 est une vue de côté d'un tube rond (de section circulaire) préformé en hélice, à partir duquel est fabriqué l'élément ; - la figure 6 est une vue en perspective d'une demi-matrice de formage "standard" qui est mise en oeuvre pour la fabrication de l'élément ;
- la figure 7 est une coupe transversale et radiale de la matrice de la figure 6 ; - la figure 8 est une demi-matrice particulière, intervenant dans le formage de l'une des spires d'extrémité de l'élément ;
- la figure 9 est une vue de face schématique, partiellement coupée, du dispositif de formage de l'élément ;
- la figure 10 est une vue schématique, avec arrachement partiel, de l'ensemble mobile de demi-matrices ;
- la figure 1 1 représente , vu dans le plan de séparation des deux ensembles de demi-matrices, l'un de ces ensembles à l'intérieur de la presse, celle-ci étant en position fermée, mais à vide (c'est-à-dire en l'absence d'un tube) ; - les figures 1 1A et 1 1B sont des vues schématiques, respectivement de dessus et en coupe transversale selon le plan B-B de la figure 1 1A, du montage d'une demi-matrice sur des colonnes de guidage, ce montage autorisant une légère inclinaison latérale de la matrice ; - la figure 12 est une vue en coupe du dispositif servant à introduire, de manière étanche, un fluide à l'intérieur du tube au cours du formage ;
- la figure 13 est une vue schématique montrant un tube en cours de préformage sur un mandrin d'enroulement du tube ; - la figure 14 représente la presse en position ouverte, un tube préformé ayant été introduit dans celle-ci avant l'opération de formage ;
- les figures 15, 15A, 1 5B, 15C représentent la paroi du tube, entre deux matrices, au cours des différentes étapes du formage ;
- la figure 16 est une coupe montrant, partiellement, le dispositif de la figure 12 en cours d'opération ;
- la figure 16A est une vue en bout de l'une des extrémités du tube constitutif de l'élément formé ;
- la figure 17 est une vue similaire à la figure 14, montrant la presse ouverte, en fin de formage ; - la figure 18 représente, en coupe axiale, un échangeur de chaleur de chaudière à gaz équipée d'un brûleur et comportant plusieurs éléments similaires à celui de la figure 1 ;
- les figures 19 et 20 montrent schématiquement des variantes de conception de cet échangeur de chaleur ; - la figure 21 est une vue schématique montrant un récupérateur de chaleur utilisant des éléments conformes à l'invention ;
- les figures 22 et 23 sont des variantes possibles du récupérateur de chaleur ;
- les figures 24 et 24A sont des vues de dessus schématiques de deux echangeurs conformes à l'invention, montrant deux dispositions possibles des portions d'extrémité de l'échangeur ;
- les figures 25 et 25A montrent des variantes possibles quant à la forme et la disposition des corrugations prévues sur la face plane d'une spire ; - la figure 26 est une coupe transversale de deux spires adjacentes, dans un mode de réalisation selon lequel les deux faces planes de chaque spire sont pourvues de bossages formant entretoises ;
- la figure 27 représente, en coupe axiale, un échangeur à double enroulement, composé de deux éléments dont les spires sont imbriquées les unes dans les autres ;
- la figure 28 est une vue de dessus schématique d'un ensemble formé de deux éléments concentriques ;
- la figure 28A est une vue de côté partielle (une seule spire) de l'ensemble de la figure 28 ;
- la figure 29 est une vue de dessus d'une variante de l'élément de la figure 1 ;
- la figure 30 est une vue schématique en coupe de l'élément de la figure 29, selon le plan de coupe XXX-XXX de cette figure ; - la figure 30A est un détail en coupe de deux spires adjacentes ;
- les figures 31 et 31A sont des vues de détail schématiques montrant l'outillage et illustrant l'opération de formage qui permet de réaliser l'élément de la figure 29 ; - la figure 32 représente schématiquement un échangeur de chaleur qui comporte plusieurs éléments conformes à celui de la figure 29.
L'élément échangeur de chaleur 1 représenté sur les figures 1 à 4 est constitué d'un tube de section ovale et aplatie enroulé en hélice de telle manière que le grand axe de sa section droite soit sensiblement perpendiculaire à l'axe XX' de l'hélice. Ce tube est de préférence en métal, par exemple en acier inoxydable. Il est constitué d'un certain nombre de spires 10, par exemple au nombre de quatre, dont les grandes faces planes, référencées 1 1, sont écartées des faces de la spire adjacente d'un interstice de hauteur constante. Cette hauteur est sensiblement inférieure à l'épaisseur des spires plates. Les portions d'extrémité 14, 14' du tube, rectilignes, s'étendent tangentiellement vers l'extérieur, et se terminent par des embouts cylindriques 15, 1 '. La transition entre les parties aplaties 14 et les embouts cylindriques 15 se fait de manière progressive. Chaque spire porte, sur l'une de ses faces plates, des bossages (ou corrugations) 12 formés dans la paroi du tube, disposés sensiblement radialement par rapport à l'axe XX'. Chaque bossage 12 vient en appui contre la face plane (non munie de bossages) de la spire adjacente. Ces bossages ont une hauteur bien déterminée qui servent d'entretoises, calibrant de manière précise la hauteur des interstices séparant les spires.
De manière similaire, les bossages 12 se trouvant sur l'une des spires extérieures de l'enroulement, sont destinés à venir s'appliquer contre la spire à face plane lisse d'un autre élément, lorsqu'on associe, en les empilant coaxialement, plusieurs éléments identiques ou similaires.
Selon une caractéristique importante de l'invention, les faces externes des deux spires extérieures de l'enroulement sont situées sensiblement dans des plans P, P' (voir figure 2) qui sont parallèles entre eux et perpendiculaires à l'axe XX'. Grâce à cet arrangement, il est possible d'empiler coaxialement plusieurs éléments en conservant un espacement constant de l'ensemble des spires, qu'elles appartiennent ou non au même élément. Bien entendu, cet arrangement suppose une variation progressive de l'épaisseur des spires extérieures de l'enroulement, comme cela est visible notamment à la figure 2. Par ailleurs, pour obtenir cette planéité, un renfoncement 16 doit être prévu dans la partie la plus épaisse des spires d'extrémité, de manière à laisser passer les parties d'extrémité 14, 14'.
Des points de soudure, par exemple des brasures 17, sont avantageusement prévues à la périphérie de l'enroulement pour maintenir celui-ci dans un état de légère compression axiale, ce qui assure l'application correcte de l'ensemble des spires les unes contre les autres.
De préférence, le bord interne des spires présente une paroi bosselée de manière régulière, ces bossages étant destinés à perturber l'écoulement du fluide passant entre les spires afin d'améliorer l'échange thermique, comme cela sera expliqué plus loin.
Il est bien entendu possible, si on le souhaite, de supprimer les embouts cylindriques d'extrémité 15 et 15', par exemple par sciage comme cela est symbolisé à la figure 1 par les traits mixtes forts S et S'. L'élément qui vient d'être décrit est par exemple réalisé à partir d'un tube en acier inoxydable ayant un diamètre de 18 mm, une épaisseur de paroi de 0,5 mm, et qui est préformé en hélice, comme représenté à la figure 5, cette hélice ayant un diamètre d'enroulement moyen de 210 mm et un pas de 25 mm environ.
On obtient alors un élément, toujours enroulé en hélice, mais de pas nettement plus faible, de l'ordre de 6 à 6,5 mm. Le diamètre moyen de l'enroulement reste inchangé (de l'ordre de 210 mm). La largeur des spires 10, référencées J_ à la figure 3, est de l'ordre de 24 mm. Leur épaisseur est de l'ordre de 5 à 6 mm. La hauteur h de l'interstice séparant les spires, qui correspond aussi à la hauteur des bossages 12, est de l'ordre de 0,5 à 1,5 mm.
Il va de soi que ces différentes caractéristiques dimensionnelles sont très variables ; elles seront adaptées aux caractéristiques fonctionnelles requises pour l'élément échangeur de chaleur, notamment en ce qui concerne sa capacité d'échange de chaleur et son encombrement.
Comme déjà dit, l'enroulement 100 représenté à la figure 5 est réalisé à partir d'un tube cylindrique préformé en hélice. On a désigné par 101 et 101 ' ses parties rectilignes d'extrémité, qui s'étendent tangentiellement par rapport à l'hélice et sont destinées à constituer les extrémités 14, 15 et respectivement 14', 15' de l'élément. On a désigné par la référence 102 les spires de l'enroulement 100. De préférence, le bord interne du tube est bosselé, de manière à présenter des segments d'anneaux 103 correspondant à des corrugations de la paroi du tube. De manière particulièrement simple, ce bossellement 103 peut être obtenu en enroulant le tube sur un mandrin de diamètre légèrement trop petit par rapport à l'enroulement que l'on souhaite obtenir. Il y a ainsi une surcompression circonférentielle régulière de la portion interne de la paroi au cours du cintrage en hélice du tube. Les figures 6 et 7 représentent une demi-matrice "standard" destinée à être utilisée pour la mise en forme de l'élément, en association avec d'autres demi-matrices identiques ou similaires. Elle est destinée à réaliser la mise en forme d'une demi-spire intermédiaire. La demi-matrice 2 représentée a une forme générale semi-circulaire. Elle possède une partie externe semi-annulaire 20, de section rectangulaire, qui se prolonge vers l'intérieur par une autre partie annulaire 21 de plus faible épaisseur. Les faces supérieure et inférieure 24 de la partie 21 sont planes. Ce sont elles qui vont servir à l'écrasement du tube, afin de lui donner une forme aplatie, comme cela sera expliqué plus loin.
