EP0674566B1 - Method for monitoring and controlling stress in a threaded member - Google Patents

Method for monitoring and controlling stress in a threaded member Download PDF

Info

Publication number
EP0674566B1
EP0674566B1 EP93902338A EP93902338A EP0674566B1 EP 0674566 B1 EP0674566 B1 EP 0674566B1 EP 93902338 A EP93902338 A EP 93902338A EP 93902338 A EP93902338 A EP 93902338A EP 0674566 B1 EP0674566 B1 EP 0674566B1
Authority
EP
European Patent Office
Prior art keywords
force
screwing
mounting element
value
action
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93902338A
Other languages
German (de)
French (fr)
Other versions
EP0674566A1 (en
Inventor
Jean-Marc Chastel
Didier Rey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ciandar
Original Assignee
Ciandar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciandar filed Critical Ciandar
Publication of EP0674566A1 publication Critical patent/EP0674566A1/en
Application granted granted Critical
Publication of EP0674566B1 publication Critical patent/EP0674566B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers

Definitions

  • the invention relates to a method for controlling and controlling the tension of a threaded member, such as a screw, bolt, nut, or other threaded fastening elements used in particular but not exclusively in screwed assemblies.
  • a threaded member such as a screw, bolt, nut, or other threaded fastening elements used in particular but not exclusively in screwed assemblies.
  • the purpose of the calculation notes for screwed connections is to determine the preload to be applied to the connection according to the payload (or service load) to which the connection will be subjected in its use and a dependent tightening factor the precision of the means for applying this preload.
  • the tension to be applied in a threaded fastener is generally achieved by transforming a rotational force into a tensile force generated by the helical size of the element's thread.
  • This transformation has an imperfect yield mainly due to the friction losses of the surfaces in contact; therefore it will be necessary to apply a rotational force (torque) greater than the rotational force useful for this transformation.
  • a first improvement in the variation of the tension generated by the torque was to associate the angle of rotation from a certain torque. Indeed the elongation of the fastening element which causes the tension is proportional to the angle of rotation. This proportion must be determined beforehand because it is the result of the assembly and not of the fixing element. Voltage dispersion is improved under special conditions due to preparatory testing and geometric specifications of the engaging parts which can be costly. In addition, the risk of penetration into a plastic zone is not excluded due to the variability of the starting point of the angle measurement, in principle called the pre-tightening torque. It should be noted that the pre-tightening torque can be an accidental torque, for example kneading the threads; in this case, the tension will be far from being achieved.
  • the elastic limit point can be that of the first element which flares up in the chain of action and mechanical reaction.
  • this method requires additional precautions generating costs.
  • This method offers an accuracy of ⁇ 10% on the tension of a single point exploiting the full capacity of the fastening element for preload.
  • the major drawback of this method is the penetration, even minimal, in the plastic area of the fastening element. Attempts to control and / or control the slope (directing coefficient of the tangent to the curve) at any point in the elastic zone have proved to be imprecise and dispersive. In this case, the dispersion of the torque due to friction is cumulated and the dispersion of the angle due to the flexibility of the assembly.
  • This method is based on the variation of a travel time of the sound propagating only inside the fixing element and it is freed from all the other parameters not linked to the element as well as variations of the thickness of the engaging parts.
  • the variation in travel time is in theory the direct representation of the elongation.
  • the tension / elongation relationship is linked to the resistance of the material, to its section and to its initial length.
  • This purely comparative method requires a modeling (specimen element) of the fixing element which will be tested for the determination of a variation of a specific travel time at a given tension.
  • the determined elongation is only a small part of the actual length of the fastener. Indeed, when it comes to the propagation of a sound, only the stretched part of the fixing element participates in the elongation.
  • This stretched part depends on the thickness of the parts in engagement.
  • the machining tolerances have a direct impact on the elongation observed.
  • the fixing element intervenes in its geometrical dimensions in particular for the total variation of the travel time which depends on the length of the element relative to its stretched part. This variation has repercussions on the journey time and on its variation in the ratio of stretched length / total length.
  • the parallelism of the reflection planes of the ultrasonic waves (essentially for a screw, the head and the bottom of the rod) intervenes directly in the effective position of the member for measuring the travel time.
  • the elongation measurement must be carried out during the rise in tension of the element because the repositioning introduces errors which can double the degree of inaccuracy of the ultrasonic method.
  • the precision of the effective measurement of the tension is similar to that of the elastic limit with the advantage of being able to be located at any point of the admissible load of the fastening element, with however the disadvantage of being only a probability of tension taking into account the reference to a specimen (theoretical model) resulting from the average treatment of a batch of fastening elements.
  • This accumulated energy (1) is returned to the unscrewing due to the reversibility of the fastening element due to its pitch with helical size and to the potential energy residing in the screwed assembly.
  • This accumulated energy is not apparent and represents only a fraction of the energy applied due to the energy consumed by friction which in particular prevents spontaneous unscrewing of the fixing element.
  • These frictions exist in an equivalent manner to screwing and unscrewing and are caused by the parts of the surfaces in contact with the various elements making up the assembly. Therefore there is a difference in energy applied to the screwing and unscrewing due to the energy which is accumulated at the screwing and returned to the unscrewing while the energy consumed by friction is constant.
  • the tension force in tension or in compression
  • the tension force can be controlled as a function proportional to the difference between the torque applied to the screwing, in particular the maximum torque at the stopping point, and the torque applied to the unscrewing, more particularly the maximum unscrewing torque, difference divided by (P / ⁇ ), quantity proportional to the thread pitch.
  • the quantity (P / ⁇ ) constitutes a constant which allows the immediate transformation of the difference of the couples of the action of screwing, then of unscrewing a threaded fixing element, expressed in newton-meter (Nm) in a tension expressed in Newton (N), whose precision directly follows the precision of the torques.
  • Document DE-A-4024577 reveals a process which is based on the same theoretical basis as the aforementioned document EP-A-0096620, and which essentially has the same shortcomings, explained above in points 1), 2) and 3), even if it remedies the disadvantage of point 4) by replacing the notion of derivation (gradient) with a proposal for integration.
  • this document DE-A-4024577 is based on incorrect proportionality formulas, and it involves an empirical correction factor, resulting in an imprecision of the results.
  • the present invention aims to avoid the shortcomings of known methods, by providing a new method based on an improved principle and specific operating procedures, allowing good reproducibility and improved precision, by excluding any arbitrary correction. , empirical or statistical.
  • the invention provides that the sampling of these torque values is carried out either statically at the rest limit for screwing and unscrewing, or dynamically, in a succession of concordant screwing positions and unscrewing, in the context of a screwing-unscrewing action carried out only once, or of a screwing-unscrewing action repeated iteratively, or of a screwing-unscrewing-screwing action of said threaded member.
  • a first embodiment of the method according to the invention consists in applying this method to a voltage measurement, using manual, mechanical, pneumatic, hydraulic or electric motor means capable, by means of a device for coupling on the threaded fixing element of an assembly, to ensure a controlled effort of rotation of this fixing element.
  • the element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion or torsion of an organ for which the transformer is not necessarily a constant, but can also be a function (x).
  • the element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion or torsion of an organ for which the transformer is not necessarily a constant, but can also be a function f (x).
  • the indirect relation is established for the expression of the tension force in another measurement system, by an additional coefficient restoring the coherence between the units of force, and the units of distance.
  • a simple servo-control is carried out in successive approximations (iterative method).
  • the previously defined action is exercised, repeated as many times as necessary until the ratio of the necessary tension force to the existing tension force is equal to 1.
  • the value of the screwing / unscrewing force can be moderated by a coefficient (of reduction) suitable for ensuring the convergence of the action towards the tension required in a number of strokes defined by the precision sought in the control of the action.
  • This re-screwing action can be moderated both in the chosen position and in the value of the force in order to anticipate the inertia of the motor means used.
  • This moderation could be a stored constant corresponding to a given rotation force, or deduced from the stopping phases of said means when the different values of rotation force are sampled on the fixing element.
  • This re-screwing action can be corrected both in the chosen position and in the value of the force in order to integrate the torsion of the motor means, in particular when the position sensor is not integral with the fixing element or of the coupling member.
  • This correction may come from a memorized correction table deduced from the torsional slope, that is to say from the ratio of the rotational force to its effective position.
  • the concordance of the screwing / unscrewing positions can be achieved by correlation of the position at the maximum screwing effort with the position at the maximum unscrewing force, by disregarding in this case the notion of torsion slope.
  • This re-screwing action may be moderated both in the chosen position and in the value of the force in order to anticipate the inertia of the motor means used.
  • This moderation could be a stored constant corresponding to a given rotational force, or deduced from the stopping phase of said means when unscrewing.
  • This re-screwing action can be corrected both in the chosen position and in the value of the force in order to integrate the torsion of the motor means, in particular when the position sensor is not integral with the fixing element. or the coupling member.
  • This correction may come from a memorized correction table deduced from the torsional slope, that is to say from the ratio of the rotational force to its effective position.
  • the position sensor sees the position of the fastening element through an assembly which deforms in proportion to the force of rotation applied by the motor means. As long as the resistive torque is not exceeded by the motor torque, the fastening element has not started its rotation while the position sensor registers a displacement proportional to the applied torque.
  • the effective position is masked by an apparent position due to the deformation of the reaction chain.
  • the torsional slope is established from the ratio of the value of the rotational force to the value of the position observed.
  • the tangent to this slope is established by the variation of the value of the rotational force on the variation of the position value. The sudden change in the directing coefficient of the tangent to this slope, during the effective rotation of the fastening element, gives the precise position where this effective rotation occurs.
  • the resistant torque of the fixing element results from the different contact surfaces, head or nut, rod, thread.
  • the element is permanently subjected (when stretched) to a torsion due to the tension force on the helicoid of its net.
  • the modification of the tension force will be carried out essentially when the resistance torque due to the thread is overcome.
  • the total rotation of the fixing element is only carried out from the moment when the thread advances. There is therefore a delay in action between the rotation of the head or the nut and the actual rotation of the fixing element.
  • This delay in action results in an additional twist or partial de-twist of the fastening element depending on whether one is screwing or unscrewing.
  • This variation in torsion of the fastening element intervenes in the value of the position observed, in particular when the length of the fastening element is large relative to its section. This variation creates a difference in slope between screwing or unscrewing.
  • the element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion, torsion or shock of an organ for which the transformer is not necessarily a constant, but can also be a function f (x).
  • the drive means can only be controlled in a differential measurement or action.
  • the control of the absolute rotation force is not essential.
  • Figure 1 shows the external appearance of a torque wrench for screwing with tension control, the internal electrical and electronic circuits of the key being illustrated by the diagram of Figure 2 in which, for clarity of the drawing, are not shown some discrete components not essential to understanding, as well as power supplies from batteries suitable for ensuring the portability and autonomy of this torque wrench.
  • a torque wrench with a capacity of 300 Nm, in which a torque gauge 1 with strain gauges, receiving a supply voltage denoted VA with a value of 10 volts, delivers a voltage proportional to the applied torque.
  • a first amplifier 2 with a gain of 1000 produces a relationship on its output such that for each 1Nm of torque a signal - / + 33.333 mV is ensured depending on the direction of the screwing performed.
  • the output of amplifier 2 is connected to the inputs of two blocking samplers 3,4, as well as to the inputs of two comparators 5,6.
  • the first grouping of sampler-blocker 3 and comparator 5 stores the screwing torque on the right, negative in signal, by the fact that comparator 5 compares the output of the sampler-blocker 3 with its input and only when the input is greater than the output, this comparator 5 causes the blocker mode of the sampler-blocker through an OR logic gate 7, thus memorizing the highest value of the torque measured in the direction of screwing to the right.
  • the second sampler-blocker group 4 and comparator 6 memorizes the screwing torque on the left, positive in signal, by the fact that comparator 6 compares the output of the sampler-blocker 4 with its input and that when the input is greater than the output, this comparator 6 causes the blocker mode of the sampler-blocker 5 through an OR logic gate 8 thus memorizing the highest value of the torque measured in the direction of screwing to the left.
  • Each comparator output 5.6 is connected to an OR logic gate 7.8 having in common an input connected to a push button 9 enabling the memories of the torque values acquired during right-hand tightening and tightening to be reset to zero. left.
  • each blocker sampler 3,4 are connected to the input of an amplifier 10, wired in summing mode so that the gain only applies to the difference of the outputs of the blocker samplers 3,4 by the fact that one is negative and the other positive, the algebraic sum producing a subtraction.
  • the amplifier 10 produces a gain proportional to the pitch of the screw chosen by a selector 11 which allows a choice of different screw pitches in the range of couples applicable by the key.
  • the selector 11 orients a gain range by assigning a resistance suitably calculated in the gain loop of the amplifier 10.
  • the output of the amplifier 10 is connected to the input of an analog-to-digital converter driving a digital display in a voltmeter function with display 12.
  • the digital display is established for from 0 to - / + 199.99, scale which directly translates KN (Kilo-newtons) for voltages which go from 0 to - / + 5 volts.
  • a brushless electric motor 13 is powered by a power control module 14 which regulates the phase frequency, the voltage and the electric current, and therefore makes it possible to control the rotor of the motor 13 in speed, in direction of rotation and power.
  • the position information of the rotor is provided by a synchro-resolver 15 integral with the motor shaft supporting the rotor.
  • the position of the synchro-resolver 15 determined by a sine / cosine phase shift is converted into digital data by a converter 16.
  • the converter 16 which allows different precisions (10,12,14,16 bits) is adjusted to provide 12 bits of precision on a turn of the synchro-resolver either a definition 1/4096 of turn or 5.27 minutes of arc.
  • the fastener 18 is rotated by a coupling member 23 such as a socket which covers the head 21 of the fastener 18 and which is driven by the square 24 of the axis 25 of the spindle constituting the motor shaft.
  • the compression forces Fc of the part 20 are balanced by the tension force Ft of the fixing element 18.
  • the signal supplied by the torque meter 17 is amplified by an instrumentation amplifier 26, the output of which is connected to the input of an analog / digital converter 27, which provides 11 bits of resolution in bi-polar mode, that is for the torque meter 17 at the nominal of 500 Newtons.meter, a definition of 500/2048 or 0.244 Nm / bit.
  • the digital data of the converters 27 and 16 pass over a bus 28 and are processed by a processor 29 which acts according to a program in memory at 30 and stores its digital data in a memory 31.
  • the processor 29 manages the power control module 14 for the cycles required for screwing / unscrewing / re-screwing.
  • the memory 31 contains in particular the tightening parameters such as desired tension, maximum torque applicable to the fixing element, not of the fixing element, speed of rotation of the motor 13, etc. These parameters are entered on a module communication interface 32 by means of a terminal or a network.
  • the memory 31 also contains the measurements carried out at the screwing and unscrewing in the form of tables (lists of values) as well as the calculation results allowing the decisions of motor control for the tightening in tension and the final results to be produced by the means of the communication interface 32 intended for the terminal and / or the printer.
  • An input / output interface 33 provides the decision-making environment so that an operator or a PLC can, on the one hand by the inputs, start the cycle, stop in an emergency, etc., and on the other hand by the outputs view controls on indicator lights, etc.
  • the processor 29 takes the rotor position and assigns to this position the numerical value of the torque exerted by the spindle in an array stored in memory 31, dimensioned by example at 16384 values (4 rotations of the rotor), then starts the operation each time the position changes to a torque value determined by the setting.
  • the processor thus creates in the table a first list of a succession of torque values in tightening.
  • the processor repeats the same operations for the unscrewing phase, for the same positions in opposite directions, creating a second list of a succession of torque values. unscrewing. Then position by position, for the same positions in each list, the processor subtracts the torque value from the second list from the torque value from the first list, thus creating a third list made up of the differences in screwing and unscrewing torque for identical positions.
  • the processor 29 calculates, position by position, the tension existing in the screw. Then by comparing the calculated tension with the desired tension, it determines the position to which it re-screws.
  • the algorithm of the processing is greatly accelerated, by a pre-calculation of the desired tension translated in the form of the desired torque difference, leaving only the comparison to be made with the third list, and by limiting the number of comparisons to the first match thus reducing the excursion of the program.
  • the processing speed of modern processors (several million instructions per second) makes electronic times insignificant compared to mechanical times. Indeed, the processing time of the voltage control is simply masked by the mechanical time of the actual reversal of the direction of the motor.
  • the method of the invention can be extended to a threaded member allowing the transformation of a rotational movement into a linear movement, or the reciprocal transformation of a linear movement into a rotational movement, with force transmission, this in particular in weighing, lifting or pressing devices.

