EP0803687B1 - Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat - Google Patents

Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat Download PDF

Info

Publication number
EP0803687B1
EP0803687B1 EP19970400898 EP97400898A EP0803687B1 EP 0803687 B1 EP0803687 B1 EP 0803687B1 EP 19970400898 EP19970400898 EP 19970400898 EP 97400898 A EP97400898 A EP 97400898A EP 0803687 B1 EP0803687 B1 EP 0803687B1
Authority
EP
European Patent Office
Prior art keywords
cryostat
gas
cooler
piston
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970400898
Other languages
German (de)
English (en)
Other versions
EP0803687A1 (fr
Inventor
Patrick Curlier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Cryogenie SA
Original Assignee
Thales Cryogenie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Cryogenie SA filed Critical Thales Cryogenie SA
Publication of EP0803687A1 publication Critical patent/EP0803687A1/fr
Application granted granted Critical
Publication of EP0803687B1 publication Critical patent/EP0803687B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube

Definitions

  • the present invention relates to the design and production of cryogenic coolers which works a working gas following a thermodynamic cycle in closed circuit between a compression chamber and a expansion chamber, through a thermal accumulator said regenerator, which ensures a recovery exchange between compressed hot gas and expanded cold gas.
  • coolers conventionally include a pressure oscillator controlled to vary the volume of the compression chamber, and a cold finger ending with the expansion chamber, in thermal contact with an element to be cooled, placed at the bottom of an envelope thermal insulation.
  • the element to be cooled is commonly an electronic component that must be kept in operation at temperatures between 60 ° K and 200 ° K, in particular to improve the signal to noise.
  • cryogenic coolers of the type in question are successful each growing day, mainly when they are designed to be manufactured at low cost in forms incorporating the pressure oscillator with the cold finger in one mechanical assembly no longer needing external pipes to close the working gas circuit.
  • the present invention is mainly offers to make available to users a cryostat which is not limited to an envelope insulating capable of receiving the cold finger from the cooler, but which incorporates part of its essential organs, in a form allowing their interchangeable adaptation to different configurations.
  • a cooler cryostat cryogenic produced according to the invention adapts easily, in accordance with its interchangeable character, both at a pulsed gas tube configuration than a Stirling cycle, and that driving the oscillator of pressure goes through a rotary type drive to crankshaft or linear type, according to the expressions used by those skilled in the art, as they are repeated in particular in the article already cited.
  • the invention allows also to make significant improvements to the construction chillers incorporating such a cryostat and their driving style.
  • the resulting benefits relate in particular to the combination of the cryostat with a pressure oscillator in a relevant embodiment of a pulsed gas tube configuration.
  • cryostats have the advantage of being particularly suitable well to the respective operating modes of two types of coolers and improve their clean performance.
  • This is particularly the case with the provisions recommended for the regenerator, which is responsible to absorb and release heat, alternatively, by compared to the gas passing through it.
  • This is also the case an exchanger advantageously provided in a cold zone, at level of the relaxation room, to favor the transfer towards the component to be cooled, as well as for a exchanger located in hot zone and under pressure which is especially useful in gas type coolers pulsed, to favor a heat loss towards outside.
  • the invention more specifically relates to a cryostat for cryogenic cooler using a closed working gas circuit between a compression located in a pressure oscillator housing associated and a relaxation room located at the bottom of the cryostat, in heat exchange situation with a component to be cooled, comprising inside an envelope thermal insulation, integral with a mounting base on said housing, a thermal regenerator interposed on the working gas circuit.
  • This regenerator is in annular arrangement around an extending axial volume between a cold exchanger which is in thermal contact with the component to be cooled and makes the regenerator communicate with said axial volume at the bottom of the cryostat.
  • the cryostat also has a gas distribution ring in said regenerator, at the head of the cryostat, from a conduit drilled through the base for connection to the chamber compression.
  • the timing ring is formed by a central piece mounting through said base axially at its center. Said central part is mounted removably in said base, in particular by tight screwing.
  • At least one channel is advantageously provided passage of gas under controlled flow between a tank gas buffer formed inside the oscillator housing pressure, and the internal axial volume of the cryostat which works in gas tube. It is also advantageous to add one or more other flow-controlled channels allowing hot gas to be drawn directly at the outlet compression, at the timing ring to the regenerator.
  • the internal volume is at the contrary occupied by the displacer piston, which is preferably solid, made of a weak material thermal conductivity, and which leaves only the volume of the expansion chamber at the bottom of the cryostat.
  • the central piece is made integral with a central tube limiting said axial volume.
  • This tube is then advantageously of the same internal diameter as the axial bore of the model intended for connection of the cryostat to a cooler Stirling cycle. It can therefore constitute either the tube containing the pulsed gas in the first model, namely the guide tube of the cooler displacement piston in the second case.
  • the cryostat is associated with the cryostat a hot exchanger, positioning in the internal volume at the top of the cryostat. Its role is located in the evacuation of calories which takes place by heat loss to the outside through the base and the casing of the compressor part of the cooler, made for this purpose of thermally conductive material. It is especially useful in the cooler variant with pulsed gas tube, taking into account the heat to be evacuated in gas tube outlet, which adds to the stored heat by the gas back from the regenerator.
  • the invention foresees, according to a secondary characteristic, that one can apply advantageously with others in any operating combination, to use a geometry structure of revolution, alternating around the axis of the cryostat, in a daisy arrangement, massive areas in material good thermal conductor and void areas open to the passage of gas. As a result, these areas are in particular on horseback, on both sides, in relation to a centering shoulder at the end of the central tube.
  • piloting means comprising a crankshaft actuating a transmission mechanism of movement by movable ball bearing in a groove formed transversely outside said piston.
  • the arrangement ring of the regenerator lends itself particularly well to a manufacture from a sheet wound on itself.
  • the invention makes it possible to significantly improve the efficiency of the heat exchanges sought, compared to stacks of conventional grids or balls, in using for this a sheet of suitable material, which has been previously machined, in particular by photolithographic process, so as to form longitudinal strips with smooth surfaces and transverse bars in extra thickness occasionally joining the strips successive.
  • the different bands are succeed the length of the regenerator. They form annular smooth surface layers intersected by intervals between bands and bars inserted between the layers help to distribute the flow in all directions at each cross section level.
  • the cryostat of the figure 1 is used in combination with a pressure oscillator either to constitute a cryogenic cooler of the pulsed gas according to Figure 6, or alternatively to constitute a Stirling cycle type cooler as shown in Figure 5.
  • a pressure oscillator either to constitute a cryogenic cooler of the pulsed gas according to Figure 6, or alternatively to constitute a Stirling cycle type cooler as shown in Figure 5.
  • the cooler thus constituted is of compact construction, the cryostat and pressure oscillator being integrated in one same mechanical assembly.
  • cryostat is not limited, as in the embodiments known, to a thermal insulation envelope intended to receive a cold finger previously formed in all its functional organs necessary for the implementation work of the thermodynamic cycle of the working gas.
  • the passive functional organs which are not subject to displacement during operation, are permanently installed in the cryostat, the latter being constructed so that it can be connected alternately at the user's choice, at the housing of an oscillator pressure either from a specific cooler for implementation of a Stirling cycle, ie of a cooler of the pulsed gas tube type.
  • regenerator 5 with its own envelopes, including an outer envelope which is then separate from the inner wall 2 of the thermal insulation envelope and / or an internal envelope which is then added against the tube central 3.
  • this exchanger 8 which constitutes in operation the cold exchanger of the cooler.
  • this exchanger is designed and arranged to facilitate the transfer of cooling capacity resulting from the expansion of the work towards a component to be cooled 21, while ensuring pneumatic communication allowing the passage of gas of work between the bottom of the axial volume 6 and the space ring occupied by the regenerator 5.
  • the intermediate shell of the cryostat of the invention constituted by the wall 2, is closed at its end lower, at the bottom of the cryostat, by a transverse plate 22 against which the cold exchanger 8 is affixed.
  • the component 21 On its opposite side to this exchanger is mounted the component 21, generally by simple bonding.
  • an electronic component 21 for example a optoelectronic detector
  • an electrical distribution ring 23 of which the conductive parts pass through watertight bushings through the outer wall of the insulation jacket thermal 1, as well as conductive wires 24 which then connect to component 21.
  • the envelope 1 as a whole has the function of limit heat losses by radiation or convection to level of organs involved in the thermodynamic cycle of the complete cooler in the cold zone thereof.
  • a quality of stainless steel corresponding to a alloy with low thermal conductivity adapted to be compatible with the working gas used, which is preferably helium in the case of the regenerator at metallic foil rolled up as described below.
  • the outer wall of the envelope 1 is produced also in stainless steel, or possibly in one appropriate quality of glass, for economic reasons.
  • the base 4 At the head of the cryostat, at the upper end of the thermally insulating envelope 1 and of the regenerator 5, the base 4 is on the contrary in the hot zone of the cooler in operation, where there is also pressure working gas dynamics, subjected to pulsations of periodic pressures, printed by the moving parts of the cooler when the cryostat is connected to the housing 50 an associated pressure oscillator.
  • the base 4 there is a collar circular 16, pierced with holes for the passage of screws 48 fixing to the casing 50 of the cooler, which is connected by pressing on the upper face of the flange 16, opposite the thermal envelope 1.
  • a ring 17, forming part of the base 4 which ensures the centering of the two elements one inside the other.