Dans l'une des faces 24, en l'occurence dans la face inférieure lorsque la demi-matrice 2 se trouve en position de travail, sensiblement horizontale, est creusée une série de renfoncements radiaux dont la forme est complémentaire de celle des bossages 12 que l'on souhaite réaliser dans la paroi de l'élément.
La partie 21 de plus faible épaisseur se raccorde à la partie semi-annulaire extérieure 20 par un rebord 23. Dans la partie 20 sont percés des trous 22 qui, comme on le verra plus loin, sont destinés à recevoir des colonnes de guidage. Ces trous sont légèrement allongés, formant des lumières dont le grand axe est parallèle au plan diamétral constituant la face de joint 29 de la demi-matrice. Les extrémités des trous allongés 22 sont semi-cylindriques. La demi-matrice 2' représentée à la figure 8 est similaire à celle qui vient d'être décrite, et c'est pourquoi les éléments correspondants ont été affectés du même signe de référence, mais avec l'indice prime ('). Il s'agit de la matrice inférieure de l'un des deux ensembles de demi-matrices qui sera décrit plus loin, et plus précisément de l'ensemble mobile. Cette demi-matrice sert au façonnage de l'une des extrémités de l'enroulement, extrémité qui comprend un tronçon rectiligne et un embout cylindrique. Pour cela, la face de la partie centrale 21 ' qui sert à l'écrasement du tube s'étend seulement sur un quart de circonférence et se prolonge par une portion rectiligne 25'. Cette dernière débouche au niveau de la partie 20' dans une cavité semi-cylindrique 26'. Bien entendu, la demi-matrice destinée à coopérer avec la demi-matrice 2' présente, sur sa face inférieure, une configuration complémentaire, et notamment une partie à gorge semi-cylindrique venant pénétrer dans la partie 26' pour constituer un canal circulaire venant s'adapter contre la portion d'extrémité du tube, et la contenir au cours du formage, comme cela sera expliqué plus loin.
Le dispositif représenté à la figure 9, référencé 3, consiste en une presse hydraulique comportant une semelle fixe horizontale 30 portée par un bâti 31 , ainsi qu'un plateau mobile 32 ; ce dernier est également disposé horizontalement, au-dessus de la semelle 30. Il est fixé à une platine 340 montée à l'extrémité de la tige 34 d'un vérin hydraulique 33. Ce dernier est monté sur un élément 310 du bâti fixe. Le vérin 33 est un vérin à double effet, relativement puissant, dont l'extension provoque l'abaissement du plateau 32 et son rapprochement par rapport à la semelle 30 (fermeture de la presse) tandis que sa rétraction provoque la remontée du plateau 32 (ouverture de la presse).
L'outillage associé à cette presse comporte essentiellement deux ensembles de demi-matrices 2A et 2B du type décrit précédemment. Le premier ensemble 2A est fixe et monté à demeure entre la semelle 30 et le plateau 32. L'autre ensemble 2B est mobile. Il est fixé sur un chariot 4, par exemple monté sur des galets, qui peut être déplacé en translation au moyen d'un vérin pneumatique ou hydraulique à double effet 40, dont la tige est reliée par une pièce de liaison 41 au chariot 4. A la figure 9, on a artificiellement représenté l'ensemble mobile dans les deux positions extrêmes qu'il peut occuper, la position de travail à l'intérieur de la presse et une position écartée - référencée 2B' - qui, comme on le verra plus loin, permet de mettre en place le tube à former, puis de retirer l'élément formé. Dans son mouvement, le chariot 4 est supporté par un guide 42 horizontal. A la figure 9, on a représenté en traits mixtes l'élément 41 et la tige du vérin 40 quand celle-ci se trouve en position d'extension, ensemble 2B' écarté de la presse.
Lorsque l'ensemble 2B se trouve à l'intérieur de la presse, les demi-matrices composant cet ensemble viennent s'appliquer par leurs faces d'appui 29 (voir figures 6-7) contre les matrices 2 de l'autre ensemble, formant alors un ensemble unique à matrices circulaires, qui décrivent un évidement interne en hélice, car en fait chaque demi-matrice supérieure a un côté 29 en appui avec la demi-matrice inférieure, et ainsi de suite. Chaque ensemble de demi-matrices est guidé en translation, en direction verticale, par des tiges verticales - ou colonnes - 200. Il est par exemple prévu trois colonnes de guidage par ensemble, régulièrement réparties. Toutefois, dans un but de meilleure lisibilité des figures, seule une colonne 200A, respectivement 200B a été représentée à la figure 9 pour chacun des ensembles 2A, respectivement 2B. Ces colonnes sont fixées à leur extrémité basse dans la demi-matrice inférieure de chaque ensemble. Elles pénètrent par leur extrémité haute dans des alésages formés dans le plateau mobile 32 de la presse. L'amplitude de soulèvement du plateau mobile 32 est suffisante pour qu'il puisse se dégager complètement de ces colonnes, de sorte que l'enlèvement de l'ensemble 2B est possible, comme cela se comprend aisément à la simple observation de la figure 9.
Il faut noter que les deux demi-matrices supérieures, qui servent à former l'une des extrémités de l'élément, consistent en une pièce unique 2" fixée à demeure au plateau 32. La moitié de cette matrice 2" qui vient en correspondance avec les demi-matrices constitutives de l'ensemble mobile 2B possède des empreintes similaires à celle de la partie 2' qui a été décrite en référence à la figure 8, car elle sert à former l'extrémité supérieure de l'élément, et notamment l'embout d'extrémité cylindrique. Lorsque le plateau mobile 32 est en position haute, les matrices 2A peuvent être écartées les unes des autres à l'aide d'une série de vérins appropriés, non représentés. Ainsi, il est par exemple prévu trois vérins pneumatiques, régulièrement répartis à la périphérie du jeu de demi-matrices, et venant actionner la demi-matrice 2A supérieure. Des éléments de liaison entre les demi-matrices, tels que des tirants, sont prévus pour que le soulèvement de la matrice supérieure entraîne corrélativement, et successivement, le soulèvement de chacune des matrices, ceci avec un écartement bien déterminé. Une telle disposition évite d'avoir recours à un jeu de vérins pour chaque demi-matrice. Une disposition similaire, schématiquement représentée à la figure 10, est prévue pour soulever les demi-matrices 2B de l'ensemble mobile. Ce soulèvement est réalisé à l'aide d'un vérin 43 dont la tige verticale (non représentée) est fixée au chariot 4. Le corps du vérin est fixé à la matrice 2B supérieure. Celle-ci entraîne, par l'intermédiaire d'une 14
pièce de liaison 290, la demi-matrice située en-dessous, mais non la demi-matrice mobile la plus basse, située juste au-dessus de la demi- matrice fixe 2'. En effet, celle-ci est déplacée par un jeu de vérins 44 indépendamment des autres, pour une raison qui sera expliquée plus loin. Les demi-matrices inférieure et supérieure se trouvent en appui respectivement contre la semelle 30 et contre le plateau 32 par des faces planes horizontales, perpendiculaires à la direction de travail de la presse. Ces demi-matrices ont une forme légèrement biseautée, de sorte qu'elles viennent s'appliquer contre les autres demi-matrices selon des plans inclinés latéralement, comme cela est visible à la figure 1 1. C'est cette inclinaison qui permet de respecter le pas de l'hélice. Cette disposition vaut bien entendu pour les deux ensembles de demi-matrices, mais dans des sens contraires. Cette faculté de s'incliner, symbolisée par la flèche G à la figure 11B, résulte de la forme allongée des trous 22 dans lesquels s'engagent les colonnes 200. Il est par contre important que les demi- matrices ne puissent pas s'incliner dans l'autre direction, afin que les demi-matrices des deux ensembles restent bien accolées les unes contre les autres, par leur face de joint, au cours de l'opération de formage.
Le dispositif 5 représenté à la figure 12 comprend essentiel- lement un corps 50, de forme générale cylindrique, et un cylindre pneumatique 51 coaxial au corps 50 auquel il est fixé. Suivant l'axe de l'ensemble 50-51 peut coulisser une tige 52 solidaire d'un piston 521 se déplaçant à l'intérieur du cylindre 51 , et dont l'extrémité libre porte une tête 520, également cylindrique, susceptible de s'emmancher sans jeu à l'intérieur de l'extrémité 101 du tube à former. La tige 52 est traversée par un alésage central 522 qui est branché par des moyens appropriés à un conduit 56 relié à une centrale hydraulique H à pression élevée, par l'intermédiaire d'une valve de commande 560. Le piston 52 1 est à double effet, et des conduits appropriés 57, 57', qui sont branchés à une valve de distribution 570 permettent d'amener de l'air comprimé d'un côté ou de l'autre du piston, à partir d'une source d'air comprimé AC. La valve 570 est conçue pour mettre la chambre située d'un côté du piston à la pression atmosphérique lorsque l'autre chambre est sous pression, et vice-versa. La tête 520 est entourée par une partie 54 en forme de manchon, formant partie intégrante du corps 50, l'espace 55 séparant la paroi de la tête 520 de la paroi interne de ce manchon correspondant à l'épaisseur de paroi du tube. Dans l'espace 55, en arrière de la tête 520 sont prévus des joints d'étanchéité. Il s'agit de bagues déformables 53, susceptibles de se déformer radialement par suite du recul de la tige 52.
