EP0675422B1 - Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température - Google Patents

Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température Download PDF

Info

Publication number
EP0675422B1
EP0675422B1 EP95200704A EP95200704A EP0675422B1 EP 0675422 B1 EP0675422 B1 EP 0675422B1 EP 95200704 A EP95200704 A EP 95200704A EP 95200704 A EP95200704 A EP 95200704A EP 0675422 B1 EP0675422 B1 EP 0675422B1
Authority
EP
European Patent Office
Prior art keywords
transistor
emitter
collector
resistor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95200704A
Other languages
German (de)
English (en)
Other versions
EP0675422A1 (fr
Inventor
Timothy Ridgers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Composants et Semiconducteurs SAS
Koninklijke Philips Electronics NV
Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Composants et Semiconducteurs SAS, Koninklijke Philips Electronics NV, Philips Electronics NV filed Critical Philips Composants et Semiconducteurs SAS
Publication of EP0675422A1 publication Critical patent/EP0675422A1/fr
Application granted granted Critical
Publication of EP0675422B1 publication Critical patent/EP0675422B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Definitions

  • the present invention relates to a regulator circuit providing a stabilized voltage, circuit which is connected between a supply terminal and a reference terminal and includes in particular four transistors of the same polarity each having a transmitter, a base and a collector, a first transistor whose emitter is coupled to the reference terminal through a first resistor, a second transistor whose emitter is connected to the reference terminal, the bases and the collectors of the first and second transistors being connected in cross coupling, a third transistor whose emitter is connected to the collector of the first transistor, its base and its collector connected together at one end of a second resistance, and a fourth transistor whose emitter is connected to the collector of the second transistor, and the base connected to the base and to the collector of the third transistor, circuit in which the surface emitter of the first transistor is larger than that of the third transistor.
  • Such a regulator circuit based on a four cell transistors of the same polarity is known from document EP-A-0329232.
  • this basic four-transistor cell can supply either a plurality of stabilized current sources or else a voltage source independent of the supply voltage and the temperature.
  • stabilized current or voltage can be achieved using bipolar transistors only of NPN type. It follows that such circuit can react quickly to variations in supply voltage or to variations in the current consumed at the output.
  • the known regulator circuit does not take into account the base currents of the transistors so the accuracy of the stabilized voltage obtained remains affected by qualified errors second-order errors.
  • the invention proposes to provide an improvement to a regulator providing a stabilized voltage which is less sensitive still at the value of the supply voltage on either side of a rated voltage, which exhibits high rejection of noise from the supply voltage and which remains stable compared to temperature variations.
  • a regulating circuit of the type indicated in the introductory paragraph is characterized in that the circuit further comprises a fifth bipolar transistor similarly polarity than the aforementioned transistors, having a transmitter connected to the collector of the fourth transistor, a base coupled to its collector at through a basic resistance of value at least equal to twice the value of the second resistance, and in that the knot connecting this basic resistance to the collector of this fifth transistor is on the one hand coupled to the other end of the second resistor and secondly, coupled to the power supply terminal through a current source.
  • the presence of the fifth transistor provides compensation for certain base currents, compensation which had been neglected in the circuit known.
  • the basic resistance of the fifth transistor is chosen from a value which is related to the value of the second resistance.
  • connection between the emitter of the fifth transistor and the collector of the fourth transistor constitutes an output of the stabilized voltage.
  • This stabilized voltage is particularly independent of the supply voltage and has a rejection rate high noise contained in the supply voltage.
  • the second, fourth and fifth transistors have an identical emitter surface.
  • the third transistor it is known that its emitter surface must be provided as being a submultiple of the emitter surface of the first transistor, this the latter being, in practice, constituted by the association of a plurality of identical transistors, connected in parallel, each of which is equivalent construction and matched to the third transistor.
  • the third transistor can also have a emitter area equal to that of the second, fourth or fifth transistors.
  • the circuit regulator is characterized in that it further comprises a sixth transistor and a seventh transistor, with the same polarity as the transistors previous, the sixth transistor, connected in diode being inserted in the direct direction between the other end of the second resistor and the source of current while the seventh transistor has its base connected to the emitter of the fourth transistor, its collector coupled to the terminal power supply, and its transmitter, which provides an output of the voltage stabilized, is coupled to the reference terminal through a resistor transmitter.
  • This embodiment has an output impedance of the lower stabilized voltage and therefore allows current consumption higher output, compared with the implementation mode previous.
  • the collector of the seventh transistor can also be another circuit output regulator providing a stabilized reference current with respect to the supply voltage and temperature.
  • the regulator circuit according to the invention can be realized only using NPN type bipolar transistors, it is able to react at high frequency, in particular to reject the output supply voltage fluctuations, high frequency. For further increase this rejection power, vis-à-vis the voltage noise power supply, the regulator circuit according to the invention is advantageously completed with a capacity connected in parallel between the bases of the fifth transistor and the second transistor.
  • the capacity in question may be of low value (a few pF per example) to be integrated with the regulator circuit, its effect is finding multiplied by the gain of the second transistor.
  • the rejection power vis-à-vis the noise of the supply voltage in as a function of the frequency of this noise increases with frequency from of a certain frequency value, of the order of 1 MHz.
  • This property contrast with the behavior of regulating circuits of the prior art using a high gain error amplifier which must be stabilized in frequency.
  • such regulating circuits have a power noise rejection which decreases beyond a limit frequency, actually corresponding to the frequency from which the amplifier error is voluntarily limited in gain.
  • the current source supplying the regulator circuit to from the supply terminal is reduced to a resistance.
  • the current source supplying the regulator circuit to from the supply terminal is reduced to a resistance.
  • the regulator circuit of FIG. 1 is supplied between a positive supply voltage terminal 1 having a voltage Vcc and a reference terminal 2 carrying a voltage VEE (ground).
  • This circuit comprises a first transistor T1 whose emitter is coupled to the terminal of reference 2 through an emitter resistor R1, a second transistor T2 whose transmitter is also connected to reference terminal 2, the transistors T1 and T2 have their bases and their collectors interconnected in cross-coupling.
  • a third transistor T3 has its emitter connected to the collector of the first transistor T1, its base and its collector combined to form a diode configuration are connected on the one hand, to a first end of a second resistor R2, as well as at the base of a fourth transistor T4 whose emitter is connected to the collector of the second transistor T2.