  • the tight connection of these two elements (cryostat and pressure oscillator) vis-à-vis the outside is ensured by a seal 19, housed in an annular groove on the face upper part of the collar 16.
  • the base 4 delivers passage, in the axis of the system, to a central part 10, tightly screwed into the ring 17, which is internally threaded.
  • a throat hexagonal 41 formed in its upper planar face, serves to handling during assembly.
  • this central piece of the cryostat is designed in two different models which, by their external geometry, their dimensioning, and their functional design, are interchangeable in one same construction of cryostat. Both models are illustrated by FIG. 1 and by FIG. 2, depending on whether the cryostat 30 is mounted to be coupled with housings 50 or 60 from either of the two pressure oscillators in the two cooler variants shown on the Figures 6 and 5 respectively.
  • this central part therefore in in particular that bearing the reference 10 in FIG. 1, here consists of a single piece with the inner tube 3 cryostat.
  • this crown forms a distribution crown 71, for the annular distribution of the gas at the top of the regenerator 5. Consequently, this crown is placed above of it (in the vertical arrangement shown, cryostat under the casing 50), and more precisely at center of the base 4 in its main part formed by the flange 16.
  • the crown of distribution 71 has a circular groove 45, hollowed out in its underside, which abuts the regenerator 5. This groove communicates through orifices 46 with an annular chamber 43, extended upwards at 42, which is arranged externally in the part of the room central 10 located at the flange 16, between this part and the face opposite the base 4.
  • the central part 10 is shown in Figure 1 in the model suitable for a cooler TGP type illustrated in Figure 6.
  • the second model of central part of the cryostat, intended for a Stirling cycle cooler, is shown on the schematic representation in exploded layout of Figure 2.
  • the central part 20 is identical to the previous one externally, but internally, it simply comprises an axial bore 72, formed all along through it, at the same diameter as the tube 3 of which it extends the central volume.
  • the calibrated orifices of channels 11-12 are working, in a conventional manner in itself, like valves introducing pneumatic impedances.
  • Main channel 11 as well equipped in operation provides the useful phase shift between the pressure wave generated by the pressure oscillator and the resulting flow variations in the container tube pulsed gas.
  • Secondary impedance (channel 12) allows to bring a fraction of the periodic feed rate of the tube by taking it directly out of compression, by diversion of the circulation passing to through the regenerator and the tube. This decreases the load thermal on the regenerator and helps to improve the efficiency of the chiller, in the case of a gas cycle pulsed.
  • FIG. 1 finally shows an exchanger 9, located at hot zone in the central volume, at the crown distribution 71.
  • This hot exchanger can possibly be performed analogously to what will be described more far for the cold exchanger, the main thing being that in this variant embodiment of the cryostat of the invention, it complete the removal of excess calories from the thermodynamic cycle by completing, starting from the zone hot of the pulsed gas tube, heat losses outwardly occurring through the base 4, and incidentally from the associated pressure oscillator housing.
  • the thermal regenerator 5 is advantageously constituted, as it appears from Figures 1 and 3, so to fully play its role of thermal accumulator for the recovery taking place, in a conventional manner, between the working gas passing from the compression phase to the expansion phase and the working gas passing from the expansion during the compression phase.
  • regenerator comes in the form of a leaf continuous which is wound in a series of turns around the central tube 3 which limits the internal volume 6 of the regenerator, so as to fill, as completely as it is possible in industrial practice, the annular space between this tube 3, which forms its envelope ferrule internal, and its associated external envelope shell, constituted by the internal wall 2 of the insulating envelope 1.
  • Machining processes by photolithography which are known in themselves, are particularly interesting in this sense, insofar as they represent means particularly simple to implement for a limited cost price, when it comes to driving to the configuration illustrated by the detail in FIG. 3.
  • the sheet which is thus wound in contiguous consecutive turns forms a succession of separate longitudinal bands 27, which are oriented perpendicular to the axis of the cryostat and which are separated from each other by intervals 28.
  • Bars 26 are formed in excess thickness of the strips and across them in a perpendicular direction. They are evenly distributed over the entire length and leaf height and staggered, each joining two successive bands over the interval that separates them.
  • a regenerator thus constructed, we can cite as an example the case of a sheet 100 to 200 microns thick, hollowed out halfway through each side, for a regenerator from 2 to 3 millimeters in radial thickness.
  • the tapes and intervals between them can, for example, be of a same width, of the order of 50 to 100 microns.
  • the length transverse of the bars 26 can correspond, here again for example, at 1.5 times the repetition step of longitudinal strips 27, with a width of about half lesser and a distance between two successive bars offset, equivalent to about three times the width of each.
  • the invention thus makes it possible to take advantage of a relationship between local convective exchange and losses of longitudinal loads which, in the case of plates parallel to the axis of the cold finger, would be greater than the value that can be obtained by the usual stacks of grids or balls, however that in this form of practical realization, it ensures better distribution of the gas flow between the parallel layers of smooth surfaces.
  • barriers 26 which remain low dimensions compared to the length and thickness of the regenerative, also allows the introduction of an interrupt of the longitudinal flow between the strip layers successive from one end to the other of the regenerator, and thereby to stabilize the overall gas flow. Simultaneously, like these bars adjoin two adjacent layers of bands, we thanks to them a reduction in energy losses thermal by conduction in the longitudinal direction. Simultaneously, this ensures a reduction in energy losses thermal by conduction in the longitudinal direction.
  • regenerator 5 allows, particularly advantageously in the context of the present invention to obtain a relationship between the exchange local convective and longitudinal pressure drop very advantageous, while improving the flow distribution of gas between the parallel layers oriented longitudinally, up to recovery performance thermal at least equivalent, if not greater than those that we know get in known achievements by regenerators with stacked transverse grids or balls.
  • This cold exchanger is produced in accordance with this which emerges from Figures 1, 2 and 4, in a form called Daisy. It is constituted by a structure with geometry of revolution, which is made of a material strongly conductor such as copper or aluminum.
  • This structure alternates in a star around a central core 31, empty areas 32 hollowed out through its longitudinal thickness and massive zones 33 ensuring the thermal conduction. Both extend radially astride the shoulder 34, in part and from the end of the central tube 3. They leave therefore the gas circulate freely between the central volume 6 of the cryostat (or at least the expansion chamber remaining at the bottom of the cryostat in the case of a cooler according to the figure 5 applying a Stirling cycle), bypassing the lower end of the central tube 3 received in shoulder 34.
  • Such a miniature exchanger for example under 5 mm diameter and 3 mm thick, can be manufactured easily by electrochemical machining of a cylindrical bar, which is then cut into sections.
  • the core 31 can also be pierced with a empty passage in its center, and there is no need to leave a peripheral crown of material, contiguous continuously with the central tube 3.
  • FIG. 5 illustrates the combination of the cryostat of the previous figures, using the central part 20 of the Figure 2, with a pressure oscillator corresponding to the configuration of a Stirling cycle cooler, in which the piloting is with rotary motor.
  • the displacement piston 55 is axially movable in the internal volume 6 of the cryostat 30. It occupies almost everything volume, leaving no room at the bottom of the tube 3 which constitutes his guide, that the thickness of the expansion chamber, considerably enlarged in the figure compared to the practical reality.
  • Figure 6 uses an oscillator of pressure designed for a TGP type cooler including the casing 50 is connected to the cryostat around the central part 10 of the model in FIG. 1.
  • the mode of piloting is of rotary type.
  • the motor shaft is perpendicular to the axis of the system and, by an axis crankshaft off center 66, it involves an oscillating movement, a single piston 74.
  • the piston 74 is movable, vertically on the figure, in the axis of the cryostat, in a jacket formed at inside the housing 50.
  • the internal cage 68 On the offset axis 66 is mounted the internal cage 68 a ball bearing, the outer cage 67 of which is trapped in a rectilinear groove 75 dug laterally in the peripheral surface of the piston 74, perpendicular to its axis and to the plane of the figure. This provision ensures the reciprocating movement of the piston while immobilizing it in rotation.
  • the compression chamber 63 is formed between the upper end face of the piston and the casing 60. It is connected, as in the previous case, by a hole 62 and a conduit 61 to channel 39 opening into the chamber distribution of the cryostat.
  • the exchanger 8 here consists of lobes 77 of massive material in radiating arrangement around a core central 34. Between these lobes 77 are the passages of gases 78 which connect the lower end of the regenerator with the axial volume of the tube 3.
  • the gas flow tranquilization laminate which has already been discussed, is represented by a stack of perforated grids 81 mounted in section transverse of the tube 3 at this lower end. These grids can be retained by legs of tube 3, as shown, or just stuck between the end of the tube and the exchanger 8 in its central part limited by a tube centering shoulder 79 3. In all cases, the gas passing between the exchanger lobes is found to have cross the stack of grids.
  • This circulation is indicated by arrows in FIG. 8, which relates to another embodiment particularly advantageous especially since it facilitates a tranquilization of the gas flow as close as possible to the cold plate 22.
  • the cold exchanger is produced there in two parts 83 and 84 concentrically embossed one in the other; Each has its own material lobes heat exchange alternating with empty areas free to gas circulation. In other words, functionally the exchanger is therefore pierced with channels dividing into two crowns, one under regenerator 5, the other at the end of the tube 3.
  • the internal part 83 of the exchanger is shorter than the external part 84 which surrounds it and so that the end of the tube 3 comes center in the part 84 in abutment on the part 83.
  • a stack of grids 82 constitutes the laminated to calm the gas flow. These grids are interposed directly against the cold plate 22 between this and the two parts 83 and 84 of the exchanger. In case if necessary, they could be blocked in the exchanger on the outskirts, providing for this purpose a shoulder in the part 84 forming the annular ring of this exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