Les demi-matrices 2' et 2B destinées au façonnage de l'une des portions d'extrémité de l'élément, qui sont également partiellement représentées à la figure 12, présentent des empreintes qui comportent des portions complémentaires semi-cylindriques 260, 260' aptes à venir s'appliquer contre la paroi extérieure du manchon 54. Les empreintes 26, 26' sont destinées à contenir la paroi externe du tube, dans sa portion cylindrique et dans sa portion de raccordement avec la partie plate, en cours du formage. Comme déjà dit, les empreintes 28 servent à former les bossages dans la paroi du tube.
Le préformage en hélice du tube cylindrique est illustré à la figure 13. Cette mise en forme se fait de manière classique, à froid, sur un mandrin 6 de forme générale cylindrique, porté par un axe 60 rotatif, comme cela est symbolisé par la flèche F. Dans la paroi du cylindre 6 est ménagée une gorge hélicoïdale 61 , de section semi-cylindrique. Son rayon correspond au rayon du tube. Le pas de la gorge correspond au pas de l'enroulement tubulaire 100 que l'on souhaite obtenir. L'une 101 des portions d'extrémité du tube est rendue solidaire du mandrin rotatif 6, et le tube est guidé par des moyens appropriés sur le mandrin. Après mise en forme, l'enroulement est extrait par dévissage, c'est-à-dire mise en rotation en sens inverse du mandrin tandis que le tube est immobilisé.
Nous allons maintenant expliquer, en nous référant plus particulièrement aux figures 14 à 17, de quelle manière on fabrique un élément échangeur conforme à l'invention à partir de ce tube préformé en hélice.
La presse et son outillage sont amenés tout d'abord à l 'état représenté à la figure 14, presse ouverte (vérin 33 rétracté) et ensemble mobile de demi-matrices écarté de la presse (vérin 40 en extension). Les vérins 43 et 44 sont en extension de sorte que l'ensemble des demi-matrices 2B se trouvent en position d'ecartement mutuel ; de même les vérins assurant écartement des demi-matπces 2A sont en extension.
Dans cet état d'ecartement des matrices, dont la hauteur correspond sensiblement au pas de l'enroulement 100, il est possible de mettre en place ce dernier à l'intérieur de l'ensemble des demi-matrices mobiles, comme illustré à la figure 14. Chaque spire vient s'insérer entre deux demi-matrices. La spire la plus basse s'insère entre la matrice spéciale 2' et une matrice standard. La spire supérieure reste dégagée. Dans cette position, les parties d'extrémités rectilignes 101 et 101 ' du tube (non représentées) dépassent latéralement du jeu de matrices, de part et d'autre de celui-ci, transversalement par rapport au plan de la figure 14. L'opérateur met alors en place sur chacune de ces parties 101 , 101 ' un dispositif 5 d'obturation et d'amenée de fluide. Pour cela il engage chacun des dispositifs sur l'extrémité de tube de telle manière que cette extrémité vienne s'emmancher autour de la tête 520, à l'intérieur de la partie 54 en forme de manchon. Le chariot 4 possède des moyens non représentés de retenue du dispositif 5 en direction axiale, après son emboîtement dans le tube. L'étanchéité de la liaison est obtenue par actionnement du piston 521 dans le sens du recul, assurant la compression des joints 53.
Le vérin 40 est ensuite rétracté, afin de déplacer le chariot 4 pour amener l'ensemble mobile des demi-matrices, ainsi que le tube 100 retenu par celui-ci, à l'intérieur de la presse. Durant ce mouvement, les demi-spires non contenues dans les demi-matrices 2B viennent s'insérer entre les demi-matrices 2A. Chaque spire du tube se trouve ainsi parfaitement emprisonnée entre des matrices complètes.
L'aptitude qu'ont les demi-matrices de basculer légèrement en direction latérale (flèche G, figure 1 1B) facilite cette mise en place, les faces de travail 24 des matrices suivant sensiblement le pas de vis de l'hélice.
La presse est alors mise en action, par extension du vérin hydraulique 33, le plateau mobile 32 de la presse s'engageant sur les tiges de guidage 200. Dans le même temps, on introduit un liquide dans le tube. L'un des dispositifs 5 est conçu pour amener ce liquide, par exemple de l'huile ou de l'eau, tandis que l'autre dispositif 5, prévu à l'autre extrémité du tube, autorise l'échappement de l'air initialement présent dans le tube. Le liquide est ensuite emprisonné dans le tube, grâce à des valves appropriées à une pression modérée, par exemple de l'ordre de 10° Pascal ( 10 bars). Une vanne tarée assure que cette pression reste constante pendant toute la première phase du processus.
A la figure 15 on a désigné par la référence L l le liquide, à pression modérée et contrôlée, qui est contenu dans le tube. On notera en observant cette figure la présence entre deux matrices adjacentes, dans les portions annulaires 20, d'une rondelle élastiquement déformable 210. En pratique plusieurs de ces rondelles sont régulièrement réparties sur toute la circonférence des matrices. Elles sont logées dans des gorges circulaires ménagées dans la matrice inférieure. Leur fonction sera expliquée plus loin.
Le mouvement de fermeture de la presse, symbolisé par la flèche Al à la figure 15A, se poursuivant, la paroi du tube 100 se trouve progressivement écrasée entre les faces 24 des demi-matrices. Durant cette opération, la présence du liquide Ll à l'intérieur du tube empêche l'affaissement de la paroi vers l'intérieur du tube, et on obtient une section de tube 100' de forme ovale, possédant deux faces opposées parfaitement planes et deux bords parfaitement arrondis, pratiquement en arc de cercle.
En l'absence du liquide L l , la partie centrale de la paroi se déformerait, et la section prendrait la forme approximative d'un Z. A la fin de cette étape, les deux demi-matrices viennent en butée l'une contre l'autre par les parties externes 20, ce qui limite l'écrasement de la paroi du tube ; au contraire, les bagues élastiques 210 sont complètement écrasées à l'intérieur de leur gorge.
Comme déjà dit, avant cette opération, l'air sous pression a été amené dans le cylindre 51 par le conduit 57', en avant du piston 521 , ce qui a eu pour effet de faire reculer la tête 520 et de comprimer les rondelles d'étanchéité 53. Le liquide ne peut donc pas s'échapper du tube. Il est important qu'au cours du formage les extrémités du tube soient parfaitement contenues entre les demi-matrices et dans le manchon 54, de manière à assurer une transition progressive entre la partie cylindrique (non déformée) et la partie plane (mise en forme) du tronçon d'extrémité. La presse étant maintenue à l'état fermé, on augmente ensuite de manière rapide et importante la pression du liquide contenu dans le tube. Le liquide sous haute-pression est référencé L2 aux figures 15B et 16. A titre indicatif, sa pression est de l'ordre de 6,75 x 107 Pascal (675 bars). On notera que la pression au sein du liquide (symbolisée par des flèches à la figure 16) tend à comprimer fortement les rondelles d'étanchéité 53, le dispositif étant en quelque sorte "auto-étanche". Sous l'effet de cette forte pression, la paroi du tube se déforme au niveau des renfoncements 28, ce qui forme les bossages 12. Il est important de noter que compte-tenu de l'importance de la pression mise en oeuvre, le tube doit être parfaitement contenu sur toute sa longueur et notamment dans cette portion d'extrémité, pour éviter la formation d'hernies, causes de rupture de la paroi. Ceci est particulièrement vrai dans les zones de jonction des embouts cylindriques avec la partie plate du tube.
On fait ensuite tomber la pression du liquide, et on le chasse du tube à l'aide d'air comprimé. Le plateau mobile 32 est alors relevé. Compte-tenu de l'élasticité des rondelles 210, qui se détendent, les matrices s'écartent légèrement l'une de l'autre, comme cela est symbolisé par la flèche A2 à la figure 1 C. La course élastique des rondelles est choisie de telle sorte que écartement mutuel des matrices soit légèrement supérieur à la profondeur des renfoncements 28, ce qui autorise l'extraction du tube formé 100" (flèche A3, figure 15C).
L'ensemble mobile de demi-matrices mobiles est ensuite écarté de la presse, et amené dans la position de la figure 17. Il n'y a pas de difficultés à enlever de la presse la partie d'embout cylindrique 15 de la spire supérieure de la presse, puisque la matrice 2", qui a participé au façonnage de cet embout, est soulevée avec le plateau 32.
La tige du piston 52 est avancée, par amenée d'air derrière le piston 521 de chaque côté du dispositif 5, ce qui permet l'extraction des extrémités de tube de ces dispositifs. Ceux-ci sont enlevés. Le vérin 44 est ensuite mis en extension pour écarter l'avant-dernière demi-matrice 2B de la matrice la plus basse 2'B. Cet écartement est suffisant pour autoriser le passage de l'embout cylindrique 15'. Bien entendu, les vérins 43 ne sont pas actionnés, afin de ne pas déformer les spires du tube formé, dont le pas est sensiblement plus faible que le pas du tube préformé initial.