  • the four transistors T1 to T4 have the same polarity, here NPN type, and the emitter area of the first transitor T1 is n times larger than that of the third transistor T3.
  • T2 and T4 transistors preferably have an identical emitter surface which can also be equal to that of transistor T3.
  • the other end of the second resistor R2 is coupled to the positive supply terminal 1 through a source of current 11 which here is simply constituted by a resistor, in this example.
  • the connection between the current source 11 and the resistor R2 forms a line 12 to which is connected a resistor R5 supplying the base of a fifth transistor T5, which has its collector connected to the line 12 and its emitter connected to the collector of the fourth transistor T4.
  • I1 kT qR1 Ln (( J (( T 3 ) J (( T1 ) )
  • n the ratio of the emitter surfaces of these transistors, traversed by the same current I1
  • Expression (2) checks the proportionality between I1 and the absolute temperature T.
  • the current source 11 constitutes a very current source imperfect in which flows a current which varies with the voltage Vcc supply.
  • the tension of line 12 being practically fixed by the sum of the base / emitter voltages of transistors T2 and T3 increased by the voltage drop in resistor R2 due to the current I1, the current I2 simply results from the difference between the current delivered by the current source 11 and the current I1.
  • the transistor T5 presents to its transmitter a voltage deduced from the voltage Vx by subtracting a base / emitter voltage of this transistor which outputs the current I2.
  • transistor T5 is chosen as having a surface emitter equal to the emitter surfaces of the transistors T2 or T4 so that the base / emitter voltage drop in transistor T5 compensates for the voltage drop in transistor T2. It follows that the tension of Vref output of the circuit is substantially equal to the sum of a fall of voltage I1.R2 with a positive coefficient of temperature and a base / emitter voltage of transistor T3 traversed by a current I1, which base / emitter voltage has a negative temperature coefficient.
  • the resistance value R2 is chosen so that the two components of the sum of the voltages have temperature coefficients that cancel each other out. In practice it is usual to use a voltage drop I1.R2 whose value is around 500mV.
  • the base current of transistor T5 being, firstly approximation, substantially equal to the base current of transistor T4 or of base current of transistor T2, compensation for the aforementioned effect on the voltage Vx of line 12 should be obtained when the resistance R5 inserted in the base of transistor T5 is equal to twice the value of resistance R2. Thus the increase in voltage Vx should be compensated at the output of the regulator circuit.
  • the regulator circuit is able to react to fluctuations in supply voltages even when these fluctuations are at high frequencies.
  • the rejection of the noise contained in the supply voltage Vcc can be further improved in a preferred embodiment according to which the base of transistor T5 is coupled to the base of transistor T2 at using a capacity C.
  • This capacity can be easily integrated from the makes a low value enough. Its effect, as a first approximation, is multiplied by the gain of transistor T2.
  • the rejection rate R of noise at the output of the regulator circuit from the noise presented by the supply voltage Vcc is represented in FIG. 2 curve A, in function of the frequency F of this noise.
  • Figure 3 shows very schematically the principle behind many known regulator circuits.
  • a cell 30 with two transistors whose emitter surfaces are uneven, intended for deliver a current proportional to the temperature on a resistance of compensation R.
  • the collectors of the transistors debit on loads paired, symbolically represented by a set 31.
  • the circuit also comprises a differential amplifier 32, with high gain, of which the output feeds the combined bases of the two transistors, all arranged so that the collector currents of the transistors are equal.
  • the amplifier 32 is therefore an error amplifier and thus, the voltage the reference Vref at the output of this amplifier is all the more precise that the amplifier gain is high. He is well known, that such an amplifier needs to be frequency stabilized and has therefore a gain curve G whose shape is represented in the figure 4.
  • the power of noise noise rejection R power supply for a regulator circuit of this type, has a shape inverse to that of gain, such as that indicated by curve B in dashes, of figure 2. It is clear that from the point of view of the rejection of the noise, the circuit according to the invention is very advantageous in applications where high frequency noise is present.
  • FIG. 5 represents the diagram of a second mode of implementation of the invention.
  • the circuit of FIG. 5 shows all the elements of the circuit of FIG. 1 to which are added a sixth transistor T6 and a seventh transistor T7 of the same polarity as the transistors T1 to T5.
  • the transistor T6 is connected as a diode, its emitter-collector path is inserted between the resistor R2 and the line 12.
  • the voltage Vx of the line 12 is thus increased by the value of a V BE compared to the example previously described .
  • the transistor T7 has its base connected to the node joining the emitter of the transistor T5 at the collector of transistor T4. Its transmitter is coupled to the reference terminal 2 through an emitter load resistor R7.
  • the transistor T7 is therefore arranged as a follower emitter and provides on its transmitter stabilized voltage Vref.
  • the base / emitter voltage drop of T7 compensates, as a first approximation, for the voltage drop in the transistor T6 so that the voltage Vref is again practically identical to that obtained previously with the circuit of FIG. 1.
  • the output impedance of the circuit is lower than before and a higher current can be drawn to the output.
  • the collector of the transistor is represented as being supplied by a terminal 17. This can be connected directly to line 12 or to supply terminal 1. However, the circuit shown can also provide a stabilized reference current Io, absorbed by the collector of transistor T7. Terminal 17 then constitutes such an output of the regulator circuit.
  • the current source 11 presented as a resistor so-called limitation in Figure 1 is only a simplified example and we could also use any other current source provided with means ensuring, for example, even rough pre-regulation of the current supplying the two branches of the regulator circuit. In applications where the voltage regulator circuit is not used continuously, it it is desirable to be able to deactivate the regulator circuit when its use is not required, so as to save power consumption.
  • Figure 6 shows an example of substitution of the source of current 11 of FIG. 1 by a resistor 21 and transistor assembly MOS field effect 22.
  • a current source can be produced switchable which has a resistance equal to the sum of the value of the resistor 21 and the internal resistance of transistor 22 when it is driver.
  • FIG. 7 represents another example of current source 11, provided with means ensuring a pre-regulation of the supply current the entire regulator circuit.
  • Two resistors 31 and 32 are connected in series between the supply terminal 1 and the line 12.
  • the common point between these resistors has its voltage V D regulated by the effect of four diodes D1 to D4, connected in series between this point and the reference terminal 2.
  • Figure 8 shows yet another example of a current source 11 using at least one PNP type transistor T8, ensuring by all known means, a pre-regulation of the current delivered by its path transmitter / collector.
  • PNP type transistor has the disadvantage that the parasitic capacitance of such a transistor is generally large which is unfavorable from the point of view of voltage noise rejection feed.
  • a resistor 41 is inserted between the collector of transistor T8 and line 12 so as to reduce the effect of the stray capacitance of transistor T8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Description