La présente invention concerne la conception et la réalisation des refroidisseurs cryogéniques qui mettent en oeuvre un gaz de travail suivant un cycle thermodynamique en circuit fermé entre une chambre de compression et une chambre de détente, en passant par un accumulateur thermique dit régénérateur, qui assure un échange de récupération entre gaz chaud comprimé et gaz froid détendu.
Ces refroidisseurs comportent, de manière classique, un oscillateur de pression piloté pour faire varier le volume de la chambre de compression, et un doigt froid se terminant par la chambre de détente, en contact thermique avec un élément à refroidir, placé au fond d'une enveloppe d'isolation thermique. L'élément à refroidir est couramment un composant électronique qu'il s'agit de maintenir en fonctionnement à des températures comprises entre 60 °K et 200 °K, afin notamment d'améliorer le rapport signal sur bruit.
Dans un tel contexte, qui implique bien des domaines de l'industrie où il est utilisé des composants électroniques ou optoélectroniques, les refroidisseurs cryogéniques du type en question rencontrent un succès chaque jour grandissant, principalement quand ils sont conçus pour être fabriqués à faible coût sous des formes intégrant l'oscillateur de pression avec le doigt froid dans un même ensemble mécanique n'ayant plus besoin de conduites externes pour fermer le circuit de gaz de travail.
Mais, par ailleurs, la variété de leurs applications industrielles a entraíné le développement de différentes configurations technologiques de refroidisseurs en fonction du cycle de travail le mieux adapté aux circonstances. On les trouvera décrites dans leur principe dans un article de Damien Feger intitulé "Refroidissement des détecteurs optoélectroniques" paru dans "Techniques de l'Ingénieur, traité Electronique" pages E4070-1 à 11.
Cet article fait déjà état des particularités spécifiques à chaque configuration et des critères présidant au choix de l'une ou l'autre. En relation avec la présente invention, il convient de souligner en particulier que, d'une manière générale, les refroidisseurs du type à tube à gaz pulsé (TGP) pêchent par un rendement inférieur à celui des configurations à cycle de Stirling, alors que quand la notion de rendement perd de son importance, les refroidisseurs à tube à gaz pulsé prennent le pas sur les refroidisseurs à cycle de Stirling. Ne serait-ce que pour des questions de coût, ils ont l'avantage d'impliquer un nombre de pièces plus limité et une exigence moindre dans la réalisation des étanchéités. De ce dernier point de vue, on rappellera que les refroidisseurs à cycle de Stirling comportent un piston dit "déplaceur" qui est monté à coulissement dans le doigt froid terminé par la chambre de détente, d'où le besoin d'une étanchéité au gaz de type dynamique.
Les brevets US 3 220 201, US 4 858 442, et 5 293 748, décrivent des exemples de refroidisseur à cycle de Stirling.
Dans le but de diminuer encore le coût et d'apporter une meilleure souplesse d'utilisation des refroidisseurs dans toutes sortes d'applications, la présente invention se propose principalement de mettre à la disposition des utilisateurs un cryostat qui ne se limite pas à une enveloppe isolante apte à recevoir le doigt froid du refroidisseur, mais qui incorpore une partie de ses organes essentiels, sous une forme permettant leur adaptation interchangeable à différentes configurations.
Plus précisément, un cryostat pour refroidisseur cryogénique réalisé suivant l'invention s'adapte aisément, conformément à son caractère interchangeable, tant à une configuration à tube à gaz pulsé qu'à une configuration à cycle de Stirling, et que le pilotage de l'oscillateur de pression passe par un entraínement de type rotatif à vilebrequin ou de type linéaire, suivant les expressions utilisées par l'homme de l'art, telles qu'elles sont reprises notamment dans l'article déjà cité.
Par ses différentes caractéristiques telles qu'elles seront décrites et revendiquées ci-après, l'invention permet aussi d'apporter des améliorations sensibles à la construction des refroidisseurs intégrant un tel cryostat et à leur mode de pilotage. Les avantages qui en résultent concernent en particulier la combinaison du cryostat avec un oscillateur de pression dans un mode réalisation relevant d'une configuration à tube à gaz pulsé.
En outre, les particularités proposées pour les différents éléments constitutifs des cryostats selon l'invention présentent l'avantage de se prêter particulièrement bien aux modes de fonctionnement respectifs des deux types de refroidisseurs et d'améliorer leurs performances propres. Tel est le cas notamment des dispositions préconisées pour le régénérateur, qui a la charge d'absorber et libérer de la chaleur, alternativement, par rapport au gaz qui le traverse. Tel est le cas également d'un échangeur avantageusement prévu en zone froide, au niveau de la chambre de détente, pour favoriser le transfert thermique vers le composant à refroidir, ainsi que pour un échangeur se situant en zone chaude et sous pression qui est spécialement utile dans les refroidisseurs du type à gaz pulsé, pour favoriser une déperdition thermique vers l'extérieur.
Ainsi, l'invention a plus précisément pour objet un cryostat pour refroidisseur cryogénique mettant en oeuvre un circuit fermé de gaz de travail entre une chambre de compression située dans un carter d'oscillateur de pression associé et une chambre de détente située en fond du cryostat, en situation d'échange thermique avec un composant à refroidir, comportant à l'intérieur d'une enveloppe d'isolation thermique, solidaire d'une embase de montage sur ledit carter, un régénérateur thermique interposé sur le circuit du gaz de travail. Ce régénérateur est en disposition annulaire autour d'un volume axial s'étendant entre un échangeur froid qui est en contact thermique avec le composant à refroidir et fait communiquer le régénérateur avec ledit volume axial en fond du cryostat. Le cryostat comporte aussi une couronne de distribution de gaz dans ledit régénérateur, en tête du cryostat, à partir d'un conduit percé à travers l'embase pour connexion à la chambre de compression. La couronne de distribution est formée par une pièce centrale se montant à travers ladite embase axialement en son centre. Ladite pièce centrale est montée de manière amovible dans ladite embase, notamment par vissage étanche. Ceci la rend facilement interchangeable entre un premier modèle pour fonctionnement du volume axial en piston gazeux dans un refroidisseur du type à tube à gaz pulsé, et un second modèle, présentant un alésage axial propre à être traversé par un piston déplaceur de refroidisseur à cycle de Stirling, introduit à coulissement étanche dans le même volume axial. Ainsi, on peut utiliser un même cryostat, construit suivant l'invention, sans rien changer d'autre à son dimensionnement ou à sa fabrication, pour l'intégrer avec un oscillateur de pression adapté de manière à constituer un refroidisseur répondant à l'une ou l'autre de ces configurations majeures.
Dans la pièce centrale suivant le modèle destiné à un refroidisseur fonctionnant suivant le principe du cycle à gaz pulsé, il est avantageusement ménagé au moins un canal de passage du gaz sous débit contrôlé entre un réservoir tampon de gaz formé à l'intérieur du carter de l'oscillateur de pression, et le volume axial interne au cryostat qui fonctionne en tube à gaz. Il est d'ailleurs avantageux d'y ajouter un ou plusieurs autres canaux à débit contrôlé permettant un prélèvement de gaz chaud directement en sortie de compression, au niveau de la couronne de distribution vers le régénérateur.
Dans le cas alternatif d'un refroidisseur mettant en oeuvre un cycle de Stirling, le volume interne se trouve au contraire occupé par le piston déplaceur, qui est préférentiellement plein, réalisé en un matériau de faible conductivité thermique, et qui ne laisse libre au gaz que le volume de la chambre de détente au fond du cryostat.
De préférence, la pièce centrale, avec sa couronne de distribution, est réalisée solidaire d'un tube central limitant ledit volume axial. Ce tube est alors avantageusement de même diamètre interne que l'alésage axial du modèle destiné à un raccordement du cryostat sur un refroidisseur à cycle de Stirling. Il peut donc constituer soit le tube contenant le gaz pulsé dans le premier modèle, soit le tube guide du piston déplaceur du refroidisseur dans le second cas.
Suivant une autre caractéristique de l'invention, il est associé au cryostat un échangeur chaud, se positionnant dans le volume interne en tête du cryostat. Son rôle se situe dans l'évacuation des calories qui s'effectue par déperdition thermique vers l'extérieur à travers l'embase et le carter de la partie compresseur du refroidisseur, réalisés à cette fin en matériau thermiquement conducteur. Il est spécialement utile dans la variante de refroidisseur à tube à gaz pulsé, compte tenu de la chaleur à évacuer en sortie du tube à gaz, qui se rajoute à la chaleur emmagasinée par le gaz en retour du régénérateur.
En ce qui concerne du moins l'échangeur froid, mais le cas échéant également l'échangeur chaud, l'invention prévoit, suivant une caractéristique secondaire, que l'on peut appliquer avantageusement avec les autres en toute combinaison opérante, d'utiliser une structure à géométrie de révolution, faisant alterner autour de l'axe du cryostat, dans une disposition de marguerite, des zones massives en matériau bon conducteur thermique et des zones vides ouvertes au passage du gaz. En conséquence, ces zones se situent notamment à cheval, de part et d'autre, par rapport à un épaulement de centrage de l'extrémité du tube central.
Il est souvent avantageux de combiner un tel échangeur froid avec un feuilleté de grilles perforées ayant pour effet d'assurer une tranquillisation du flux gazeux au passage de l'échangeur.