L'élément 1 peut être retiré manuellement, par un mouvement de translation horizontal. II suffit ensuite de réaliser les points de brasage 17 pour obtenir l'élément fini.
U va de soi que toutes les étapes qui viennent d'être décrites peuvent être facilement mécanisées et pilotées par un automate programmable ; la mise en place du tube avant formage et l'enlèvement du tube formé peuvent être réalisés par un robot manipulateur.
En référence à la figure 18, nous allons maintenant décrire un échangeur de chaleur pour une chaudière équipée d'un brûleur à gaz, qui comporte un certain nombre d'éléments echangeurs de chaleur conformes à l'invention, en i'occurence quatre de ces éléments. L'échangeur 8 représenté sur la figure comprend un brûleur cylindrique 7, d'axe XX', monté à l'intérieur d'un corps creux 8. Ce dernier à une forme générale cylindrique et est pourvu d'un fond 84 présentant une collerette (ou manchette) 80 coaxiale à l'axe du brûleur, par laquelle rentre le mélange de gaz et d'air à brûler. La sortie des gaz brûlés se fait par une collerette (ou manchette) 81 disposée à l'extrémité opposée du corps 8.
Le brûleur 7 est immobilisé contre le fond 84 au moyen d'une bride 83 retenue par des tiges filetées 85. En direction axiale, le brûleur cylindrique 7 a une longueur sensiblement plus faible que la longueur du corps 8. A l'extrémité du brûleur 7 qui est opposé au fond 84 est fixé un disque en céramique 82, également fixé aux tiges filetées 85. Le disque 82, dont le diamètre est un peu plus grand que celui du brûleur 7, comparti¬ mente l'intérieur du corps 8 en deux espaces 800, 801 situés respectivement au niveau du brûleur et au-delà de celui-ci. Cet échangeur est équipé de quatre éléments 1 conformes à l'invention, empilés coaxialement les uns sur les autres et disposés à l'intérieur du corps 8. Leur diamètre est un peu plus grand que le diamètre du brûleur. Deux des éléments, référencés l a et l b se trouvent à l' intérieur de l'espace 800, c'est-à-dire en regard du brûleur 7. L'élément suivant le est à cheval entre les deux espaces 800, 801 , sa partie centrale venant par conséquent en regard du disque 82. Enfin, le dernier élément l d se trouve dans l'espace 801.
Le diamètre du disque 82 correspond sensiblement, au jeu d'engagement près, au diamètre intérieur des éléments 1 , si bien que le bord du disque vient toucher l 'élément l e.
Le brûleur 7 possède une paroi annulaire percée d'une multitude de petits trous disposés radialement et permettant le passage du mélange air + gaz. La combustion se fait à l'extérieur du brûleur, le pied des flammes se trouvant contre la paroi externe 71 du brûleur.
On a désigné par la référence 70 une électrode, de type bien connu en soi, servant à l'allumage du brûleur et au contrôle de la flamme.
La paroi 71 du brûleur se trouve à une faible distance du bord interne des spires des éléments 1 , par exemple à 20 mm environ de ce bord. La chaudière concernée est une chaudière domestique à condensation, qui sert à réchauffer de l'eau.
L'eau froide (EF) arrive par un conduit 149 et est branchée par deux conduits de dérivation 150c, 150b aux portions d'entrée des deux éléments le, respectivement l b. Les sorties de ces deux éléments sont branchées, par l'intermédiaire de deux dérivations 150'c et 1 50'd à un conduit 1 51 ' qui, à son tour, amène l'eau, via deux dérivations 1 50' a et 150'b respectivement aux deux éléments la et l b. Enfin, l'eau quitte ces deux éléments par deux dérivations 150a, 1 50b se raccordant à un conduit 151 d'évacuation de l'eau chaude (EC). Les branchements des différents conduits sur les embouts d'extrémité (cylindriques) de chaque élément se font de manière classique, par des raccords connus en soi.
Les éléments sont donc branchés en parallèle deux à deux, et les deux paires sont branchées en série. En fonctionnement, le mélange air-gaz (GA) est amené à travers la collerette 80 à l'intérieur du brûleur. La combustion se fait sur la paroi externe 71 de celui-ci. Les gaz chauds issus de la combustion, dont la température, à titre indicatif, est de l'ordre de 1 100° C, s'échappent radialement et traversent les interstices, de hauteur bien calibrée, séparant les spires des éléments l a, l b et d'une partie de le. Il se produit donc un flux de lames de gaz chauds, symbolisé par les flèches HJ_, qui vont lécher les faces planes des spires de l'échangeur, et réchauffer l'eau circulant à l'intérieur de celui-ci. L'écoulement se fait de manière très régulière étant donné l'uniformité d'épaisseur des interstices. D'autre part, en raison de la surface importante des faces planes, le transfert de chaleur des gaz brûlés à l'eau est particulièrement efficace.
Après leur passage de l'intérieur vers l'extérieur des éléments l a, l b et partiellement le, les gaz en partie refroidis arrivent dans l'espace annulaire situé à l'intérieur du corps 8, mais à l'extérieur de l'échangeur. Ils vont alors traverser les interstices entre les spires de l'élément l d et de l'autre partie de l'élément le, de l'extérieur vers l'intérieur, comme cela est symbolisé par les flèches H2. Une grande partie de leur chaleur résiduelle est ainsi transférée au liquide circulant dans l'échangeur. Enfin, ces gaz, dont la température s'est abaissée par exemple à 50° C environ s'échappent par la collerette 81 , comme symbolisé par la flèches H3. Bien entendu, cette collerette est branchée sur un conduit d'évacuation, par exemple à un conduit de cheminée.
Il convient de noter que la circulation de l'eau dans l'échangeur se fait à contre-courant de la circulation des gaz. L'eau froide est tout d'abord préchauffée par le flux H2, puis chauffé par le flux Hl . A titre indicatif, la température de l'eau est portée de la température ambiante à une température de l'ordre de 60°C.
Bien entendu, la présence du disque 82 empêche le passage direct des gaz à l'intérieur de l'échangeur de l'espace 800 à l'espace 801. Dans la variante simplifiée de la figure 19, l'ensemble des éléments echangeurs 1 entoure le brûleur 7. Il n'y a donc pas de préchauffage de l'eau circulant dans l'échangeur. Le mélange air + gaz arrive par la collerette 80 à l'intérieur du brûleur 7 (flèches HO). Après combustion, les gaz chauds traversent radialement, de l'intéréur vers l'extérieur, les spires de l'échangeur (flèches Hl ). Ils sont évacués à travers la collerette 81 (flèches H2). On notera la présence, à la base du corps 8 de l'échangeur d'un raccord 86 qui permet l'évacuation des condensats.
Dans le mode de réalisation de la figure 20 il est prévu six éléments echangeurs juxtaposés (ou empilés) coaxialement, référencés l a, lb, ic, l d, le et lf. Ces éléments sont répartis par paires, en l'occurence la-l b, lc-l d et l e-lf. Chaque paire forme un montage en parallèle pour ce qui est de la circulation de l'eau. Les trois paires sont branchées en série. Cette chaudière a une configuration générale similaire à celle représentée à la figure 18. En regard de l'espace 800, qui correspond à l'emplacement du brûleur, se trouvent trois éléments, en l'occurence les éléments la, l b et le. En regard de l'espace 801 qui se trouve de l'autre côté du disque obturateur 82, sont disposés les éléments l d et le. On retrouve donc en cours de fonctionnement un cheminement H0, Hl et H2 des gaz chauds tout à fait similaire à celui décrit en référence à la figure 18. Ce mode de réalisation se distingue cependant de celui de la figure 18 par le fait que les gaz se trouvant dans l'espace 801 vont traverser une nouvelle fois l'échangeur, en l'occurence les interstices inter-spires de l'élément lf, de l'intérieur vers l'extérieur, comme cela est symbolisé par les flèches H3. Les gaz refroidis s'échappent ensuite par la collerette 81 (flèches H4).
Un obturateur annulaire 87 disposé à l'extérieur des éléments echangeurs, entre les éléments l e et l f empêche les gaz de passer directement par l'extérieur de l'échangeur à ce niveau.
Ce dispositif réalise en quelque sorte deux préchauffages successifs de l'eau, ce qui le rend particulièrement performant.
Le dispositif représenté à la figure 21 est un récupérateur de chaleur destiné à être placé en sortie d'une chaudière classique, ou de tout autre appareil rejetant des gaz à une température suffisante pour réchauffer un fluide, par exemple de l'eau. On a désigné par la référence 9 la sortie d'un tel appareil, qui produit des gaz chauds 10. Cette sortie possède une collerette 90 dans laquelle est emmanchée la collerette 80 d'entrée du corps 8 du dispositif, dont la collerette de sortie est désignée 81.
Le corps 8 a une forme générale cylindrique. A l'intérieur de ce dernier, et coaxialement, est monté un ensemble d'éléments echangeurs conformes à l'invention, par exemple de quatre éléments référencés l a, l b, l e et l d.
Ces éléments sont branchés par paires en parallèle, les deux paires étant branchées en série.
L'élément l a placé du côté de l'appareil 9 est accolé contre la paroi d'entrée du corps 8. A l'autre extrémité, l'espace intérieur de l'échangeur est obturé par une cloison 89.