La présente invention concerne un circuit régulateur fournissant une tension stabilisée, circuit qui est connecté entre une borne d'alimentation et une borne de référence et comporte notamment quatre transistors de même polarité ayant chacun un émetteur une base et un collecteur, un premier transistor dont l'émetteur est couplé à la borne de référence à travers une première résistance, un deuxième transistor dont l'émetteur est connecté à la borne de référence, les bases et les collecteurs des premier et deuxième transistors étant connectés en couplage croisé, un troisième transistor dont l'émetteur est connecté au collecteur du premier transistor, sa base et son collecteur connectés ensemble à une des extrémités d'une deuxième résistance, et un quatrième transistor dont l'émetteur est connecté au collecteur du deuxième transistor, et la base connectée à la base et au collecteur du troisième transistor, circuit dans lequel la surface d'émetteur du premier transistor est plus grande que celle du troisième transistor.
Un tel circuit régulateur basé sur une cellule à quatre transistors de même polarité, est connu du document EP-A-0329232. Dans ce document il est indiqué que cette cellule de base à quatre transistors peut fournir soit une pluralité de sources de courant stabilisées soit encore une source de tension indépendante de la tension d'alimentation et de la température. Ainsi qu'il est indiqué dans ce document, de telles sources stabilisées de courant ou de tension peuvent être réalisées à l'aide de transistors bipolaires uniquement de type NPN. Il s'ensuit qu'un tel circuit peut réagir rapidement à des variations de tension d'alimentation ou à des variations du courant consommé en sortie.
Toutefois, le circuit régulateur connu ne prend pas en compte les courants de base des transistors de sorte que la précision de la tension stabilisée obtenue reste affectée par des erreurs qualifiées d'erreurs de second ordre.
L'invention se propose de fournir un perfectionnement à un régulateur fournissant une tension stabilisée qui soit moins sensible encore à la valeur de la tension d'alimentation de part et d'autre d'une tension nominale, qui présente une réjection élevée du bruit provenant de la tension d'alimentation et qui demeure stable par rapport à des variations de la température.
En effet, selon la présente invention, un circuit régulateur du type indiqué dans le paragraphe introductif est caractérisé en ce que le circuit comporte en outre un cinquième transistor bipolaire de même polarité que les transistors précédemment cités, ayant un émetteur connecté au collecteur du quatrième transistor, une base couplée à son collecteur à travers une résistance de base de valeur au moins égale au double de la valeur de la deuxième résistance, et en ce que le noeud reliant cette résistance de base au collecteur de ce cinquième transistor est d'une part couplé à l'autre extremité de la deuxième résistance et d'autre part, couplé à la borne d'alimentation à travers une source de courant.
Ainsi qu'il sera discuté plus en détail par la suite, la présence du cinquième transistor, fournit une compensation de certains courants de base, compensation qui avait été négligée dans le circuit connu. Pour ce faire, la résistance de base du cinquième transistor est choisie d'une valeur qui est en relation avec la valeur de la deuxième résistance.
Selon un premier mode de mise en oeuvre de l'invention, la connexion entre l'émetteur du cinquième transistor et le collecteur du quatrième transistor constitue une sortie de la tension stabilisée.
La valeur de cette tension stabilisée est particulièrement indépendante de la tension d'alimentation et présente un taux de réjection élevé du bruit contenu dans la tension d'alimentation.
Avantageusement, les deuxième, quatrième et cinquième transistors ont une surface d'émetteur identique. En ce qui concerne le troisième transistor, il est connu que sa surface d'émetteur doit être prévue comme étant un sous-multiple de la surface d'émetteur du premier transistor, ce dernier étant, en pratique, constitué par l'association d'une pluralité de transistors identiques, connectés en parallèle, dont chacun est de construction équivalente et appairé au troisième transistor.
Pour simplifier, le troisième transistor peut également avoir une surface d'émetteur égale à celle des deuxième, quatrième ou cinquième transistors.
Selon un deuxième mode de mise en oeuvre de l'invention, le circuit régulateur est caractérisé en ce qu'il comporte en outre un sixième transistor et un septième transistor, de même polarité que les transistors précédents, le sixième transistor, connecté en diode étant inséré dans le sens direct entre l'autre extrémité de la deuxième résistance et la source de courant tandis que le septième transistor a sa base connectée à l'émetteur du quatrième transistor, son collecteur couplé à la borne d'alimentation, et son émetteur, qui fournit une sortie de la tension stabilisée, est couplé à la borne de référence à travers une résistance d'émetteur.
Ce mode de mise en oeuvre, présente une impédance de sortie de la tension stabilisée plus faible et autorise donc une consommation de courant en sortie plus élevée, par comparaison avec le mode de mise en oeuvre précédent. Une autre particularité avantageuse est que le collecteur du septième transistor peut également constituer une autre sortie du circuit régulateur fournissant un courant de référence stabilisé vis-à-vis de la tension d'alimentation et de la température.
Etant donné que le circuit régulateur selon l'invention peut être réalisé uniquement à l'aide de transistors bipolaires de type NPN, il est apte à réagir à haute fréquence, notamment pour rejeter en sortie les fluctuations de la tension d'alimentation, à haute fréquence. Pour augmenter encore ce pouvoir de réjection, vis-à-vis du bruit de la tension d'alimentation, le circuit régulateur selon l'invention est avantageusement complété avec une capacité connectée en parallèle entre les bases du cinquième transistor et du deuxième transistor.