Soulignons encore que dans un refroidisseur suivant l'invention construit pour fonctionner suivant le principe du tube à gaz pulsé, il est avantageux de ménager le volume tampon de gaz alimentant le piston gazeux à l'intérieur d'un piston de compression, qui à cet effet, du côté opposé à la chambre de compression, est directement ouvert dans une chemise de guidage dudit piston qui vient se raccorder sur la pièce centrale appropriée du cryostat.
Pour l'entraínement du piston dans un tel refroidisseur, piston unique de préférence, il est en général souhaitable d'avoir recours à des moyens de pilotage à moteur linéaire, dans la mesure où le coût en est plus faible que pour un pilotage rotatif.
Dans certaines applications, une configuration du type à moteur rotatif peut cependant se révéler utile. La solution préférée passe alors par des moyens de pilotage comportant un vilebrequin actionnant un mécanisme de transmission de mouvement par roulement à billes mobile dans une gorge ménagée transversalement à l'extérieur dudit piston.
Quelle que soit la forme de réalisation choisie pour le refroidisseur suivant l'invention, la disposition annulaire du régénérateur se prête particulièrement bien à une fabrication à partir d'une feuille enroulée sur elle-même. En outre, l'invention permet d'améliorer sensiblement l'efficacité des échanges thermiques recherchés, par rapport aux empilements de grilles ou de billes classiques, en utilisant pour cela une feuille en matériau convenable, qui a été au préalable usinée, notamment par procédé photolithographique, de sorte à former des bandes longitudinales distinctes à surface lisse et des barrettes transversales en surépaisseur réunissant ponctuellement les bandes successives.
Préférentiellement, les différentes bandes se succèdent sur la longueur du régénérateur. Elles forment des couches annulaires de surface lisse entrecoupées par les intervalles entre bandes et les barrettes intercalées entre les couches contribuent à répartir le flux dans toutes les directions à chaque niveau de section transversale.
L'invention sera maintenant plus complètement décrite dans le cadre de caractéristiques préférées répondant au mieux aux propos de l'invention par leurs avantages, en faisant référence aux figures des dessins annexés qui les illustrent et dans lesquelles :
  • La figure 1 représente en coupe longitudinale un cryostat suivant l'invention, vu dans ses spécificités plus particulièrement destinées à un accouplement avec un oscillateur de pression de sorte à constituer un refroidisseur cryogénique appliquant un cycle à tube à gaz pulsé ;
  • La figure 2 montre les organes principaux du même cryostat, dans une vue éclatée, en s'intéressant au contraire à sa constitution pour accouplement avec l'oscillateur de pression d'un refroidisseur de type à cycle de Stirling ;
  • La figure 3 schématise une forme de réalisation préférée du régénérateur thermique, valable dans l'un et l'autre cas ;
  • La figure 4 montre une coupe transversale du cryostat au niveau de l'échangeur thermique disposé en zone froide du circuit de gaz de travail, dans la chambre de détente ;
  • La figure 5 illustre le montage du cryostat de l'invention, avec sa pièce de distribution interchangeable suivant la figure 2, dans un cas d'application pratique où il sert à constituer un refroidisseur cryogénique à cycle de Stirling suivant l'invention, qui est ici du type à pilotage rotatif ;
  • La figure 6 illustre, quant à elle, un autre mode de réalisation de l'invention, fournissant au total un refroidisseur à cycle TGP (tube à gaz pulsé), et elle montre en plus comment se concrétise préférentiellement, conformément à l'invention, un pilotage rotatif dans cette configuration de refroidisseur cryogénique.
  • La figure 7 illustre en vue éclatée une conception particulière de l'échangeur froid associé à un feuilleté de grilles de tranquilisation de gaz.
  • La figure 8 représente, dans une coupe schématique partielle, une variante de l'échangeur froid faisant appel à une réalisation en deux parties concentriques.
Conformément à l'invention, le cryostat de la figure 1 est utilisé en combinaison avec un oscillateur de pression soit pour constituer un refroidisseur cryogénique de type à gaz pulsé conformément à la figure 6, soit alternativement pour constituer un refroidisseur de type à cycle de Stirling conformément à la figure 5. Dans tous les cas, le refroidisseur ainsi constitué est de construction compacte, le cryostat et l'oscillateur de pression étant intégrés en un même ensemble mécanique.
Dès la figure 1, on peut observer que le cryostat suivant l'invention ne se limite pas, comme dans les réalisations connues, à une enveloppe d'isolation thermique destinée à recevoir un doigt froid préalablement constitué en tous ses organes fonctionnels nécessaires à la mise en oeuvre du cycle thermodynamique du gaz de travail. Au contraire, les organes fonctionnels passifs, qui ne sont pas soumis à des déplacements en cours de fonctionnement, sont prévus à demeure dans le cryostat, ce dernier étant construit de sorte à pouvoir se raccorder, alternativement au choix de l'utilisateur, au carter d'un oscillateur de pression relevant soit d'un refroidisseur spécifique pour mise en oeuvre d'un cycle de Stirling, soit d'un refroidisseur du type à tube à gaz pulsé.
C'est ainsi que dans le cryostat, on trouve, à l'intérieur d'une enveloppe d'isolation thermique 1 montée solidaire d'une embase 4 servant à son raccordement mécanique et pneumatique avec la partie oscillateur de pression du refroidisseur, deux viroles tubulaires concentriques, à savoir un tube central 3 et une paroi interne 2 de l'enveloppe 1, qui délimitent entre elles un espace annulaire occupé par un régénérateur thermique 5. Le régénérateur 5 est ainsi construit en disposition annulaire autour d'un volume axial 6, limité sur son pourtour par le tube central 3 parmi les deux viroles précédentes.
En pratique l'autre virole, qui limite extérieurement le régénérateur thermique, est donc ici directement constituée par la paroi interne 2 de l'enveloppe d'isolation thermique 1. Celle-ci est en effet, de manière en soi classique, du type à double paroi. Entre ses deux parois, elle est soit remplie d'un gaz d'inertage à faible point de condensation, soit soumise à un vide poussé, ce pour quoi elle est munie d'un port de chargement 25.
Dans d'autres réalisations toutefois, mais de manière généralement moins avantageuse, on préférera construire le régénérateur 5 avec ses propres enveloppes, dont une enveloppe externe qui est alors distincte de la paroi interne 2 de l'enveloppe d'isolation thermique et/ou une enveloppe interne qui est alors ajoutée contre le tube central 3.
En fond du cryostat, au-delà du régénérateur et de son enveloppe interne constituée par le tube 3, il est disposé un échangeur 8, qui constitue en fonctionnement l'échangeur froid du refroidisseur. Pour cela, cet échangeur est conçu et disposé de sorte à favoriser le transfert de la puissance frigorifique résultant de la détente du gaz de travail vers un composant à refroidir 21, tout en assurant une communication pneumatique permettant le passage du gaz de travail entre le fond du volume axial 6 et l'espace annulaire occupé par le régénérateur 5.
La virole intermédiaire du cryostat de l'invention, constituée par la paroi 2, est fermée en son extrémité inférieure, au fond du cryostat, par une plaque transversale 22 contre laquelle est apposé l'échangeur froid 8. Sur sa face opposée à cet échangeur vient se monter le composant 21, généralement par simple collage.
Quand l'élément à refroidir est constitué, comme illustré, par un composant électronique 21, par exemple un détecteur optoélectronique, il est nécessaire de pourvoir à sa liaison avec un circuit électrique véhiculant les signaux qu'il reçoit ou qu'il émet. On a donc fait apparaítre sur la figure 1, une couronne de distribution électrique 23, dont les parties conductrices passent par des traversées étanches à travers la paroi externe de l'enveloppe d'isolation thermique 1, ainsi que des fils conducteurs 24 qui les relient ensuite au composant 21.
L'enveloppe 1 dans son ensemble a pour fonction de limiter les pertes thermiques par radiation ou convection au niveau des organes intervenant dans le cycle thermodynamique du refroidisseur complet dans la zone froide de celui-ci.
Ainsi qu'il apparaít sur la figure 1, sa paroi externe est soudée en sous-face de l'embase 4, tandis que sa paroi interne 2 est monolithique avec celle-ci. L'une et l'autre peuvent être réalisées en acier inoxydable.
Cependant, on peut aussi choisir, pour la paroi interne 2, une qualité d'acier inoxydable correspondant à un alliage à faible conductivité thermique, adaptée pour être compatible avec le gaz de travail utilisé, lequel est préférentiellement l'hélium dans le cas du régénérateur à feuille métallique enroulée comme décrit plus loin.
La paroi extérieure de l'enveloppe 1 est réalisée également en acier inoxydable, ou éventuellement en une qualité appropriée de verre, pour des raisons d'ordre économique.
Suivant le matériau choisi, il peut donc être nécessaire d'avoir recours à des jonctions verre/métal pour assurer l'étanchéité des soudures et des traversées électriques, ce qui toutefois posera d'autant moins de problèmes à l'homme de l'art que ce besoin se situe en des endroits sous pression statique.
En tête du cryostat, à l'extrémité supérieure de l'enveloppe thermiquement isolante 1 et du régénérateur 5, l'embase 4 se trouve au contraire en zone chaude du refroidisseur en fonctionnement, là où règne aussi une pression dynamique du gaz de travail, soumise à des pulsations de pression périodiques, imprimées par les éléments mobiles du refroidisseur lorsque le cryostat est raccordé au carter 50 d'un oscillateur de pression associé.
Dans cette zone chaude, il convient d'évacuer les calories du gaz revenant de la détente, après la récupération effectuée dans le régénérateur 5. Pour cela, il est prévu de réaliser l'embase 4 en un matériau de bonne conductivité thermique, généralement de l'acier inoxydable, sous une forme favorisant les déperditions vers l'extérieur.