Les gaz chauds arrivent à l'intérieur de l'échangeur, et se divisent en lames de gaz qui traversent les interstices inter-spires des différents éléments 1 , comme symbolisé par les flèches j_l. La chaleur est ainsi transférée des gaz au liquide circulant à l'intérieur de l'échangeur. Les gaz refroidis traversent ensuite l'espace annulaire situé à l'extérieur de l'échangeur et ressortent du dispositif par la collerette 81 (flèches 12).
Dans le mode de réalisation de la figure 22, le dispositif comprend deux echangeurs de chaleur 1 , 1 ', formés chacun d'un empilement de trois éléments conformes à l'invention. Les deux echangeurs sont disposés parallèlement l'un à l'autre à l'intérieur d'un même corps 8. Les gaz chauds 30 quittant l'appareil 9 pénètrent tout d'abord à l'intérieur de l'échangeur 1. Ils s'échappent radialement de l'intérieur vers l'extérieur de celui-ci (flèches 31 ). Ils traversent ensuite l'échangeur 1 ', cette fois de l'extérieur vers l'intérieur (flèches 32) pour être ensuite évacués (flèches 33).
De préférence, les deux echangeurs sont branchés en série, l'eau circulant en sens inverse des gaz, c'est-à-dire parcourant tout d'abord l'élément 1 ' puis l'élément 1. Le dispositif illustré à la figure 23 consiste en un montage en parallèle de deux dispositifs similaires à celui de la figure 21. Le dispositif comprend deux echangeurs 1 " composés chacun d'un empilement d'éléments conformes à l'invention. Le flux de gaz chaud KO quittant l'appareil 9 est subdivisé en deux flux K l qui sont amenés chacun à l 'intérieur d'un échangeur 1". L'air chaud traverse les interstices séparant les spires de chaque échangeur de l'intérieur vers l'extérieur (flèches K2). Les gaz refroidis se regroupent pour s'échapper du dispositif par la collerette 81 (flèche K3 ). Bien entendu, diff érentes configurations prévoyant un montage en série et/ou en parallèle de plusieurs echangeurs peuvent être prévus, en fonction des caractéristiques d'échange de chaleur requises et de la place disponible à la sortie de l'appareil 9.
Dans le mode de réalisation de l'élément échangeur de chaleur décrit aux figures 1 et 2, les portions rectilignes 14 et 14' d'entrée et de sortie de l'élément 1 sont parallèles, les embouts d'extrémité 15, 1 5', étant dirigés à l'opposé l'un de l'autre, comme cela est illustré à la figure
24.
Il va de soi que d'autres configurations des portions d'extrémité sont possibles.
Ainsi, à titre d'exemple, il a été représenté à la figure 24A une disposition selon laquelle les portions d'extrémités 14, 14' sont situées à l'aplomb l'une de l'autre et se croisent à angle droit.
Les bossages 12, qui calibrent l'espacement entre les spires, n'ont pas nécessairement une disposition radiale.
Ainsi, dans le mode de réalisation de la figure 25, il a été prévu des bossages 12' disposés obliquement, c'est-à-dire formant un angle aigu u_ par rapport à la direction radiale.
Dans la variante de la figure 25A, les bossages 12" ont une forme arquée et leur direction générale est également légèrement inclinée par rapport à la direction radiale, à la manière des ailettes d'une turbine.
Une telle disposition des bossages a pour effet d'orienter le flux d'air s'échappant des interstices entre les spires, et de former un tourbillon susceptible, dans certaines conditions, d'améliorer le brassage et la circulation des gaz.
Dans la variante de la figure 26, il est prévu une série de bossages 12a, 12b sur chacune des deux faces planes des spires. Cette disposition peut être intéressante si on souhaite que récartement entre les spires soit relativement grand.
En effet, la hauteur des bossages est forcément réduite, car elle implique un étirement de la paroi du tube en cours de fabrication. Un trop grand étirement serait cause de rupture de la paroi. Dans le mode de réalisation de la figure 27, l'élément échangeur de chaleur est un élément à double pas, formé de l'imbrication l'un dans l'autre de deux enroulements similaires 1 , 1 '. Dans une telle disposition, qui demeure dans le cadre de la présente invention, chaque spire de l'un des éléments se trouve en regard d'une spire de l'autre élément.
Le mode de réalisation des figures 28 et 28A comprend deux éléments conformes à l'invention qui sont coaxiaux. L'élément extérieur 1E possède des spires 10E dont le diamètre d'enroulement est plus grand que celui des spires 10J_ de l'élément intérieur IL, Les spires d'extrémité de l'élément extérieur 1J_ possèdent des renfoncements de paroi 16E suffisamment larges pour laisser passer les tronçons 14E et 14j_ des deux éléments 1E et H. respectivement.
Les deux éléments peuvent être avantageusement soudés l'un à l'autre. Une telle disposition a pour avantage que la surface d'échange thermique est encore augmentée.
A cet égard, il faut remarquer que si l'on a affaire à un seul tube, cette surface est forcément limitée. En effet, il existe une corrélation directe entre le diamètre du tube initiai et le rayon de son enroulement en hélice. Pour un rayon d'enroulement donné on ne peut excéder un certain diamètre de tube sous peine de rupture de celui-ci au cours du formage.
L'élément 1 qui fait l'objet de la variante représentée aux figures 29 et 30 se distingue essentiellement de celui de la figure 1 par le fait que les grands axes des sections droites (aplaties et ovales) des spires 10 ne sont pas perpendiculaires à l'axe XX' de l'enroulement, mais forment un angle aigu _y_ avec celui-ci. Dans l'exemple représenté, cet angle v_ est égal à 45°. Comme pour le mode de réalisation de la figure 1, la paroi du tube porte des corrugations 12 (non représentées aux figures 30 et 30A pour ne pas les alourdir inutilement) qui servent d'entretoises calibrant i'écartement (h) entre spires, lequel est notablement plus faible que l'épaisseur (e) du tube écrasé (voir figure 30A). La figure 31 représente la section des demi-matrices 2" susceptibles d'être mise en oeuvre pour mettre en forme le tube hélicoïdal de départ 100 afin d'obtenir une telle configuration. Elles possèdent une partie annulaire mince 20" de section plate et de forme conique, dont le demi-angle au sommet est égal à v. Bien entendu, la partie 20" porte des empreintes (non représentées) correspondant aux corrugations que l'on souhaite former.
Le rapprochement des éléments d'outillage 2" donne ainsi aux spires une section aplatie et ovale, dont les grandes faces génèrent un tronc de cône de demi-angle _y_. Bien entendu, comme pour le premier mode de réalisation, le formage se fait avec mise sous pression hydraulique interne du tube.
Une telle configuration d'élément se prête particulièrement à un fonctionnement "en vertical", car elle assure un excellent écoulement des condensats. Ainsi, l'échangeur de chaleur 8' représenté à la figure 32, dont l'axe XX' a une disposition verticale, utilise six éléments conformes à celui des figures 29 et 30, montés coaxialement (selon XX') et branchés en série.
Les quatre éléments supérieurs l a, l b, le, l d ont des spires dont la conicité diverge vers le bas. Les deux éléments inférieurs le, lf ont une conicité inversée (angle au sommet dirigé vers le bas).
Une pièce de tôlerie 83' intercalée entre les deux séries d'éléments assure leur parfait positionnement à l'endroit de leur inversion de conicité.
L'échangeur représenté équipe une chaudière à gaz qui comporte un brûleur cylindrique 80' à combustion de surface, disposé coaxialement à l'intérieur de la série d'éléments supérieurs (la, lb, le, l d). La paroi extérieure de l'échangeur est référencée 800'. Le fluide à réchauffer, par exemple de l'eau, parcourt les éléments de bas en haut, c'est-à-dire dans l'ordre suivant : lf, le, ld, le, lb, l a. Le mélange air/gaz A + G est amené par le haut à l'intérieur du brûleur 80', la combustion s'opérant sur la surface externe de ce dernier. Les gaz brûlés et chauds s'échappent radialement vers l'extérieur, comme symbolisé par les flèches Ll. Ils traversent les interstices entre spires de la première série d'éléments, obliquement vers le bas (en suivant la conicité des spires). Ils atteignent ainsi l'espace annulaire compris entre les éléments et la paroi 800'. Enfin, ils traversent les interstices entre spires des éléments inférieurs l e et lf, cette fois de l'extérieur vers l'intérieur, pour sortir par une collerette d'évacuation inférieure 81 ' (flèches L2).
Au cours de ce parcours s'opère le chauffage du liquide circulant dans les éléments lf à la, par transfert de chaleur.
A la simple observation de la figure 32 on comprend comment la disposition à conicités inversées des éléments la, lb, le, l d d'une part et le, lf d'autre part oriente et canalise naturellement le flux des gaz chauds, ainsi que les condensats, de haut en bas à l'intérieur de l'échangeur. Les éléments d'échangeur selon l'invention peuvent trouver différentes applications, le fluide circulant à l'intérieur de l'élément n'étant pas nécessairement un liquide, et le fluide extérieur n'étant pas nécessairement un gaz.
Dans certaines applications, on pourrait envisager, pour la fabrication de l'élément, un matériau plastique, pourvu bien entendu que ce matériau possède une certaine conductivité thermique et qu'il reste solide et rigide dans les conditions de son utilisation.