La capacité en question peut être de faible valeur (quelques pF par exemple) pour être intégrée avec le circuit régulateur, son effet se trouvant multiplié par le gain du deuxième transistor. On constate que le pouvoir de réjection vis-à-vis du bruit de la tension d'alimentation en fonction de la fréquence de ce bruit, augmente avec la fréquence à partir d'une certaine valeur de fréquence, de l'ordre de 1MHz. Cette propriété contraste avec le comportement des circuits régulateurs de l'art antérieur utilisant un amplificateur d'erreur à gain élevé qui doit être stabilisé en fréquence. De tels circuits régulateurs présentent au contraire un pouvoir de réjection du bruit qui diminue au delà d'une fréquence limite, correspondant en fait à la fréquence à partir de laquelle l'amplificateur d'erreur est volontairement limité en gain.
Selon un mode simplifié de réalisation du circuit régulateur selon l'invention, la source de courant alimentant le circuit régulateur à partir de la borne d'alimentation se réduit à une résistance. Pour des raisons d'économie du courant d'alimentation, notamment dans des applications alimentées par batterie, il peut être avantageux de pouvoir désactiver complètement le circuit régulateur, ce qui peut être réalisé lorsque la source de courant est réalisée à l'aide d'une résistance en série avec un transistor interrupteur de type à effet de champ MOS.
D'autres types de sources de courant peuvent également être mises en oeuvre, en particulier, des sources assurant une prérégulation du courant alimentant le circuit régulateur.
La description qui va suivre en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • La figure 1 représente un schéma du circuit régulateur selon un premier mode de mise en oeuvre de l'invention.
  • la figure 2 représente un diagramme de réjection du bruit de la tension d'alimentation à la sortie du circuit régulateur, en fonction de la fréquence de ce bruit,
  • la figure 3 montre un schéma de principe d'un certain type de circuit régulateur connu et la figure 4, un diagramme du gain en fonction de la fréquence, pour un amplificateur d'erreur contenu dans un tel circuit connu,
  • la figure 5 représente le schéma d'un deuxième mode de mise en oeuvre du circuit régulateur selon l'invention, et
  • les figures 6, 7 et 8 donnent des schémas d'exemples de sources de courant qui peuvent être utilisées dans le circuit régulateur de l'invention.
  • Le circuit régulateur de la figure 1 est alimenté entre une borne de tension d'alimentation positive 1 présentant une tension Vcc et une borne de référence 2 portant une tension VEE (masse). Ce circuit comporte un premier transistor T1 dont l'émetteur est couplé à la borne de référence 2 à travers une résistance d'émetteur R1, un deuxième transistor T2 dont l'émetteur est également connecté à la borne de référence 2, les transistors T1 et T2 ont leurs bases et leurs collecteurs interconnectés en couplage croisé. Un troisième transistor T3 a son émetteur connecté au collecteur du premier transistor T1, sa base et son collecteur réunis pour former une configuration en diode sont connectés d'une part, à une première extrémité d'une deuxième résistance R2, ainsi qu'à la base d'un quatrième transistor T4 dont l'émetteur est connecté au collecteur du deuxième transistor T2. Les quatre transistors T1 à T4, sont de même polarité, ici de type NPN, et la surface d'émetteur du premier transitor T1 est n fois plus grande que celle du troisième transistor T3. Les transistors T2 et T4 ont de préférence une surface d'émetteur identique qui peut être aussi égale à celle du transistor T3. L'autre extrémité de la deuxième résistance R2 est couplée à la borne d'alimentation positive 1 à travers une source de courant 11 qui est ici simplement constituée par une résistance, dans cet exemple. La connexion entre la source de courant 11 et la résistance R2 forme une ligne 12 à laquelle est connectée une résistance R5 alimentant la base d'un cinquième transistor T5, lequel a son collecteur relié à la ligne 12 et son émetteur relié au collecteur du quatrième transistor T4.
    Le noeud reliant l'émetteur du transistor T5 au collecteur du transistor T4, constitue ici la sortie du circuit régulateur et fournit une tension stabilisée Vref.
    Dans une première analyse de fonctionnement qui est grossière, on néglige les courants de base de tous les transistors. Ainsi, on peut admettre que dans la branche formée des trajets de courant des transistors T1 et T3 et des résistances R1 et R2 circule un courant I1. De même dans la branche formée des trajets de courant des transistors T2, T4 et T5 circule un autre courant I2. Par ailleurs il est connu que le montage des quatre transistors T1 à T4 produit un courant I1 dont la valeur est proportionnelle à la température absolue et ne dépend que de la valeur de la résistance R1 et du rapport de surface d'émetteur entre le transistor T1 et le transistor T3.
    Cette propriété va être brièvement rappelée en évaluant de deux manières, la valeur de la tension de base des transistors T3 et T4. Soit Vy cette tension : Vy = VBE(T4) + VBE(T1) + R1.I1 Vy = VBE(T3) + VBE(T2) expressions dans lesquelles VBE(Tx) indique la tension base/émetteur d'un transistor Tx.
    Il vient R1.I1 = VBE(T3) + VBE(T2) - VBE(T4) - VBE(T1)
    Comme les transistors T2 et T4 sont identiques et parcourus, en première approximation, par le même courant I2, les termes VBE(T2) et VBE(T4) se compensent. Il reste : R1.I1 = VBE(T3) - VBE(T1) ou encore, en utilisant : VBE(T3) - VBE(T1) = kT q Ln ( J(T 3) J(T1) ) expression dans laquelle J(T3) et J(T1) sont les densités de courant dans les émetteurs de T3 et de T1, k est la constante de Boltzmann, T la température absolue et q la charge de l'électron. I1 = kT qR1 Ln ( J(T 3) J(T1) ) Soit n le rapport des surfaces d'émetteur de ces transistors, parcourus par le même courant I1, la relation (1) peut s'écrire : I1 = kT qR1 Ln (n) L'expression (2) vérifie la proportionnalité entre I1 et la température absolue T.