Dans l'embase 4 on distingue une collerette circulaire 16, percée de trous pour le passage des vis 48 assurant la fixation sur le carter 50 du refroidisseur, qui vient se raccorder en appui sur la face supérieure de la collerette 16, opposée à l'enveloppe thermique 1. On distingue aussi une bague 17, faisant partie de l'embase 4, qui assure le centrage des deux éléments l'un dans l'autre. Le raccordement étanche de ces deux éléments (cryostat et oscillateur de pression) vis-à-vis de l'extérieur est assuré par un joint 19, logé dans une gorge annulaire de la face supérieure de la collerette 16.
L'embase 4 livre passage, dans l'axe du système, à une pièce centrale 10, vissée de manière étanche dans la bague 17, laquelle est filetée intérieurement. Une gorge hexagonale 41, ménagée dans sa face plane supérieure, sert à sa manipulation lors du montage.
Comme on l'a déjà expliqué, cette pièce centrale du cryostat est conçue sous deux modèles différents qui, par leur géométrie extérieure, leur dimensionnement, et leur conception fonctionnelle, sont interchangeables dans une même construction de cryostat. Les deux modèles sont illustrés par la figure 1 et par la figure 2, suivant que le cryostat 30 est monté pour être accouplé avec les carters 50 ou 60 de l'un ou l'autre des deux oscillateurs de pression dans les deux variantes de refroidisseur montrées sur les figures 6 et 5 respectivement.
Dans tous les cas, cette pièce centrale, donc en particulier celle portant la référence 10 sur la figure 1, est ici constituée d'une seule pièce avec le tube interne 3 du cryostat.
D'autre part, elle forme une couronne de distribution 71, pour la répartition annulaire du gaz en tête du régénérateur 5. En conséquence, cette couronne se place au-dessus de celui-ci (dans la disposition verticale représentée, cryostat sous le carter 50), et plus précisément au centre de l'embase 4 en sa partie principale formée par la collerette 16.
Dans le mode de réalisation illustré, la couronne de distribution 71 présente une gorge circulaire 45, creusée dans sa face inférieure, qui vient en butée sur le régénérateur 5. Cette gorge communique par des orifices 46 avec une chambre annulaire 43, prolongée vers le haut en 42, qui est ménagée extérieurement dans la partie de la pièce centrale 10 se trouvant au niveau de la collerette 16, entre cette pièce et la face en vis-à-vis de l'embase 4.
C'est là que débouche un canal 39, percé à travers cette collerette de l'embase 4 jusqu'à communiquer, une fois le montage du refroidisseur terminé, avec un conduit 61 par lequel s'effectue la liaison pneumatique avec la chambre de compression située dans l'oscillateur de pression.
Pour le reste, la pièce centrale 10 est représentée sur la figure 1 dans le modèle convenant pour un refroidisseur type TGP illustré par la figure 6.
Le second modèle de pièce centrale du cryostat, destiné lui à un refroidisseur à cycle Stirling, est montré sur la représentation schématique en disposition éclatée de la figure 2. Dans ce cas, le pièce centrale 20 est identique à la précédente extérieurement, mais intérieurement, elle comporte simplement un alésage axial 72, ménagé tout du long à travers elle, au même diamètre que le tube 3 dont elle prolonge le volume central.
En revenant à la figure 1, on observe la constitution des moyens d'alimentation du piston gazeux occupant le volume interne 6 du cryostat. A l'entrée de celui-ci débouche un canal 11, qui est percé axialement dans la pièce centrale 10 jusqu'à sa face supérieure, où il se termine par un orifice calibré 13 imposant un débit gazeux contrôlé.
Une autre liaison pneumatique, impliquant un ou plusieurs canaux, est assurée à travers la pièce 10, avec la chambre annulaire 43 de la couronne de distribution de gaz vers le régénérateur 5. on a ainsi fait apparaítre un orifice calibré 14, sur un canal 12 débouchant dans le canal axial 11.
Les orifices calibrés des canaux 11-12 fonctionnent, de manière en soi classique, comme des vannes introduisant des impédances pneumatiques. Le canal principal 11 ainsi équipé procure en fonctionnement le déphasage utile entre l'onde de pression générée par l'oscillateur de pression et les variations de débit en résultant dans le tube contenant le gaz pulsé. L'impédance secondaire (canal 12) permet d'apporter une fraction du débit d'alimentation périodique du tube en la prélevant directement en sortie de compression, par dérivation de la circulation passant à travers le régénérateur et le tube. Ceci diminue la charge thermique sur le régénérateur et contribue à améliorer l'efficacité du refroidisseur, dans le cas d'un cycle à gaz pulsé.
La figure 1 montre enfin un échangeur 9, situé en zone chaude dans le volume central, au niveau de la couronne de distribution 71. Cet échangeur chaud peut éventuellement être réalisé de manière analogue à ce qui sera décrit plus loin pour l'échangeur froid, l'essentiel étant que, dans cette variante de réalisation du cryostat de l'invention, il vienne parfaire l'évacuation des calories excédentaires du cycle thermodynamique en complétant, à partir de la zone chaude du tube de gaz pulsé, les déperditions thermiques vers l'extérieur ayant lieu par le biais de l'embase 4, et accessoirement du carter d'oscillateur de pression associé.
Pour l'un et l'autre des deux types de refroidisseurs, le régénérateur thermique 5 est avantageusement constitué, comme il apparaít des figures 1 et 3, de manière à jouer pleinement son rôle d'accumulateur thermique pour la récupération ayant lieu, de manière en soi classique, entre le gaz de travail passant de la phase de compression à la phase de détente et le gaz de travail passant de la phase de détente à la phase de compression.
Dans le mode de réalisation préférentiel de l'invention décrit ici et illustré par la figure 3, un tel régénérateur se présente sous la forme d'une feuille continue qui est enroulée en une série de spires autour du tube central 3 qui limite le volume interne 6 du régénérateur, de manière à remplir, aussi complètement qu'il est possible dans la pratique industrielle, l'espace annulaire compris entre ce tube 3, qui forme sa virole enveloppe interne, et sa virole enveloppe externe associée, constituée par la paroi interne 2 de l'enveloppe isolante 1.
Les procédés d'usinage par photolithographie, qui sont connus en eux-mêmes, sont particulièrement intéressants en ce sens, dans la mesure où ils représentent des moyens technologiques particulièrement simples à mettre en oeuvre pour un prix de revient limité, quand il s'agit de conduire à la configuration illustrée par le détail de la figure 3.
Suivant cette configuration, la feuille qui est ainsi enroulée en spires consécutives jointives, forme une succession de bandes longitudinales distinctes 27, qui s'orientent perpendiculairement à l'axe du cryostat et qui sont séparées les unes des autres par des intervalles 28. Des barrettes 26 sont formées en surépaisseur des bandes et en travers de celles-ci dans le sens perpendiculaire. Elles sont régulièrement réparties sur toute la longueur et la hauteur de la feuille et disposées en quinconce, chacune réunissant deux bandes successives par dessus l'intervalle qui les sépare.
On réalise de cette manière, à la fois des couches de surfaces lisses qui seront léchées par le gaz de travail suivant son sens global de circulation sous l'effet des différences de pression mais qui sont périodiquement interrompues par les intervalles 28, et des barrières orientées transversalement aux bandes et aux intervalles entre deux spires consécutives de la feuille. Ceci permet d'obtenir une bonne distribution du gaz entre les couches, équilibrée dans toutes les directions d'une section transversale du régénérateur, ainsi que d'éviter l'apparition d'instabilités préjudiciables à l'efficacité des échanges, tout en créant la perte de charge importante qui est nécessaire au déphasage dans le pilotage de certains refroidisseurs.
En ce qui concerne le dimensionnement géométrique d'un régénérateur ainsi construit, on peut citer en exemple le cas dune feuille de 100 à 200 microns d'épaisseur, creusée à mi-épaisseur par chaque face, pour un régénérateur de 2 à 3 millimètres d'épaisseur radiale. Les bandes et les intervalles entre elles peuvent, par exemple, être d'une même largeur, de l'ordre de 50 à 100 microns. La longueur transversale des barrettes 26 peut correspondre, ici encore à titre d'exemple, à 1,5 fois le pas de répétition des bandes longitudinales 27, avec une largeur environ moitié moindre et une distance entre deux barrettes successives décalées, équivalente à environ trois fois la largeur de chacune.
L'invention permet ainsi de tirer profit d'un rapport entre l'échange convectif local et les pertes de charges longitudinales qui, dans le cas de plaques parallèles à l'axe du doigt froid, serait supérieur à la valeur que l'on peut obtenir par les empilements usuels de grilles ou de billes, cependant que, sous cette forme de réalisation pratique, elle permet d'assurer une meilleure distribution du débit de gaz entre les couches parallèles de surfaces lisses.
De la sorte, on parvient à équilibrer le débit de gaz de travail circulant entre les couches annulaires à surface parallèle à l'axe du cryostat de l'invention, et le débit de gaz circulant transversalement, dans toutes les directions radiales du régénérateur aux différents niveaux entre bandes successives. En conséquence, on évite les différences qui existent dans les régénérateurs connus entre le débit radial et le débit axial, alors que l'on peut constater qu'une telle différence de répartition entraíne des transferts thermiques déséquilibrés qui dégradent les performances des régénérateurs.
La présence des barrières 26, qui restent de faibles dimensions en regard de la longueur et de l'épaisseur du régénérateur, permet en outre d'introduire une interruption périodique du flux longitudinal entre les couches de bandes successives d'un bout à l'autre du régénérateur, et par là de stabiliser le débit gazeux global. Simultanément, comme ces barrettes jouxtent deux couches adjacentes de bandes, on obtient grâce à elles une réduction des pertes d'énergie thermique par conduction dans le sens longitudinal. Simultanément, on assure ainsi une réduction des pertes d'énergie thermique par conduction dans le sens longitudinal.