Claims

REVENDICATIONS
1. Elément échangeur de chaleur ( 1 ) qui consiste en un tube en matériau thermiquement conducteur enroulé en hélice, dans lequel un fluide caloporteur est destiné à circuler, ce tube possédant une section droite aplatie et ovale, dont le grand axe est sensiblement perpendiculaire à l'axe (XX') de l'hélice ou forme un angle aigu (v) par rapport à ce dernier, chaque spire (10) du tube possédant des faces planes ( 1 1 ) qui sont écartées des faces de la spire adjacente d'un interstice de hauteur (h) constante, caractérisé par le fait que la hauteur (h) de l'interstice séparant deux spires (10) adjacentes est sensiblement plus faible que l'épaisseur (e) de ladite section droite, et que l'espacement entre deux spires voisines ( 10) est calibré au moyen d'entretoises ( 12).
2. Elément selon la revendication 1 , caractérisé par le fait que lesdites entretoises (12) sont des bossages, ou corrugations, formées dans la paroi du tube, sur l'une au moins desdites faces planes ( 1 1 ).
3. Elément selon la revendication 2, caractérisé par le fait que lesdits bossages (12) s'étendent radialement par rapport à l'axe (XX') de l'hélice.
4. Elément selon l'une des revendications 1 à 3, caractérisé par le fait que les deux extrémités du tube se prolongent tangentiellement par des tronçons (14, 14') se raccordant à des embouts cylindriques (15, 15').
5. Elément selon l'une des revendications 1 à 4, caractérisé par le fait que les faces planes externes de ses spires d'extrémité sont situées sensiblement dans des plans (P, P') parallèles entre eux, et perpendiculaires à l'axe (XX') de l'hélice.
6. Elément selon l'une des revendications 1 à 5, caractérisé par le fait que le bord interne (13) des spires (10) est bosselé.
7. Procédé de fabrication d'un élément échangeur de chaleur conforme à l'une des revendications 1 à 6, selon lequel : a) on cintre hélicoîdalement un tube cylindrique (100) ; b) on le remplit d'un fluide ; c) on écrase la paroi du tube ( 100) de manière à lui donner une section aplatie et ovale, dont le grand axe est sensiblement perpendiculaire à l'axe de l'hélice, tout en réduisant simultanément le pas de cette hélice ; d) on maintient, durant l'étape (c), le fluide contenu dans le tube à une pression sensiblement constante, de manière à empêcher l'affaissement de sa paroi.
8. Procédé selon la revendication 7, pour la fabrication d'un élément conforme à l'une des revendications 4 ou 5, caractérisé par le fait qu'on utilise, à l'étape (c), des matrices de formage (2) qui possèdent, en creux, des empreintes (28). de forme complémentaire desdits bossages, ou corrugations, (12) et, qu'à la fin de l'opération, on soumet le fluide contenu dans le tube à une pression élevée pour forcer sa paroi à épouser la forme desdites empreintes (28).
9. Dispositif pour mettre en oeuvre le procédé selon l'une des revendications 7 ou 8, caractérisé par le fait qu'il comprend : - une presse (3) comportant une semelle fixe (30) et un plateau mobile (32) ;
- des moyens d'actionnement (33, 34) servant à déplacer le plateau mobile (32) par rapport à la semelle fixe (30) ;
- deux ensembles de demi-matrices (2A, 2B) complémentaires, de forme générale semi-circulaire, aptes à venir se positionner entre les spires du tube à former, et positionnées, en position de travail, entre ladite semelle fixe (30) et ledit plateau mobile (32).
10. Dispositif selon la revendication 9, caractérisé par le fait que l'un (2B) desdits ensembles est mobile et peut être écarté de la presse en vue de la mise en place du tube à former, et de l'enlèvement du tube formé.
11. Dispositif selon l'une des revendications 9 ou 10, caractérisé par le fait que lesdites demi-matrices possèdent des faces planes (24) servant à l'écrasement du tube, ces faces étant inclinées par rapport à un plan perpendiculaire à l'axe (XX1), de l'hélice.
12. Dispositif selon l'une des revendications 9 à 1 1, caractérisé par le fait que les demi-matrices constitutives de chaque demi-ensemble sont guidées les unes par rapport aux autres au moyen de colonnes (200).
13. Dispositif selon les revendications 1 1 et 12 prises en combinaison, caractérisé par le fait que lesdites colonnes (200) passent dans des trous allongés (22) formés dans les matrices, qui autorisent leur inclinaison latérale.
14. Dispositif selon l'une des revendications 9 à 13, caractérisé par le fait qu'il comporte des vérins (40, 41 ') servant à écarter les demi-matrices les unes des autres.
15. Dispositif selon l'une des revendications 9 à 14, caractérisé par le fait qu'il comporte des moyens (5) servant à obturer de manière étanche les deux extrémités du tube au cours du formage, et à y introduire un fluide sous très forte pression.
16. Echangeur de chaleur pour une chaudière équipée d'un brûleur, qui comporte au moins un élément conforme à l'une des revendications 1 à 6, dans lequel circule un fluide à chauffer, caractérisé par le fait que ledit élément (1 ) est disposé au voisinage du brûleur (7), dans une position telle que les gaz de combustion passent dans les interstices séparant ses spires.
17. Echangeur selon la revendication 18, caractérisé par le fait qu'il comporte plusieurs éléments conformes aux revendications 1 à 6, et dont l'un au moins est traversé par les gaz de combustion de l'intérieur vers l'extérieur, tandis qu'un autre au moins est traversé par ces gaz en sens inverse.
18. Récupérateur de chaleur pour chaudière, qui comporte au moins un élément ( 1 ) conforme à l'une des revendications 1 à 6, dans lequel circule de l'eau à réchauffer, et qui est exposé au flux de gaz brûlés (et chauds) s'échappant de la chaudière.
EP94904677A 1993-01-15 1994-01-14 Element echangeur de chaleur, procede et dispositif pour le fabriquer Expired - Lifetime EP0678186B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9300498 1993-01-15
FR9300498A FR2700608B1 (fr) 1993-01-15 1993-01-15 Elément échangeur de chaleur, procédé et dispositif pour le fabriquer.
PCT/FR1994/000047 WO1994016272A1 (fr) 1993-01-15 1994-01-14 Element echangeur de chaleur, procede et dispositif pour le fabriquer