Abstract

The tensile or compressive stress (Ft) in a threaded member (18) is determined by subtracting an unscrewing torque from a screwing torque, and dividing the resulting torque difference by a coefficient proportional to the screw pitch (19) of said member. The torque values are recorded either statically at the screwing and unscrewing rest limit, or dynamically in a series of corresponding screwing and unscrewing positions. The method is particularly useful for measuring, monitoring and controlling stress in threaded fastening members used in screwed joints.

Description

L'invention concerne un procédé pour le contrôle et l'asservissement de la tension d'un organe fileté, tel que vis, boulon, écrou, ou autres éléments de fixation filetés utilisés notamment mais non exclusivement dans les assemblages vissés.The invention relates to a method for controlling and controlling the tension of a threaded member, such as a screw, bolt, nut, or other threaded fastening elements used in particular but not exclusively in screwed assemblies.

Les industries de l'automobile, de l'aéronautique, de l'espace, du nucléaire et toutes activités de fabrication mécanique exploitent de façon généralisée les assemblages vissés, et ce dans des utilisations extrêmement variées et complexes.The automotive, aeronautics, space, nuclear and all mechanical manufacturing industries make general use of screw connections, in extremely varied and complex uses.

Les notes de calcul des assemblages vissés ont pour but de déterminer la précharge à appliquer à l'assemblage en fonction de la charge utile (ou charge de service) à laquelle sera soumis l'assemblage dans son utilisation et d'un facteur de serrage dépendant de la précision des moyens d'application de cette précharge.The purpose of the calculation notes for screwed connections is to determine the preload to be applied to the connection according to the payload (or service load) to which the connection will be subjected in its use and a dependent tightening factor the precision of the means for applying this preload.

Ces notes de calcul réalisées par les ingénieurs d'étude de ces industries étant très précises en fonction des besoins définis et les conditions d'exploitation des assemblages vissés étant de plus en plus sévères, il devient essentiel d'accroître la fiabilité de ces assemblages en respectant les notes de calcul dans leur exécution afin d'augmenter les performances et la sécurité des équipements ainsi réalisés.These calculation notes produced by the study engineers of these industries being very precise according to the defined needs and the operating conditions of the screwed assemblies being more and more severe, it becomes essential to increase the reliability of these assemblies by respecting the calculation notes in their execution in order to increase the performance and safety of the equipment thus produced.

La tension à appliquer dans un élément de fixation fileté est généralement réalisée par transformation d'une force de rotation en une force de traction engendrée par la taille hélicoïdale du filet de l'élément. Cette transformation a un rendement imparfait dû pour l'essentiel aux pertes par frottement des surfaces en contact ; de ce fait il faudra appliquer une force de rotation (couple) supérieure à la force de rotation utile à cette transformation.The tension to be applied in a threaded fastener is generally achieved by transforming a rotational force into a tensile force generated by the helical size of the element's thread. This transformation has an imperfect yield mainly due to the friction losses of the surfaces in contact; therefore it will be necessary to apply a rotational force (torque) greater than the rotational force useful for this transformation.

Le rendement de cette transformation est extrêmement dispersif du fait de la variation des coefficients de frottement, de la variation de la distance à laquelle s'applique la résultante des forces de frottement par rapport à l'axe de rotation et de la variation géométrique des pièces notamment des surfaces en contact. L'observation pratique donne une variation de 50 % de la tension induite lors de l'application d'un couple constant sur un même lot d'éléments de fixation. Il est vérifié que l'amélioration de la précision du couple appliqué n'entraîne pas d'amélioration significative de la précision sur la tension observée.The efficiency of this transformation is extremely dispersive due to the variation of the friction coefficients, the variation of the distance to which the resultant of the friction forces applies with respect to the axis of rotation and the geometric variation of the parts. especially contacting surfaces. Practical observation gives a variation of 50% of the tension induced when applying a constant torque to the same batch of fasteners. It is verified that the improvement in the precision of the applied torque does not lead to a significant improvement in the precision on the observed voltage.

Une première amélioration de la variation de la tension générée par le couple a été d'associer l'angle de rotation à partir d'un certain couple. En effet l'allongement de l'élément de fixation qui provoque la tension est proportionnel à l'angle de rotation. Cette proportion doit être déterminée préalablement car elle est la résultante de l'assemblage et non de l'élément de fixation. La dispersion de la tension est améliorée dans des conditions particulières dues à des essais préparatoires et des spécifications géométriques des pièces en prise qui peuvent être coûteux. De plus le risque de pénétration en zone plastique n'est pas exclu du fait de la variabilité du point de départ de la mesure de l'angle, en principe appelé couple de pré-serrage. Il est à noter que le couple de pré-serrage peut être un couple accidentel, par exemple matage des filets ; dans ce cas, la tension sera loin d'être réalisée.A first improvement in the variation of the tension generated by the torque was to associate the angle of rotation from a certain torque. Indeed the elongation of the fastening element which causes the tension is proportional to the angle of rotation. This proportion must be determined beforehand because it is the result of the assembly and not of the fixing element. Voltage dispersion is improved under special conditions due to preparatory testing and geometric specifications of the engaging parts which can be costly. In addition, the risk of penetration into a plastic zone is not excluded due to the variability of the starting point of the angle measurement, in principle called the pre-tightening torque. It should be noted that the pre-tightening torque can be an accidental torque, for example kneading the threads; in this case, the tension will be far from being achieved.

A partir de la combinaison de ces deux mesures de couple et d'angle, un principe de serrage a été élaboré : l'observation permanente pendant l'application du couple, de la variation du gradient de couple en fonction de l'avance angulaire permet la détermination d'un point remarquable de la fonction couple/angle, appelé point de limite élastique. Cette méthode amène la vis dans un état de contrainte (ou de précharge) qui exploite la totalité de la précharge possible de l'assemblage au détriment de la charge de service. Une détermination préalable de la tension est réalisée afin d'intégrer les variations de section et de résistance à la traction des matériaux constituant les éléments de fixation. Cette méthode est très sensible aux efforts de réaction des moyens qui applique le couple ; par exemple, flexion du bâti-machine, glissement du bridage de l'élément assemblé. Le point de limite élastique peut être celui du premier élément qui flambe dans la chaîne d'action et de réaction mécanique. Pour être appliquée avec un maximum de sécurité, cette méthode nécessite des précautions accessoires engendrant des coûts. Cette méthode offre une précision de ± 10 % sur la tension d'un point unique exploitant toute la capacité de l'élément de fixation pour la précharge. L'inconvénient majeur de cette méthode est la pénétration, même minime, dans la zone plastique de l'élément de fixation. Les essais d'asservissement et/ou de contrôle de la pente (coefficient directeur de la tangente à la courbe) en un point quelconque de la zone élastique se sont révèlés imprécis et dispersifs. Dans ce cas, on cumule la dispersion du couple due aux frottements et la dispersion de l'angle due à la flexibilité de l'assemblage.From the combination of these two torque and angle measurements, a tightening principle was developed: permanent observation during the application of the torque, of the variation of the torque gradient as a function of the angular advance allows the determination of a remarkable point of the torque / angle function, called the elastic limit point. This method brings the screw into a state of stress (or preload) which exploits all of the possible preload of the assembly to the detriment of the service load. A preliminary determination of the tension is carried out in order to integrate the variations in cross-section and in tensile strength of the materials constituting the fastening elements. This method is very sensitive to the reaction efforts of the means which apply the torque; for example, bending of the machine frame, sliding of the clamping of the assembled element. The elastic limit point can be that of the first element which flares up in the chain of action and mechanical reaction. To be applied with maximum security, this method requires additional precautions generating costs. This method offers an accuracy of ± 10% on the tension of a single point exploiting the full capacity of the fastening element for preload. The major drawback of this method is the penetration, even minimal, in the plastic area of the fastening element. Attempts to control and / or control the slope (directing coefficient of the tangent to the curve) at any point in the elastic zone have proved to be imprecise and dispersive. In this case, the dispersion of the torque due to friction is cumulated and the dispersion of the angle due to the flexibility of the assembly.

Pour éliminer les variations de tension dues aux variations diverses citées précédemment, une nouvelle approche du serrage à la tension est réalisée par la méthode ultra-sonore.To eliminate voltage variations due to various variations cited above, a new approach to tensioning is carried out using the ultrasonic method.

Cette méthode est basée sur la variation d'un temps de parcours du son se propageant uniquement à l'intérieur de l'élément de fixation et elle s'affranchit de tous les autres paramètres non liés à l'élément ainsi que des variations de l'épaisseur des pièces en prise. La variation du temps de parcours est en théorie la représentation directe de l'allongement. La relation tension/allongement est liée à la résistance du matériau, à sa section et à sa longueur initiale. Cette méthode purement comparative nécessite une modélisation (élément spécimen) de l'élément de fixation qui sera éprouvée pour la détermination d'une variation d'un temps de parcours spécifique à une tension donnée. L'allongement déterminé n'est qu'une faible partie de la longueur réelle de l'élément de fixation. En effet, lorsqu'il s'agit de la propagation d'un son, seule la partie tendue de l'élément de fixation participe à l'allongement. Cette partie tendue dépend de l'épaisseur des pièces en prise. Les tolérances d'usinage se répercutent directement sur l'allongement observé. L'élément de fixation intervient dans ses dimensions géométriques notamment pour la variation totale du temps de parcours qui dépend de la longueur de l'élément par rapport à sa partie tendue. Cette variation se répercute sur le temps de parcours et sur sa variation dans le rapport de longueur tendue/longueur totale. De plus le parallélisme des plans de réflexion des ondes ultra-sonores (essentiellement pour une vis, la tête et le fond de tige) intervient directement dans la position effective de l'organe de mesure du temps de parcours. La mesure d'allongement doit être effectuée pendant la montée en tension de l'élément car le repositionnement introduit des erreurs pouvant doubler le degré d'imprécision de la méthode ultra-sonore. L'ensemble des ces tolérances étant parfaitement maîtrisé par un surcoût important, la précision de la mesure effective de la tension est similaire à celle de la limite élastique avec l'avantage de pouvoir se situer en un point quelconque de la charge admissible de l'élément de fixation, avec cependant l'inconvénient de n'être qu'une probabilité de tension compte tenu de la référence à un spécimen (modèle théorique) issue du traitement moyen d'un lot d'éléments de fixation.This method is based on the variation of a travel time of the sound propagating only inside the fixing element and it is freed from all the other parameters not linked to the element as well as variations of the thickness of the engaging parts. The variation in travel time is in theory the direct representation of the elongation. The tension / elongation relationship is linked to the resistance of the material, to its section and to its initial length. This purely comparative method requires a modeling (specimen element) of the fixing element which will be tested for the determination of a variation of a specific travel time at a given tension. The determined elongation is only a small part of the actual length of the fastener. Indeed, when it comes to the propagation of a sound, only the stretched part of the fixing element participates in the elongation. This stretched part depends on the thickness of the parts in engagement. The machining tolerances have a direct impact on the elongation observed. The fixing element intervenes in its geometrical dimensions in particular for the total variation of the travel time which depends on the length of the element relative to its stretched part. This variation has repercussions on the journey time and on its variation in the ratio of stretched length / total length. Furthermore, the parallelism of the reflection planes of the ultrasonic waves (essentially for a screw, the head and the bottom of the rod) intervenes directly in the effective position of the member for measuring the travel time. The elongation measurement must be carried out during the rise in tension of the element because the repositioning introduces errors which can double the degree of inaccuracy of the ultrasonic method. All of these tolerances being perfectly controlled by a significant additional cost, the precision of the effective measurement of the tension is similar to that of the elastic limit with the advantage of being able to be located at any point of the admissible load of the fastening element, with however the disadvantage of being only a probability of tension taking into account the reference to a specimen (theoretical model) resulting from the average treatment of a batch of fastening elements.

Les conditions d'application de cette méthode nécessitent des précautions importantes telles que couplage de l'organe de mesure, absence de marquage sur la tête de l'élément de fixation, température effective de la mesure, propreté des surfaces de mesure, etc, précautions qui entraînent des coûts d'exploitation élevés et des cadences de fabrication limitées. Le coût des moyens de mesure ultra-sonore étant lui-même très élevé, cette méthode ne s'applique que dans des cas particuliers où les coûts et les cadences ne sont pas essentiels. Cette méthode est souvent retenue comme moyen de contrôle ou de détermination de paramètres conventionnels de vissage (couple et angle).The conditions of application of this method require important precautions such as coupling of the measurement device, absence of marking on the head of the fixing element, effective temperature of the measurement, cleanliness of the measurement surfaces, etc., precautions which result in high operating costs and limited production rates. The cost of the ultrasonic measurement means being itself very high, this method only applies in special cases where the costs and the rates are not essential. This method is often used as a means of controlling or determining conventional tightening parameters (torque and angle).