    La source de courant 11 constitue une source de courant très imparfaite dans laquelle circule un courant qui varie avec la tension d'alimentation Vcc. Ainsi, la tension de la ligne 12 étant pratiquement fixée par la somme des tensions base/émetteur des transistors T2 et T3 augmentée de la chute de tension dans la résistance R2 du fait du courant I1, le courant I2 résulte simplement de la différence entre le courant débité par la source de courant 11 et le courant I1. Toujours dans la même hypotèse, où les courants de base sont négligés, le transistor T5 présente à son émetteur une tension déduite de la tension Vx par soustraction d'une tension base/émetteur de ce transistor qui débite le courant I2.
    Or, le transistor T5 est choisi comme ayant une surface d'émetteur égale aux surfaces d'émetteur des transistors T2 ou T4 de sorte que la chute de tension base/émetteur dans le transistor T5 compense la chute de tension dans le transistor T2. Il s'ensuit que la tension de sortie Vref du circuit est sensiblement égale à la somme d'une chute de tension I1.R2 présentant un coefficient positif de température et d'une tension base/émetteur du transistor T3 parcouru par un courant I1, laquelle tension base/émetteur présente un coefficient de température négatif. La valeur de la résistance R2 est choisie de telle sorte que les deux composantes de la somme des tensions aient des coefficients de température qui s'annulent. En pratique il est habituel d'utiliser une chute de tension I1.R2 dont la valeur soit de l'ordre de 500mV.
    De cette première analyse qui est grossière, il résulte que la tension de sortie Vref du circuit régulateur est indépendante de la température et de la valeur du courant I2, c'est-à-dire, indépendante de la valeur de la tension d'alimentation Vcc. Selon une analyse plus détaillée, qui tient compte des courants de base des différents transistors, il apparaít que le courant traversant la résistance R2 est approximativement égal au courant I1 traversant le transistor T1 augmenté du courant de base du transistor T2 et du courant de base du transistor T4, lesquels conduisent à un accroissement de la chute de tension dans la résistance R2 initialement calculée.
    Le courant de base du transistor T5 étant, en première approximation, sensiblement égal au courant de base du transistor T4 ou du courant de base du transistor T2, une compensation de l'effet précité sur la tension Vx de la ligne 12 devrait être obtenue lorsque la résistance R5 insérée dans la base du transistor T5 est égale au double de la valeur de la résistance R2. Ainsi l'accroissement de tension Vx devrait être compensé en sortie du circuit régulateur.
    Or, il apparaít en pratique que cette compensation est un peu insuffisante notamment du fait qu'une variation de courant de base du transistor T2 induit une très légère variation de la tension base/émetteur du transistor T3, variation qui avait été négligée dans les calculs précédents. Une amélioration de l'insensibilité de la tension de sortie Vref à des variations de la tension d'alimentation Vcc peut être obtenue en augmentant la valeur de la résistance R5 dont la valeur est alors comprise entre 2 et 4 fois la valeur de la résistance R2. La valeur optimale peut être déterminée par un calcul approprié et mieux encore à l'aide d'un simulateur.
    Pour une raison de symétrie de fonctionnement du circuit, on choisit une valeur de la source de courant 11 telle que pour une tension d'alimentation Vcc nominale, les courants I1 et I2 soient sensiblement égaux. Pour des valeurs de la tension d'alimentation Vcc qui s'écartent de la valeur nominale et à une température donnée, le courant I2 varie, mais comme on l'a vue précédemment, la tension stabilisée obtenue Vref n'est que très faiblement perturbée.
    Comme tous les transistors mis en oeuvre dans le circuit décrit en exemple sont des transistors de type NPN, le circuit régulateur est apte à réagir à des fluctuations de tensions d'alimentation même lorsque ces fluctuations sont à fréquences élevées.
    La réjection du bruit contenu dans la tension d'alimentation Vcc, peut encore être améliorée dans un mode de mise en oeuvre préféré selon lequel la base du transistor T5 est couplée à la base du transistor T2 à l'aide d'une capacité C. Cette capacité peut être facilement intégrable du fait qu'une faible valeur suffit. Son effet, en première approximation, est multiplié par le gain du transistor T2.
    Selon ce mode de mise en oeuvre, le taux de réjection R de bruit en sortie du circuit régulateur à partir du bruit présenté par la tension d'alimentation Vcc est représenté à la figure 2 courbe A, en fonction de la fréquence F de ce bruit. On observe une particularité intéressante du circuit régulateur selon l'invention du fait que le taux de réjection augmente au-delà d'une certaine fréquence limite. Cette propriété remarquable est particulièrement intéressante lorsque le circuit régulateur est utilisé dans des applications où il est intégré conjointement avec des circuits commutés à hautes fréquences, par exemple des diviseurs de fréquences qui procurent des parasites à fréquences élevées sur la tension d'alimentation.
    La figure 3, montre très schématiquement, le principe à la base de nombreux circuits régulateurs connus. Il comporte d'une part une cellule 30 à deux transistors dont les surfaces d'émetteur sont inégales, destinée à délivrer un courant proportionnel à la température sur une résistance de compensation R. Les collecteurs des transistors débitent sur des charges appairées, représentées symboliquement par un ensemble 31. Le circuit comporte d'autre part un amplificateur différentiel 32, à gain élevé, dont la sortie alimente les bases réunies des deux transistors, le tout agencé de manière que les courants collecteur des transistors soient égaux. L'amplificateur 32 est donc un amplificateur d'erreur et ainsi, la tension de référence Vref en sortie de cet amplificateur est d'autant plus précise que le gain de l'amplificateur est élevé. Il est bien connu par ailleurs, qu'un tel amplificateur requiert d'être stabilisé en fréquence et présente de ce fait une courbe de gain G dont l'allure est représentée à la figure 4.