Publications (2)

Publication Number Publication Date
EP0678186A1 true EP0678186A1 (fr) 1995-10-25
EP0678186B1 EP0678186B1 (fr) 1997-03-12

Family

ID=9443183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94904677A Expired - Lifetime EP0678186B1 (fr) 1993-01-15 1994-01-14 Element echangeur de chaleur, procede et dispositif pour le fabriquer

Country Status (5)

Country Link
EP (1) EP0678186B1 (fr)
DE (2) DE69402051D1 (fr)
ES (1) ES2101501T3 (fr)
FR (1) FR2700608B1 (fr)
WO (1) WO1994016272A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279903A2 (fr) 2001-07-26 2003-01-29 Robert Bosch Gmbh Echangeur de chaleur pour une chaudière à gaz, esp. pour chaudière à condensation
EP1752718A1 (fr) 2005-08-05 2007-02-14 Riello S.p.a. Echangeur de chaleur et méthode de fabrication de celui-ci
US7836942B2 (en) 2007-02-05 2010-11-23 Riello S.P.A. Heat exchanger and method of producing the same
WO2011092332A1 (fr) 2010-02-01 2011-08-04 Giannoni France Dispositif de production de fluides chauds comprenant un echangeur de chaleur a condensation
EP2295913A3 (fr) * 2009-08-20 2011-12-07 Paloma Co., Ltd. Échangeur de chaleur à tubes spirales avec des sections penchés
US8978638B2 (en) 2009-03-06 2015-03-17 Giannoni France Door with a built-in burner for a heating appliance
WO2016001852A1 (fr) 2014-07-01 2016-01-07 Valmex S.P.A. Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0745813A3 (fr) * 1995-05-31 1997-12-29 VIESSMANN WERKE GmbH & CO. Echangeur de chaleur, en particulier pour chaudière
EP0813037A1 (fr) 1996-05-31 1997-12-17 VIESSMANN WERKE GmbH & CO. Echangeur de chaleur, en particulier pour une chaudière
US6305331B1 (en) * 1997-03-24 2001-10-23 Vth - Verfahrenstechnik Fur Heizung Ag Boiler fitted with a burner
EP0874209A1 (fr) 1997-04-24 1998-10-28 Giorgio Scanferla Echangeur de chaleur pour un chauffe-eau et sa méthode de fabrication
CZ289097A3 (cs) * 1997-09-15 1999-05-12 Antonín Šmíd Teplosměnný trubkový element
DE19912572C2 (de) * 1999-03-19 2001-03-29 Viessmann Werke Kg Kompaktheizkessel, insbesondere zur Verwendung als Brennwertheizkessel
EP1143206A3 (fr) 2000-04-03 2003-05-02 VTH Verfahrentechnik für Heizung AG Echangeur de chaleur pour chaudière ou chauffe-eau instantané
DE10026548C1 (de) * 2000-05-27 2001-11-22 Viessmann Werke Kg Wendelspalt-Wärmetauscher
DE10026549C1 (de) * 2000-05-27 2001-11-22 Viessmann Werke Kg Heizkessel
DE10026550C1 (de) * 2000-05-27 2001-11-22 Viessmann Werke Kg Heizkessel für die Verbrennung flüssiger oder gasförmiger Brennstoffe
DE10114490C1 (de) * 2001-03-24 2002-08-01 Viessmann Werke Kg Wandheizgerät für die Verbrennung flüssiger Brennstoffe
DE10114488C1 (de) * 2001-03-24 2002-07-11 Viessmann Werke Kg Spannvorrichtung für Heizgeräte
ITRM20010474A1 (it) * 2001-08-03 2003-02-03 Fontecal S P A Scambiatore spiroidale ad alto rendimento per riscaldamento e/o produzione di acqua calda sanitaria, particolarmente adatto alla condensazio
GB0130380D0 (en) 2001-12-19 2002-02-06 Bg Intellectual Pty Ltd A heat appliance
DE10211489C1 (de) * 2002-03-15 2003-06-26 Viessmann Werke Kg Kompaktheizkessel
FR2843189B1 (fr) * 2002-07-30 2004-10-15 Mer Joseph Le "echangeur de chaleur a condensation a double faisceau de tubes"
EP1398580A3 (fr) * 2002-09-16 2004-12-15 Vaillant GmbH Echangeur de chaleur hélicoidal
JP4087407B2 (ja) 2002-10-16 2008-05-21 ソシエテ、デチュード、エ、ド、レアリザシオン、メカニク、エンジニアリング、アン、テクノロジーズ、アバンセ プラスチックケーシングを有する凝縮熱交換器
FR2846075B1 (fr) 2002-10-16 2005-03-04 Realisation Mecaniques Engenee Echangeur de chaleur a condensation, a enveloppe plastique
FR2854229A1 (fr) * 2003-04-25 2004-10-29 Realisation Mecaniques Engenee Echangeur de chaleur a condensation
ITVR20030047U1 (it) * 2003-09-23 2005-03-24 Montini Renato Scambiatore di calore
EP1703227B1 (fr) 2005-03-15 2015-02-25 Vaillant GmbH Echangeur de chaleur
ITLU20050015A1 (it) * 2005-06-07 2006-12-08 Pietro Biagioni "caldaia a gasolio con spirali piatte"
DE202005011633U1 (de) 2005-07-20 2006-11-30 Viessmann Werke Gmbh & Co Kg Heizgerät
FR2896856B1 (fr) * 2006-01-30 2008-05-16 Mer Joseph Le Echangeur de chaleur a condensation
FR2913105B1 (fr) 2007-02-28 2009-05-08 Mer Joseph Le "echangeur de chaleur a condensation comprenant deux faisceaux primaires et un faisceau secondaire"
FR2925657B1 (fr) 2007-12-19 2010-01-29 Mer Joseph Le Dispositif et procede pour stabiliser la pression et le debit d'un melange gazeux alimentant un bruleur cylindrique a combustion de surface
FR2928442B1 (fr) 2008-03-06 2010-12-17 Mer Joseph Le Installation de production d'eau chaude sanitaire
DE102008031424B4 (de) 2008-07-04 2013-07-11 Viessmann Werke Gmbh & Co Kg Wärmetauscher
DE102008056994A1 (de) 2008-11-12 2010-05-20 Viessmann Werke Gmbh & Co Kg Heizkessel und Verfahren zum Betrieb eines Heizkessels
KR100982793B1 (ko) 2008-11-25 2010-09-20 손광억 열교환기
DE102008061872A1 (de) 2008-12-15 2010-06-17 Viessmann Werke Gmbh & Co Kg Heizkessel
IT1393074B1 (it) * 2008-12-16 2012-04-11 Ferroli Spa Scambiatore spiroidale per riscaldamento e/o produzione di acqua calda ad uso sanitario, particolarmente adatto alla condensazione.
WO2011002711A1 (fr) * 2009-06-29 2011-01-06 Laars Heating Systems Company Echangeur de chaleur à tube plat pour chaudières et chauffe-eau
DE202011001615U1 (de) 2010-01-21 2011-03-31 Viessmann Werke Gmbh & Co Kg Heizkessel
FR2972789B1 (fr) 2011-03-14 2013-04-12 Giannoni France Appareil de chauffage au gaz a condensation
US20140182827A1 (en) * 2012-11-30 2014-07-03 Carlos Quesada Saborio Tubing Element for a Heat Exchanger
EP2738503A1 (fr) * 2012-11-30 2014-06-04 Carlos Quesada Saborio Dispositif échangeur de chaleur
EP2738504A1 (fr) * 2012-11-30 2014-06-04 Carlos Quesada Saborio Élément de tubage pour supports d'échangeur de chaleur
CN106461266B (zh) 2014-03-17 2018-03-16 康德沃公开有限公司 热交换单元和方法
PL2984414T3 (pl) 2014-03-17 2017-10-31 Condevo S P A Sposób wytwarzania zestawu komórek wymiany ciepła i uzyskiwany w ten sposób zestaw komórek wymiany ciepła
KR101467910B1 (ko) * 2014-06-03 2014-12-02 주식회사 두발 열교환기
EP3183524B1 (fr) * 2014-08-22 2020-11-04 Mohawk Innovative Technology Inc. Échangeur thermique à faible perte de charge à haute efficacité
DE102015201008A1 (de) * 2015-01-22 2016-07-28 Wobben Properties Gmbh Verfahren zur Umformung eines Rohrkörpers, mäanderförmiger Rohrkörper und Verwendung desselben
US10767900B2 (en) 2015-05-14 2020-09-08 Lochinvar, Llc Burner with flow distribution member
FR3047063B1 (fr) * 2016-01-22 2018-11-30 Sermeta Dispositif d'echanges thermiques pour echangeur de chaleur a condensation
EP3220073A1 (fr) 2016-03-14 2017-09-20 Vaillant GmbH Échangeur thermique spiralé
DE102016215210A1 (de) 2016-08-16 2018-02-22 Vaillant Gmbh Wendelförmiger Heizungswärmetauscher
IT201600074665A1 (it) 2016-07-18 2018-01-18 Ariston Thermo Spa Scambiatore di calore per caldaia o simili
CN106322765A (zh) * 2016-11-09 2017-01-11 河南省健泰实业有限公司 一种用于全预混冷凝式壁挂炉的换热器
CN111133269B (zh) * 2017-09-26 2024-03-05 C·克萨达·萨博里奥 管连接
FR3088995B1 (fr) * 2018-11-26 2020-12-04 Arianegroup Sas Serpentin pour echangeur thermique, echappement de turbopompe comprenant un serpentin et procede de fabrication d’un serpentin
FR3125326B1 (fr) 2021-07-16 2023-07-14 Sermeta Echangeur de chaleur
CN113819650A (zh) * 2021-07-29 2021-12-21 浙江菲斯曼供热技术有限公司 加热装置
DE102021120235A1 (de) 2021-08-04 2023-02-09 Viessmann Climate Solutions Se Heizkessel
IT202100032207A1 (it) * 2021-12-22 2023-06-22 Valmex S P A Scambiatore di calore con fascio tubiero comprendente almeno due sezioni

