EP0676089A1 - Composant a semi-conducteur a effet de champ - Google Patents

Composant a semi-conducteur a effet de champ

Info

Publication number
EP0676089A1
EP0676089A1 EP94903875A EP94903875A EP0676089A1 EP 0676089 A1 EP0676089 A1 EP 0676089A1 EP 94903875 A EP94903875 A EP 94903875A EP 94903875 A EP94903875 A EP 94903875A EP 0676089 A1 EP0676089 A1 EP 0676089A1
Authority
EP
European Patent Office
Prior art keywords
region
cathode
anode
contact
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP94903875A
Other languages
German (de)
English (en)
Inventor
Horst Neubrand
Jacek Korec
Dieter Silber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG filed Critical Daimler Benz AG
Publication of EP0676089A1 publication Critical patent/EP0676089A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate

Definitions

  • the invention relates to a field effect-controlled semiconductor component according to the preamble of claim 1.
  • Such a component is known as an insulated gate bipolar transistor (IGBT or IGT). It was described in European patent application EP-B1 80044 and in central application DE-A1 3435 612. The essence of this prior art is shown in Fig. 1.
  • SOI Silicon on Insulator
  • the IGBT consists of an anode-side emitter zone 10, two adjoining base zones 20 and 32, 34 and a cathode-side emitter zone 40.
  • control contact 60 On an insulating layer 50, which covers part of the cathode-side base zone 34, there is a control contact 60, which is connected to the cathode side Emitter 40 and the anode-side base zone 20 forms a field effect transistor.
  • the component is equipped with two power connections, a cathode 72 and an anode 76.
  • a conductive channel 42 is formed in the cathodal base zone 34 of which ie the cathode-side emitter zone 40 with ⁇ the anode-side base zone of the first base region 20, connects.
  • the resulting electron current acts as a control current for the anode-side pnp transistor 10, 20, 34.
  • the resistance of the channel 42 which can be controlled by the gate determines the level of the control current, the injection of the minority charge carriers (holes) from the anode-sensitive emitter 10, and thus the through-voltage of the component.
  • the gate potential is equated to the cathode potential, so that the conductive channel 42 of the field effect transistor disappears and the load current is switched off.
  • DE-A1 4228832 it was proposed in DE-A1 4228832 to divide the previously one-part cathode-side base zone (see FIG. 1) into two sub-areas 32 and 34.
  • the partial region 34 is moderately doped and, together with the thickness of the insulating layer 50, determines the threshold voltage of the field effect transistor 40, 42, 20.
  • the partial region 32 is heavily doped in order to keep the layer resistance of the cathode-side base zone low. This ensures that the pn junction between the cathode-side emitter 40 and the cathode-side base zone 34 is not biased so strongly in the forward direction that the emitter 40 injects electrons into the base region 34.
  • such an electron injection would have serious disadvantages. Locking the existing parasitic thyristor structure 40, 34, 20, 10 into a switched-on state would result in a loss of the effect of the gate control.
  • the hole current in the p-type base region 34 can still cause a sufficiently high voltage drop sufficient to cause an electron injection from the emitter 40 to thereby cause the parasitic thyristor structure 40, 34 , 20, 10 to ignite.
  • a particularly dangerous working state arises during an inductive switch-off process in which the entire load current is carried by a hole current for a while. This danger severely limits the safe working area of the component.
  • the invention is based on the object of developing a field-controlled semiconductor component of the type described in the introduction in such a way that the safe working area (SOA) of an IGBT is expanded.
  • SOA safe working area
  • a separately located p + region 36 which is adjacent to the cathode-side base zone and is introduced into the anode-side n-base zone 20, is connected to the cathode contact via a separate component as a coupling element 80 with a non-linear current / voltage characteristic.
  • the IGBT is controlled by switching the gate potential.
  • a potential distribution arises in the anode-side base zone, which leads to the fact that the additionally introduced p + region takes on the potential of the environment and has no effect.
  • the lock voltage of the nonlinear coupling element must be dimensioned such that it is slightly higher than the potential of the p + region related to the cathode.
  • the p + region acts as a current sink and the hole current flowing off via this path only has to overcome a small dynamic resistance of the coupling element.
  • the solution according to the invention shows particular advantages in the operation of laterally designed IGBTs on SOI substrates, where the load current is shaped by a thin layer, and the effect of the p + region for expanding the SOA region is particularly pronounced.
  • Fig. 1 shows the prior art
  • Fig. 2 shows a section through a semiconductor device according to the invention.
  • An expedient embodiment of the coupling element consists in a monolithically integrated zener diode which is polarized in the reverse direction.
  • a second, preferred embodiment uses the existing layer of polycrystalline silicon to produce a diode chain which is polarized in the forward direction in order to adjust the level of the lock voltage.
  • FIG. 2 A preferred design of the component on an SOI substrate is shown in FIG. 2.
  • the additionally introduced p + region 36 is provided with an electrical contact 74 and via a schematically illustrated separate diode 80 which is connected to the cathode contact.
  • This separate diode preferably consists of a monolithically integrated diode or diode chain.
  • the diode chain preferably consists of two polysilicon diodes which are polarized in the reverse direction. This embodiment does not require any additional manufacturing steps and can be implemented in the normal process flow for manufacturing an IGBT.
  • the semiconductor element shown in FIG. 2 has in lateral form the heavily p-doped, anode-side emitter layer 10, the first base zone 20 with n-doping, the second base zone with the heavily p-doped partial region 32, the p-doped partial region 34 and the of these partial areas 32, 34 separated by the n-layer 20 partial area 36.
  • An n-doped region which extends from the cathode K to the G below the emitter serves as the emitter zone 40.
  • An anode connection A with the anode contact 76 and a cathode connection K with the cathode contact 72 are also present.
  • a gate 60 is located on an insulating layer 50, which extends from the region 10 that partially covers it, over the partial region 36 and around the recess of the contact 74, over the n-layer of the first base zone 20 and the partial region 34 to one extends n-doped region 40, which it partially covers.
  • the other part of the area 40 and the partial area 32 is covered by the cathode contact 72.
  • the diode chain which is polarized in the forward direction, is produced by alternating p + and n + doping of a semiconductor layer made of polycrystalline silicon on an insulating layer and a corresponding metallization.
  • the solution according to the invention also applies to complementary structures in which the n and p regions are swapped in their conduction type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

L'invention concerne un composant semi-conducteur à effet de champ qui comprend au moins quatre zones de types de fonctionnement alternativement opposés: une zone émittrice située côté anode, une première et une seconde zone de base raccordée à la zone émettrice et une zone émettrice située côté cathode, cette dernière zone et la première zone de base constituant la source et le drain d'un transistor à effet de champ MOS. Le composant comporte en outre un contact d'anode, un contact se trouvant au niveau de la zone émittrice située côté cathode et un contact d'électrode de commande du transistor à effet de champ MOS. L'invention se caractérise en ce qu'une zone p+ (36) contiguë à la zone de base située côté cathode, séparée part et introduite dans la zone de base n (20) située côté anode, est reliée au contact de la cathode par l'intermédiaire d'un composant séparé faisant office d'élément de couplage (80) et ayant des caractéristiques de courant et de tension non linéaires. Cette zone p+ (36) est directement entourée par la zone de base située côté anode (20). Lorsque le transistor à effet de champ est mis hors circuit, le potentiel électrique de l'environnement de la zone supplémentaire p+ (36) dépasse la tension de seuil de l'élément de couplage, de manière que la zone supplémentaire p+ (36) serve de récepteur de courant et permette au courant de trous de s'écouler avec une faible résistance, ce qui permet d'éviter une fonction parasite de thyristor.
EP94903875A 1992-12-28 1993-12-24 Composant a semi-conducteur a effet de champ Ceased EP0676089A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4244272 1992-12-28
DE4244272A DE4244272A1 (de) 1992-12-28 1992-12-28 Feldeffektgesteuertes Halbleiterbauelement
PCT/EP1993/003688 WO1994015365A1 (fr) 1992-12-28 1993-12-24 Composant a semi-conducteur a effet de champ

Publications (1)

Publication Number Publication Date
EP0676089A1 true EP0676089A1 (fr) 1995-10-11

Family

ID=6476666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94903875A Ceased EP0676089A1 (fr) 1992-12-28 1993-12-24 Composant a semi-conducteur a effet de champ

Country Status (5)

Country Link
US (1) US5710444A (fr)
EP (1) EP0676089A1 (fr)
JP (1) JPH08505008A (fr)
DE (1) DE4244272A1 (fr)
WO (1) WO1994015365A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951623A (en) 1996-08-06 1999-09-14 Reynar; Jeffrey C. Lempel- Ziv data compression technique utilizing a dictionary pre-filled with frequent letter combinations, words and/or phrases
SE9901575L (sv) * 1999-05-03 2000-11-04 Eklund Klas Haakan Halvledarelement
US6657240B1 (en) * 2002-01-28 2003-12-02 Taiwan Semiconductoring Manufacturing Company Gate-controlled, negative resistance diode device using band-to-band tunneling
JP4136778B2 (ja) 2003-05-07 2008-08-20 富士電機デバイステクノロジー株式会社 絶縁ゲート型バイポーラトランジスタ
JP4767265B2 (ja) * 2008-01-15 2011-09-07 三菱電機株式会社 高耐圧半導体装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132684A (en) * 1976-04-29 1977-11-07 Sony Corp Insulating gate type field effect transistor
IE53895B1 (en) * 1981-11-23 1989-04-12 Gen Electric Semiconductor device having rapid removal of majority carriers from an active base region thereof at device turn-off and method of fabricating this device
US4498076A (en) * 1982-05-10 1985-02-05 Lichtblau G J Resonant tag and deactivator for use in an electronic security system
CA1216968A (fr) * 1983-09-06 1987-01-20 Victor A.K. Temple Dispositif a semiconducteur a grille isolee a court-circuit base-source ameliore et methode de fabrication de ce court-circuit
US4694313A (en) * 1985-02-19 1987-09-15 Harris Corporation Conductivity modulated semiconductor structure
GB2173037A (en) * 1985-03-29 1986-10-01 Philips Electronic Associated Semiconductor devices employing conductivity modulation
US4682195A (en) * 1985-09-30 1987-07-21 General Electric Company Insulated gate device with configured emitter contact pad
JP2552880B2 (ja) * 1986-11-12 1996-11-13 シリコニックス・インコーポレイテッド 垂直dmosセル構造
JPH0821713B2 (ja) * 1987-02-26 1996-03-04 株式会社東芝 導電変調型mosfet
DE3804254A1 (de) * 1988-02-11 1989-08-24 Siemens Ag Durch feldeffekt steuerbares halbleiterbauelement
DE69029180T2 (de) * 1989-08-30 1997-05-22 Siliconix Inc Transistor mit Spannungsbegrenzungsanordnung
JP2513874B2 (ja) * 1989-12-28 1996-07-03 三菱電機株式会社 半導体装置およびその製造方法
JP3074736B2 (ja) * 1990-12-28 2000-08-07 富士電機株式会社 半導体装置
JP2943385B2 (ja) * 1991-05-07 1999-08-30 富士電機株式会社 伝導度変調型mosfetを備えた半導体装置
JPH05283702A (ja) * 1992-04-03 1993-10-29 Hitachi Ltd 複合制御型半導体装置及びそれを使用した電力変換装置
DE4228832C2 (de) * 1992-08-29 1994-11-24 Daimler Benz Ag Feldeffekt-gesteuertes Halbleiterbauelement
JP3249891B2 (ja) * 1994-09-19 2002-01-21 三菱電機株式会社 半導体装置およびその使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9415365A1 *

Also Published As

Publication number Publication date
DE4244272A1 (de) 1994-06-30
US5710444A (en) 1998-01-20
JPH08505008A (ja) 1996-05-28
WO1994015365A1 (fr) 1994-07-07

Similar Documents

Publication Publication Date Title
EP0886883B1 (fr) Dispositifs electroniques pour la commutation de courants electriques, pour des tensions de blocage elevees et avec de faibles pertes d'energie a l'etat conduct
EP0566639B1 (fr) Structure integree d'un interrupteur de puissance
DE69821105T2 (de) Bipolar mos-leistungstransistor ohne latch-up
DE3856480T2 (de) MOS-Feldeffekt-Transistor mit Leitfähigkeitsmodulation
DE102007020657B4 (de) Halbleiterbauelement mit einem Halbleiterkörper und Verfahren zur Herstellung desselben
DE102010000531B4 (de) Halbleiterbauelement, elektronische Komponente und Verfahren zur Herstellung eines Halbleiterbauelements
EP0043009B1 (fr) Commutateur commandé par semiconducteur
DE102004022455B4 (de) Bipolartransistor mit isolierter Steuerelektrode
DE19523172A1 (de) Bidirektionaler Thyristor
DE102005042048A1 (de) Halbleiterbauteil mit isolierter Steuerelektrode und Verfahren zu seiner Herstellung
EP0405200A1 (fr) Dispositif semi-conducteur bipolaire, de puissance, à commande de type MOS
DE102007020659A1 (de) Halbleiterbauelement und Verfahren zur Herstellung desselben
DE69328932T2 (de) Integrierte aktive Klammerungsstruktur für den Schutz von Leistungshalbleiterbauelementen gegen Überspannungen
DE4039012C2 (de) Mos-Halbleiterbauelement
DE19528998A1 (de) Bidirektionaler Halbleiterschalter und Verfahren zu seiner Steuerung
DE69210328T2 (de) Lateraler, bipolarer Halbleitertransistor mit isolierter Steuerelektrode
DE102009044670B4 (de) Bipolares Halbleiterbauelement und Herstellungsverfahren
DE4228832C2 (de) Feldeffekt-gesteuertes Halbleiterbauelement
DE19521751A1 (de) MOS-gesteuerter Thyristor
EP0017980B1 (fr) Thyristor contrôlé par un transistor à effet de champ
WO1994015365A1 (fr) Composant a semi-conducteur a effet de champ
DE102018200136B4 (de) Halbleitervorrichtung
DE3942490C2 (de) Feldeffekt-gesteuertes Halbleiterbauelement
DE10126309B4 (de) Rückwärtssperrendes Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung
DE69432111T2 (de) Bipolartransistor mit isoliertem Gate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950628

17Q First examination report despatched

Effective date: 19971016

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20000220