En résumé, l'ensemble des méthodes citées ci-dessus n'assure pas une mesure directe de la tension, elles sont soit comparatives, soit théoriques et doivent nécessiter des essais préalables d'ajustement des paramètres et de connaissance du comportement de l'assemblage. Il existe toujours au moins un paramètre qui varie d'un élément de fixation fileté à l'autre et qui de ce fait donne une incertitude sur la tension obtenue :

  • Méthode du couple : variation extrême de la tension, tension inconnue ;
  • Méthode impliquant l'angle : variation limitée de la tension, tension estimée avec préalable ;
  • Méthode utilisant la limite élastique : Point unique de tension au maximum de la capacité de la vis,
    tension estimée avec préalable,
    environnement à maîtriser ;
  • Méthode ultra-sonore : Point unique de tension en un point quelconque sur la capacité de l'élément de fixation,
    tension estimée avec préalable,
    géométrie et tolérances d'usinage à maîtriser,
    exploitation limitée par le coût.
In summary, all of the methods mentioned above do not provide a direct measurement of the tension, they are either comparative or theoretical and must require prior tests of adjustment of the parameters and knowledge of the behavior of the assembly. . There is always at least one parameter which varies from one threaded fastener to another and which therefore gives uncertainty about the tension obtained:
  • Torque method: extreme variation in voltage, unknown voltage;
  • Method involving the angle: limited variation of the voltage, voltage estimated beforehand;
  • Method using the elastic limit: Single point of tension at the maximum of the capacity of the screw,
    estimated voltage beforehand,
    environment to master;
  • Ultrasonic method: Single point of tension at any point on the capacity of the fixing element,
    estimated voltage beforehand,
    machining geometry and tolerances to master,
    operation limited by cost.

Plus on recherche avec précision une estimation de la tension, plus les coûts des moyens, de leur mise en oeuvre et de l'exploitation s'accroissent. Le fait d'aboutir à une estimation plutôt qu'à une mesure directe engendre des coûts supplémentaires de contrôle. Les exigences des industriels concernant de nouvelles méthodes font nettement apparaître leur insatisfaction de celles existantes.The more precisely an estimate of the voltage is sought, the more the costs of the means, their implementation and operation increase. The fact of arriving at an estimate rather than a direct measurement generates additional control costs. The demands of manufacturers regarding new methods clearly show their dissatisfaction with existing ones.

Sachant que les méthodes énoncées précédemment présentent toutes une ou plusieurs carences, on a déjà exploré une nouvelle voie, suite à l'observation sur plusieurs centaines de vissages de toutes sortes d'éléments de fixation, d'une différence entre la valeur du couple appliqué au vissage et la valeur du couple appliqué au dévissage, ce qui ramenait au moyen le plus simple d'application de la tension par le couple afin de caractériser les relations énergétiques entre le couple et l'énergie dans l'assemblage vissé et déboucher sur un nouveau procédé.Knowing that the methods set out above all have one or more deficiencies, we have already explored a new path, following the observation over several hundred screw connections of all kinds of fasteners, of a difference between the value of the applied torque to the screwing and the value of the torque applied to the unscrewing, which reduced by the simplest means of applying the tension by the torque in order to characterize the energy relations between the couple and the energy in the screw connection and lead to a new process.

En effet, l'assemblage vissé est constitué de matériaux élastiques. De ce fait, il se comporte comme un ressort. En allongeant ce ressort dans sa plage élastique a l'aide d'une force Ft, on accumule dans cet assemblage vissé une énergie E qui s'exprime comme suit : E = (Ft.δL)/ 2

Figure imgb0001
où : δL est la différence entre la longueur finale et la longueur initiale de l'élément de fixation.Indeed, the screw connection is made of elastic materials. Therefore, it behaves like a spring. By extending this spring in its elastic range using a force Ft, an energy E is accumulated in this screwed assembly, which is expressed as follows: E = (Ft.δL) / 2
Figure imgb0001
where: δL is the difference between the final length and the initial length of the fastener.

Cette énergie accumulée (1) est restituée au dévissage du fait de la réversibilité de l'élément de fixation due à son pas à taille hélicoïdale et à l'énergie potentielle résidant dans l'assemblage vissé.This accumulated energy (1) is returned to the unscrewing due to the reversibility of the fastening element due to its pitch with helical size and to the potential energy residing in the screwed assembly.

Si cet allongement est effectué par transformation d'un couple Cu en effort de traction, par l'intermédiaire d'une rampe hélicoïdale d'angle α développée sur une circonférence de diamètre 2.r, cette expression devient : E = (Cu.cotgα/r).(δL/2) avec cotgα = 2πr/P

Figure imgb0002

  • P étant le pas de filetage
soit : E = Cu.δL.π/p
Figure imgb0003
If this elongation is carried out by transformation of a torque Cu into tensile force, by means of a helical ramp of angle α developed on a circumference of diameter 2.r, this expression becomes: E = (Cu.cotgα / r). (ΔL / 2) with cotgα = 2πr / P
Figure imgb0002
  • P being the thread pitch
is : E = Cu.δL.π / p
Figure imgb0003

Cette énergie accumulée n'est pas apparente et ne représente qu'une fraction de l'énergie appliquée du fait de l'énergie consommée par les frottements qui empêchent notamment le dévissage spontané de l'élément de fixation. Ces frottements existent de façon équivalente au vissage et au dévissage et sont occasionnés par les parties des surfaces en contact des différents éléments composant l'assemblage. De ce fait on observe une différence d'énergie appliquée au vissage et au dévissage due à l'énergie qui est accumulée au vissage et restituée au dévissage alors que l'énergie consommée par les frottements est constante.This accumulated energy is not apparent and represents only a fraction of the energy applied due to the energy consumed by friction which in particular prevents spontaneous unscrewing of the fixing element. These frictions exist in an equivalent manner to screwing and unscrewing and are caused by the parts of the surfaces in contact with the various elements making up the assembly. Therefore there is a difference in energy applied to the screwing and unscrewing due to the energy which is accumulated at the screwing and returned to the unscrewing while the energy consumed by friction is constant.

La distribution générale des différentes énergies, pour une énergie appliquée se décrit comme suit : en vissage : Eapp = Et fr+Ett+Eflt+Etg en dévissage :-Eapp' = Et fr-Ett-Eflt-Etg d'où : Etfr = (Eapp-Eapp')/2

Figure imgb0004
avec :

  • Eapp : énergie appliquée au vissage de l'élément de fixation
  • Eapp' : énergie appliquée au dévissage de l'élément de fixation
  • Etfr : énergie transformée en tension de l'élément de fixation
  • Ett : énergie consommée au frottement tête ou écrou de l'élément de fixation
  • Eflt : énergie consommée au frottement filet de l'élément de fixation
  • Etg : énergie consommée au frottement tige de l'élément de fixation.
The general distribution of the different energies, for an applied energy is described as follows: for screwing: Eapp = Et fr + Ett + Eflt + Etg in unscrewing: -Eapp '= Et fr-Ett-Eflt-Etg hence: Etfr = (Eapp-Eapp ') / 2
Figure imgb0004
with:
  • Eapp: energy applied to the screwing of the fastening element
  • Eapp ': energy applied to unscrewing the fastening element
  • Etfr: energy transformed into tension of the fixing element
  • Ett: energy consumed by the head or nut friction of the element fixation
  • Effect: energy consumed by thread friction of the fastening element
  • Etg: energy consumed by rod friction of the fastening element.

En dérivant l'équation (3), on obtient : d(Etfr)/dt = [d(Eapp)/dt - d(Eapp')/dt]/2

Figure imgb0005
   soit à un instant t : Ptfr = (Papp-Papp')/2
Figure imgb0006
   avec :

  • Papp : puissance appliquée au vissage
  • Papp' : puissance appliquée au dévissage
  • Ptfr : puissance transformée en tension
et compte tenu de la relation générale Pu = C. (Puissance = couple X vitesse de rotation)
(4) se simplifie en : Cu = (Capp - Capp')/2
Figure imgb0007
Deriving equation (3), we get: d (Etfr) / dt = [d (Eapp) / dt - d (Eapp ') / dt] / 2
Figure imgb0005
either at an instant t: Ptfr = (Papp-Papp ') / 2
Figure imgb0006
with:
  • Papp: power applied to screwing
  • Papp ': power applied to unscrewing
  • Ptfr: power transformed into voltage
and taking into account the general relation Pu = C. (Power = torque X speed of rotation)
(4) is simplified by: Cu = (Capp - Capp ') / 2
Figure imgb0007

Le couple utile ou couple transformé en tension Cu peut s'exprimer d'après (2) en fonction de l'énergie transformée comme suit : Cu = Etfr.P/(π.δL)

Figure imgb0008
en faisant intervenir (1), on obtient : Cu = Ft.P/(2.π)
Figure imgb0009
en faisant intervenir (5) et (6), on obtient : Capp - Capp' = Ft.P/π
Figure imgb0010
   avec :

  • Capp : couple appliqué au vissage
  • Capp' : couple appliqué au dévissage
et réciproquement : Ft = (Capp-Capp')/(P/π)
Figure imgb0011
The useful torque or torque transformed into voltage Cu can be expressed according to (2) as a function of the energy transformed as follows: Cu = Etfr.P / (π.δL)
Figure imgb0008
by using (1), we obtain: Cu = Ft.P / (2.π)
Figure imgb0009
by involving (5) and (6), we obtain: Capp - Capp '= Ft.P / π
Figure imgb0010
with:
  • Capp: torque applied to screwing
  • Capp ': torque applied to unscrewing
and reciprocally : Ft = (Capp-Capp ') / (P / π)
Figure imgb0011

En d'autres termes, la force de tension (en traction ou en compression) peut être contrôlée en fonction proportionnelle à la différence entre le couple appliqué au vissage, notamment le couple maximum au point d'arrêt, et le couple appliqué au dévissage, plus particulièrement le couple maximum de dévissage, différence divisée par (P/π), quantité proportionnelle au pas du filetage. La quantité (P/π) constitue une constante qui permet la transformation immédiate de la différence des couples de l'action de visser, puis de dévisser un élément de fixation fileté, exprimés en newton-mètre (Nm) en une tension exprimée en Newton (N), dont la précision suit directement la précision des couples.In other words, the tension force (in tension or in compression) can be controlled as a function proportional to the difference between the torque applied to the screwing, in particular the maximum torque at the stopping point, and the torque applied to the unscrewing, more particularly the maximum unscrewing torque, difference divided by (P / π), quantity proportional to the thread pitch. The quantity (P / π) constitutes a constant which allows the immediate transformation of the difference of the couples of the action of screwing, then of unscrewing a threaded fixing element, expressed in newton-meter (Nm) in a tension expressed in Newton (N), whose precision directly follows the precision of the torques.

De la formule (7), se déduit la définition générale d'un procédé pour le contrôle et l'asservissement de la tension ou compression d'un organe fileté, dans lequel la force de tension ou de compression (Ft) de l'organe fileté est déterminée par l'action de soustraire un couple appliqué au dévissage (Capp') d'un couple appliqué au vissage (Capp), et de diviser cet écart de couples par un coefficient proportionnel au pas (P) du filetage dudit organe. Un tel procédé est divulgué, dans son aspect général et théorique, par le document EP-A-0096620.From formula (7), follows the general definition of a process for controlling and controlling the tension or compression of a threaded member, in which the tension or compression force (Ft) of the member thread is determined by the action of subtracting a torque applied to the unscrewing (Capp ') from a torque applied to the screwing (Capp), and dividing this difference in torque by a coefficient proportional to the pitch (P) of the thread of said member. Such a process is disclosed, in its general and theoretical aspect, by document EP-A-0096620.

Toutefois, ce document ne révèle pas un mode opératoire rationnel et fiable, pour la mise en oeuvre industrielle de ce procédé ; l'enseignement du document EP-A-0096620 permet seulement une approximation de la force de serrage exercée par l'élément fileté, et ainsi les inconvénients des autres techniques antérieures ne sont pas supprimés.However, this document does not reveal a rational and reliable operating mode for the industrial implementation of this process; the teaching of document EP-A-0096620 only allows an approximation of the clamping force exerted by the threaded element, and thus the drawbacks of the other prior techniques are not eliminated.

Plus précisément, une analyse du document EP-A-0096620 permet de discerner, pour le procédé qu'il décrit, d'une part des insuffisances théoriques et d'autre part des insuffisances techniques.More precisely, an analysis of document EP-A-0096620 makes it possible to discern, for the process which it describes, on the one hand theoretical insufficiencies and on the other hand technical insufficiencies.

La mention d'un coefficient de proportionnalité reliant l'effort de serrage à la différence du couple de vissage/dévissage vu en un point particulier, base du document EP-A-0096620, contient plusieurs aberrations :

  • 1) Spéculation abusive sur la constance du frottement (qui varie en réalité à chaque point d'avancement en fonction de la surface en contact, de l'état de surface et de la pression de contact) pour la proportionnalité (K). Ceci n'est jamais le cas, donc il est impossible de prédire le couple de vissage final en un point différent de celui de l'observation, et encore moins la tension existante à ce couple.
  • 2) Les couples de vissage/dévissage doivent être mesurés dans des conditions particulières qui ne sont pas précisées dans le document cité, et en l'absence desquelles les mesures sont aberrantes, pouvant aller jusqu'à une tension négative ! (ex : un couple de dévissage supérieur à un couple de vissage dû à un grippage ou un collage). Il y a obligation de mesurer dès le début de la mise en mouvement de l'organe fileté et/ou de ne prélever les couples qu'à des instants précis, comme le propose la présente invention.
    Les points précédents sont confirmés par le contenu du document EP-A-0096620 ou il est admis que le coefficient K est différent sur plusieurs tentatives, d'où l'obligation de l'évaluer statistiquement, mais qui ne résoud pas le problème de la proportionnalité du coefficient K sur l'étendue du vissage. Au mieux, on obtient une approximation de K en un point particulier, repéré par une position angulaire.
  • 3) Absence de notion de positions concordantes aux prélèvements des couples de vissage/dévissage, ce qui pour un effort progressif comme la montée en couple et en tension introduit un écart de couple supplémentaire qui nuit gravement au procédé (détorsion de l'organe fileté).
  • 4) A propos des modalités de mise en oeuvre selon les revendications 5 et 6 du document EP-A-0096620, introduisant la notion de "gradient", on notera que ce mode de mise en oeuvre souffre des mêmes défauts que ceux précédemment indiqués, et de plus le fait de dériver amplifie exagérément les anomalies de mesure et rend impossibles tous calculs. Cette formulation est impropre, et à l'inverse il aurait fallu intégrer.
The mention of a proportionality coefficient relating the tightening force to the difference of the screwing / unscrewing couple seen at a particular point, basis of document EP-A-0096620, contains several aberrations:
  • 1) Abusive speculation on the constancy of friction (which actually varies at each point of advancement depending on the surface in contact, the surface condition and the contact pressure) for proportionality (K). This is never the case, so it is impossible to predict the final tightening torque at a point different from that of the observation, and even less the existing tension at this torque.
  • 2) The screwing / unscrewing torques must be measured under special conditions which are not specified in the cited document, and in the absence of which the measurements are aberrant, possibly reaching a negative voltage! (ex: a unscrewing torque greater than a screwing torque due to seizing or sticking). There is an obligation to measure from the start of the setting in motion of the threaded member and / or to take the torques only at specific times, as proposed by the present invention.
    The above points are confirmed by the content of document EP-A-0096620 or it is accepted that the coefficient K is different on several attempts, hence the obligation to evaluate it statistically, but which does not solve the problem of proportionality of the coefficient K over the extent of the screwing. At best, we get an approximation of K at a particular point, marked by an angular position.
  • 3) Lack of notion of positions consistent with the removal of the screwing / unscrewing couples, which for a progressive effort such as the increase in torque and in tension introduces an additional torque difference which seriously harms the process (distortion of the threaded member) .
  • 4) With regard to the methods of implementation according to claims 5 and 6 of document EP-A-0096620, introducing the concept of "gradient", it will be noted that this mode of implementation suffers from the same defects as those previously indicated, and moreover, the fact of deriving exaggeratedly amplifies the measurement anomalies and makes all calculations impossible. This formulation is inappropriate, and conversely it should have been integrated.

Outre les insuffisances théoriques développées ci-dessus, le document EP-A-0096620 ne contient aucune description pratique de moyens qui permettraient d'appliquer la théorie développée dans ce document, et son unique figure se limite à la représentation d'un assemblage vissé classique.In addition to the theoretical shortcomings developed above, document EP-A-0096620 does not contain any practical description of means which would make it possible to apply the theory developed in this document, and its only figure is limited to the representation of a conventional screwed assembly .

L'insuffisance technique apparaît en particulier en ce qui concerne les concordances de positions de prélèvement des valeurs de couple, qui pour n'importe quels moyens sont à prendre en compte, notamment la maîtrise des torsions desdits moyens, qui sans cela ramène à l'insuffisance théorique 3) (détorsion de la vis, avec en plus la torsion des moyens).The technical insufficiency appears in particular with regard to the concordance of positions for the sampling of torque values, which for any means are to be taken into account, in particular the control of the twists of said means, which without this brings back to the theoretical insufficiency 3) (twisting of the screw, with in addition the twisting of the means).

Le document DE-A-4024577 révèle un procédé qui repose sur la même base théorique que le document précité EP-A-0096620, et qui comporte pour l'essentiel les mêmes insuffisances, exposées ci-dessus aux points 1), 2) et 3), même s'il remédie à l'inconvénient du point 4) en remplaçant la notion de dérivation (gradient) par une proposition d'intégration. En particulier, ce document DE-A-4024577 repose sur des formules de proportionnalité erronées, et il fait intervenir un facteur de correction empirique, se traduisant par une imprécision des résultats.Document DE-A-4024577 reveals a process which is based on the same theoretical basis as the aforementioned document EP-A-0096620, and which essentially has the same shortcomings, explained above in points 1), 2) and 3), even if it remedies the disadvantage of point 4) by replacing the notion of derivation (gradient) with a proposal for integration. In particular, this document DE-A-4024577 is based on incorrect proportionality formulas, and it involves an empirical correction factor, resulting in an imprecision of the results.

Face à cet état de la technique, la présente invention vise à éviter les insuffisances des procédés connus, en fournissant un procédé nouveau reposant sur un principe perfectionné et des modes opératoires spécifiques, permettant une bonne reproductibilité et une précision améliorée, en excluant toute correction arbitraire, empirique ou statistique.Faced with this state of the art, the present invention aims to avoid the shortcomings of known methods, by providing a new method based on an improved principle and specific operating procedures, allowing good reproducibility and improved precision, by excluding any arbitrary correction. , empirical or statistical.

Dans ce procédé pour le contrôle et l'asservissement de la tension ou compression d'un organe fileté, où la force de tension ou de compression de l'organe fileté est déterminée par l'action de soustraire un couple appliqué au dévissage d'un couple appliqué au vissage, et où cet écart de couples est divisé par un coefficient proportionnel au pas du filetage dudit organe, l'invention prévoit que le prélevement de ces valeurs de couple est effectué soit statiquement à la limite de repos de vissage et dévissage, soit dynamiquement, en une succession de positions concordantes en vissage et dévissage, dans le cadre d'une action de vissage-dévissage effectuée une seule fois, ou d'une action de vissage-dévissage répétée itérativement, ou d'une action de vissage-dévissage-revissage dudit organe fileté.In this method for controlling and controlling the tension or compression of a threaded member, where the tension or compression force of the threaded member is determined by the action of subtracting a torque applied to the unscrewing of a torque applied to the screwing, and where this torque difference is divided by a coefficient proportional to the pitch of the thread of said member, the invention provides that the sampling of these torque values is carried out either statically at the rest limit for screwing and unscrewing, or dynamically, in a succession of concordant screwing positions and unscrewing, in the context of a screwing-unscrewing action carried out only once, or of a screwing-unscrewing action repeated iteratively, or of a screwing-unscrewing-screwing action of said threaded member.

Des moyens simples permettent de mettre en oeuvre le procédé, dont la définition générale vient d'être indiquée, pour connaître, asservir ou contrôler des assemblages vissés d'une manière économique et plus performante que toutes celles existantes, et ainsi l'invention permet d'utiliser des éléments de fixation filetés de moindre coût ou de qualité plus faible, tout en ayant une certitude au sujet du serrage de ces éléments de fixation.Simple means make it possible to implement the process, the general definition of which has just been indicated, for knowing, controlling or controlling screwed assemblies in an economical and more efficient than all those existing, and thus the invention allows the use of threaded fasteners of lower cost or lower quality, while having certainty about the tightening of these fasteners.

Un premier mode de mise en oeuvre du procédé selon l'invention consiste à appliquer ce procédé à une mesure de tension, en utilisant un moyen moteur manuel, mécanique, pneumatique, hydraulique ou électrique capable, par l'intermédiaire d'un organe d'accouplement sur l'élément de fixation fileté d'un assemblage, d'assurer un effort contrôlé de mise en rotation de cet élément de fixation.A first embodiment of the method according to the invention consists in applying this method to a voltage measurement, using manual, mechanical, pneumatic, hydraulic or electric motor means capable, by means of a device for coupling on the threaded fixing element of an assembly, to ensure a controlled effort of rotation of this fixing element.

Dans le cas d'une inertie mécanique négligeable, le procédé se caractérise par l'action de visser dans le but de prélever, à la limite de repos du glissement de la partie mobile de l'élément de fixation sur la partie fixe de l'assemblage, la valeur de l'effort de rotation, puis par l'action de dévisser dans le but de prélever, à la limite de repos pendant le glissement de la partie mobile de l'élément de fixation sur la partie fixe de l'assemblage, la valeur de l'effort de rotation au passage par son maximum, puis de différencier ces deux valeurs d'effort pour les diviser par un coefficient notamment proportionnel au pas du filetage de l'élément de fixation afin d'obtenir une valeur représentant, en ces limites précises :

  • soit la force de traction subie par l'élément de fixation
  • soit la force de compression exercée par l'élément de fixation
  • soit la force de tension résidante dans l'élément de fixation.
In the case of negligible mechanical inertia, the method is characterized by the action of screwing in order to take, at the rest limit of the sliding of the movable part of the fastening element on the fixed part of the assembly, the value of the rotational force, then by the action of unscrewing for the purpose of removing, at the rest limit during the sliding of the movable part of the fixing element on the fixed part of the assembly , the value of the rotational force on passing through its maximum, then of differentiating these two force values in order to divide them by a coefficient notably proportional to the pitch of the thread of the fixing element in order to obtain a value representing, within these precise limits:
  • either the tensile force undergone by the fastening element
  • either the compressive force exerted by the fastening element
  • or the tension force residing in the fastening element.

Lorsque le moyen moteur est instrumenté par un couplemètre, la relation directe est exprimée comme suit : Ft = (Cv-Cd)/K   où K = P/π

Figure imgb0012
avec :

  • Ft force de tension en Newton
  • Cv couple à la limite de vissage en Newton-mètre
  • Cd couple maximum de dévissage en Newton-mètre
  • π constante du cercle
  • P pas du filetage en mètre
When the drive means is instrumented by a torque meter, the direct relationship is expressed as follows: Ft = (Cv-Cd) / K where K = P / π
Figure imgb0012
with:
  • Ft tension force in Newton
  • CV torque at the screwing limit in Newton meters
  • Cd maximum unscrewing torque in Newton meters
  • π constant of the circle
  • P thread pitch in meters

La relation indirecte est établie pour l'expression de la force de tension dans un autre système de mesure, par un coefficient supplémentaire rétablissant la cohérence entre les unités de force et les unités de longueur, par exemple :
   Pour Ft en Newton K = (P/π).S

Figure imgb0013

où S = 12
, si Cv est Cd sont exprimés en Newton.foot (N.ft)
et P en inch (in)
où S = 1,6584
, si Cv et Cd sont exprimés en poundal.foot(pdl.ft)
et P en inch (in)
The indirect relation is established for the expression of the tension force in another measurement system, by an additional coefficient restoring the coherence between the units of force and the units of length, for example:
For Ft in Newton K = (P / π) .S
Figure imgb0013
where S = 12
, if Cv is Cd are expressed in Newton.foot (N.ft)
and P in inch (in)
where S = 1.6584
, if Cv and Cd are expressed in poundal.foot (pdl.ft)
and P in inch (in)

Lorsque le moyen moteur est instrumenté sur son énergie la relation directe est exprimée comme suit : Ft = (Ev'-Ed')/K   ou K = P/τ

Figure imgb0014
avec :

  • Ft force de tension en Newton
  • Ev' élément représentatif de l'énergie à la limite de vissage
  • Ed' élément représentatif de l'énergie maximum de dévissage
  • τ constante incluant π constante du cercle par le rendement moteur par le transformateur du type d'énergie
  • P pas du filetage en mètre.
When the drive means is instrumented on its energy the direct relationship is expressed as follows: Ft = (Ev'-Ed ') / K or K = P / τ
Figure imgb0014
with:
  • Ft tension force in Newton
  • Ev 'element representative of the energy at the screwing limit
  • Ed 'element representative of the maximum unscrewing energy
  • τ constant including π constant of the circle by the motor efficiency by the transformer of the energy type
  • P thread pitch in meters.

L'élément représentatif de l'énergie peut être n'importe quel élément donnant l'image du couple du moyen moteur (intensité, voltage, pression, etc) par une constante ou une fonction f(x), mais aussi le moment d'un moyen mécanique utilisant la flexion ou la torsion d'un organe pour lequel le transformateur n'est pas obligatoirement une constante, mais peut être aussi une fonction (x).The element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion or torsion of an organ for which the transformer is not necessarily a constant, but can also be a function (x).

Dans le cas d'une inertie mécanique importante, le procédé se caractérise par l'action de visser dans le but de prélever, au début du glissement de la partie mobile de l'élément de fixation sur la partie fixe de l'assemblage, la valeur de l'effort de rotation, puis de prélever, à la limite de repos du glissement de la partie mobile de l'élément de fixation sur la partie fixe de l'assemblage, la valeur de l'effort de rotation, puis par l'action de dévisser dans le but de prélever, à la limite de repos pendant le glissement de la partie mobile de l'élément de fixation sur la partie fixe de l'assemblage, la valeur de l'effort de rotation au passage par son maximum, puis de différencier ces deux valeurs d'effort pour diviser ce résultat par un coefficient proportionnel au pas du filetage de l'élément de fixation afin d'obtenir une valeur représentant, pour ces valeurs particulières :

  • soit la force de traction subie par l'élément de fixation
  • soit la force de compression exercée par l'élément de fixation
  • soit la force de tension résidante dans l'élément de fixation au départ de l'action.
In the case of significant mechanical inertia, the method is characterized by the action of screwing in order to take off, at the start of the sliding of the movable part of the fixing element on the fixed part of the assembly, value of the rotational force, then take, at the rest limit of the sliding of the movable part of the fastening element on the fixed part of the assembly, the value of the rotational force, then by l action of unscrewing for the purpose of taking, at the rest limit during the sliding of the mobile part of the fastening element on the fixed part of the assembly, the value of the rotational force when passing by its maximum , then to differentiate these two force values to divide this result by a coefficient proportional to the pitch of the thread of the fixing element in order to obtain a value representing, for these particular values:
  • either the tensile force undergone by the fastening element
  • either the compressive force exerted by the fastening element
  • or the tension force residing in the fastening element at the start of the action.

Lorsque le moyen moteur est instrumenté par un couplemètre, la relation directe est exprimée comme suit : Ft = (Cv-Cd).I)/K   où K = P/π   où I = Cg/Cv

Figure imgb0015
avec :

  • Ft force de tension en Newton
  • Cg couple au début de vissage en Newton.mètre
  • Cv couple à la limite de vissage en Newton.mètre
  • Cd couple maximum de dévissage en Newton.mètre
  • π constante du cercle
  • P pas du filetage en mètre
When the drive means is instrumented by a torque meter, the direct relationship is expressed as follows: Ft = (Cv-Cd) .I) / K where K = P / π where I = Cg / Cv
Figure imgb0015
with:
  • Ft tension force in Newton
  • Cg torque at the start of tightening in Newton meters
  • CV torque at the screwing limit in Newton meter
  • Cd maximum unscrewing torque in Newton meters
  • π constant of the circle
  • P thread pitch in meters

La relation indirecte est établie pour l'expression de la force de tension dans un autre système de mesure, par un coefficient supplémentaire rétablissant la cohérence entre les unités de force et les unités de longueur.The indirect relation is established for the expression of the tension force in another measurement system, by an additional coefficient restoring the coherence between the units of force and the units of length.

Lorsque le moyen moteur est instrumenté sur son énergie, la relation directe est exprimée comme suit : Ft = (Ev'-Ed').I)/K   où K = P/τ   où I = Eg'/Ev'

Figure imgb0016
avec :

  • Ft force de tension en Newton
  • Eg' élément représentatif de l'énergie au début de vissage
  • Ev' élément représentatif de l'énergie à la limite de vissage
  • Ed' élément représentatif de l'énergie maximum de dévissage
  • τ constante incluant π constante du cercle par le rendement moteur par le transformateur du type d'énergie
  • P pas du filetage en mètre
When the drive means is instrumented on its energy, the direct relationship is expressed as follows: Ft = (Ev'-Ed '). I) / K where K = P / τ where I = Eg' / Ev '
Figure imgb0016
with:
  • Ft tension force in Newton
  • Eg 'element representative of the energy at the start of screwing
  • Ev 'element representative of the energy at the screwing limit
  • Ed 'element representative of the maximum unscrewing energy
  • τ constant including π constant of the circle by the motor efficiency by the transformer of the energy type
  • P thread pitch in meters

L'élément représentatif de l'énergie peut être n'importe quel élément donnant l'image du couple du moyen moteur (intensité, voltage, pression, etc) par une constante ou une fonction f(x), mais aussi le moment d'un moyen mécanique utilisant la flexion ou la torsion d'un organe pour lequel le transformateur n'est pas obligatoirement une constante, mais peut être aussi une fonction f(x).The element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion or torsion of an organ for which the transformer is not necessarily a constant, but can also be a function f (x).

La relation indirecte est établie pour l'expression de la force de tension dans un autre système de mesure, par un coefficient supplémentaire rétablissant la cohérence entre les unités de force, et les unités de distance.The indirect relation is established for the expression of the tension force in another measurement system, by an additional coefficient restoring the coherence between the units of force, and the units of distance.