    Corrélativement, le pouvoir de réjection R du bruit de la tension d'alimentation, pour un circuit régulateur de ce type, présente une allure inverse de celle du gain, telle que celle indiquée par la courbe B en tirets, de la figure 2. Il est clair que du point de vue de la réjection du bruit, le circuit selon l'invention est très avantageux dans des applications où est présent un bruit à fréquence élevée.
    La figure 5 représente le schéma d'un deuxième mode de mise en oeuvre de l'invention.
    Sur cette figure les éléments correspondants à ceux du circuit de la figure 1 sont affectés des mêmes signes de référence. Le circuit de la figure 5 reprend tous les éléments du circuit de la figure 1 auxquels sont ajoutés un sixième transistor T6 et un septième transistor T7 de même polarité que les transistors T1 à T5. Le transistor T6 est connecté en diode, son trajet émetteur-collecteur est inséré entre la résistance R2 et la ligne 12. La tension Vx de la ligne 12 est ainsi augmentée de la valeur d'un VBE par rapport à l'exemple précédemment décrit.
    Le transistor T7 a sa base connectée au noeud joignant l'émetteur du transistor T5 au collecteur du transistor T4. Son émetteur est couplé à la borne de référence 2 à travers une résistance de charge d'émetteur R7. Le transistor T7 est donc agencé en émetteur suiveur et fournit sur son émetteur la tension stabilisée Vref. La chute de tension base/émetteur de T7 compense, en première approximation, la chute de tension dans le transistor T6 de sorte que la tension Vref est à nouveau pratiquement identique à celle obtenue précédemment avec le circuit de la figure 1.
    Selon ce mode de mise en oeuvre, l'impédance de sortie du circuit est plus faible que précédemment et un courant plus important peut être prélevé à la sortie.
    Le collecteur du transistor est représenté comme étant alimenté par une borne 17. Celle-ci peut être reliée directement à la ligne 12 ou encore à la borne d'alimentation 1. Toutefois, le circuit représenté peut également fournir un courant de référence stabilisé Io, absorbé par le collecteur du transistor T7. La borne 17 constitue alors une telle sortie du circuit régulateur.
    Il est clair que le courant Io est indépendant de la tension d'alimentation et de la température puisqu'il est déduit du courant d'émetteur du transistor T7, lequel crée une chute de tension Vref, stable, dans la résistance R7. Le courant collecteur du transistor T7, de type NPN dont le gain est élevé, est peu différent du courant émetteur et de ce fait, peu affecté par des variations de gain en fonction de la température.
    Bien entendu, la source de courant 11 présentée comme une résistance dite de limitation à la figure 1 n'est qu'un exemple simplifié et on pourrait également utiliser toute autre source de courant munie de moyens assurant, par exemple, une pré-régulation même grossière du courant alimentant les deux branches du circuit régulateur. Dans des applications où le circuit régulateur de tensions n'est pas utilisé en permanence, il est désirable de pouvoir désactiver le circuit régulateur lorsque son usage n'est pas requis, de manière à économiser la consommation de courant.
    La figure 6 présente un exemple de substitution de la source de courant 11 de la figure 1 par un ensemble résistance 21 et transistor à effet de champ MOS 22. Par une commande appropriée appliquée à la borne 23 reliée à la grille du transistor 22, on peut réaliser une source de courant commutable qui présente une résistance égale à la somme de la valeur de la résistance 21 et de la résistance interne du transistor 22 lorsqu'il est conducteur.
    La figure 7 représente un autre exemple de source de courant 11, munie de moyens assurant une pré-régulation du courant alimentant l'ensemble du circuit régulateur.
    Deux résistances 31 et 32 sont connectées en série entre la borne d'alimentation 1 et la ligne 12. Le point commun entre ces résistance a sa tension VD régulée par l'effet de quatre diodes D1 à D4, connectées en série entre ce point et la borne de référence 2.
    Bien que la tension directe de ces diodes varie un peu en fonction de la température et en fonction du courant qui les traverse, cette variation reste faible de sorte que le courant délivré par la source de courant 11 est principalement contrôlé par la résistance 31 et la différence de tension VD-Vx qui varie peu en fonction des variations de Vcc.
    La figure 8 représente encore un autre exemple de source de courant 11 mettant en oeuvre au moins un transistor T8 de type PNP, assurant par tous moyens connus, une pré-régulation du courant débité par son trajet émetteur/collecteur.
    L'utilisation d'un transistor de type PNP présente l'inconvénient que la capacité parasite d'un tel transistor est en général importante ce qui est défavorable du point de vue de la réjection du bruit de la tension d'alimentation. Pour réduire cet effet, une résistance 41 est insérée entre le collecteur du transistor T8 et la ligne 12 de manière à atténuer l'effet de la capacité parasite du transistor T8.
    Il est clair que les sources de courant décrites en liaison avec les figures 6, 7 et 8 ne sont que des exemple et que le spécialiste est à même d'imaginer d'autres combinaisons notamment qui utilisent le transistor interrupteur 22 de la figure 6 lorsque cela est utile. Les exemples de circuits régulateurs des figures 1 et 5 sont susceptibles de variantes sans pour autant sortir du cadre de l'invention telle que revendiquée ci-après.