Par là même, on résout les problèmes qui, dans les refroidisseurs connus, sont liés aux variations de la viscosité du gaz de travail en fonction de la température locale, et qui causent des variations entraínant une instabilité intrinsèque du débit de gaz, et ainsi une faible efficacité du régénérateur.
Une telle réalisation du régénérateur 5 permet, dune façon particulièrement avantageuse dans le cadre de la présente invention, d'obtenir un rapport entre l'échange convectif local et la perte de charge longitudinale très avantageux, tout en améliorant la distribution du débit de gaz entre les couches parallèles orientées longitudinalement, jusqu'à atteindre des performances de récupération thermique au moins équivalentes, si ce n'est supérieures à celles que l'on sait obtenir dans les réalisations connues par des régénérateurs à grilles transversales empilées ou à billes.
Une autre caractéristique commune aux deux variantes de refroidisseurs décrites ici, à titre d'exemples, concerne la réalisation de l'échangeur froid 8 mis en place en fond de l'enveloppe d'isolation thermique 1 du cryostat suivant l'invention, telle qu'elle est illustrée plus particulièrement par la figure 4.
On remarquera tout d'abord que, lors de la mise en place de la pièce centrale 10 ou 20 dans le cryostat, son centrage est assuré au niveau de la couronne de distribution 71, directement dans l'axe de l'embase 4 et sur la paroi interne 2 de l'enveloppe 1, jusqu'à pousser le regénérateur 5 en butée sur l'échangeur froid 8. Dans la mesure où elle porte avec elle le tube central 3, cette pièce centrale est également centrée, à l'extrémité de ce dernier, grâce à un épaulement 34 formé en face supérieure de l'échangeur 8.
Cet échangeur froid est réalisé, conformément à ce qui ressort des figures 1, 2 et 4, sous une forme dite en marguerite. Il est constitué par une structure à géométrie de révolution, qui est réalisée en un matériau fortement conducteur tel que du cuivre ou de l'aluminium.
Cette structure fait alterner en étoile autour d'un noyau central 31, des zones vides 32 creusées à travers son épaisseur longitudinale et des zones massives 33 assurant la conduction thermique. Les unes et les autres s'étendent radialement à cheval par rapport à l'épaulement 34, de part et d'autre de l'extrémité du tube central 3. Elles laissent donc le gaz circuler librement entre le volume central 6 du cryostat (ou du moins la chambre de détente restant en fond du cryostat dans le cas d'un refroidisseur suivant la figure 5 appliquant un cycle de Stirling), en contournement de l'extrémité inférieure du tube central 3 reçue dans l'épaulement 34.
Un tel échangeur miniature, sous par exemple 5 mm de diamètre et 3 mm d'épaisseur, peut être fabriqué aisément par usinage électrochimique d'un barreau cylindrique, qui est ensuite découpé en tronçons.
Il permet d'apporter une surface d'échange importante pour un encombrement réduit, et sans créer de pertes de charge perturbatrices, tout en assurant une tranquillisation bénéfique en fond du tube 3 dans le cas où il reçoit du gaz pulsé. Aux fins de mieux tranquilliser le flux gazeux des feuilletés de grilles perforés sont interposés entre le tube 3 et les lobes de l'échangeur. Ils n'ont pas été représentés sur la figure 3.
Les mêmes avantages se retrouvent si les zones rayonnantes alternativement pleines et vides sont interverties. Le noyau 31 peut être en plus percé d'un passage vide en son centre, et il n'est pas nécessaire de laisser subsister une couronne périphérique de matériau, jointive en continu avec le tube central 3. Les zones massives forment des lobes de matériau échangeur, ici encore dans une configuration à cheval par rapport au diamètre du tube 3, dans laquelle les zones vides entre les lobes assurent le passage du gaz entre le régénérateur et soit la chambre de détente d'un refroidisseur à cycle Stirling, soit le fond du piston gazeux d'un refroidisseur à tube à gaz pulsé.
La figure 5 illustre la combinaison du cryostat des figures précédentes, utilisant la pièce centrale 20 de la figure 2, avec un oscillateur de pression répondant à la configuration d'un refroidisseur à cycle Stirling, dans lequel le pilotage est à moteur rotatif.
On a représenté schématiquement un système d'entraínement classique par un vilebrequin 51 dont l'excentrique est lié à deux bielles 53, 54, disposées à 90 degrés l'une de l'autre. A l'intérieur du carter 60, la bielle 53 est articulée sur l'extrémité du piston déplaceur 55, tandis que la bielle 54 est articulée sur le piston de compression 56 qui limite la chambre de compression 57. Le gaz comprimé est véhiculé par des conduits 58, 59 jusqu'au canal 39 du cryostat alimentant la chambre de distribution 71 du cryostat, et de là le régénérateur 5.
Le piston déplaceur 55 est mobile axialement dans le volume interne 6 du cryostat 30. Il occupe quasiment tout ce volume, en ne laissant place au fond du tube 3 qui constitue son guide, qu'à l'épaisseur de la chambre de détente, considérablement agrandie sur la figure par rapport à la réalité pratique.
Il passe donc par l'alésage axial 72 de la pièce centrale 20. Son coulissement dans celle-ci est assuré sous étanchéité au gaz par un revêtement adapté appliqué sur sa surface périphérique.
La figure 6 utilise au contraire un oscillateur de pression conçu pour un refroidisseur type TGP dont le carter 50 est raccordé sur le cryostat autour de la pièce centrale 10 du modèle de la figure 1.
On voit donc sur cette figure 6 que l'échangeur chaud 9 est présent et que le volume interne 6 du cryostat est resté vide pour être occupé par le gaz pulsé et fonctionner comme un piston gazeux.
Dans le cas particulier illustré, le mode de pilotage est de type rotatif. L'arbre moteur est perpendiculaire à l'axe du système et, par un vilebrequin à axe décentré 66, il entraíne dans un mouvement oscillant, un piston unique 74.
Le piston 74 est mobile, verticalement sur la figure, dans l'axe du cryostat, dans une chemise formée à l'intérieur du carter 50.
Sur l'axe décentré 66 est montée la cage interne 68 d'un roulement à billes, dont la cage externe 67 est emprisonnée dans une gorge rectiligne 75 creusée latéralement dans la surface périphérique du piston 74, perpendiculairement à son axe et au plan de la figure. Cette disposition permet d'assurer le mouvement alternatif du piston tout en l'immobilisant en rotation.
La chambre de compression 63 est ménagée entre la face d'extrémité supérieure du piston et le carter 60. Elle est reliée, comme dans le cas précédent, par un perçage 62 et un conduit 61 au canal 39 débouchant dans la chambre de distribution du cryostat.
La face opposée du piston est creuse. on ménage ainsi, du côté opposé à la chambre de compression, un réservoir 65, de volume important par rapport au volume de gaz en circulation. La pression régnant dans ce réservoir reste donc pratiquement constante en fonctionnement.
C'est ainsi que le piston 74 ménage là, à l'intérieur de sa chemise de guidage, un réservoir qui est directement ouvert sur la partie centrale du cryostat et qui remplit la fonction de volume tampon pour la vanne sous débit contrôlé constituée par l'orifice calibré 13 de la figure 1, à l'alimentation du piston gazeux occupant la volume central 6.
Conformément à une variante de réalisation pratique restant dans le cadre de l'invention, on peut avantageusement appliquer la même disposition, ménageant le réservoir tampon, directement ouvert sur la surface libre de la pièce centrale 10 en tête du cryostat, à l'intérieur du piston de compression, dans le cas d'un refroidisseur de type TGP dont le pilotage est assuré par moteur linéaire plutôt que par moteur rotatif.
Sur la figure 7 on a fait apparaítre une variante de réalisation particulièrement avantageuse pour le fond du cryostat. La représentation éclatée, utilisée pour plus de clarté, montre schématiquement le régénérateur 5 entre le tube 3 de gaz pulsé et la paroi tubulaire 2, qui laisse place à l'échangeur froid 8 contre la plaque 22.
L'échangeur 8 est ici constitué de lobes 77 de matériau massif en disposition rayonnante autour d'un noyau central 34. Entre ces lobes 77 se situent les passages de gaz 78 qui font communiquer l'extrémité inférieure du régénérateur avec le volume axial du tube 3.
Le feuilleté de tranquillisation du flux gazeux, dont il a déjà été question, est représenté constitué par un empilement de grilles perforées 81 monté en section transversale du tube 3 à cette extrémité inférieure. Ces grilles peuvent être retenues par des pattes du tube 3, comme représenté, ou simplement coincées entre le bout du tube et l'échangeur 8 dans sa partie centrale limitée par un épaulement 79 de centrage du tube 3. Dans tous les cas, le gaz passant entre les lobes de l'échangeur se trouve devoir traverser l'empilement de grilles.
Cette circulation est matérialisée par des flèches sur la figure 8, qui concerne un autre mode de réalisation particulièrement avantageux dans la mesure notamment où il facilite une tranquillisation du flux gazeux au plus près de la plaque froide 22. L'échangeur froid y est réalisé en deux parties 83 et 84 emboltées concentriquement l'une dans l'autre; Chacune présente ses propres lobes de matériau d'échange thermique alternant avec des zones vides libres à la circulation gazeuse. Autrement dit, fonctionnellement l'échangeur est donc percé de canaux se répartissant en deux couronnes, l'une sous le régénérateur 5, l'autre en bout du tube 3. On voit en plus que la pièce interne 83 de l'échangeur est plus courte que la pièce externe 84 qui l'entoure et que, de la sorte, le bout du tube 3 vient se centrer dans la pièce 84 en butée sur la pièce 83.
Un empilement de grilles 82 constitue le feuilleté de tranquillisation du flux gazeux. Ces grilles sont interposées directement contre la plaque froide 22 entre celle-ci et les deux pièces 83 et 84 de l'échangeur. En cas de besoin, elles pourraient être bloquées dans l'échangeur en périphérie, en ménageant à cet effet un épaulement dans la pièce 84 formant la couronne annulaire de cet échangeur.

Claims (15)

  1. Cryostat pour refroidisseur cryogénique mettant en oeuvre un circuit fermé de gaz de travail entre une chambre de compression située dans un carter d'oscillateur de pression associé et une chambre de détente située en fond du cryostat, en situation d'échange thermique avec un composant à refroidir, comportant à l'intérieur dune enveloppe d'isolation thermique (1), solidaire d'une embase (4) de montage sur ledit carter (50, 60), un régénérateur thermique (5) interposé sur le circuit du gaz de travail, en disposition annulaire autour d'un volume axial (6) s'étendant entre un échangeur froid (8) qui est en contact thermique avec le composant à refroidir (21) et qui fait communiquer le régénérateur (5) avec ledit volume axial en fond du cryostat (30), caractérisé en ce qu'il comporte une couronne (71) de distribution de gaz dans ledit régénérateur (5), en tête du cryostat, à partir d'un conduit (39) percé à travers l'embase (4) pour connexion à la chambre de compression, ladite couronne de distribution (71) étant formée par une pièce centrale (10, 20) se montant de manière amovible et à travers ladite embase (4) axialement en son centre, et interchangeable entre un modèle convenant pour un refroidisseur de type à gaz pulsé dans lequel le volume axial (6) fonctionne en piston gazeux et un modèle convenant à un refroidisseur de type à cycle de Stirling dans lequel un piston déplaceur se déplace dans ledit volume axial.
  2. Cryostat suivant la revendication 1, caractérisé en ce que ladite pièce centrale, avec ladite couronne de distribution (71), est solidaire d'un tube (3) limitant ledit volume axial (6).
  3. Cryostat suivant l'une des revendications 1 ou 2, caractérisé en ce que ladite pièce centrale présente, dans le modèle convenant à un refroidisseur de type à cycle de Stirling, un alésage axial propre à être traversé par un piston déplaceur du refroidisseur, introduit à coulissement étanche dans ledit volume axial (6).
  4. Cryostat suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit échangeur froid (8) présente une structure à géométrie de révolution, faisant alterner autour de l'axe du cryostat, des zones massives (33) en matériau bon conducteur thermique et des zones vides (32) ouvertes au passage du gaz.
  5. Cryostat suivant la revendication 4, caractérisé en ce que lesdites zones vides (33) s'étendent de part et d'autre d'un épaulement (34) de centrage d'un tube central (3) limitant ledit volume axial.
  6. Cryostat suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite enveloppe d'isolation thermique (1) présente une paroi tubulaire interne (2) contiguë au régénérateur, fermée par une plaque (22) de réception du composant à refroidir, contre laquelle est apposé ledit échangeur froid (8).
  7. Cryostat suivant l'une quelconque des revendications 1 à 6, caractérisé en ce que ledit régénérateur est constitué d'une feuille enroulée sur elle-même dans l'espace annulaire compris entre une parai interne (2) de ladite enveloppe (1) et un tube central (3) limitant ledit volume axial, dans le prolongement de ladite couronne de distribution, ladite feuille étant usinée, notamment par procédé photo-lithographique, de sorte à former des bandes distinctes (27) à surfaces lisses parallèles à l'axe du cryostat et des barrettes transversales (26) en surépaisseur réunissant ponctuellement les bandes successives.
  8. Cryostat suivant l'une quelconque des revendications 1 à 7, caractérisé en ce que ladite couronne de distribution présente une face inférieure de butée sur ledit régénérateur dans laquelle est creusée une gorge circulaire (45) communiquant par des orifices régulièrement répartis avec une chambre annulaire (42, 43) ménagée extérieurement autour de ladite pièce centrale au niveau de l'embase (4) du cryostat, en communication avec ledit canal (39).
  9. Cryostat suivant l'une quelconque des revendications 1 à 8, caractérisé par un feuilleté de grilles de tranquillisation du flux gazeux interposé au fond dudit volume axial contre l'échangeur froid.
  10. Cryostat suivant l'une quelconque des revendications 1 à 9, caractérisé en ce que ladite embase (4) forme une bague (17) de montage de ladite pièce centrale (10, 20), dans le prolongement dudit volume axial (6).
  11. Refroidisseur, caractérisé en ce qu'il comporte un cryostat suivant l'une quelconque des revendications 1 à 10 correspondant au modèle adapté à un refroidisseur à cycle de Stirling, raccordé au carter (60) d'un oscillateur de pression comportant un piston déplaceur à pilotage synchronisé en déphasage avec un piston de compression et en ce que ledit piston déplaceur (55) est mobile axialement dans ledit volume interne (6) du cryostat (30) et passe à coulissement étanche dans un alésage axial (72) prévu à cet effet dans ladite pièce centrale (20) montée dans ladite embase du cryostat.
  12. Refroidisseur, caractérisé en ce qu'il comporte un cryostat suivant l'une quelconque des revendications 1 à 10 correspondant au modèle adapté un refroidisseur à gaz pulsé, raccordé au carter (50) d'un oscillateur de pression comportant des moyens de pilotage périodique d'un piston de compression du gaz faisant varier le volume de la chambre de compression et un réservoir tampon de gaz à pression constante, et en ce que ladite pièce centrale (10) montée dans l'embase (4) du cryostat comporte des moyens de liaison pneumatique à débit contrôlé avec ledit réservoir (65).
  13. Refroidisseur suivant la revendication 12, caractérisé en ce que ladite pièce centrale comporte, en plus d'un canal (11) de passage du gaz sous débit contrôlé entre ledit réservoir tampon de gaz à pression constante ménagé à l'intérieur du carter (50) de l'oscillateur de pression, et ledit volume axial (6) interne au cryostat, ce dernier se remplissant de gaz en fonctionnement pour constituer un piston gazeux en déphasage par rapport à la compression périodique, au moins un autre canal (12) à débit contrôlé, débouchant dans une chambre annulaire (42, 43) formée par ladite pièce centrale (10) réalisée conformément à la revendication 8.
  14. Refroidisseur suivant la revendication 12 ou 13, caractérisé en ce que ledit volume tampon de gaz est ménagé à l'intérieur d'un piston de compression commandé par lesdits moyens de pilotage, qui est à cet effet directement ouvert, dans une chemise de guidage dudit piston, sur ladite pièce centrale (10) du cryostat.
  15. Refroidisseur suivant l'une quelconque des revendications 12 à 14, caractérisé en ce que, dans une configuration du type à moteur rotatif, lesdits moyens de pilotage comportent un vilebrequin actionnant un mécanisme de transmission de mouvement par roulement à billes mobile dans une gorge ménagée transversalement à l'extérieur dudit piston.
EP19970400898 1996-04-23 1997-04-22 Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat Expired - Lifetime EP0803687B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9605086 1996-04-23
FR9605086A FR2747767B1 (fr) 1996-04-23 1996-04-23 Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat

Publications (2)

Publication Number Publication Date
EP0803687A1 EP0803687A1 (fr) 1997-10-29
EP0803687B1 true EP0803687B1 (fr) 2002-06-26

Family

ID=9491490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970400898 Expired - Lifetime EP0803687B1 (fr) 1996-04-23 1997-04-22 Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat

Country Status (3)

Country Link
EP (1) EP0803687B1 (fr)
DE (1) DE69713547T2 (fr)
FR (1) FR2747767B1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3751175B2 (ja) * 1999-12-21 2006-03-01 シャープ株式会社 スターリング冷凍機
FR2815700B1 (fr) * 2000-10-19 2004-10-22 Sagem Dispositif cryogenique a cycle ferme
KR100393792B1 (ko) * 2001-02-17 2003-08-02 엘지전자 주식회사 맥동관 냉동기
US8910486B2 (en) * 2010-07-22 2014-12-16 Flir Systems, Inc. Expander for stirling engines and cryogenic coolers
GB2524893B (en) * 2013-02-19 2018-11-28 The Hymatic Engineering Company Ltd A gas flow distribution device for distributing gas to a regenerator of a pulse tube refrigerator cryocooler apparatus
CN118129389B (zh) * 2024-05-07 2024-07-02 上海量羲技术有限公司 一种稀释制冷装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3220201A (en) * 1965-01-25 1965-11-30 Little Inc A Cryogenic refrigerator operating on the stirling cycle
US3851173A (en) * 1973-06-25 1974-11-26 Texas Instruments Inc Thermal energy receiver
US4425764A (en) * 1982-03-16 1984-01-17 Kryovacs Scientific Corporation Micro-cryogenic system with pseudo two stage cold finger, stationary regenerative material, and pre-cooling of the working fluid
US4550571A (en) * 1983-12-28 1985-11-05 Helix Technology Corporation Balanced integral Stirling cryogenic refrigerator
US4569203A (en) * 1984-10-29 1986-02-11 Texas Instruments Incorporated Cryogenic cooler
DE3812427A1 (de) * 1988-04-14 1989-10-26 Leybold Ag Verfahren zur herstellung eines regenerators fuer eine tieftemperatur-kaeltemaschine und nach diesem verfahren hergestellter regenerator
US4858442A (en) * 1988-04-29 1989-08-22 Inframetrics, Incorporated Miniature integral stirling cryocooler
US5293748A (en) * 1990-07-10 1994-03-15 Carrier Corporation Piston cylinder arrangement for an integral Stirling cryocooler
DE4234678C2 (de) * 1991-10-15 2003-04-24 Aisin Seiki Reversible Schwingrohr-Wärmekraftmaschine
GB9213350D0 (en) * 1992-06-24 1992-08-05 Marconi Gec Ltd Refrigerator
FR2702269B1 (fr) * 1993-03-02 1995-04-07 Cryotechnologies Refroidisseur muni d'un doigt froid du type tube pulsé.
US5613365A (en) * 1994-12-12 1997-03-25 Hughes Electronics Concentric pulse tube expander

Also Published As

Publication number Publication date
EP0803687A1 (fr) 1997-10-29
DE69713547D1 (de) 2002-08-01
FR2747767B1 (fr) 1998-08-28
DE69713547T2 (de) 2003-01-16
FR2747767A1 (fr) 1997-10-24

Similar Documents

Publication Publication Date Title
EP2340571B1 (fr) Generateur thermioue a materiau magnetocalorioue
EP0678186B1 (fr) Element echangeur de chaleur, procede et dispositif pour le fabriquer
CH695836A5 (fr) Procédé et dispositif pour générer en continu du froid et de la chaleur par effet magnetique.
WO2007068134A2 (fr) Dispositif de generation de froid et de chaleur par effet magneto-calorique
FR2505035A1 (fr) Compresseur hermetique de refrigeration equipe d'un silencieux, notamment pour refrigerateurs menagers
FR2691209A1 (fr) Enceinte contenant des gaz chauds refroidie par transpiration, notamment chambre propulsive de moteur-fusée, et procédé de fabrication.
WO1999031388A1 (fr) Pompe a deplacement positif
WO2010037980A1 (fr) Structure d'echangeur thermique et chambre de compression ou de detente isotherme
CA2595360A1 (fr) Pompe a vide a cycle de translation circulaire a plusieurs arbres
FR2942305A1 (fr) Generateur thermique magnetocalorique
EP0803687B1 (fr) Cryostat pour refroidisseur cryogenique et refroidisseurs comportant un tel cryostat
WO2011033243A1 (fr) Machine thermodynamique à cycle de stirling
WO2010094855A1 (fr) Generateur thermique magnetocalorique
EP0114781B1 (fr) Machine thermique à source d'énergie externe ou interne aux cylindres du type compresseur ou moteur à cycle de Stirling par exemple
CA2805988A1 (fr) Generateur thermique a materiau magnetocalorique
FR2821150A1 (fr) Refregirateur a tube pulse
FR2566887A1 (fr) Refrigerateurs cryogeniques a etages multiples, capables d'obtenir une refrigeration a une temperature se situant entre 4,5 et 10o kelvin
EP0778452A1 (fr) Refroidisseur stirling à pilotage rotatif
FR2741940A1 (fr) Refroidisseur a moteur lineaire
EP0860667B1 (fr) Système de conditionnement de composants fonctionnant à température cryogénique
WO2016020327A1 (fr) Machine thermique à matériau magnétocalorique du genre machine frigorifique ou pompe à chaleur
FR2611870A1 (fr) Refroidisseur miniature a detente joule-thomson et son procede de fabrication
FR2562645A1 (fr) Refrigerateur cryogenique
FR2750481A1 (fr) Refroidisseur a gaz pulse
FR2754593A1 (fr) Procede et dispositif de refroidissement cryogenique de composants par detente de joule-thomson

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19980417

17Q First examination report despatched

Effective date: 20001115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES CRYOGENIE S.A.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69713547

Country of ref document: DE

Date of ref document: 20020801

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020906

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160411

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160419

Year of fee payment: 20

Ref country code: GB

Payment date: 20160420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69713547

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20170421

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170421