Un contrôle non destructif de l'assemblage est réalisable par l'action précédemment définie de mesure de tension, suivie de l'action de re-visser jusqu'à l'effort de vissage prélevé en premier, à savoir :

  • soit celui de la limite du repos s'il n'y a pas inertie
  • soit celui de début de glissement s'il y a inertie
afin de restituer les conditions initiales de l'assemblage en ayant contrôlé la force de tension existante dans l'élément de fixation, ou la force de traction subie par l'élément de fixation, ou encore la force de compression exercée par l'élément de fixation.Non-destructive testing of the assembly is achievable by action previously defined tension measurement, followed by the action of re-tightening until the tightening effort taken first, namely:
  • either that of the limit of rest if there is no inertia
  • that of the beginning of sliding if there is inertia
in order to restore the initial conditions of the assembly having controlled the tension force existing in the fixing element, or the tensile force undergone by the fixing element, or even the compression force exerted by the element fixation.

Selon un mode de mise en oeuvre du procédé selon l'invention, on réalise un simple asservissement en approximations successives (procédé itératif). A cet effet, sur un élément de fixation déjà serré de façon quelconque, on exerce l'action précédemment définie, recommencée autant de fois que nécessaire jusqu'à ce que le rapport de la force de tension nécessaire sur la force de tension existante soit égal à 1. De façon à limiter l'amplitude de l'action de vissage/dévissage, la valeur de l'effort de vissage/dévissage peut être modérée par un coefficient (de minoration) propre à assurer la convergence de l'action vers la tension nécessaire en un nombre de coups définis par la précision recherchée dans l'asservissement de l'action.According to an embodiment of the method according to the invention, a simple servo-control is carried out in successive approximations (iterative method). For this purpose, on a fastening element already tightened in any way, the previously defined action is exercised, repeated as many times as necessary until the ratio of the necessary tension force to the existing tension force is equal to 1. In order to limit the amplitude of the screwing / unscrewing action, the value of the screwing / unscrewing force can be moderated by a coefficient (of reduction) suitable for ensuring the convergence of the action towards the tension required in a number of strokes defined by the precision sought in the control of the action.

On peut encore réaliser selon l'invention un "asservissement dynamique" permettant, par l'utilisation d'un moyen moteur manuel, mécanique, pneumatique, hydraulique ou électrique capable, par l'intermédiaire d'un organe d'accouplement sur l'élément de fixation fileté d'un assemblage, d'assurer un effort de rotation contrôlé et une mesure de la position effective de la rotation de l'élément de fixation.It is also possible to produce according to the invention a "dynamic control" allowing, by the use of a manual, mechanical, pneumatic, hydraulic or electric motor means capable, by means of a coupling member on the element. of threaded fastening of an assembly, of ensuring a controlled rotational force and a measurement of the effective position of rotation of the fastening element.

Sur un élément de fixation non serré, on exerce à cet effet l'action de visser dans le but de prélever, à intervalles réguliers de position déterminés par la précision recherchée, les valeurs de l'effort de rotation, puis l'action de dévisser dans le but de prélever, à intervalles réguliers pour ces mêmes positions, les valeurs de l'effort de rotation, puis position par position, pour des positions effectives, de différencier la valeur d'effort de rotation au vissage de la valeur d'effort au dévissage, pour les diviser par un coefficient proportionnel au pas du filetage de l'élément de fixation afin d'obtenir une liste de valeurs représentant, pour chacune des positions :

  • soit la force de traction subie par l'élément de fixation
  • soit la force de compression exercée par l'élément de fixation
  • soit la force de tension résidante dans l'élément de fixation suivant les relations directes et indirectes de la définition générale du procédé selon l'invention, puis suivie par :
    • soit l'action de re-visser l'élément de fixation jusqu'à une position déterminée dont la valeur de la force observée est égale à la force nécessaire à l'assemblage,
    • soit l'action de re-visser l'élément de fixation jusqu'à l'effort de rotation au vissage correspondant à la position où l'on a observé une valeur de force égale à la force nécessaire à l'assemblage.
For this purpose, an action is not tightened on a loose fastening element in order to take, at regular position intervals determined by the desired precision, the values of the rotational force, then the action of unscrewing with the aim of taking, at regular intervals for these same positions, the values of the rotational force, then position by position, for effective positions, to differentiate the value of rotational force at screwing from the value of force when unscrewing, to divide them by a coefficient proportional to the pitch of the thread of the fixing element in order to obtain a list of values representing, for each of the positions:
  • either the tensile force undergone by the fastening element
  • either the compressive force exerted by the fastening element
  • either the tension force residing in the fastening element according to the direct and indirect relationships of the general definition of process according to the invention, then followed by:
    • either the action of re-screwing the fixing element to a determined position, the value of the observed force being equal to the force necessary for assembly,
    • or the action of re-screwing the fastening element until the rotational force when screwing corresponds to the position where a force value equal to the force necessary for assembly has been observed.

Cette action de re-visser pourra être modérée tant dans la position choisie, que dans la valeur de l'effort afin d'anticiper sur l'inertie du moyen moteur utilisé. Cette modération pourra être une constante mémorisée correspondant à un effort de rotation donné, ou déduite des phases d'arrêt dudit moyen lorsque l'on échantillone les différentes valeurs d'effort de rotation sur l'élément de fixation.This re-screwing action can be moderated both in the chosen position and in the value of the force in order to anticipate the inertia of the motor means used. This moderation could be a stored constant corresponding to a given rotation force, or deduced from the stopping phases of said means when the different values of rotation force are sampled on the fixing element.

Cette action de re-visser pourra être corrigée tant dans la position choisie, que dans la valeur de l'effort afin d'intégrer la torsion du moyen moteur notamment lorsque le capteur de position n'est pas solidaire de l'élément de fixation ou de l'organe d'accouplement. Cette correction pourra être issue d'une table de correction mémorisée déduite de la pente de torsion, c'est-à-dire du rapport de l'effort de rotation sur sa position effective.This re-screwing action can be corrected both in the chosen position and in the value of the force in order to integrate the torsion of the motor means, in particular when the position sensor is not integral with the fixing element or of the coupling member. This correction may come from a memorized correction table deduced from the torsional slope, that is to say from the ratio of the rotational force to its effective position.

La concordance des positions de vissage/dévissage peut être réalisée par corrélation de la position à l'effort maximum de vissage avec la position à l'effort maximum de dévissage, en faisant abstraction dans ce cas de la notion de pente de torsion.The concordance of the screwing / unscrewing positions can be achieved by correlation of the position at the maximum screwing effort with the position at the maximum unscrewing force, by disregarding in this case the notion of torsion slope.

Les actions de visser dans le but de prélever, à intervalles réguliers de valeur d'effort de rotation déterminé par la précision recherchée, les positions successives de l'élément de fixation, puis de dévisser dans le but de prélever, à intervalles réguliers pour ces mêmes valeurs, les positions successives de l'élément de fixation, puis d'interpoler la liste entre le rang et le contenu, soit par permutation, soit par calcul, se rattachent au même mode de mise en oeuvre du procédé.The actions of screwing in order to take, at regular intervals of value of rotational force determined by the desired precision, the successive positions of the fastening element, then to unscrew in order to take, at regular intervals for these same values, the successive positions of the fixing element, then to interpolate the list between the rank and the content, either by permutation or by calculation, relate to the same mode of implementation of the method.

Le fait d'établir une fonction relative de la force de rotation par rapport à la position de l'élément de fixation, au lieu d'établir une liste de valeurs, notamment lorsque l'asservissement est réalisé par un calculateur, un processeur ou un micro-contrôleur, afin de résoudre par le calcul la position ou la force de rotation nécessaire à l'assemblage, se rattache au même mode de mise en oeuvre.Establishing a relative function of the rotational force with respect to the position of the fixing element, instead of establishing a list of values, in particular when the control is carried out by a computer, a processor or a micro-controller, in order to solve by calculation the position or the rotational force necessary for assembly, is related to the same mode of implementation.

Un contrôle non destructif de l'assemblage est réalisable en utilisant un moyen moteur manuel, mécanique, pneumatique, hydraulique ou électrique capable, par l'intermédiaire d'un organe d'accouplement sur l'élément de fixation fileté d'un assemblage, d'assurer un effort de rotation contrôlé et une mesure de la position effective de la rotation de l'élément de fixation : Sur un élément de fixation déjà vissé de façon quelconque, on exerce l'action de dévisser dans le but de prélever, à une position déterminée, la valeur maximum de l'effort de rotation puis l'action de re-visser à la même position, pour une position effective, de différencier la valeur d'effort de rotation au-revissage de la valeur d'effort maximum au dévissage, pour les diviser par un coefficient proportionnel au pas du filetage de l'élément de fixation afin d'obtenir pour cette position, une valeur représentant :

  • soit la force de traction subie par l'élément de fixation
  • soit la force de compression exercée par l'élément de fixation
  • soit la force de tension résidante dans l'élément de fixation suivant les relations directes du principe de l'invention.
Non-destructive testing of the assembly can be carried out using manual, mechanical, pneumatic, hydraulic or electric motor means capable, via a coupling member on the threaded fastening element of an assembly, d '' ensure a controlled rotational force and a measurement of the effective position of rotation of the fastening element: On a fastening element already screwed in any way, we exert the action of unscrewing in order to remove, at a determined position, the maximum value of the rotational force then the action of re-screwing in the same position, for an effective position, to differentiate the value of rotational force upon re-screwing from the maximum force value at unscrewing, to divide them by a coefficient proportional to the pitch of the thread of the fixing element in order to obtain for this position, a value representing:
  • either the tensile force undergone by the fastening element
  • either the compressive force exerted by the fastening element
  • or the tension force residing in the fastening element according to the direct relationships of the principle of the invention.

Cette action de re-visser pourra être modérée tant dans la position choisie que dans la valeur de l'effort afin d'anticiper sur l'inertie du moyen moteur utilisé. Cette modération pourra être une constante mémorisée correspondant à un effort de rotation donné, ou déduite de la phase d'arrêt dudit moyen lorsque l'on dévisse.This re-screwing action may be moderated both in the chosen position and in the value of the force in order to anticipate the inertia of the motor means used. This moderation could be a stored constant corresponding to a given rotational force, or deduced from the stopping phase of said means when unscrewing.

Cette action de re-visser pourra être corrigée tant dans la position choisie, que dans la valeur de l'effort afin d'intégrer la torsion du moyen moteur, notamment lorsque le capteur de position n'est pas solidaire de l'élément de fixation ou de l'organe d'accouplement. Cette correction pourra être issue d'une table de correction mémorisée déduite de la pente de torsion, c'est-à-dire du rapport de l'effort de rotation sur sa position effective.This re-screwing action can be corrected both in the chosen position and in the value of the force in order to integrate the torsion of the motor means, in particular when the position sensor is not integral with the fixing element. or the coupling member. This correction may come from a memorized correction table deduced from the torsional slope, that is to say from the ratio of the rotational force to its effective position.

Lorsque dans ce qui précède, la correspondance des positions dans l'action de visser/dévisser, ou dévisser/visser, n'est pas effective du fait de la torsion du moyen moteur utilisé et des différentes déformations dans la chaîne de réaction moteur moteur/bâti/assemblage, notamment lorsque le capteur de position n'est pas solidaire de l'élément de fixation ou de l'organe d'accouplement par rapport à l'assemblage, et de l'empilement des jeux dans la transmission de l'effort de rotation, la concordance des positions de vissage/dévissage est réalisée à partir de la "pente de torsion".When in the above, the correspondence of the positions in the action of screwing / unscrewing, or unscrewing / screwing, is not effective due to the torsion of the motor means used and the various deformations in the reaction chain motor motor / frame / assembly, in particular when the position sensor is not integral with the fixing element or the coupling member with respect to the assembly, and with the stack of clearances in the transmission of the force of rotation, the concordance of the screwing / unscrewing positions is carried out from the "torsional slope".

Le capteur de position voit la position de l'élément de fixation au travers d'un ensemble qui se déforme proportionnellement à l'effort de rotation appliqué par le moyen moteur. Tant que couple résistant n'est pas dépassé par le couple moteur, l'élément de fixation n'a pas commencé sa rotation alors que le capteur de position enregistre un déplacement proportionnel au couple appliqué. La position effective est masquée par une position apparente due à la déformation de la chaîne de réaction. La pente de torsion est établie à partir du rapport de la valeur de l'effort de rotation sur la valeur de la position observée. La tangente à cette pente est établie par la variation de la valeur de l'effort de rotation sur la variation de la valeur de position. Le changement brusque du coefficient directeur de la tangente à cette pente, lors de la rotation effective de l'élément de fixation, donne la position précise où intervient cette rotation effective. Le couple résistant de l'élément de fixation résulte des différentes surfaces en contact, tête ou écrou, tige, filet. L'élément est soumis en permanence (lorsqu'il est tendu) à une torsion due à la force de tension sur l'hélicoïde de son filet. La modification de la force de tension sera réalisée pour l'essentiel lorsque le couple résistant dû au filet sera vaincu. La mise en rotation totale de l'élément de fixation n est réalisée qu'à partir de l'instant où le filet avance. Il y a donc un différé d'action entre la mise en rotation de la tête ou de l'écrou et la mise en rotation réelle de l'élément de fixation. Ce différé d'action se traduit par une torsion supplémentaire ou une dé-torsion partielle de l'élément de fixation suivant que l'on visse ou que l'on dévisse. Cette variation de torsion de l'élément de fixation intervient sur la valeur de la position observée, notamment lorsque la longueur de l'élément de fixation est grande par rapport à sa section. Cette variation crée une différence de pente entre le vissage ou le dévissage.The position sensor sees the position of the fastening element through an assembly which deforms in proportion to the force of rotation applied by the motor means. As long as the resistive torque is not exceeded by the motor torque, the fastening element has not started its rotation while the position sensor registers a displacement proportional to the applied torque. The effective position is masked by an apparent position due to the deformation of the reaction chain. The torsional slope is established from the ratio of the value of the rotational force to the value of the position observed. The tangent to this slope is established by the variation of the value of the rotational force on the variation of the position value. The sudden change in the directing coefficient of the tangent to this slope, during the effective rotation of the fastening element, gives the precise position where this effective rotation occurs. The resistant torque of the fixing element results from the different contact surfaces, head or nut, rod, thread. The element is permanently subjected (when stretched) to a torsion due to the tension force on the helicoid of its net. The modification of the tension force will be carried out essentially when the resistance torque due to the thread is overcome. The total rotation of the fixing element is only carried out from the moment when the thread advances. There is therefore a delay in action between the rotation of the head or the nut and the actual rotation of the fixing element. This delay in action results in an additional twist or partial de-twist of the fastening element depending on whether one is screwing or unscrewing. This variation in torsion of the fastening element intervenes in the value of the position observed, in particular when the length of the fastening element is large relative to its section. This variation creates a difference in slope between screwing or unscrewing.

Une analyse de la pente par le système d'asservissement et/ou de mesure permet une finesse importante, suivant la précision désirée, de la corrélation de positions effectives entre le vissage et le dévissage pour les synchroniser avec les efforts de rotation appliqués, à savoir :An analysis of the slope by the servo and / or measurement system allows significant finesse, depending on the desired precision, of the correlation of effective positions between screwing and unscrewing in order to synchronize them with the applied rotational forces, namely :

L'action définie plus haut "asservissement dynamique" établit une liste de valeurs d'effort de rotation en fonction d'intervalles de position. Le rapport de la différence d'une valeur V et d'une valeur V-1 sur l'intervalle de position corespondant donne le coefficient directeur de la pente à un intervalle donné. La succession de différentiation de valeurs telle que V+1 et V,V+2 et V+1... V(n) et V(n-1) où n représente le rang de la valeur dans la liste, fournit une liste de coefficients directeurs qui sont utilisés dans la variation de leur valeur :

  • pour fixer le point de départ de la montée de l'effort de rotation sur la position observée (rattrappage des jeux), par l'accroissement brusque de la valeur du coefficient directeur ;
  • pour annuler le cumul des torsions de vissage/dévissage en soustrayant, pour chacune des actions, la valeur de position effective par rapport à la valeur de l'effort de rotation, de la valeur de la position observée ayant que l'élément de fixation n'entre en rotation, la position effective étant donnée par la régression brusque de la valeur du coefficient directeur ;
  • pour annuler le cumul des torsions de dévissage/re-vissage en soustrayant, pour chacune des actions, la valeur de position effective par rapport à la valeur de l'effort de rotation, de la valeur de la position observée avant que l'élément de fixation n'entre en rotation. Cette valeur de position est calculée pour le re-vissage dans la proportion de l'effort de rotation appliqué, la position effective étant donnée par la régression brusque de la valeur du coefficient directeur ;
  • pour évaluer à tout instant dans l'action de visser/dévisser ou dévisser/re-visser, la valeur d'une torsion par rapport à l'effort de rotation appliqué.
The action defined above "dynamic servoing" establishes a list of values of rotation force according to position intervals. The ratio of the difference between a V value and a V-1 value over the corresponding position interval gives the directing coefficient of the slope at a given interval. The succession of differentiation of values such as V + 1 and V, V + 2 and V + 1 ... V (n) and V (n-1) where n represents the rank of the value in the list, provides a list of guiding coefficients which are used in the variation of their value:
  • to fix the starting point for the rise of the rotational force on the observed position (catching up of the clearances), by the sudden increase in the value of the directing coefficient;
  • to cancel the cumulation of the screwing / unscrewing twists by subtracting, for each of the actions, the value of effective position relative to the value of the rotational force, from the value of the position observed having that the fixing element n 'enters into rotation, the effective position being given by the sudden regression of the value of the directing coefficient;
  • to cancel the cumulation of the twists of unscrewing / re-screwing by subtracting, for each of the actions, the value of effective position relative to the value of the rotational force, from the value of the position observed before the element of attachment does not rotate. This position value is calculated for the re-screwing in the proportion of the rotational force applied, the effective position being given by the sudden regression of the value of the directing coefficient;
  • to evaluate at any time in the action of screwing / unscrewing or unscrewing / re-screwing, the value of a twist with respect to the applied rotational force.

On peut encore réaliser selon l'invention un "asservissement flottant" permettant, par un moyen moteur manuel, mécanique, pneumatique, hydraulique ou électrique capable, et par l'intermédiaire d'un organe d'accouplement sur l'élément de fixation fileté d'un assemblage, d'assurer un effort de rotation contrôlé avec la succession d'actions de vissage/dévissage suivante :

  • visser d'une valeur d'effort de rotation constituée d'une valeur variable et d'une valeur fixe "delta" ;
  • puis dévisser d'une valeur au maximum égale à cette valeur variable, le dévissage pouvant être partiel ;
  • poursuivre l'action de vissage/dévissage, en faisant progresser cette valeur variable tant que le dévissage est possible, la progression de cette variable pouvant être égale à la différence entre cette valeur variable et la valeur réalisée au dévissage ou une fraction de cette différence afin de modérer l'action en assurant une convergence rapide de cette action vers l'impossibilité de dévisser ;
    la valeur d'effort "delta" multipliée par un coefficient proportionnel au pas du filetage de l'élément de fixation représentant :
  • soit la force de traction exercée par l'élément de fixation
  • soit la force de compression exercée par l'élément de fixation
  • soit la force de tension résidante dans l'élément de fixation où, lorsque le moyen moteur est instrumenté par un couplemètre, la relation directe de cette valeur d'effort de rotation est exprimée comme suit : δC = Ft.K   où K = P/π
    Figure imgb0017
    avec :
    • δC couple "delta" en Newton.mètre
    • Ft force de tension en Newton
    • π constante du cercle
    • P pas du filetage en mètre
    où, lorsque le moyen moteur est instrumenté sur son énergie la relation directe de cette valeur d'effort de rotation est exprimée comme suit : δE' = Ft.K   où K = P/τ
    Figure imgb0018
    avec :
    • δE' élément représentatif de l'énergie
    • Ft force de tension en Newton
    • τ constante incluant la constante π du cercle par le rendement moteur par le transformateur du type d'énergie
    • P pas du filetage en mètre
It is also possible, according to the invention, to produce a "floating servo" allowing, by manual, mechanical, pneumatic, hydraulic or electric motor means capable, and by means of a coupling member on the threaded fixing element d '' an assembly, to ensure a controlled rotation effort with the following sequence of screwing / unscrewing actions:
  • screw a rotation force value consisting of a variable value and a fixed "delta"value;
  • then unscrew by a value at most equal to this variable value, the unscrewing being able to be partial;
  • continue the screwing / unscrewing action, advancing this variable value as long as unscrewing is possible, the progression of this variable may be equal to the difference between this variable value and the value achieved at unscrewing or a fraction of this difference so to moderate the action by ensuring a rapid convergence of this action towards the impossibility of unscrewing;
    the force value "delta" multiplied by a coefficient proportional to the pitch of the thread of the fixing element representing:
  • either the tensile force exerted by the fastening element
  • either the compressive force exerted by the fastening element
  • either the tension force residing in the fastening element where, when the drive means is instrumented by a torque meter, the direct relationship of this value of rotational force is expressed as follows: δC = Ft.K where K = P / π
    Figure imgb0017
    with:
    • δC "delta" couple in Newton.meter
    • Ft tension force in Newton
    • π constant of the circle
    • P thread pitch in meters
    where, when the motive means is instrumented on its energy the direct relation of this value of rotational force is expressed as follows: δE '= Ft.K where K = P / τ
    Figure imgb0018
    with:
    • δE 'representative element of energy
    • Ft tension force in Newton
    • τ constant including the constant π of the circle by the motor efficiency by the transformer of the energy type
    • P thread pitch in meters

L'élément représentatif de l'énergie peut être n'importe quel élément donnant l'image du couple du moyen moteur (intensité, voltage, pression, etc) par une constante ou une fonction f(x), mais aussi le moment d'un moyen mécanique utilisant la flexion, la torsion ou le choc d'un organe pour lequel le transformateur n'est pas obligatoirement une constante, mais peut être aussi une fonction f(x).The element representative of the energy can be any element giving the image of the torque of the motor means (intensity, voltage, pressure, etc.) by a constant or a function f (x), but also the moment of a mechanical means using the flexion, torsion or shock of an organ for which the transformer is not necessarily a constant, but can also be a function f (x).

Le moyen moteur peut n'être contrôlé que dans une mesure ou une action différentielle. Le contrôle de l'effort de rotation absolu n'étant pas indispensable.The drive means can only be controlled in a differential measurement or action. The control of the absolute rotation force is not essential.

Enfin, le procédé objet de l'invention permet d'étudier les coefficients de frottement et le rendement général de l'élément de fixation sur l'assemblage :Finally, the process which is the subject of the invention makes it possible to study the coefficients of friction and the general efficiency of the fastening element on the assembly:

Par le principe de l'invention et l'asservissement dynamique, on établit une relation précise entre le couple appliqué au vissage/dévissage et la tension existante dans l'élément de fixation. Cette tension permet à tout instant de calculer le couple effectivement transformé pour produire cette même tension. Le rapport de ce couple transformé sur le couple appliqué, fixe le rendement de l'élément de fixation.

Ctfr = (Ft.π)/2P
couple transformé
µ = Ctfr/Capp
rendement général au vissage
µ' = Ctfr/Capp'
rendement général au dévissage
Cs = 1/ µ'
coefficient de sécurité
By the principle of the invention and the dynamic control, a precise relationship is established between the torque applied to the screwing / unscrewing and the tension existing in the fastening element. This tension makes it possible at any time to calculate the torque actually transformed to produce this same tension. The ratio of this transformed torque to the applied, fixed torque the performance of the fastener.
Ctfr = (Ft.π) / 2P
transformed couple
µ = Ctfr / Capp
general screwing performance
µ '= Ctfr / Capp'
general efficiency at unscrewing
Cs = 1 / µ '
safety coeficient

Le rendement de l'élément de fixation est la résultante des frottements des différentes surfaces en contact, tête ou écrou, tige, filet. La distribution en est inconnue. L'usage de la "pente de torsion" permet d'isoler chacun des couples dûs au frottement de chaque partie en contact, par la mise en rotation différée de chacune des parties de l'élément de fixation, observée par la pente de torsion.

Capp
= Ctfr+Ctt+Cflt+Ctg   distribution générale de vissage
CappO
= Ctfr+Ctt   vissage (limite de repos)
-CappO'
= Ctfr-Ctt   dévissage (limite de repos)
Ctt
= (CappO+CappO')/2-Ctfr   Couple frottement tête
Cappl
= Ctfr+Ctt+Cflt+Ctg   vissage (rotation filet)
-Cappl'
= Ctfr-Ctt-Cflt-Ctg   dévissage (rotation filet)
Cflt
= (Cappl+Cappl')/2-Ctt   Couple frottement filet avec frottement tige négligeable
Cflt
= (Cappl+Cappl')/2-Ctt-Ctg   Couple frottement filet avec couple frottement tige relevé hors tension
The performance of the fixing element is the result of the friction of the different surfaces in contact, head or nut, rod, thread. The distribution is unknown. The use of the "torsional slope" makes it possible to isolate each of the couples due to the friction of each part in contact, by the delayed rotation of each of the parts of the fixing element, observed by the torsional slope.
Capp
= Ctfr + Ctt + Cflt + Ctg general screwing distribution
CappO
= Ctfr + Ctt screwing (rest limit)
-CappO '
= Ctfr-Ctt unscrewing (rest limit)
Ctt
= (CappO + CappO ') / 2-Ctfr Torque friction head
Cappl
= Ctfr + Ctt + Cflt + Ctg screwing (thread rotation)
-Cappl '
= Ctfr-Ctt-Cflt-Ctg unscrewing (thread rotation)
Cflt
= (Cappl + Cappl ') / 2-Ctt Thread friction torque with negligible rod friction
Cflt
= (Cappl + Cappl ') / 2-Ctt-Ctg Thread friction torque with rod friction torque raised off

Dans l'étude des coefficients de frottement, lorsque la mesure du différé de position n'est pas suffisamment démarquée (cas de vis courtes), on privilégie dans l'équation des frottements, le couple dû au frottement du filet, sans en changer sa valeur, par l'introduction sous la tête ou l'écrou d'un élément intermédiaire, tel qu'un roulement de butée ou tout autre élément à coefficient minime ou connu.In the study of the friction coefficients, when the measurement of the delayed position is not sufficiently demarcated (case of short screws), in the friction equation, the torque due to the friction of the thread is preferred, without changing its value, by the introduction under the head or the nut of an intermediate element, such as a thrust bearing or any other element with a low or known coefficient.

De la relation courante : µn = Cx/[Ft.(d1+d2)]

Figure imgb0019
pour des pièces de révolution, on déduit le coefficient de frottement à partir de la distribution des couples, pour chaque couple Cx, en fonction de la tension Ft et de la géométrie de l'élément de fixation, avec dans cette relation :

  • µn coefficient de frottement
  • Cx couple de frottement (Ctt,Cflt, etc...)
  • Ft force de tension du procédé
  • d1 diamètre intérieur de la surface en contact
  • d2 diamètre extérieur de la surface en contact
From the current relationship: µn = Cx / [Ft. (d1 + d2)]
Figure imgb0019
for parts of revolution, the coefficient of friction is deduced from the distribution of the couples, for each couple Cx, as a function of the tension Ft and of the geometry of the fixing element, with in this relation:
  • µn coefficient of friction
  • Cx friction torque (Ctt, Cflt, etc ...)
  • Ft process tension force
  • d1 inside diameter of the contact surface
  • d2 outside diameter of the contact surface

Pour illustrer plus concrètement le procédé, objet de l'invention, on décrit ci-après deux exemples pratiques de mise en oeuvre de ce procédé par le contrôle et l'asservissement de la tension ou compression d'un organe fileté, en se référant au dessin schématique annexé dans lequel :

  • Figure 1 montre une clé dynamométrique pour vissage avec contrôle de la tension par le procédé selon l'invention ;
  • Figure 2 est un schéma des circuits électriques et électroniques de la clé dynamométrique de figure 1 ;
  • Figure 3 montre une broche de vissage asservie, mettant en oeuvre le procédé selon la présente invention ;
  • Figure 4 est une vue de détail d'un assemblage vissé réalisable au moyen de la broche de figure 3 ;
  • Figure 5 est un diagramme de l'asservissement de la broche de vissage de figure 3.
To more concretely illustrate the process which is the subject of the invention, two practical examples of implementation of this process are described below by controlling and controlling the tension or compression of a threaded member, with reference to the attached schematic drawing in which:
  • Figure 1 shows a torque wrench for screwing with tension control by the method according to the invention;
  • Figure 2 is a diagram of the electrical and electronic circuits of the torque wrench of Figure 1;
  • Figure 3 shows a slave screw spindle, implementing the method according to the present invention;
  • Figure 4 is a detail view of a screw connection achievable by means of the pin of Figure 3;
  • Figure 5 is a diagram of the servo-control of the screw spindle of Figure 3.

La figure 1 montre l'aspect extérieur d'une clé dynamométrique pour vissage avec contrôle de la tension, les circuits électriques et électroniques internes de la clé étant illustrés par le schéma de la figure 2 dans lequel, pour la clarté du dessin, ne sont pas représentés certains composants discrets non essentiels à la compréhension, ainsi que les alimentations à partir de batteries propres à assurer la portabilité et l'autonomie de cette clé dynamométrique.Figure 1 shows the external appearance of a torque wrench for screwing with tension control, the internal electrical and electronic circuits of the key being illustrated by the diagram of Figure 2 in which, for clarity of the drawing, are not not shown some discrete components not essential to understanding, as well as power supplies from batteries suitable for ensuring the portability and autonomy of this torque wrench.

Dans l'exemple ici considéré, il s'agit d'une clé dynamométrique d'une capacité de 300 Nm, dans laquelle un couplemètre 1 à jauges de contrainte, recevant une tension d'alimentation notée VA d'une valeur de 10 volts, délivre une tension proportionnelle au couple appliqué. Un premier amplificateur 2 d'un gain de 1000 produit sur sa sortie une relation telle que pour chaque 1Nm de couple soit assuré un signal -/+33,333 mV suivant le sens du vissage effectue. La sortie de l'amplificateur 2 est reliée aux entrées de deux échantillonneurs bloqueurs 3,4, ainsi qu'aux entrées de deux comparateurs 5,6. Le premier groupement échantillonneur-bloqueur 3 et comparateur 5 assure une mémorisation du couple de vissage à droite, négatif en signal, par le fait que le comparateur 5 compare la sortie de l'échantillonneur-bloqueur 3 avec son entrée et que lorsque l'entrée est supérieure à la sortie, ce comparateur 5 provoque le mode bloqueur de l'échantillonneur-bloqueur au travers d'une porte logique OU 7, mémorisant ainsi la valeur la plus haute du couple mesuré dans le sens du vissage à droite. Le deuxième groupement échantillonneur-bloqueur 4 et comparateur 6 assure une mémorisation du couple de vissage à gauche, positif en signal, par le fait que le comparateur 6 compare la sortie de l'échantillonneur-bloqueur 4 avec son entrée et que lorsque l'entrée est supérieure à la sortie, ce comparateur 6 provoque le mode bloqueur de l'échantillonneur-bloqueur 5 au travers d'une porte logique OU 8 mémorisant ainsi la valeur la plus haute du couple mesuré dans le sens du vissage à gauche. Chaque sortie de comparateur 5,6 est reliée à une porte logique OU 7,8 ayant en commun une entrée reliée à un bouton-poussoir 9 permettant la remise à zéro des mémoires des valeurs de couple acquises lors du vissage à droite et du vissage à gauche. Les sorties de chaque échantillonneur-bloqueur 3,4 sont reliées à l'entrée d'un amplificateur 10, câblé en mode sommateur de telle sorte que le gain ne s'applique que sur la différence des sorties des échantillonneurs-bloqueurs 3,4 par le fait que l'une est négative et l'autre positive, la somme algébrique produisant une soustraction. L'amplificateur 10 produit un gain proportionnel au pas de la vis choisi par un sélecteur 11 qui permet un choix de différents pas de vis dans la gamme de couples applicable par la clé. Le sélecteur 11 oriente une gamme de gain par l'affectation d'une résistance convenablement calculée dans la boucle de gain de l'amplificateur 10. La sortie de l'amplificateur 10 est reliée à l'entrée d'un convertisseur analogique-numérique pilotant un affichage numérique dans une fonction de voltmètre à affichage 12. L'affichage numérique est établi pour de 0 à -/+ 199,99, échelle qui traduit directement des KN (Kilo-newtons) pour des tensions qui vont de 0 à -/+ 5 volts.In the example considered here, it is a torque wrench with a capacity of 300 Nm, in which a torque gauge 1 with strain gauges, receiving a supply voltage denoted VA with a value of 10 volts, delivers a voltage proportional to the applied torque. A first amplifier 2 with a gain of 1000 produces a relationship on its output such that for each 1Nm of torque a signal - / + 33.333 mV is ensured depending on the direction of the screwing performed. The output of amplifier 2 is connected to the inputs of two blocking samplers 3,4, as well as to the inputs of two comparators 5,6. The first grouping of sampler-blocker 3 and comparator 5 stores the screwing torque on the right, negative in signal, by the fact that comparator 5 compares the output of the sampler-blocker 3 with its input and only when the input is greater than the output, this comparator 5 causes the blocker mode of the sampler-blocker through an OR logic gate 7, thus memorizing the highest value of the torque measured in the direction of screwing to the right. The second sampler-blocker group 4 and comparator 6 memorizes the screwing torque on the left, positive in signal, by the fact that comparator 6 compares the output of the sampler-blocker 4 with its input and that when the input is greater than the output, this comparator 6 causes the blocker mode of the sampler-blocker 5 through an OR logic gate 8 thus memorizing the highest value of the torque measured in the direction of screwing to the left. Each comparator output 5.6 is connected to an OR logic gate 7.8 having in common an input connected to a push button 9 enabling the memories of the torque values acquired during right-hand tightening and tightening to be reset to zero. left. The outputs of each blocker sampler 3,4 are connected to the input of an amplifier 10, wired in summing mode so that the gain only applies to the difference of the outputs of the blocker samplers 3,4 by the fact that one is negative and the other positive, the algebraic sum producing a subtraction. The amplifier 10 produces a gain proportional to the pitch of the screw chosen by a selector 11 which allows a choice of different screw pitches in the range of couples applicable by the key. The selector 11 orients a gain range by assigning a resistance suitably calculated in the gain loop of the amplifier 10. The output of the amplifier 10 is connected to the input of an analog-to-digital converter driving a digital display in a voltmeter function with display 12. The digital display is established for from 0 to - / + 199.99, scale which directly translates KN (Kilo-newtons) for voltages which go from 0 to - / + 5 volts.

En se référant maintenant aux figures 3 à 5, on décrira une broche de vissage asservie par un processeur, pour la mise en oeuvre de l'invention. Un moteur électrique sans balais 13 est alimenté par un module de contrôle de puissance 14 qui régule la fréquence de phase, la tension et l'intensité électrique, et de ce fait, permet d'asservir le rotor du moteur 13 en vitesse, en sens de rotation et en puissance. L'information de position du rotor est fournie par un synchro-résolveur 15 solidaire de l'arbre moteur supportant le rotor. La position du synchro-résolveur 15 déterminée par un déphasage sinus/cosinus est convertie en donnée numérique par un convertisseur 16. Le convertisseur 16 qui permet différentes précisions (10,12,14,16 bits) est réglé pour fournir 12 bits de précision sur un tour du synchro-résolveur soit une définition 1/4096 de tour ou 5,27 minutes d'arc. Un couplemètre à jauges de contrainte 17, pris en reaction de la fixation de la broche de vissage, mesure le couple effectif appliqué à un élément de fixation 18, tel que vis d'un assemblage, fileté en 19 dont la pièce en prise 20 est comprimée entre la tête 21 de la vis et une pièce 22 servant d'écrou. La rotation de l'élément de fixation 18 est effectuée par un organe d'accouplement 23 tel qu'une douille qui coiffe la tête 21 de l'élément de fixation 18 et qui est entraînée par le carré 24 de l'axe 25 de la broche constituant l'arbre moteur. Les forces de compression Fc de la pièce 20 sont équilibrées par la force de tension Ft de l'élément de fixation 18. Le signal fourni par le couple-mètre 17 est amplifié par un amplificateur d'instrumentation 26 dont la sortie est reliée à l'entrée d'un convertisseur analogique/numérique 27, qui fournit 11 bits de résolution en mode bi-polaire, soit pour le couple-mètre 17 au nominal de 500 Newtons.mètre, une définition de 500/2048 ou 0,244 Nm/bit. Les données numériques des convertisseurs 27 et 16 transitent sur un bus 28 et sont traitées par un processeur 29 qui agit suivant un programme en mémoire en 30 et stocke ses données numériques dans une mémoire 31. Le processeur 29 gère le module de contrôle de puissance 14 pour les cycles nécessaires au vissage/dévissage/re-vissage. La mémoire 31 contient notamment les paramètres de vissage tels que tension désirée, couple maximum applicable à l'élément de fixation, pas de l'élément de fixation, vitesse de rotation du moteur 13, etc... Ces paramètres sont entrés sur un module interface de communication 32 par le moyen d'un terminal ou d'un réseau. La mémoire 31 contient aussi les mesures effectuées au vissage et au dévissage sous forme de tableaux (listes de valeurs) ainsi que les résultats de calcul permettant les prises de décision d'asservissement du moteur pour le serrage en tension et les résultats finaux à produire par le moyen de l'interface de communication 32 à destination du terminal et/ou de l'imprimante. Une interface d'entrée/sortie 33 assure l'environnement décisionnel pour qu'un opérateur ou un automate puisse, d'une part par les entrées, lancer le cycle, arrêter en urgence, etc, et d'autre part par les sorties visualiser des contrôles sur des voyants, etc... Lors de la phase de vissage, le processeur 29 prélève la position de rotor et affecte à cette position la valeur numérique du couple exercé par la broche dans un tableau stocké dans la mémoire 31, dimensionné par exemple à 16384 valeurs (4 tours de rotor), puis recommence l'opération chaque fois que la position évolue jusqu'à une valeur de couple déterminée par le paramètrage. Le processeur crée ainsi dans le tableau une première liste d'une succession de valeurs de couple en vissage. Le processeur renouvelle les mêmes opérations pour la phase de dévissage, pour les mêmes positions en sens inverse créant une deuxième liste d'une succession de valeurs de couple en dévissage. Puis position par position, pour des mêmes positions dans chaque liste, le processeur soustrait la valeur de couple de la deuxième liste de la valeur de couple de la première liste, créant ainsi une troisième liste constituée des écarts de couple de vissage et de dévissage pour des positions identiques. En appliquant la formulation précitée en fonction du pas de la vis 18 le processeur 29 calcule, position par position, la tension existante dans la vis. Puis en comparant la tension calculée avec la tension désirée, il détermine la position jusqu'à laquelle il re-visse. L'algorithmique du traitement est fortement accélérée, par un pré-calcul de la tension désirée traduite sous forme d'écart de couple désiré, ne laissant plus que la comparaison à effectuer avec la troisième liste, et par la limitation du nombre de comparaisons à la première concordance réduisant ainsi l'excursion du programme. La vitesse de traitement des processeurs modernes (plusieurs millions d'instructions par seconde) rend les temps électroniques insignifiants par rapport aux temps mécaniques. En effet, le temps de traitement de l'asservissement à la tension est tout simplement masqué par le temps mécanique du retournement effectif du sens du moteur.Referring now to Figures 3 to 5, we will describe a screw spindle controlled by a processor, for the implementation of the invention. A brushless electric motor 13 is powered by a power control module 14 which regulates the phase frequency, the voltage and the electric current, and therefore makes it possible to control the rotor of the motor 13 in speed, in direction of rotation and power. The position information of the rotor is provided by a synchro-resolver 15 integral with the motor shaft supporting the rotor. The position of the synchro-resolver 15 determined by a sine / cosine phase shift is converted into digital data by a converter 16. The converter 16 which allows different precisions (10,12,14,16 bits) is adjusted to provide 12 bits of precision on a turn of the synchro-resolver either a definition 1/4096 of turn or 5.27 minutes of arc. A strain gauge coupler 17, taken in reaction to the fixing of the screw spindle, measures the effective torque applied to a fixing element 18, such as a screw of a assembly, threaded in 19, the engaging part 20 is compressed between the head 21 of the screw and a part 22 serving as a nut. The fastener 18 is rotated by a coupling member 23 such as a socket which covers the head 21 of the fastener 18 and which is driven by the square 24 of the axis 25 of the spindle constituting the motor shaft. The compression forces Fc of the part 20 are balanced by the tension force Ft of the fixing element 18. The signal supplied by the torque meter 17 is amplified by an instrumentation amplifier 26, the output of which is connected to the input of an analog / digital converter 27, which provides 11 bits of resolution in bi-polar mode, that is for the torque meter 17 at the nominal of 500 Newtons.meter, a definition of 500/2048 or 0.244 Nm / bit. The digital data of the converters 27 and 16 pass over a bus 28 and are processed by a processor 29 which acts according to a program in memory at 30 and stores its digital data in a memory 31. The processor 29 manages the power control module 14 for the cycles required for screwing / unscrewing / re-screwing. The memory 31 contains in particular the tightening parameters such as desired tension, maximum torque applicable to the fixing element, not of the fixing element, speed of rotation of the motor 13, etc. These parameters are entered on a module communication interface 32 by means of a terminal or a network. The memory 31 also contains the measurements carried out at the screwing and unscrewing in the form of tables (lists of values) as well as the calculation results allowing the decisions of motor control for the tightening in tension and the final results to be produced by the means of the communication interface 32 intended for the terminal and / or the printer. An input / output interface 33 provides the decision-making environment so that an operator or a PLC can, on the one hand by the inputs, start the cycle, stop in an emergency, etc., and on the other hand by the outputs view controls on indicator lights, etc. During the screwing phase, the processor 29 takes the rotor position and assigns to this position the numerical value of the torque exerted by the spindle in an array stored in memory 31, dimensioned by example at 16384 values (4 rotations of the rotor), then starts the operation each time the position changes to a torque value determined by the setting. The processor thus creates in the table a first list of a succession of torque values in tightening. The processor repeats the same operations for the unscrewing phase, for the same positions in opposite directions, creating a second list of a succession of torque values. unscrewing. Then position by position, for the same positions in each list, the processor subtracts the torque value from the second list from the torque value from the first list, thus creating a third list made up of the differences in screwing and unscrewing torque for identical positions. By applying the above formulation as a function of the pitch of the screw 18 the processor 29 calculates, position by position, the tension existing in the screw. Then by comparing the calculated tension with the desired tension, it determines the position to which it re-screws. The algorithm of the processing is greatly accelerated, by a pre-calculation of the desired tension translated in the form of the desired torque difference, leaving only the comparison to be made with the third list, and by limiting the number of comparisons to the first match thus reducing the excursion of the program. The processing speed of modern processors (several million instructions per second) makes electronic times insignificant compared to mechanical times. Indeed, the processing time of the voltage control is simply masked by the mechanical time of the actual reversal of the direction of the motor.

Le procédé de l'invention peut être étendu à un organe fileté permettant la transformation d'un mouvement de rotation en un mouvement linéaire, ou la transformation réciproque d'un mouvement linéaire en un mouvement de rotation, avec transmission de force, ceci en particulier dans des appareils de pesage, de levage ou de pressage.The method of the invention can be extended to a threaded member allowing the transformation of a rotational movement into a linear movement, or the reciprocal transformation of a linear movement into a rotational movement, with force transmission, this in particular in weighing, lifting or pressing devices.

Claims (9)

  1. A method of monitoring and controlling the tension or compression of a threaded element and more particularly of a threaded mounting element, wherein the tensive or compressive force (Ft) of the threaded element (18) is determined by subtracting a screwing-out torque (Capp') from a screwing-in torque (Capp) and by dividing the difference between these torques by a factor proportional to the pitch (P) of the screw-thread (19) of said element, characterized in that these torque values are recorded either statically at the rest limit during screwing-in and screwing-out or dynamically at a succession of corresponding positions during screwing-in and screwing-out, in the course of an action of screwing-in/screwing out which is performed only one time, or an action of screwing-in/screwing-out which is performed repeatedly, or an action of screwing-in/screwing-out/rescrewing-in said threaded element (18).
  2. The method according to claim 1, applied to measuring tension with use of a motor means (13,24,25) capable via a coupling member (23) on the threaded mounting element (18) of applying a controlled force for rotating this mounting element, characterized by the action of taking at the rest limit of sliding of the movable part of the mounting element on the fixed part of the assembly the value of the force of rotation during screwing-out then taking at the rest limit of sliding of the movable part of the mounting element on the fixed part of the assembly the value of the rotation force as it passes its maximum during screwing-out, then finding the difference between these two force values for dividing them by a factor mainly proportional to the pitch of the screwthread (19) of the mounting element (18) so as to obtain a value representing in these precise limits either:
    - the tractive force applied to the mounting element,
    - the compressive force exercised by the mounting element, or
    - the tensile force inside the mounting element.
  3. The method according to claim 1, applied to measuring tension with use of a motor means (13,24,25) capable via a coupling member (23) on the already screwed-in threaded mounting element (18) of applying a controlled force for rotating this mounting element, characterized by the action of taking at the start of sliding of the movable part of the mounting element on the fixed part of the assembly the value of the force of rotation during screwing-out then taking at the rest limit of sliding of the movable part of the mounting element on the fixed part of the assembly the value of the rotation force as it passes its maximum during screwing-out, then finding the difference between these two force values for dividing them by a factor proportional to the pitch of the screwthread (19) of the mounting element (18) so as to obtain a value representing for these precise values either:
    - the tractive force applied to the mounting element,
    - the compressive force exercised by the mounting element, or
    - the tensile force inside the mounting element at the start of the operation.
  4. The method according to claim 2 or 3, applied for nondestructively monitoring a screwed-together assembly characterized by the action described above of measuring tension followed by the action of rescrewing-in up to the screwing force first taken, more specifically either
    - to the rest limit, or
    - to the start of sliding
    in order to restore the initial conditions of the assembly while having monitored the existing tensile force in the mounting element (18) or the tractive force to which the mounting element is subjected or even the compressive force exerted by the mounting element.
  5. The method according to claim 4, characterized in that a simple control is done by successive approximations on a mounting element (18) that is already stressed in the known manner by exerting the above-defined action as many times as necessary until the ratio of the necessary tensile force to the existing tensile force is equal to 1, according to a repeated method, the value of the screwing-in/screwing-out force being able to be modified by a factor able to assure the convergence of the action toward the tension necessary in a number of strokes defined by the precision desired in the control of the action.
  6. The method according to claim 1 doing a dynamic control by using a motor means (13,24,25) capable via a coupling member (23) connected to the threaded mounting element (18) of insuring a controlled rotation force and detection of the actual angular position of the mounting element, characterized in that with the mounting element not tightened one tightens the mounting element while at regular intervals spaced according to the desired precision and corresponding to respective angular positions one ascertains the force applied and then one loosens the mounting element while at the same positions one determines the force applied for screwing-out, one takes the difference between the screwing-in and screwing-out force for each position and divides it by a factor proportional to the pitch of the screwthread (19) of the mounting element (18) so as to obtain a list of values representing for each of the positions either
    - the traction force to which the mounting element is subjected,
    - the compression force exerted by the mounting element, or
    - the tension force in the mounting element, these steps being followed by either
    - the action of rescrewing-in the mounting element to a position whose measured force value is equal to the force necessary for the assembly, or
    - the action of rescrewing-in the mounting element to a screwing-in force corresponding to the position at which one measured a force value equal to the force necessary for the assembly.
  7. The method according to claim 1 applied to nondestructive monitoring by using a motor means (13,24,25) capable via a coupling member (23) connected to the threaded mounting element (18) of insuring a controlled rotation force and detection of the actual angular position of the mounting element, characterized in that with the mounting element that is already tightened at any position one screws out the mounting element while, at a defined position, one ascertains the maximum rotation force applied and then one retightens the mounting element to the same position, one takes the difference between the screwing-out maximum force and rescrewing-in force for an actual position and divides it by a factor proportional to the pitch of the screwthread (19) of the mounting element (18) so as to obtain a list of values representing for each of the positions either
    - the traction force to which the mounting element is subjected,
    - the compression force exerted by the mounting element, or
    - the tension force in the mounting element.
  8. The method according to claim 6 or 7, characterized in that in order to account for torsion of the motor means (13,24,25) and other deformations, one sets up a list of values of rotation forces as functions of position intervals which form a list of directing factors that are used in the variation of their value:
    - to fix the starting point of the increase of rotation force on the measured position by the sudden increase in the value of the directing factor;
    - to cancel out the sum of torsions for screwing-in/screwing-out while subtracting for each of these actions the value of the effective position relative to the value of the rotation force from the value of the measured position before the mounting element started rotation, the effective position being obtained by the sudden decrease in the value of the directing factor;
    - to cancel out the sum of torsions of screwing-out/rescrewing-in while subtracting for each of these actions the value of the effective position relative to the value of the rotation force from the value of the measured position before the mounting element started rotation, this position value being calculated during rescrewing-in in the proportion of the applied rotation force, the effective position being obtained by the sudden decrease in the value of the directing factor;
    - for evaluating at any instant during the action of screwing-in/screwing-out or screwing-out/rescrewing-in the value of torque relative to the applied rotation force.
  9. The method according to claim 1, for carrying out "floating control" by using a motor means (13,24,25) capable via a coupling member (23) connected to the threaded mounting element (18) of insuring a controlled rotation force, characterized by the following succession of actions:
    - screwing-in with a rotation force formed by a variable value and a fixed "delta" value;
    - subsequently screwing-out by a value equal at most to the variable value, wherein the screwing-out may be partial;
    - repeating the action of screwing-in/screwing-out while increasing the variable value as long as screwing-out is possible, wherein the progression of this variable value being may be equal to the difference between this variable value and the value realized during screwing-out or a fraction of this difference so as to moderate the action while insuring a rapid convergence of this action toward a condition of it being impossible to screw out;
    the "delta" force value multiplied by a factor proportional to the pitch of the screwthread (19) of the mounting element (18) representing either:
    - the traction force exerted by the mounting element,
    - the compression force exerted by the mounting element,
    or
    - the tension force in the mounting element.
EP93902338A 1991-06-14 1992-12-16 Method for monitoring and controlling stress in a threaded member Expired - Lifetime EP0674566B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9108254A FR2677571B1 (en) 1991-06-14 1991-06-14 PROCESS FOR CONTROLLING AND CONTROLLING THE VOLTAGE OF A THREADED MEMBER.
PCT/FR1992/001192 WO1994013437A1 (en) 1991-06-14 1992-12-16 Method for monitoring and controlling stress in a threaded member

Publications (2)

Publication Number Publication Date
EP0674566A1 EP0674566A1 (en) 1995-10-04
EP0674566B1 true EP0674566B1 (en) 1997-10-01

Family

ID=9414616

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93902338A Expired - Lifetime EP0674566B1 (en) 1991-06-14 1992-12-16 Method for monitoring and controlling stress in a threaded member

Country Status (7)

Country Link
US (1) US5571971A (en)
EP (1) EP0674566B1 (en)
DE (1) DE69222543T2 (en)
DK (1) DK0674566T3 (en)
ES (1) ES2109475T3 (en)
FR (1) FR2677571B1 (en)
WO (1) WO1994013437A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2677571B1 (en) * 1991-06-14 1995-08-04 Ciandar PROCESS FOR CONTROLLING AND CONTROLLING THE VOLTAGE OF A THREADED MEMBER.
US5970798A (en) * 1997-09-25 1999-10-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Ultrasonic bolt gage
EP0914910A1 (en) * 1997-10-30 1999-05-12 Yukitaka Murakami Wrenching method and apparatus wrenching attachment, and medium storing wrenching torque control program
US5941972A (en) 1997-12-31 1999-08-24 Crossroads Systems, Inc. Storage router and method for providing virtual local storage
FR2780785B1 (en) 1998-07-03 2000-10-13 Sam Outillage METHOD AND DEVICE FOR MEASURING AND TIGHTENING A THREADED JOINT ASSEMBLY
SE512778C2 (en) * 1998-09-17 2000-05-15 Nobel Biocare Ab Device for instruments comprising or connected to a commissioning tool
US6538403B2 (en) 2000-01-07 2003-03-25 Black & Decker Inc. Brushless DC motor sensor control system and method
US7058291B2 (en) 2000-01-07 2006-06-06 Black & Decker Inc. Brushless DC motor
US6975050B2 (en) 2000-01-07 2005-12-13 Black & Decker Inc. Brushless DC motor
WO2001059417A1 (en) * 2000-02-07 2001-08-16 K.K. Holding Ag Test device for determining the friction and prestress values of screwed connections
US6965835B2 (en) * 2001-09-28 2005-11-15 Spx Corporation Torque angle sensing system and method with angle indication
US6629055B2 (en) * 2001-09-28 2003-09-30 Spx Corporation Apparatus and method for sensing torque angle
WO2007099629A1 (en) * 2006-03-01 2007-09-07 Fujitsu Limited Motor controller and control method
SE534698C2 (en) * 2010-06-08 2011-11-22 Rocan System Ab Device and method for indicating whether a fastening element when fastened in one piece has reached a tensile limit load
US20130114994A1 (en) 2011-11-04 2013-05-09 Robert Erik Grip Truss end pad fitting
US9574587B2 (en) * 2011-11-04 2017-02-21 The Boeing Company Preloading a fastener of a mechanical fitting
US9127998B1 (en) * 2012-09-04 2015-09-08 University Of South Florida Active ultrasonic method of quantifying bolt tightening and loosening
WO2015139952A1 (en) * 2014-03-18 2015-09-24 Atlas Copco Industrial Technique Ab Method for a threaded joint mounting process
EP3463757B1 (en) * 2016-06-03 2020-05-20 Atlas Copco Industrial Technique AB Clamp force estimation via pulsed tightening
SE542127C2 (en) * 2018-04-18 2020-02-25 Atlas Copco Ind Technique Ab Hand held electric pulse tool and a method for tightening operations
JP6501965B1 (en) * 2018-12-11 2019-04-17 株式会社東日製作所 Method and apparatus for tightening bolt and nut
CN112710423B (en) * 2020-12-24 2021-08-17 东风汽车集团有限公司 Method for measuring and evaluating clamping force of engine key bolt after test

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969810A (en) * 1974-05-13 1976-07-20 Pagano Dominick A Method for tightening a bolt to exert a predetermined tension force by monitoring bolt elongation while the bolt is being installed
US4016938A (en) * 1975-12-02 1977-04-12 Ingersoll-Rand Company Method for fastener tensioning
US4037282A (en) * 1976-03-08 1977-07-26 Dahl Norman C Process for creating overload protection against yielding in bolts
US4142266A (en) * 1976-06-07 1979-03-06 Dahl Norman C Method for creating overload protection against yielding in bolts
DE2749536C3 (en) * 1977-11-03 1980-09-04 Kraftwerk Union Ag, 4330 Muelheim Arrangement for measuring the preload of a screw bolt used in particular to close a reactor pressure vessel
FR2527714A1 (en) * 1982-05-26 1983-12-02 Renault METHOD FOR CLAMPING AN ASSEMBLY COMPRISING A THREADED ASSEMBLY MEMBER
DE4024577C2 (en) * 1990-08-02 1999-08-26 Bosch Gmbh Robert Method for controlling a preload in a screw connection
FR2677571B1 (en) * 1991-06-14 1995-08-04 Ciandar PROCESS FOR CONTROLLING AND CONTROLLING THE VOLTAGE OF A THREADED MEMBER.

Also Published As

Publication number Publication date
DK0674566T3 (en) 1998-05-04
US5571971A (en) 1996-11-05
DE69222543D1 (en) 1997-11-06
WO1994013437A1 (en) 1994-06-23
FR2677571B1 (en) 1995-08-04
ES2109475T3 (en) 1998-01-16
FR2677571A1 (en) 1992-12-18
EP0674566A1 (en) 1995-10-04
DE69222543T2 (en) 1998-04-23

Similar Documents

Publication Publication Date Title
EP0674566B1 (en) Method for monitoring and controlling stress in a threaded member
EP2057450A2 (en) Process and device for setting up and controlling a hydraulic chucking of one or a plurality of bolts
US20080262754A1 (en) System and method for fatigue forecasting and strain measurement using Integral Strain Gauge (ISG)
WO2006000677A1 (en) Method for controlling tensile stress of a bolt shank such as a screw or dowel pin and device for carrying out said method
FR2936056A1 (en) CONTINUOUS OR INSTRUMENTED INDENTATION DEVICE HAVING A CONVEXED SUPPORT SURFACE AND USE THEREOF, IN PARTICULAR FOR THE INDENTATION OF SHEETS.
WO2011064517A1 (en) Continuous or instrumented indentation device
FR2852879A1 (en) TIGHTENING WRENCH
CA2326648C (en) Method for measuring by ultra-sound the residual tension of a pre-stressed bar
FR3043351A1 (en) METHOD AND DEVICE FOR CHECKING THE CLAMPING OF AN ASSEMBLY BY A THREADED FIXATION
EP0096620B1 (en) Method of tightening a bolted joint
FR2599793A1 (en) Connecting rod system intended to resist a longitudinal forces threshold
EP3839679B1 (en) Method for checking level of screwing quality of a screwdriver, associated device and programme implementing the method
EP3501745B1 (en) Method for determining the damage to a rotating tool, and corresponding device
Sanborn et al. Development of a new method to investigate the dynamic friction behavior of interfaces using a kolsky tension bar
FR3047681A1 (en) MECHANICAL CLAMPING PRESS WITH DYNAMOMETER
FR2930196A1 (en) METHOD FOR MONITORING A TIRE
FR3009752B1 (en) UNIAXIAL SOLICITATION TEST BENCH AND TEST METHOD USED THEREWITH
CH716888B1 (en) Device for the dynamic characterization of rotating watchmaking tools.
FR2785986A1 (en) METHOD FOR MEASURING AND / OR CONTROLLING TIGHTENING EQUIPMENT INCLUDING A HYDROPNEUMATIC HAMMER SCREWDRIVER
FR3097049A1 (en) Method and system for determining the coefficient of friction in a bolted connection
FR2981452A1 (en) DEVICE FOR DETERMINING THE LOCAL MECHANICAL BEHAVIOR OF A TEST OF MATERIAL
WO2023280882A1 (en) Brake lining wear sensor
FR3130371A1 (en) Method for monitoring at least one state characteristic of the movement of a mechanical system
EP0968795A1 (en) Method and device for measuring and thightening an assembly by means of a threaded fastener
FR3109995A1 (en) Device and method for measuring a spring

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES GB IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961204

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): BE DE DK ES GB IT NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES GB IT NL PT SE

REF Corresponds to:

Ref document number: 69222543

Country of ref document: DE

Date of ref document: 19971106

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2109475

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971211

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20061213

Year of fee payment: 15

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20080616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20081230

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090116

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20081228

Year of fee payment: 17

Ref country code: DE

Payment date: 20090112

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090116

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090205

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081230

Year of fee payment: 17

Ref country code: IT

Payment date: 20081229

Year of fee payment: 17

BERE Be: lapsed

Owner name: *CIANDAR

Effective date: 20091231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100701

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091217