    Claims (9)

    1. Circuit régulateur fournissant une tension stabilisée (Vref), qui est connecté entre une borne d'alimentation (1) et une borne de référence (2) et comporte notamment quatre transistors de même polarité ayant chacun un émetteur une base et un collecteur, un premier transistor (T1) dont l'émetteur est couplé à la borne de référence (2) à travers une première résistance (R1), un deuxième transistor (T2) dont l'émetteur est connecté à la borne de référence (2), les bases et les collecteurs des premier et deuxième transistors étant connectés en couplage croisé, un troisième transistor (T3) dont l'émetteur est connecté au collecteur du premier transistor (T1), sa base et son collecteur connectés ensemble à une des extrémités d'une deuxième résistance (R2), l'autre extrémité de cette résistance étant couplée à la borne d'alimentation (1), et un quatrième transistor (T4) dont l'émetteur est connecté au collecteur du deuxième transistor (T2), et la base connectée à la base et au collecteur du troisième transistor (T3), circuit dans lequel la surface d'émetteur du premier transistor est plus grande que celle du troisième transistor, caractérisé en ce que le circuit comporte en outre un cinquième transistor (T5) bipolaire de même polarité que les transistors précédemment cités, ayant un émetteur connecté au collecteur du quatrième transistor (T4), une base couplée à son collecteur à travers une résistance de base (R5) de valeur au moins égale au double de la valeur de la deuxième résistance (R2), et en ce que le noeud (12) reliant cette résistance de base au collecteur de ce cinquième transistor est d'une part couplé à l'autre extremité de la deuxième résistance (R2) et d'autre part, couplé à la borne d'alimentation (1) à travers une source de courant (11).
    2. Circuit régulateur selon la revendication 1, caractérisé en ce que les deuxième, quatrième et cinquième transistors ont la même surface d'émetteur.
    3. Circuit régulateur selon l'une des revendications 1 ou 2, caractérisé en ce que la connexion entre l'émetteur du cinquième transistor (T5) et le collecteur du quatrième transistor (T4) constitue une sortie de la tension stabilisée (Vref).
    4. Circuit régulateur selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comporte en outre un sixième transistor (T6) et un septième transistor (T7), de même polarité que les transistors précédents, le sixième transistor (T6), connecté en diode étant inséré dans le sens direct entre l'autre extrémité de la deuxième résistance (R2) et la source de courant (11) tandis que le septième transistor (T7)a sa base connectée à l'émetteur du cinquième transistor (T5), son collecteur couplé à la borne d'alimentation (1), et son émetteur, qui fournit une sortie de la tension stabilisée (Vref), est couplé à la borne de référence (2) à travers une résistance d'émetteur (R7).
    5. Circuit régulateur selon la revendication 4, caractérisé en ce que le collecteur du septième transistor (T7) constitue en outre une sortie du circuit régulateur fournissant un courant de référence stabilisé (Io).
    6. Circuit régulateur selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'une capacité (C) est en outre connectée entre la base du cinquième transistor (T5) et la base du deuxième transistor (T2).
    7. Circuit régulateur selon l'une des revendications 1 à 6, caractérisé en ce que la source de courant (11) comporte une résistance dite de limitation (21), (31), (41).
    8. Circuit régulateur selon la revendication 7, caractérisé en ce qu'entre la résistance de limitation (21) et la borne d'alimentation (1) est inséré un transistor interrupteur de type à effet de champ MOS (22).
    9. Circuit régulateur selon l'une des revendications 7 ou 8, caractérisé en ce que la source de courant est en outre munie de moyens assurant une prérégulation du courant alimentant le circuit régulateur.
    EP95200704A 1994-03-30 1995-03-22 Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température Expired - Lifetime EP0675422B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9403775A FR2718259A1 (fr) 1994-03-30 1994-03-30 Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température.
    FR9403775 1994-03-30