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316502A (en) * 1980-11-03 1982-02-23 E-Tech, Inc. Helically flighted heat exchanger
FR2549750B1 (fr) * 1983-07-29 1986-03-21 Tubest Sa Procede de mise en forme de conduits metalliques destines a la realisation de condenseurs, echangeurs de temperature et similaires
JPS60117089A (ja) * 1983-11-28 1985-06-24 Matsushita Electric Ind Co Ltd 熱交換器の製造方法
JPS63220091A (ja) * 1987-03-07 1988-09-13 Bunkichi Tanaka 熱交換機用コイル形流路及びこれを用いた熱交換用コイルユニツト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9416272A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279903A2 (fr) 2001-07-26 2003-01-29 Robert Bosch Gmbh Echangeur de chaleur pour une chaudière à gaz, esp. pour chaudière à condensation
EP1752718A1 (fr) 2005-08-05 2007-02-14 Riello S.p.a. Echangeur de chaleur et méthode de fabrication de celui-ci
US7836942B2 (en) 2007-02-05 2010-11-23 Riello S.P.A. Heat exchanger and method of producing the same
US8978638B2 (en) 2009-03-06 2015-03-17 Giannoni France Door with a built-in burner for a heating appliance
US9816726B2 (en) 2009-03-06 2017-11-14 Giannoni France Door with a built-in burner for a heating appliance
EP2295913A3 (fr) * 2009-08-20 2011-12-07 Paloma Co., Ltd. Échangeur de chaleur à tubes spirales avec des sections penchés
AU2010212319B2 (en) * 2009-08-20 2015-06-25 Paloma Co., Ltd. Heat Exchanger
WO2011092332A1 (fr) 2010-02-01 2011-08-04 Giannoni France Dispositif de production de fluides chauds comprenant un echangeur de chaleur a condensation
FR2955929A1 (fr) * 2010-02-01 2011-08-05 Mer Joseph Le Echangeur de chaleur a condensation pour plusieurs fluides et dispositif de production de fluides chauds comprenant un tel echangeur
US9476610B2 (en) 2010-02-01 2016-10-25 Giannoni France Hot fluid production device including a condensing heat exchanger
WO2016001852A1 (fr) 2014-07-01 2016-01-07 Valmex S.P.A. Échangeur de chaleur et procédé de fabrication d'un échangeur de chaleur

Also Published As

Publication number Publication date
EP0678186B1 (fr) 1997-03-12
DE69402051T4 (de) 1998-12-03
DE69402051T2 (de) 1997-10-09
FR2700608B1 (fr) 1995-04-07
ES2101501T3 (es) 1997-07-01
FR2700608A1 (fr) 1994-07-22
DE69402051D1 (de) 1997-04-17
WO1994016272A1 (fr) 1994-07-21

Similar Documents

Publication Publication Date Title
EP0678186B1 (fr) Element echangeur de chaleur, procede et dispositif pour le fabriquer
EP1012522B1 (fr) Echangeur de chaleur, et faisceau d'echange de chaleur, ainsi que procedes de soudage et de realisation s'y rapportant
EP0567387B1 (fr) Dispositif de compactage à chaud pour la fabrication de pièces nécessitant des montées en pression et en température simultanées
FR2683625A1 (fr) Procede de fabrication d'une plaque a ailettes pour echangeur de chaleur et ailettes ainsi fabriquees.
CA3011196A1 (fr) Echangeur de chaleur a condensation muni d'un dispositif d'echanges thermiques
EP3178598B1 (fr) Procédé de réalisation d'un échangeur de chaleur à au moins deux circuits de circulation de fluide, à grand nombre de canaux et/ou de grandes dimensions
FR3020868A1 (fr) Echangeur de chaleur en spirale et procede de fabrication correspondant
EP1468425B1 (fr) Installation d'entreposage de tres longue duree de produits emettant un flux thermique eleve
EP1784613B1 (fr) Procédé d'intervention sur un échangeur de chaleur
LU82393A1 (fr) Echangeur de chaleur a enceinte en spirale
FR3052245B1 (fr) Dispositif cryogenique a echangeur compact
FR2469667A1 (fr) Chauffe-eau
EP0803687B1 (fr) Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
FR2524110A1 (fr) Procede de fabrication d'un tube avec des conduits disposes dans sa paroi
WO1993004330A1 (fr) Echangeur a plaques
WO2007015031A2 (fr) Echangeur tubulaire de chaleur
FR2696959A1 (fr) Outil pour former des passages dans un tube de collecte d'un échangeur de chaleur et procédé utilisant cet outil.
FR2817332A1 (fr) Serpentin tubulaire a deux etages d'enroulements en spirale, echangeur de chaleur mettant en oeuvre un tel serpentin et procede de fabrication du serpentin
EP3006156A1 (fr) Procede de realisation d'un module d'echangeur de chaleur a au moins deux circuits de circulation de fluide, echangeur de chaleur et reacteur-echangeur associes
FR2810266A1 (fr) Manchon permettant de relier de facon etanche deux parois planes espacees paralleles en tole de relativement faible epaisseur
WO2023237473A1 (fr) Procédé de réalisation d'un module d'échangeur de chaleur à au moins un circuit de circulation de fluide, de forme générale incurvée; echangeur de chaleur intégrant une pluralité de modules d'échangeurs incurvés obtenus selon le procédé
FR3123114A1 (fr) Caloduc à performance améliorée sous diverses répartitions de charges thermiques
EP0792718A1 (fr) Procédé de fabrication d'un échangeur thermique
FR2811643A1 (fr) Corps de valve pour pulverisateur
CH274328A (fr) Procédé pour l'assemblage de pièces à bout tubulaire.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19951130

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69402051

Country of ref document: DE

Date of ref document: 19970417

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2101501

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: GIANNONI FRANCE

Effective date: 20090605

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: FR

Ref legal event code: GC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120127

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130121

Year of fee payment: 20

Ref country code: FR

Payment date: 20130129

Year of fee payment: 20

Ref country code: GB

Payment date: 20130121

Year of fee payment: 20

Ref country code: DE

Payment date: 20130110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121212

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69402051

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140114

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140113

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140115