    Publications (2)

    Publication Number Publication Date
    EP0675422A1 EP0675422A1 (fr) 1995-10-04
    EP0675422B1 true EP0675422B1 (fr) 1999-09-08

    Family

    ID=9461600

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95200704A Expired - Lifetime EP0675422B1 (fr) 1994-03-30 1995-03-22 Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température

    Country Status (8)

    Country Link
    US (1) US5576616A (fr)
    EP (1) EP0675422B1 (fr)
    JP (1) JPH07271461A (fr)
    KR (1) KR950033755A (fr)
    CN (1) CN1118461A (fr)
    DE (1) DE69511923T2 (fr)
    FR (1) FR2718259A1 (fr)
    TW (1) TW255073B (fr)

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19530737A1 (de) * 1995-08-22 1997-02-27 Philips Patentverwaltung Schaltungsanordnung zum Liefern eines konstanten Stromes
    JP2874634B2 (ja) * 1996-03-01 1999-03-24 日本電気株式会社 基準電圧回路
    FR2757964B1 (fr) * 1996-12-31 1999-03-05 Sgs Thomson Microelectronics Regulateur de tension serie
    US6002293A (en) * 1998-03-24 1999-12-14 Analog Devices, Inc. High transconductance voltage reference cell
    DE19821906C1 (de) * 1998-05-15 2000-03-02 Siemens Ag Klemmschaltung
    CN1154032C (zh) * 1999-09-02 2004-06-16 深圳赛意法微电子有限公司 预调节器、产生参考电压的电路和方法
    US6285244B1 (en) * 1999-10-02 2001-09-04 Texas Instruments Incorporated Low voltage, VCC incentive, low temperature co-efficient, stable cross-coupled bandgap circuit
    FR2806489B1 (fr) * 2000-03-15 2002-06-28 St Microelectronics Sa Circuit de fourniture de tension de reference
    US7259626B2 (en) * 2004-12-28 2007-08-21 Broadcom Corporation Apparatus and method for biasing cascode devices in a differential pair using the input, output, or other nodes in the circuit
    CN1896900B (zh) * 2005-07-13 2010-10-06 辉达公司 能阶参考电路
    TW200810231A (en) 2006-08-11 2008-02-16 Hon Hai Prec Ind Co Ltd Antenna device
    TWI355772B (en) 2006-12-29 2012-01-01 Advanced Semiconductor Eng Carrier with solid antenna structure and manufactu
    US8669754B2 (en) * 2011-04-06 2014-03-11 Icera Inc. Low supply regulator having a high power supply rejection ratio
    CN103163935B (zh) * 2011-12-19 2015-04-01 中国科学院微电子研究所 一种cmos集成电路中基准电流源产生电路
    US9921596B2 (en) * 2013-12-23 2018-03-20 Marvell Israel (M.I.S.L) Ltd Power supply noise reduction circuit and power supply noise reduction method
    CN115268551B (zh) * 2021-04-30 2024-04-09 炬芯科技股份有限公司 基准电压生成电路、集成芯片和方法

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3930172A (en) * 1974-11-06 1975-12-30 Nat Semiconductor Corp Input supply independent circuit
    US4491780A (en) * 1983-08-15 1985-01-01 Motorola, Inc. Temperature compensated voltage reference circuit
    NL8501882A (nl) * 1985-07-01 1987-02-02 Philips Nv Signaalspanning-stroom omzetter.
    US4816742A (en) * 1988-02-16 1989-03-28 North American Philips Corporation, Signetics Division Stabilized current and voltage reference sources
    US4958122A (en) * 1989-12-18 1990-09-18 Motorola, Inc. Current source regulator
    US5015942A (en) * 1990-06-07 1991-05-14 Cherry Semiconductor Corporation Positive temperature coefficient current source with low power dissipation
    US5049807A (en) * 1991-01-03 1991-09-17 Bell Communications Research, Inc. All-NPN-transistor voltage regulator
    GB2264573B (en) * 1992-02-05 1996-08-21 Nec Corp Reference voltage generating circuit
    US5446409A (en) * 1992-11-30 1995-08-29 Sony Corporation Cross coupled symmetrical current source unit
    US5367249A (en) * 1993-04-21 1994-11-22 Delco Electronics Corporation Circuit including bandgap reference
    US5399914A (en) * 1993-10-18 1995-03-21 Allegro Microsystems, Inc. High ratio current source

    Also Published As

    Publication number Publication date
    CN1118461A (zh) 1996-03-13
    US5576616A (en) 1996-11-19
    DE69511923T2 (de) 2000-03-30
    FR2718259A1 (fr) 1995-10-06
    EP0675422A1 (fr) 1995-10-04
    KR950033755A (ko) 1995-12-26
    JPH07271461A (ja) 1995-10-20
    TW255073B (en) 1995-08-21
    DE69511923D1 (de) 1999-10-14

    Similar Documents

    Publication Publication Date Title
    EP0675422B1 (fr) Circuit régulateur fournissant une tension indépendante de l'alimentation et de la température
    FR2739523A1 (fr) Circuit pour poste telephonique comportant une alimentation de diode electroluminescente
    EP0660512B1 (fr) Amplificateur déphaseur et son application à un circuit recombineur
    EP0511707B1 (fr) Amplificateur différentiel notamment du type à cascode
    EP1424776A1 (fr) Circuit oscillateur commandé en tension pour un dispositif électronique basse puissance
    EP0700151A1 (fr) Etage amplificateur de puissance, de type suiveur
    EP0845856B1 (fr) Amplificateur à transconductance à dynamique élevée et faible bruit
    EP0649079A1 (fr) Circuit générateur de tension stabilisée du type bandgap
    EP0230693B1 (fr) Etage amplificateur différentiel pour hautes fréquences et amplificateur muni d'un tel étage amplificateur différentiel
    EP1647091B1 (fr) Amplificateur de tension a faible consommation
    EP0533230B1 (fr) Amplificateur différentiel et mélangeur oscillateur l'incorportant
    EP0998031A1 (fr) Amplificateur de courant à faible impédance d'entrée
    EP0506186B1 (fr) Dispositif amplificateur vidéo
    FR3134487A1 (fr) Dispositif de copie d'un courant
    EP0738038A1 (fr) Amplificateur de courant
    EP1102148B1 (fr) Dispositif générateur de tension corrigé à basse température.
    EP1569332A1 (fr) Circuit d'amplification de puissance et amplificateur operationnel l'incorporant
    EP1931030A1 (fr) Préamplificateur de courant et comparateur de courant associé
    FR2601208A1 (fr) Circuit repeteur de tension a faible distorsion harmonique pour charges a composant resistif
    EP0738043A1 (fr) Circuit logique de type à émetteurs couplés, fonctionnant sous une faible tension d'alimentation
    FR2925184A1 (fr) Regulateur de tension a boucle auto-adaptative
    FR2519211A1 (fr) Etage de sortie pour circuit integre a reseau de portes de la technique ecl regule vis-a-vis des variations liees aux temperatures de fonctionnement
    FR2822308A1 (fr) Circuit pour la separation de poles reposant sur l'effet miller
    EP0242304B1 (fr) Amplificateur suiveur à grande vitesse
    EP2648332B1 (fr) Dispositif de polarisation de préamplificateurs

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17P Request for examination filed

    Effective date: 19960404

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

    Owner name: PHILIPS COMPOSANTS

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19981029

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

    Owner name: PHILIPS COMPOSANTS ET SEMICONDUCTEURS

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 69511923

    Country of ref document: DE

    Date of ref document: 19991014

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991021

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010326

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010330

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010516

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020322

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021001

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020322

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021129

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST