EP0657556B1 - Austenitic alloys and their applications - Google Patents

Austenitic alloys and their applications Download PDF

Info

Publication number
EP0657556B1
EP0657556B1 EP94118682A EP94118682A EP0657556B1 EP 0657556 B1 EP0657556 B1 EP 0657556B1 EP 94118682 A EP94118682 A EP 94118682A EP 94118682 A EP94118682 A EP 94118682A EP 0657556 B1 EP0657556 B1 EP 0657556B1
Authority
EP
European Patent Office
Prior art keywords
max
alloys according
weight
resistant
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94118682A
Other languages
German (de)
French (fr)
Other versions
EP0657556A1 (en
Inventor
Michael Dr. Köhler
Ulrich Dr. Heubner
Kurt-Wilhelm Dr. Eichenhofer
Michael Dr. Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Krupp VDM GmbH
Original Assignee
Bayer AG
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Krupp VDM GmbH filed Critical Bayer AG
Publication of EP0657556A1 publication Critical patent/EP0657556A1/en
Application granted granted Critical
Publication of EP0657556B1 publication Critical patent/EP0657556B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the invention relates to high-chromium, corrosion-resistant, austenitic alloys and their use.
  • Table A shows an example of the state of the art for handling metallic materials that come into question from oxidizing acids (Nickel alloys and high-alloy special stainless steels, 2nd edition, Expert Verlag, 1993). With the exception of the super ferrite, they are so-called austenitic alloys, i.e. around those with a cubic surface-centered lattice structure.
  • the alloys according to the prior art shown in Table A are within a range of between about 17 and 29% by weight Bandwidth for the main alloy element chrome. In terms of corrosion resistance compared to max. 67% nitric acid is already proportionate low-alloy materials can be used.
  • a corresponding material is Cronifer 1809 LCLSi, with the addition LSi to a limited silicon content (low silicon) indicates.
  • Nickel-rich materials such as Nicrofer, which is also listed in Table A. 6030 offer advantages if halogen compounds are present or with nitric acid / Hydrofluoric acid mixtures, such as the Refurbishment of nuclear reactor fuel elements.
  • the molybdenum-containing material Nicrofer 3127 hMo (1.4562) according to EP 0 292 061 With its chromium content of 26 to 28%, it is of interest where, in addition to being proportionate great resistance to nitric acid special emphasis on high resistance against pitting and crevice corrosion.
  • a typical removal rate in boiling azeotropic nitric acid (Huey test) for this material is approx. 0.11 mm / year.
  • the Cronifer 1815 alloyed with about 4% silicon shows oxidizing conditions LCSi (1.4361) excellent resistance to the boiling point of nitric acid.
  • the materials suitable for urea production have similar ones Composition like the particularly corrosion-resistant against nitric acid Steels.
  • Alloys with, for example, approximately 31% chromium and approximately 46% chromium have been examined with regard to their corrosion resistance in nitric acid-hydrofluoric acid mixtures ("Materials and Corrosion" 43 , (1992) pp. 191-200). These alloys with high chromium contents could no longer be produced as austenitic materials and could only be processed using special processes such as powder metallurgy.
  • EP-A 0 261 880 describes alloys with 27 to 31% chromium, 7 to 11% Iron and the rest essentially nickel.
  • EP-A 0 130 967 describes the suitability of nickel alloys and stainless steels for hot sulfuric acid of 99% -101% at> 120 ° C in heat exchangers.
  • the alloys are selected using the following formula: 0.35 (Fe-Mn) + 0.70 (Cr) + 0.30 (Ni) - 0.12 (Mo)> 39.
  • the above Stainless steels containing molybdenum have a maximum of 28% chromium.
  • EP-A 0 200 862 contains molybdenum-free chromium and nickel alloys made of 21-35% chromium, 30-70% iron, 2-40% nickel and 0-20% manganese as well usual accompanying elements as materials for objects against sulfuric acid above 96% to 100% and resistant to oleum.
  • EP-A 249 792 claims the use of alloys consisting of 21 to 55% chromium, 0 to 30% iron, 0 to 5% tungsten and 45 to 79% Ni in concentrated Sulfuric acid.
  • an alloy for the handling of phosphoric acid consisting of 26-35% chromium, 2-6% molybdenum, 1-4% tungsten, 0.3-2% (Niobium + tantalum), 1-3% copper, 10-18% iron, up to 1.5% manganese, up to 1% Silicon, rest essentially nickel suggested.
  • the Chromium content is 30%.
  • DE-A 2 154 126 describes the use of austenitic nickel alloys With 26-48% nickel, 30-34% chromium, 4-5.25% molybdenum, 4-7.5% cobalt, 3-2.5% Iron, 1-3.5% manganese etc. as a resistant material for objects in hot sulfuric acid above 65%.
  • High chromium levels are according to US Pat. No. 3,565,611 Resistance of nickel-chromium-iron alloys to alkali-induced Stress corrosion cracking is important in hot alkaline solutions. In doing so the chromium content is at least 18%, preferably at least 26 to 27%, to Max. 35% and the iron content to max. 7% be restricted.
  • the Alloy 690 is particularly resistant to 29% chromium and 9% iron alkali-induced stress corrosion cracking.
  • US 4,853,185 describes in the high temperature range corrosion-resistant alloys consisting of approximately 30% to 45% nickel, approximately 12 to 32% chromium, at least one of the elements niobium with 0.01% to 2.0%, tantalum with 0.2 to 4 , 0% and vanadium with 0.05 to 1.0%, further up to 0.20% carbon, approximately 0.05 to 0.50% nitrogen, an addition of titanium of up to 0.20, which is effective for high-temperature strength %, Balance iron and impurities, where the sum of free carbon and nitrogen (C + N) F must be> 0.14 and ⁇ 0.29.
  • (C + N) F C + N - Nb 9 - V 4.5 - Ta 18th - Ti 3.5
  • EP-A 340 631 describes a high-temperature-resistant steel tube with a low silicon content, which contains no more than 0.1% by weight of carbon, no more than 0.15% by weight of silicon, no more than 5% by weight of manganese, 20 to 30 wt% chromium, 15 to 30 wt% nickel, 0.15 to 0.35 wt% nitrogen, 0.1 to 1.0 wt% niobium and not more than 0.005 wt% Oxygen, at least one of the metals aluminum and magnesium in an amount of 0.020 to 1.0 wt .-% and 0.003 to 0.02 wt .-% and balance iron and unavoidable impurities.
  • the object of the present invention was to provide alloys which can be used in a variety of ways and are easy to process and their corrosion rates are low.
  • alloys according to the invention are high in chromium and still easy to process. she have only a low molybdenum content or no molybdenum and have contrary to expectations, high corrosion resistance in hot, oxidizing acids.
  • Alloys with 0.5 to 2% by weight of molybdenum and 0.3 to 1% by weight are preferred Copper.
  • These preferred alloys are preferably used as wrought materials for manufacture of semi-finished products, e.g. Sheets, strips, rods, wires, forgings, Pipes, used.
  • These preferred alloys are preferably used as materials for manufacture castings, e.g. Pumps and fittings.
  • the alloys can contain up to 0.08% by weight of rare metals Earth, up to 0.015% by weight calcium and / or up to 0.015% by weight magnesium included as manufacturing-related admixtures.
  • the alloys according to the invention are also used as materials for objects can be used compared to mixtures of sulfuric acid and sodium dichromate and / or chromic acid, from 0.1 to 40% by weight, preferably 0.3 to 20% by weight Nitric acid and 50 to 90 wt .-% sulfuric acid up to 130 ° C or from 0.01 to 15% by weight of hydrofluoric acid and 80-98% by weight of sulfuric acid up to 180 ° C or from up to 25 %
  • By weight of nitric acid and up to 10% by weight of hydrofluoric acid are stable up to 80 ° C.
  • the alloys according to the invention can also be used as materials for objects are used, which compared to cooling water to boiling temperature and opposite Sea water are stable up to 50 ° C.
  • the Alloys according to the invention as a material for the production of components for use in marine technology plants, in environmental technology, space travel, Reactor technology and used in chemical process technology.
  • the alloys according to the invention are in the available plants of the stainless steel producers Can be produced by the known processes and show good processability.
  • the overall corrosion behavior of the alloys according to the invention is excellent.
  • Expensive alloy elements such as tungsten, niobium, tantalum can be used without loss the good properties are waived.
  • the alloys according to the invention also offer the advantage of an unusual universal corrosion resistance. So the alloys on the acid on one side of the apparatus and on the other side of the apparatus with chloride-containing cooling and heating media, e.g. in heat exchangers. It two completely different corrosion resistances are required at the same time, namely acid resistance on the one hand and pitting, crevice and stress corrosion cracking resistance on the other hand.
  • the exceptional durability profile compares with a Economical alloy budget achieved, otherwise only with expensive NiCrMo alloys (see Table B) or only on the acid side with highest alloyed, specially developed materials for special applications (see Table C).
  • the alloys according to the invention are notable for their processability compared to materials from the prior art by an unusual Elimination inertia from thermal stress. This behavior is in the manufacture of semi-finished products and their further processing, e.g. of the Forming of bobbin-case bottoms and making welded connections extremely positive. This is particularly evident from the time-temperature sensitization diagrams (Fig. 1, 2). This is significant Material properties also for the behavior of weld seams that none be subjected to final heat treatment after the apparatus has been manufactured and for the production of mold parts.
  • Example 2 shows the corrosion behavior in sulfuric acid (98-99.1% H 2 SO 4 ) for different temperatures.
  • the alloys according to the invention have excellent corrosion resistance up to 200 ° C. Under flowing conditions, which dominate in operational practice, even lower corrosion rates are determined (example 12).
  • Alloy according to the invention also has excellent corrosion resistance.
  • Example 3 it is that of the high nickel ones Materials Alloy 201, 400, 600 and 690 (17, 15, 16, 11) practically equivalent, while the material 12 (Alloy G-30) drops sharply here. Even at lower ones Alkali concentrations and temperatures rise according to the invention Alloys from the known positive (Example 13).
  • Example 5 the mass loss rates determined in boiling azeotropic nitric acid are compared with one another. It can be seen that the alloys according to the invention suffer only very little corrosion removal. This is lower than that of the well-known materials AISI 310 L (4) and Alloy 28 (7). In super-azeotropic nitric acids, the corrosion behavior of the alloys according to the invention is more favorable than the behavior of "HNO 3 special alloys" (Example 14).
  • Example 7 shows the corrosion behavior in mixed acids from sulfuric acid and nitric acid.
  • the alloy according to the invention is superior to the known alloys both at low and at high H 2 SO 4 contents.
  • Example 8 shows a comparison of the mass loss rates in sulfuric acid-hydrofluoric acid solutions.
  • the alloys according to the invention are highly alloyed with chromium Materials AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) and 1.4465 (5) compared. It can be seen that the alloys according to the invention have one have less corrosion removal than that corresponding to the prior art Materials.
  • Example 9 A comparison of the mass loss rates was also made in phosphoric acid solutions performed. The results obtained are shown in Example 9.
  • the Alloys according to the invention are made with materials which according to State of the art specifically used for handling phosphoric acid solutions are compared. While in solution 1 the corresponding to the prior art Material Alloy 904 L (3) can be considered sufficient, this is not the case in solution 2.
  • the corrosion resistance of the invention Alloys are not of the Alloy G-30 (12) material significantly different, the low corrosion removal in the inventive Alloys are made with much less expensive alloy additives reached.
  • Example 10 shows the corrosion behavior in nitric acid / hydrofluoric acid mixtures.
  • the alloys according to the invention are far superior to the prior art.
  • Example 15 demonstrates the favorable corrosion behavior of the inventive Alloys compared to known alloys in chromic acid.
  • the alloy 2 'according to the invention is according to Figs. 1 and 2 also after one to 8 hours of thermal stress in the temperature range between 600 and 1000 ° C resistant to intergranular corrosion, both in the case an examination according to SEP 1877 II as well as in the Huey test.
  • the alloys according to the invention are widely applicable, and they can preferably be used in the following areas: Production of sulfuric acid, especially in the area of absorption, Processing of sulfuric acid, eg sulfonation, sulfonation and nitration as well as concentration, Production of azeotropic nitric acid and processing and storage of nitric acid, Production of hydrofluoric acid from sulfuric acid and fluorspar, processing of hydrofluoric acid and processes using hydrofluoric acid as a catalyst Use of etching baths containing hydrofluoric acid, sulfuric acid, nitric acid, e.g.
  • the steels of Table 1 were tested on a 100 kg scale in a vacuum induction furnace melted from known raw materials and cast into blocks. The blocks were formed into 5 (12) mm thick sheets. The final one Solution annealing was carried out at at least 1120 ° C. with subsequent quenching. There was a fully austenitic, excretion-free, homogeneous structure in front.
  • the mechanical properties of the alloys indicate good cold formability.
  • the materials 17, 15, 16 are typical materials for this application.
  • Solution 1 75% by weight H 3 PO 4 ; 80 ° C, 14 days
  • Solution 2 75% by weight H 3 PO 4 , 0.63% by weight F - , 0.3% by weight Fe 3+ , 14 mmol / l Cl - ; 80 ° C, 14 days Material number.

Abstract

The invention relates to high chromium content, corrosion resistant, austenitic alloys having the following composition: 32-37% by weight of chromium 28-36% by weight of nickel max. 2% by weight of manganese max. 0.5% by weight of silicon max. 0.1% by weight of aluminium max. 0.03% by weight of carbon max. 0.025% by weight of phosphorus max. 0.01% by weight of sulphur max. 2% by weight of molybdenum max. 1% by weight of copper 0.3-0.7% by weight of nitrogen and usual minor constituents and impurities resulting from the production method and the remainder as iron. These alloys are suitable as materials for articles which are resistant to chemical attack.

Description

Die Erfindung betrifft hochchromhaltige, korrosionsbeständige, austenitische Legierungen und deren Verwendung.The invention relates to high-chromium, corrosion-resistant, austenitic alloys and their use.

Tabelle A zeigt beispielhaft die nach dem Stand der Technik für die Handhabung von oxidierenden Säuren in Frage kommenden metallischen Werkstoffe (Nickellegierungen und hochlegierte Sonderedelstähle, 2. Auflage, Expert Verlag, 1993). Mit Ausnahme des Superferrits handelt es sich bei ihnen um sogenannte austenitische Legierungen, d.h. um solche mit kubischflächenzentrierter Gitterstruktur. Die Legierungen gemäß dem in Tabelle A gezeigten Stand der Technik liegen innerhalb einer sich zwischen etwa 17 und 29 Gew.-% erstreckenden Bandbreite für das Hauptlegierungselement Chrom. Im Hinblick auf die Korrosionsbeständigkeit gegenüber max. 67 %iger Salpetersäure sind schon verhältnismäßig niedriglegierte Werkstoffe brauchbar. Ein entsprechender Werkstoff ist Cronifer 1809 LCLSi, wobei der Nachsatz LSi auf einen eingeschränkten Silizium-gehalt (low silicon) hinweist.Table A shows an example of the state of the art for handling metallic materials that come into question from oxidizing acids (Nickel alloys and high-alloy special stainless steels, 2nd edition, Expert Verlag, 1993). With the exception of the super ferrite, they are so-called austenitic alloys, i.e. around those with a cubic surface-centered lattice structure. The alloys according to the prior art shown in Table A are within a range of between about 17 and 29% by weight Bandwidth for the main alloy element chrome. In terms of corrosion resistance compared to max. 67% nitric acid is already proportionate low-alloy materials can be used. A corresponding material is Cronifer 1809 LCLSi, with the addition LSi to a limited silicon content (low silicon) indicates.

Nickelreiche Werkstoffe wie der gleichfalls in Tabelle A eingetragene Nicrofer 6030 bieten Vorteile, sofern Halogenverbindungen anwesend sind bzw. mit Salpetersäure / Flußsäuremischungen gearbeitet wird, wie beispielsweise bei der Wiederaufarbeitung von Kernreaktor-Brennelementen. Nickel-rich materials such as Nicrofer, which is also listed in Table A. 6030 offer advantages if halogen compounds are present or with nitric acid / Hydrofluoric acid mixtures, such as the Refurbishment of nuclear reactor fuel elements.

In "Werkstoffe und Korrosion" 43, 191-200 (1992), "Korrosion nichtrostender Stähle und Nickelbasislegierungen in Salpetersäure-Flußsäure-Gemischen" werden verschiedene molybdänhaltige Chrom-Nickel-Eisen-Stähle mit bis 29 % Chrom, bis 39 % Nickel und bis 6,5 % Molybdän beschrieben. Bei erhöhten Molybdängehalten verbessert sich die Beständigkeit in Salpetersäure-Flußsäure-Gemischen.In "Materials and Corrosion" 43 , 191-200 (1992), "Corrosion of stainless steels and nickel-based alloys in nitric acid-hydrofluoric acid mixtures", various molybdenum-containing chromium-nickel-iron steels with up to 29% chromium, up to 39% nickel and bis 6.5% molybdenum described. With increased molybdenum contents, the resistance in nitric acid-hydrofluoric acid mixtures improves.

In "Werkstoffe und Korrosion" 44, 83-88 (1993), "Avesta 654 SMO TM-A new nitrogen-enhanced superaustenitic stainless steel" werden austenitische Edelstähle mit bis 22 % Nickel, bis 25 % Chrom und Stickstoffgehalten von 0,2 bis 0,5 Gew.-% beschrieben.In "Materials and Corrosion" 44 , 83-88 (1993), "Avesta 654 SMO TM-A new nitrogen-enhanced superaustenitic stainless steel" austenitic stainless steels with up to 22% nickel, up to 25% chromium and nitrogen contents from 0.2 to 0.5 wt .-% described.

Der molybdänhaltige Werkstoff Nicrofer 3127 hMo (1.4562) gemäß EP 0 292 061 ist mit seinem Chromgehalt von 26 bis 28 % dort von Interesse, wo neben verhältnismäßig großer Salpetersäurebeständigkeit besonderer Wert auf hohe Beständigkeit gegenüber Loch- und Spaltkorrosion gelegt wird. Eine typische Abtragsrate in siedender azeotroper Salpetersäure (Huey-Test) für diesen Werkstoff ist ca. 0,11 mm/Jahr.The molybdenum-containing material Nicrofer 3127 hMo (1.4562) according to EP 0 292 061 With its chromium content of 26 to 28%, it is of interest where, in addition to being proportionate great resistance to nitric acid special emphasis on high resistance against pitting and crevice corrosion. A typical removal rate in boiling azeotropic nitric acid (Huey test) for this material is approx. 0.11 mm / year.

Beim Arbeiten mit mehr als 67 %iger Salpetersäure oder unter sonst äußerst stark oxidierenden Bedingungen zeigt der mit etwa 4 % Silizium legierte Cronifer 1815 LCSi (1.4361) eine ausgezeichnete Beständigkeit bis zum Siedepunkt der Salpetersäure. Die für die Harnstofferzeugung in Frage kommenden Werkstoffe haben ähnliche Zusammensetzung wie die gegen Salpetersäure besonders korrosionsbeständigen Stähle.When working with more than 67% nitric acid or under otherwise extremely strong The Cronifer 1815 alloyed with about 4% silicon shows oxidizing conditions LCSi (1.4361) excellent resistance to the boiling point of nitric acid. The materials suitable for urea production have similar ones Composition like the particularly corrosion-resistant against nitric acid Steels.

Für das Arbeiten mit heißer, hochkonzentrierter Schwefelsäure ist der mit 7 % Silizium legierte Stahl Nicrofer 2509 Si7 gemäß EP-A 0516 955 entwickelt worden. Hier hat gemäß der Lehre von DE-OS 38 30 365 auch der Superferrit Cronifer 2803 Mo (1.4575) ein spezielles Interesse. Superferrite kommen wegen ihrer eingeschränkten Verarbeitbarkeit allerdings nur für geringe Wanddicken in Frage, die in der Regel bei 2 mm und darunter liegen.For working with hot, highly concentrated sulfuric acid, the 7% Silicon alloy steel Nicrofer 2509 Si7 developed according to EP-A 0516 955 been. According to the teaching of DE-OS 38 30 365, superferrite is also present here Cronifer 2803 Mo (1.4575) a special interest. Super ferrites come because of their limited processability, however, only for small wall thicknesses in Question that is usually 2 mm and below.

Legierungen mit beispielsweise etwa 31 % Chrom und etwa 46 % Chrom wurden im Hinblick auf ihre Korrosionsbeständigkeit in Salpetersäure-Flußsäuregemischen untersucht ("Werkstoffe und Korrosion" 43, (1992) S. 191-200). Diese Legierungen mit hohen Chromgehalten konnten nicht mehr als austenitische Werkstoffe hergestellt werden und nur mittels Sonderverfahren, wie z.B. der Pulvermetallurgie verarbeitet werden.Alloys with, for example, approximately 31% chromium and approximately 46% chromium have been examined with regard to their corrosion resistance in nitric acid-hydrofluoric acid mixtures ("Materials and Corrosion" 43 , (1992) pp. 191-200). These alloys with high chromium contents could no longer be produced as austenitic materials and could only be processed using special processes such as powder metallurgy.

In der Britischen Patentschrift 1 114 996 werden Legierungen mit 14 bis 35 % Chrom und 0 bis 25 % Eisen beansprucht.In British patent 1 114 996 alloys with 14 to 35% chromium and 0 to 25% iron claimed.

Die EP-A 0 261 880 beschreibt Legierungen mit 27 bis 31 % Chrom, 7 bis 11 % Eisen und dem Rest im wesentlichen Nickel.EP-A 0 261 880 describes alloys with 27 to 31% chromium, 7 to 11% Iron and the rest essentially nickel.

Legierungen mit Chromgehalten von mehr als 30 % Cr sind nicht mehr ohne weiteres homogen und austenitisch darstellbar. In der Praxis werden daher Chromgehalte von max. 29 % eingestellt. Bei dem Superferrit 1.4575 mit Chromgehalten von 26 bis 30 % handelt es sich um eine ferritische Legierung.Alloys with chrome contents of more than 30% Cr are no longer without more homogeneous and austenitic. In practice, therefore Chromium content of max. 29% set. With the superferrite 1.4575 with Chromium content of 26 to 30% is a ferritic alloy.

In EP-A 0 130 967 wird die Eignung von Nickellegierungen und Edelstählen für heiße Schwefelsäure von 99 %-101 % bei > 120°C in Wärmetauschern beschrieben. Die Auswahl der Legierungen erfolgt nach folgender Formel: 0,35 (Fe-Mn) + 0,70 (Cr) + 0,30 (Ni) - 0,12 (Mo) > 39. Die genannten molybdänhaltigen Edelstähle weisen maximal 28 % Chrom auf.EP-A 0 130 967 describes the suitability of nickel alloys and stainless steels for hot sulfuric acid of 99% -101% at> 120 ° C in heat exchangers. The alloys are selected using the following formula: 0.35 (Fe-Mn) + 0.70 (Cr) + 0.30 (Ni) - 0.12 (Mo)> 39. The above Stainless steels containing molybdenum have a maximum of 28% chromium.

In EP-A 0 200 862 werden molybdänfreie Chrom-, Nickel-Legierungen bestehend aus 21-35 % Chrom, 30-70 % Eisen, 2-40 % Nickel und 0-20 % Mangan sowie üblichen Begleitelementen als Werkstoffe für Gegenstände, die gegen Schwefelsäure oberhalb 96 % bis 100 % und gegen Oleum beständig sind, beansprucht.EP-A 0 200 862 contains molybdenum-free chromium and nickel alloys made of 21-35% chromium, 30-70% iron, 2-40% nickel and 0-20% manganese as well usual accompanying elements as materials for objects against sulfuric acid above 96% to 100% and resistant to oleum.

EP-A 249 792 beansprucht die Verwendung von Legierungen bestehend aus 21 bis 55 % Chrom, 0 bis 30 % Eisen, 0 bis 5 % Wolfram und 45 bis 79 % Ni in konzentrierter Schwefelsäure.EP-A 249 792 claims the use of alloys consisting of 21 to 55% chromium, 0 to 30% iron, 0 to 5% tungsten and 45 to 79% Ni in concentrated Sulfuric acid.

In US 4 410 489 wird für die Handhabung von Phosphorsäure eine Legierung bestehend aus 26-35 % Chrom, 2-6 % Molybdän, 1-4 % Wolfram, 0,3-2 % (Niob+Tantal), 1-3 % Kupfer, 10-18 % Eisen, bis 1,5 % Mangan, bis 1 % Silizium, Rest im wesentlichen Nickel vorgeschlagen. Vorzugsweise soll der Chromgehalt bei 30 % liegen.In US 4,410,489 an alloy is used for the handling of phosphoric acid consisting of 26-35% chromium, 2-6% molybdenum, 1-4% tungsten, 0.3-2% (Niobium + tantalum), 1-3% copper, 10-18% iron, up to 1.5% manganese, up to 1% Silicon, rest essentially nickel suggested. Preferably, the Chromium content is 30%.

In DE-A 2 154 126 wird die Verwendung austenitischer Nickel-Legierungen mit 26-48 % Nickel, 30-34 % Chrom, 4-5,25 % Molybdän, 4-7,5 % Kobalt, 3-2,5 % Eisen, 1-3,5 % Mangan etc. als widerstandsfähiger Werkstoff für Gegenstände in heißer Schwefelsäure oberhalb 65 % beansprucht.DE-A 2 154 126 describes the use of austenitic nickel alloys With 26-48% nickel, 30-34% chromium, 4-5.25% molybdenum, 4-7.5% cobalt, 3-2.5% Iron, 1-3.5% manganese etc. as a resistant material for objects in hot sulfuric acid above 65%.

In US 4 853 185 werden Edelstähle mit 25-45 % Nickel, 12-32 % Chrom, 0,1 bis 2 % Niob, 0,2 bis 4 % Tantal, 0,05 bis 1 % Vanadium und 0,05-0,5 % Stickstoff neben weiteren Bestandteilen beschrieben. Die Legierungen sollen gegenüber CO, CO2 und Schwefelverbindungen resistent sein.In US 4,853,185 stainless steels with 25-45% nickel, 12-32% chromium, 0.1 to 2% niobium, 0.2 to 4% tantalum, 0.05 to 1% vanadium and 0.05-0, 5% nitrogen is described along with other ingredients. The alloys are said to be resistant to CO, CO 2 and sulfur compounds.

Hohe Chromgehalte sind gemäß der US-Patentschrift 3 565 611 für die Beständigkeit von Nickel-Chrom-Eisen-Legierungen gegenüber laugeninduzierter Spannungsrißkorrosion in heißen alkalischen Lösungen von Bedeutung. Dabei soll der Chromgehalt wenigstens 18 %, vorzugsweise wenigstens 26 bis 27 %, bis max. 35 % betragen und der Eisengehalt auf max. 7 % eingeschränkt sein. Die Legierung 690 ist mit 29 % Chrom und 9 % Eisen besonders beständig gegenüber laugeninduzierter Spannungsrißkorrosion.High chromium levels are according to US Pat. No. 3,565,611 Resistance of nickel-chromium-iron alloys to alkali-induced Stress corrosion cracking is important in hot alkaline solutions. In doing so the chromium content is at least 18%, preferably at least 26 to 27%, to Max. 35% and the iron content to max. 7% be restricted. The Alloy 690 is particularly resistant to 29% chromium and 9% iron alkali-induced stress corrosion cracking.

US 4 853 185 beschreibt im Hochtemperaturbereich korrosionsbeständige Legierungen, bestehend aus ungefähr 30 % bis 45 % Nickel, ungefähr 12 bis 32 % Chrom, wenigstens einem der Elemente Niob mit 0,01 % bis 2,0 %, Tantal mit 0,2 bis 4,0 % und Vanadium mit 0,05 bis 1,0 %, ferner bis zu 0,20 % Kohlenstoff, ungefähr 0,05 bis 0,50 % Stickstoff einem für die Hochtemperaturfestigkeit wirkungsvollen Zusatz von Titan in Höhe von bis zu 0,20 %, Rest Eisen und Verunreinigungen, wobei die Summe an freiem Kohlenstoff und Stickstoff (C + N)F > 0,14 und < 0,29 sein muß. Der Ausdruck (C + N)F ist dabei definiert als: (C + N)F = C + N - Nb9 - V4,5 - Ta18 - Ti3,5 EP-A 340 631 beschreibt ein hochtemperaturbeständiges Stahlrohr mit niedrigem Siliziumgehalt, welches nicht mehr als 0,1 Gew.-% Kohlenstoff, nicht mehr als 0,15 Gew.-% Silizium, nicht mehr als 5 Gew.-% Mangan, 20 bis 30 Gew.-% Chrom, 15 bis 30 Gew.-% Nickel, 0,15 bis 0,35 Gew.-% Stickstoff, 0,1 bis 1,0 Gew.-% Niob und nicht mehr als 0,005 Gew.-% Sauerstoff, mindestens eines der Metalle Aluminium und Magnesium in einer Menge von 0,020 bis 1,0 Gew.-% bzw. 0,003 bis 0,02 Gew.-% und Rest Eisen und unvermeidbare Verunreinigungen aufweist.US 4,853,185 describes in the high temperature range corrosion-resistant alloys consisting of approximately 30% to 45% nickel, approximately 12 to 32% chromium, at least one of the elements niobium with 0.01% to 2.0%, tantalum with 0.2 to 4 , 0% and vanadium with 0.05 to 1.0%, further up to 0.20% carbon, approximately 0.05 to 0.50% nitrogen, an addition of titanium of up to 0.20, which is effective for high-temperature strength %, Balance iron and impurities, where the sum of free carbon and nitrogen (C + N) F must be> 0.14 and <0.29. The expression (C + N) F is defined as: (C + N) F = C + N - Nb 9 - V 4.5 - Ta 18th - Ti 3.5 EP-A 340 631 describes a high-temperature-resistant steel tube with a low silicon content, which contains no more than 0.1% by weight of carbon, no more than 0.15% by weight of silicon, no more than 5% by weight of manganese, 20 to 30 wt% chromium, 15 to 30 wt% nickel, 0.15 to 0.35 wt% nitrogen, 0.1 to 1.0 wt% niobium and not more than 0.005 wt% Oxygen, at least one of the metals aluminum and magnesium in an amount of 0.020 to 1.0 wt .-% and 0.003 to 0.02 wt .-% and balance iron and unavoidable impurities.

Aufgabe der vorliegenden Erfindung war es, Legierungen zur Verfügung zu stellen, die vielfältig einsetzbar und problemlos verarbeitbar sind und deren Korrosionsraten niedrig sind.The object of the present invention was to provide alloys which can be used in a variety of ways and are easy to process and their corrosion rates are low.

Diese Aufgabe konnte mit den erfindungsgemäßen Legierungen gelöst werden. Diese Legierungen sind hochchromhaltig und trotzdem gut verarbeitbar. Sie weisen nur einen geringen Molybdängehalt bzw. kein Molybdän auf und haben wider Erwarten eine hohe Korrosionsbeständigkeit in heißen, oxidierenden Säuren.This object could be achieved with the alloys according to the invention. These alloys are high in chromium and still easy to process. she have only a low molybdenum content or no molybdenum and have contrary to expectations, high corrosion resistance in hot, oxidizing acids.

Gegenstand der Erfindung sind austenitische, korrosionsbeständige Chrom-, Nickel-, Eisen-Legierungen folgender Zusammensetzung:

  • 32-37 Gew.-% Chrom
  • 28-36 Gew.-% Nickel
  • max. 2 Gew.-% Mangan
  • max. 0,5 Gew.-% Silizium
  • max 0,1 Gew.-% Aluminium
  • max. 0,03 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,025 Gew.-% Phosphor
  • max. 2 Gew.-% Molybdän
  • max. 1 Gew.-% Kupfer
  • 0,3 - 0,7 Gew.-% Stickstoff
  • sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen. The invention relates to austenitic, corrosion-resistant chromium, nickel and iron alloys of the following composition:
  • 32-37 wt% chromium
  • 28-36 wt% nickel
  • Max. 2% by weight of manganese
  • Max. 0.5% by weight silicon
  • max 0.1% by weight aluminum
  • Max. 0.03 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.025 wt% phosphorus
  • Max. 2% by weight molybdenum
  • Max. 1% by weight copper
  • 0.3-0.7 wt% nitrogen
  • as well as usual manufacturing-related admixtures and impurities and the rest as iron.

    Bevorzugt sind Legierungen mit 0,5 bis 2 Gew.-% Molybdän und 0,3 bis 1 Gew.-% Kupfer.Alloys with 0.5 to 2% by weight of molybdenum and 0.3 to 1% by weight are preferred Copper.

    Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung:

  • 32-35 Gew.-% Chrom
  • 28-36 Gew.-% Nickel
  • max. 2 Gew.-% Mangan
  • max. 0,5 Gew.-% Silizium
  • max. 0,1 Gew.-% Aluminium
  • max. 0,03 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,025 Gew.-% Phosphor
  • max. 2 Gew.-% Molybdän
  • max. 1 Gew.-% Kupfer
  • 0,4 - 0,6 Gew.-% Stickstoff
  • sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen.Austenitic alloys with the following composition are also preferred:
  • 32-35 wt% chromium
  • 28-36 wt% nickel
  • Max. 2% by weight of manganese
  • Max. 0.5% by weight silicon
  • Max. 0.1% by weight aluminum
  • Max. 0.03 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.025 wt% phosphorus
  • Max. 2% by weight molybdenum
  • Max. 1% by weight copper
  • 0.4-0.6 wt% nitrogen
  • as well as usual manufacturing-related admixtures and impurities and the rest as iron.

    Diese bevorzugten Legierungen werden vorzugsweise als Knetwerkstoffe zur Herstellung von Halbzeug, wie z.B. Blechen, Bändern, Stangen, Drähten, Schmiedeteilen, Rohren, eingesetzt.These preferred alloys are preferably used as wrought materials for manufacture of semi-finished products, e.g. Sheets, strips, rods, wires, forgings, Pipes, used.

    Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung:

  • 35-37 Gew.-% Chrom
  • 28-36 Gew.-% Nickel
  • max. 2 Gew.-% Mangan
  • max. 0,5 Gew.-% Silizium
  • max. 0,1 Gew.-% Aluminium
  • max. 0,03 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,025 Gew.-% Phosphor
  • max. 2 Gew.-% Molybdän
  • max. 1 Gew.-% Kupfer
  • 0,4 - 0,7 Gew.-% Stickstoff
  • sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen.Austenitic alloys with the following composition are also preferred:
  • 35-37 wt% chromium
  • 28-36 wt% nickel
  • Max. 2% by weight of manganese
  • Max. 0.5% by weight silicon
  • Max. 0.1% by weight aluminum
  • Max. 0.03 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.025 wt% phosphorus
  • Max. 2% by weight molybdenum
  • Max. 1% by weight copper
  • 0.4-0.7% by weight nitrogen
  • as well as usual manufacturing-related admixtures and impurities and the rest as iron.

    Diese bevorzugten Legierungen werden vorzugsweise als Werkstoffe zur Herstellung von Gußteilen eingesetzt, wie z.B. Pumpen und Armaturen.These preferred alloys are preferably used as materials for manufacture castings, e.g. Pumps and fittings.

    Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung

  • 32,5 - 33,5 Gew.-% Chrom
  • 30,0 - 32,0 Gew.-% Nickel
  • 0,5 - 1,0 Gew.-% Mangan
  • 0,01 - 0,5 Gew.-% Silizium
  • 0,02 - 0,1 Gew.-Aluminium
  • max. 0,02 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,02 Gew.-% Phosphor
  • 0,5-2 Gew.-% Molybdän
  • 0,3-1 Gew.-% Kupfer
  • 0,35 - 0,5 Gew.-% Stickstoff oder
  • 34,0 - 35,0 Gew.-% Chrom
  • 30,0 - 32,0 Gew.-% Nickel
  • 0,5 - 1,0 Gew.-% Mangan
  • 0,01 - 0,5 Gew.-% Silizium
  • 0,02 - 0,1 Gew.-% Aluminium
  • max. 0,02 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,02 Gew.-% Phosphor
  • max. 0,5 Gew.-% Molybdän
  • max. 0,3 Gew.-% Kupfer
  • 0,4 - 0,6 Gew.-% Stickstoff oder
  • 35,0 - 36,0 Gew.-% Chrom
  • 30,0 - 32,0 Gew.-% Nickel
  • 0,5 - 1,0 Gew.-% Mangan
  • 0,01 - 0,5 Gew.-% Silizium
  • 0,02 - 0,1 Gew.-% Aluminium
  • max. 0,02 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,02 Gew.-% Phosphor
  • max. 0,5 Gew.-% Molybdän
  • max. 0,3 Gew.-% Kupfer
  • 0,4 - 0,6 Gew.-% Stickstoff oder
  • 36,0 - 37,0 Gew.-% Chrom
  • 30,0 - 32,0 Gew.-% Nickel
  • 0,5 - 1,0 Gew.-% Mangan
  • 0,01 - 0,5 Gew.-% Silizium
  • 0,02 - 0,1 Gew.-% Aluminium
  • max. 0,02 Gew.-% Kohlenstoff
  • max. 0,01 Gew.-% Schwefel
  • max. 0,02 Gew.-% Phosphor
  • max. 0,5 Gew.-% Molybdän
  • max. 0,3 Gew.-% Kupfer
  • 0,4 - 0,7 Gew.-% Stickstoff
  • sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen. Austenitic alloys with the following composition are also preferred
  • 32.5-33.5 wt% chromium
  • 30.0-32.0 wt% nickel
  • 0.5-1.0% by weight of manganese
  • 0.01-0.5% by weight silicon
  • 0.02 - 0.1 weight aluminum
  • Max. 0.02 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.02 wt% phosphorus
  • 0.5-2% by weight molybdenum
  • 0.3-1% by weight copper
  • 0.35-0.5% by weight nitrogen or
  • 34.0-35.0 wt% chromium
  • 30.0-32.0 wt% nickel
  • 0.5-1.0% by weight of manganese
  • 0.01-0.5% by weight silicon
  • 0.02-0.1% by weight aluminum
  • Max. 0.02 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.02 wt% phosphorus
  • Max. 0.5 wt% molybdenum
  • Max. 0.3 wt% copper
  • 0.4-0.6% by weight nitrogen or
  • 35.0 - 36.0 wt% chromium
  • 30.0-32.0 wt% nickel
  • 0.5-1.0% by weight of manganese
  • 0.01-0.5% by weight silicon
  • 0.02-0.1% by weight aluminum
  • Max. 0.02 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.02 wt% phosphorus
  • Max. 0.5 wt% molybdenum
  • Max. 0.3 wt% copper
  • 0.4-0.6% by weight nitrogen or
  • 36.0-37.0 wt% chromium
  • 30.0-32.0 wt% nickel
  • 0.5-1.0% by weight of manganese
  • 0.01-0.5% by weight silicon
  • 0.02-0.1% by weight aluminum
  • Max. 0.02 wt% carbon
  • Max. 0.01 wt% sulfur
  • Max. 0.02 wt% phosphorus
  • Max. 0.5 wt% molybdenum
  • Max. 0.3 wt% copper
  • 0.4-0.7% by weight nitrogen
  • as well as usual manufacturing-related admixtures and impurities and the rest as iron.

    Zur Schmelzbehandlung mit dem Ziel einer ausreichenden Desoxidation und Entschwefelung können die Legierungen bei Bedarf bis zu 0,08 Gew.-% Seltene Erden, bis zu 0,015 Gew.-% Calcium und/oder bis zu 0,015 Gew.-% Magnesium als herstellungsbedingte Beimengungen enthalten.For melt treatment with the aim of adequate deoxidation and desulfurization If necessary, the alloys can contain up to 0.08% by weight of rare metals Earth, up to 0.015% by weight calcium and / or up to 0.015% by weight magnesium included as manufacturing-related admixtures.

    Die erfindungsgemäßen Legierungen werden als Werkstoff für Gegenstände verwendet, die gegenüber

  • a) Natronlauge oder Kalilauge einer Konzentration von 1 bis 90 Gew.-%, vorzugsweise 1 bis 70 Gew.-%, bei Temperaturen bis 200°C, insbesondere 170°C,
  • b) Harnstofflösungen einer Konzentration von 5 bis 90 Gew.-%,
  • c) Salpetersäure einer Konzentration von 0,1 bis 70 Gew. -%, bei Temperaturen bis zum Siedepunkt und bis 90 Gew.-% bei Temperaturen bis 75°C und > 90 Gew.-% bei Temperaturen bis 30°C,
  • d) Flußsäure einer Konzentration von 1 bis 40 Gew.-%, vorzugsweise 1 bis 25 Gew.-%,
  • e) Phosphorsäure einer Konzentration bis 85 Gew.-%, vorzugsweise von 26-52 Gew.-%, bei Temperaturen bis zu 120°C bzw. bis zu 300°C bei Konzentrationen <10 Gew.-%,
  • f) Chromsäure einer Konzentration bis 40 Gew.-%, vorzugsweise bis 30 Gew.-%,
  • g) Oleum einer Konzentration bis 100 Gew.-%, vorzugsweise 20 bis 40 Gew.-% bei Temperaturen bis zur jeweiligen Siedetemperatur oder
  • h) Schwefelsäure einer Konzentration von 80 bis 100 Gew.-%, vorzugsweise 85 bis 99,7 Gew.-%, besonders bevorzugt 95 bis 99 Gew.-% bei hohen Temperaturen bis zu 250°C beständig sind.
  • The alloys according to the invention are used as a material for objects that are opposite
  • a) sodium hydroxide solution or potassium hydroxide solution in a concentration of 1 to 90% by weight, preferably 1 to 70% by weight, at temperatures up to 200 ° C., in particular 170 ° C.,
  • b) urea solutions with a concentration of 5 to 90% by weight,
  • c) nitric acid at a concentration of 0.1 to 70% by weight, at temperatures up to the boiling point and up to 90% by weight at temperatures up to 75 ° C. and> 90% by weight at temperatures up to 30 ° C.,
  • d) hydrofluoric acid in a concentration of 1 to 40% by weight, preferably 1 to 25% by weight,
  • e) phosphoric acid of a concentration of up to 85% by weight, preferably of 26-52% by weight, at temperatures up to 120 ° C or up to 300 ° C at concentrations <10% by weight,
  • f) chromic acid in a concentration of up to 40% by weight, preferably up to 30% by weight,
  • g) oleum in a concentration of up to 100% by weight, preferably 20 to 40% by weight at temperatures up to the respective boiling point or
  • h) sulfuric acid with a concentration of 80 to 100% by weight, preferably 85 to 99.7% by weight, particularly preferably 95 to 99% by weight, are stable at high temperatures up to 250 ° C.
  • Die erfindungsgemäßen Legierungen sind auch als Werkstoffe für Gegenstände einsetzbar, die gegenüber Mischungen aus Schwefelsäure und Natriumdichromat und/oder Chromsäure, aus 0,1 bis 40 Gew.-%, vorzugsweise 0,3 bis 20 Gew.-% Salpetersäure und 50 bis 90 Gew.-% Schwefelsäure bis 130°C oder aus 0,01 bis 15 Gew.-% Flußsäure und 80-98 Gew.-% Schwefelsäure bis 180°C oder aus bis 25 Gew.-% Salpetersäure und bis 10 Gew.-% Flußsäure bis 80°C beständig sind.The alloys according to the invention are also used as materials for objects can be used compared to mixtures of sulfuric acid and sodium dichromate and / or chromic acid, from 0.1 to 40% by weight, preferably 0.3 to 20% by weight Nitric acid and 50 to 90 wt .-% sulfuric acid up to 130 ° C or from 0.01 to 15% by weight of hydrofluoric acid and 80-98% by weight of sulfuric acid up to 180 ° C or from up to 25 % By weight of nitric acid and up to 10% by weight of hydrofluoric acid are stable up to 80 ° C.

    Gegenüber organischen Säuren, wie z.B. Ameisensäure und Essigsäure, weisen die erfindungsgemäßen Legierungen eine ausreichende Beständigkeit und Stabilität auf.Compared to organic acids, e.g. Formic acid and acetic acid, have the Alloys according to the invention have sufficient durability and stability on.

    Die erfindungsgemäßen Legierungen können auch als Werkstoffe für Gegenstände eingesetzt werden, die gegenüber Kühlwasser bis Siedetemperatur und gegenüber Meerwasser bis 50°C beständig sind.The alloys according to the invention can also be used as materials for objects are used, which compared to cooling water to boiling temperature and opposite Sea water are stable up to 50 ° C.

    Aufgrund der guten Verarbeitbarkeit und Korrosionsbeständigkeit werden die erfindungsgemäßen Legierungen als Werkstoff zur Herstellung von Bauteilen für den Einsatz in meerestechnischen Anlagen, in der Umwelttechnik, Raumfahrt, Reaktortechnik und in der chemischen Prozeßtechnik verwendet.Due to the good processability and corrosion resistance, the Alloys according to the invention as a material for the production of components for use in marine technology plants, in environmental technology, space travel, Reactor technology and used in chemical process technology.

    Die erfindungsgemäßen Legierungen sind in den verfügbaren Anlagen der Edelstahlerzeuger nach den bekannten Verfahren herstellbar und zeigen gute Verarbeitbarkeit.The alloys according to the invention are in the available plants of the stainless steel producers Can be produced by the known processes and show good processability.

    Das Korrosionsverhalten der erfindungsgemäßen Legierungen ist insgesamt hervorragend. Auf teure Legierungselemente wie Wolfram, Niob, Tantal kann ohne Einbuße der guten Eigenschaften verzichtet werden.The overall corrosion behavior of the alloys according to the invention is excellent. Expensive alloy elements such as tungsten, niobium, tantalum can be used without loss the good properties are waived.

    Die erfindungsgemäßen Legierungen bieten weiterhin den Vorteil einer ungewöhnlich universellen Korrosionsbeständigkeit. So werden die Legierungen auf der einen Apparateseite durch Säuren beaufschlagt und auf der anderen Apparateseite mit chloridhaltigen Kühl- und Heizmedien, wie z.B. in Wärmetauschern. Es werden also gleichzeitig zwei völlig verschiedene Korrosionsbeständigkeiten gefordert, nämlich Säurebeständigkeit einerseits und Loch-, Spalt- und Spannungsrißkorrosionsbeständigkeit andererseits.The alloys according to the invention also offer the advantage of an unusual universal corrosion resistance. So the alloys on the acid on one side of the apparatus and on the other side of the apparatus with chloride-containing cooling and heating media, e.g. in heat exchangers. It two completely different corrosion resistances are required at the same time, namely acid resistance on the one hand and pitting, crevice and stress corrosion cracking resistance on the other hand.

    Gleichzeitig wird das außergewöhnliche Beständigkeitsprofil mit einem vergleichsweise sparsamen Legierungshaushalt erzielt, das ansonsten nur mit teuren NiCrMo-Legierungen (s. Tabelle B) oder punktuell auf der Säureseite nur mit höchstlegierten, speziell entwickelten Werkstoffen für Spezialanwendungen erreicht wird (s. Tabelle C).At the same time, the exceptional durability profile compares with a Economical alloy budget achieved, otherwise only with expensive NiCrMo alloys (see Table B) or only on the acid side with highest alloyed, specially developed materials for special applications (see Table C).

    Zusätzliche Vorteile sind:

  • a) Schonung der Rohstoffressourcen an Ni und Mo im Vergleich zu den vorgenannten höchstlegierten Werkstoffen,
  • b) Kostenersparnisse bei der Legierungsherstellung durch geringe Gehalte teurer Legierungsbestandteile sowie bei der Apparateherstellung durch leichte Verarbeitbarkeit.
  • Additional advantages are:
  • a) Conservation of raw material resources in Ni and Mo in comparison to the aforementioned high-alloy materials,
  • b) Cost savings in the production of alloys due to the low content of expensive alloy components and in the manufacture of the apparatus due to easy processability.
  • Hinsichtlich der Verarbeitbarkeit zeichnen sich die erfindungsgemäßen Legierungen im Vergleich zu Werkstoffen aus dem Stand der Technik durch eine ungewöhnliche Ausscheidungsträgheit bei thermischer Belastung aus. Dieses Verhalten ist bei der Herstellung von Halbzeugen und deren Weiterverarbeitung, z.B. der Formgebung von Klöpperböden und dem Herstellen von Schweißverbindungen ausgesprochen positiv. Dies geht insbesondere aus den Zeit-Temperatur-Sensibilisierungs-Diagrammen (Abb. 1, 2) hervor. Bedeutungsvoll ist diese Werkstoffeigenschaft auch für das Verhalten von Schweißnähten, die keiner abschließenden Wärmebehandlung nach der Apparatefertigung unterzogen werden sowie für die Herstellung von Gußformteilen.The alloys according to the invention are notable for their processability compared to materials from the prior art by an unusual Elimination inertia from thermal stress. This behavior is in the manufacture of semi-finished products and their further processing, e.g. of the Forming of bobbin-case bottoms and making welded connections extremely positive. This is particularly evident from the time-temperature sensitization diagrams (Fig. 1, 2). This is significant Material properties also for the behavior of weld seams that none be subjected to final heat treatment after the apparatus has been manufactured and for the production of mold parts.

    Aus den in Beispiel 1 dargestellten mechanisch-technologischen Werten für die verschiedenen beanspruchten Legierungsvarianten geht ein weiterer ingenieurtechnischer Nutzen, der sich in Form eines Kostenvorteiles umsetzen läßt, hervor. Die im Vergleich zu Standardausteniten hohen Festigkeitskennwerte (Beispiel 1) lassen sich z.B. in der Offshore- und Reaktortechnik vorteilhaft in Bezug auf die Bauteildimensionierung umsetzen, d.h., es läßt sich ein Einsparpotential durch geringeren Materialverbrauch realisieren.From the mechanical-technological values for the Another claimed engineering variant goes for different claimed alloy variants Benefits that can be implemented in the form of a cost advantage. The compared to standard austenites, high strength values (example 1) e.g. in offshore and reactor technology advantageous in terms of component dimensioning implement, i.e. savings potential can be achieved by lower Realize material consumption.

    Beispiel 2 zeigt das Korrosionsverhalten in Schwefelsäure (98-99,1 % H2SO4) für verschiedene Temperaturen. Die erfindungsgemäßen Legierungen weisen bis 200°C eine ausgezeichnete Korrosionsbeständigkeit auf. Unter strömenden Bedingungen, wie sie in der betrieblichen Praxis dominieren, werden noch geringere Korrosionsgeschwindigkeiten ermittelt (Beispiel 12).Example 2 shows the corrosion behavior in sulfuric acid (98-99.1% H 2 SO 4 ) for different temperatures. The alloys according to the invention have excellent corrosion resistance up to 200 ° C. Under flowing conditions, which dominate in operational practice, even lower corrosion rates are determined (example 12).

    In alkalischen Medien, wie z.B. in 70 %iger Natronlauge bei 170°C zeigt die erfindungsgemäße Legierung gleichfalls eine hervorragende Korrosionsbeständigkeit. Wie aus Beispiel 3 ersichtlich, ist sie derjenigen der hochnickelhaltigen Werkstoffe Alloy 201, 400, 600 und 690 (17, 15, 16, 11) praktisch gleichwertig, während der Werkstoff 12 (Alloy G-30) hier stark abfällt. Auch bei niedrigeren Laugenkonzentrationen und -temperaturen heben sich die erfindungsgemäßen Legierungen von den bekannten positiv ab (Beispiel 13).In alkaline media, e.g. in 70% sodium hydroxide solution at 170 ° C Alloy according to the invention also has excellent corrosion resistance. As can be seen from Example 3, it is that of the high nickel ones Materials Alloy 201, 400, 600 and 690 (17, 15, 16, 11) practically equivalent, while the material 12 (Alloy G-30) drops sharply here. Even at lower ones Alkali concentrations and temperatures rise according to the invention Alloys from the known positive (Example 13).

    In Ethanol-Wassergemischen mit Zusatz von Phosphorsäure in Druckbehältern bei hohen Temperaturen haben sich die Kupfer-Nickel-Legierungen CuNi30MnlFe (18) gemäß dem Stand der Technik als sehr beständig erwiesen, beständiger als zahlreiche der erprobten sehr hochlegierten Stähle und Nickel-Chrom-Molybdän-Legierungen. Wie Beispiel 4 zeigt, weisen die erfindungsgemäßen Legierungen auch hier ein diesem Stand der Technik überlegenes Korrosionsverhalten auf. Im Vergleich zu dem Kupferwerkstoff ist als weiterer Vorteil der erfindungsgemäßen Legierungen deren höhere Festigkeit zu berücksichtigen, welche sie für die hier angesprochene Druckbehälteranwendung geeigneter macht.In ethanol-water mixtures with the addition of phosphoric acid in pressure vessels The copper-nickel alloys CuNi30MnlFe have high temperatures (18) proven to be very stable according to the prior art, more stable than numerous of the tried and tested high-alloy steels and nickel-chromium-molybdenum alloys. As shown in Example 4, the alloys according to the invention have here also shows a corrosion behavior superior to this state of the art. in the Comparison to the copper material is another advantage of the invention Alloys to take into account their higher strength which they have for the here makes addressed pressure vessel application more suitable.

    In Beispiel 5 werden die in siedender azeotroper Salpetersäure ermittelten Massenverlustraten miteinander verglichen. Man erkennt, daß die erfindungsgemäßen Legierungen einen nur sehr geringen Korrosionsabtrag erleiden. Dieser liegt niedriger als der der bekannten Werkstoffe AISI 310 L (4) und Alloy 28 (7). In überazeotropen Salpetersäuren ist das Korrosionsverhalten der erfindungsgemäßen Legierungen günstiger als das Verhalten von "HNO3-Speziallegierungen" (Beispiel 14).In Example 5, the mass loss rates determined in boiling azeotropic nitric acid are compared with one another. It can be seen that the alloys according to the invention suffer only very little corrosion removal. This is lower than that of the well-known materials AISI 310 L (4) and Alloy 28 (7). In super-azeotropic nitric acids, the corrosion behavior of the alloys according to the invention is more favorable than the behavior of "HNO 3 special alloys" (Example 14).

    In vielen Fällen ist für die Werkstoff-Anwendung nicht nur die Beständigkeit gegenüber gleichförmigem Korrosionsabtrag durch z.B. Salpetersäure ausschlaggebend, sondern es wird beispielsweise kühlwasserseitig zugleich auch eine hohe Beständigkeit gegen Lochkorrosion gefordert. Hier zeigen die erfindungsgemäßen Legierungen gemäß Beispiel 6 im sogenannten Eisen(III)chlorid-Test bei einer Lochkorrosionstemperatur von 60°C eine hohe Beständigkeit. Diese entspricht derjenigen der Legierung Alloy 28 (7). Die erfindungsgemäßen Legierungen zeigen jedoch in der Kombination ihrer Lochkorrosionsbeständigkeit mit der Beständigkeit gegenüber gleichförmigem Korrosionsabtrag in siedender azeotroper Salpetersäure als typischer oxidierender Säure eine deutliche Überlegenheit, was sich bei Verwendung von Anlagen zur Herstellung azeotroper Salpetersäure in dieser Kombination sofort nutzen läßt. Das gleiche gilt auch für die Legierung Alloy G-30 (12). Diese ist zwar in ihrer Lochkorrosionsbeständigkeit den erfindungsgemäßen Legierungen etwas überlegen, im Hinblick auf ihre Beständigkeit gegenüber gleichförmigem Korrosionsabtrag in siedender azeotroper Salpetersäure aber sehr schlecht. In neutralen chloridhaltigen Lösungen, wie Kühlwässern, kommt bei elektrochemischen Korrosionsversuchen die sehr gute Lochkorrosionsbeständigkeit der erfindungsgemäßen Legierungen zum Ausdruck (Beispiel 11).In many cases, durability is not the only thing that matters when it comes to materials against uniform corrosion removal by e.g. Crucial nitric acid, but it also becomes high on the cooling water side, for example Resistance to pitting corrosion required. Here show the invention Alloys according to Example 6 in the so-called iron (III) chloride test at one Pitting corrosion temperature of 60 ° C high resistance. This corresponds that of Alloy 28 alloy (7). The alloys according to the invention however show in the combination of their pitting corrosion resistance with the durability against uniform corrosion removal in boiling azeotropes Nitric acid as a typical oxidizing acid clearly superior to what when using equipment for the production of azeotropic nitric acid in this combination can be used immediately. The same applies to the alloy Alloy G-30 (12). Although this is the pitting corrosion resistance of the invention Alloys slightly superior in terms of their durability against uniform corrosion removal in boiling azeotropic nitric acid but very bad. In neutral chloride-containing solutions, such as cooling water, comes with electrochemical corrosion tests the very good pitting corrosion resistance of the alloys according to the invention (Example 11).

    Beispiel 7 zeigt das Korrosionsverhalten in Mischsäuren aus Schwefelsäure und Salpetersäure. Die erfindungsgemäße Legierung ist sowohl bei niedrigen wie auch bei hohen H2SO4-Gehalten den bekannten Legierungen überlegen.Example 7 shows the corrosion behavior in mixed acids from sulfuric acid and nitric acid. The alloy according to the invention is superior to the known alloys both at low and at high H 2 SO 4 contents.

    Beispiel 8 zeigt einen Vergleich der Massenverlustraten in Schwefelsäure-Flußsäurelösungen. Die erfindungsgemäßen Legierungen sind hoch in Chrom legierten Werkstoffen AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) und 1.4465 (5) gegenübergestellt. Man erkennt, daß die erfindungsgemäßen Legierungen einen geringeren Korrosionsabtrag aufweisen als die dem Stand der Technik entsprechenden Werkstoffe. Example 8 shows a comparison of the mass loss rates in sulfuric acid-hydrofluoric acid solutions. The alloys according to the invention are highly alloyed with chromium Materials AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) and 1.4465 (5) compared. It can be seen that the alloys according to the invention have one have less corrosion removal than that corresponding to the prior art Materials.

    Ein Vergleich der Massenverlustraten wurde auch in Phosphorsäure-Lösungen vorgenommen. Die erhaltenen Ergebnisse sind in Beispiel 9 wiedergegeben. Die erfindungsgemäßen Legierungen werden mit Werkstoffen, welche gemäß dem Stand der Technik speziell für den Umgang mit Phosphorsäure-Lösungen verwendet werden, verglichen. Während in Lösung 1 der dem Stand der Technik entsprechende Werkstoff Alloy 904 L (3) als ausreichend betrachtet werden kann, ist dies in Lösung 2 nicht der Fall. Die Korrosionsbeständigkeit der erfindungsgemäßen Legierungen ist von derjenigen des Werkstoffs Alloy G-30 (12) zwar nicht wesentlich verschieden, der geringe Korrosionsabtrag bei den erfindungsgemäßen Legierungen wird aber mit wesentlich weniger Aufwand an teuren Legierungszusätzen erreicht.A comparison of the mass loss rates was also made in phosphoric acid solutions performed. The results obtained are shown in Example 9. The Alloys according to the invention are made with materials which according to State of the art specifically used for handling phosphoric acid solutions are compared. While in solution 1 the corresponding to the prior art Material Alloy 904 L (3) can be considered sufficient, this is not the case in solution 2. The corrosion resistance of the invention Alloys are not of the Alloy G-30 (12) material significantly different, the low corrosion removal in the inventive Alloys are made with much less expensive alloy additives reached.

    Beispiel 10 zeigt das Korrosionsverhalten in Salpetersäure/Flußsäuregemischen. Die erfindungsgemäßen Legierungen sind dem Stand der Technik weit überlegen.Example 10 shows the corrosion behavior in nitric acid / hydrofluoric acid mixtures. The alloys according to the invention are far superior to the prior art.

    Beispiel 15 belegt das günstige Korrosionsverhalten der erfindungsgemäßen Legierungen im Vergleich zu bekannten Legierungen in Chromsäure.Example 15 demonstrates the favorable corrosion behavior of the inventive Alloys compared to known alloys in chromic acid.

    Die erfindungsgemäße Legierung 2' ist gemäß Abb. 1 und 2 auch nach einer bis zu 8 h gehenden thermischen Beanspruchung im Temperaturbereich zwischen 600 und 1000°C beständig gegen interkristalline Korrosion, und zwar sowohl im Fall einer Prüfung gemäß SEP 1877 II als auch im Huey-Test.The alloy 2 'according to the invention is according to Figs. 1 and 2 also after one to 8 hours of thermal stress in the temperature range between 600 and 1000 ° C resistant to intergranular corrosion, both in the case an examination according to SEP 1877 II as well as in the Huey test.

    Aufgrund der obigen Versuchsergebnisse wird deutlich, daß die erfindungsgemäßen Legierungen breit anwendbar sind, wobei sie bevorzugt in folgenden Bereichen eingesetzt werden können:
    Herstellung von Schwefelsäure, insbesondere im Bereich der Absorbtionen,
    Verarbeitung von Schwefelsäure, z.B. Sulfierung, Sulfonierung und Nitrierung sowie Konzentrierung,
    Herstellung von azeotroper Salpetersaure und Verarbeitung sowie Lagerung von Salpetersaure,
    Herstellung von Flußsäure aus Schwefelsäure und Flußspat sowie Verarbeitung der Flußsäure und Verfahren, bei denen Flußsäure als Katalysator eingesetzt wird,
    Anwendung von Flußsäure-, Schwefelsäure-, Salpetersäure-haltigen Ätzbädern, z.B. für Nickellegierungen und nichtrostende Stähle bzw. in der Galvanotechnik,
    Herstellung von Chromsäure aus Schwefelsäure oder Oleum und Natriumdichromat,
    Einsatz in Kühlwassersystemen und Anlagen zur Luftreinhaltung,
    Lagerung und Eindampfung von Alkalien, z.B. Herstellung von Natronlauge-Perlen,
    Verwendung heißer Alkalien bei chemischen Prozessen sowie als Elektrodenmaterialien in elektrolytischen Prozessen, ferner für Beizbäder in der Stahl- und Metallindustrie.
    On the basis of the above test results, it is clear that the alloys according to the invention are widely applicable, and they can preferably be used in the following areas:
    Production of sulfuric acid, especially in the area of absorption,
    Processing of sulfuric acid, eg sulfonation, sulfonation and nitration as well as concentration,
    Production of azeotropic nitric acid and processing and storage of nitric acid,
    Production of hydrofluoric acid from sulfuric acid and fluorspar, processing of hydrofluoric acid and processes using hydrofluoric acid as a catalyst
    Use of etching baths containing hydrofluoric acid, sulfuric acid, nitric acid, e.g. for nickel alloys and stainless steels or in electroplating,
    Production of chromic acid from sulfuric acid or oleum and sodium dichromate,
    Use in cooling water systems and systems for air pollution control,
    Storage and evaporation of alkalis, e.g. production of sodium hydroxide beads,
    Use of hot alkalis in chemical processes and as electrode materials in electrolytic processes, also for pickling baths in the steel and metal industry.

    Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.The invention is illustrated by the following examples.

    BeispieleExamples

    (erfindungsgemäße Werkstoffe)(materials according to the invention) Angaben in Gew.-%, Rest auf 100 Gew.-% EisenFigures in% by weight, remainder to 100% by weight iron CrCr NiNi MnMn SiSi PP SS MoMon CuCu AlAl CC. NN 2'2 ' 32,932.9 30,530.5 0,680.68 0,030.03 0,0040.004 0,0010.001 0,010.01 0,020.02 0,070.07 0,0110.011 0,3750.375 3'3 ' 34,4434.44 31,831.8 0,730.73 0,030.03 0,0040.004 0,0020.002 0,090.09 <0,01<0.01 0,0620.062 0,0110.011 0,490.49 4'4 ' 35,4635.46 31,6531.65 0,740.74 0,030.03 0,0040.004 0,0020.002 0,110.11 0,010.01 0,0990.099 0,0120.012 0,510.51 5'5 ' 36,436.4 31,731.7 0,730.73 0,040.04 0,0020.002 0,0020.002 0,10.1 0,010.01 0,0720.072 0,0120.012 0,580.58 6'6 ' 33,033.0 30,8530.85 0,700.70 0,290.29 0,0040.004 0,00170.0017 0,070.07 <0,01<0.01 0,090.09 0,00890.0089 0,420.42 7'7 ' 33,033.0 30,730.7 0,690.69 0,290.29 0,0020.002 0,00180.0018 1,51.5 0,620.62 0,0580.058 0,010.01 0,4060.406 (Vergleichswerkstoffe)(Reference materials) Nr.No. NameSurname W.-Nr. DINW.-Nr. DIN UNS-Bez.US code WerkstoffbezeichnungMaterial designation Hauptlegierungselemente Ni-Cr-Mo-Cu-Fe- andere (Typische Werte in %)Main alloy elements Ni-Cr-Mo-Cu-Fe- others (typical values in%) 11 AISI 304 LAISI 304 L. 1.43061.4306 S30403S30403 X-2-CrNi-19-11X-2-CrNi-19-11 11-1911-19 22nd AISI 316 TiAISI 316 Ti 1.45711.4571 S31635S31635 X-2-CrNiMo17-12-2X-2-CrNiMo17-12-2 10-18-2-66-0,6-Ti10-18-2-66-0,6-Ti 33rd Alloy 904 LAlloy 904 L. 1.45391.4539 N06904N06904 X-2-NiCrMoCu-25-20-5X-2-NiCrMoCu-25-20-5 25-21-4,8-1,5-4625-21-4.8-1.5-46 44th AISI 310 LAISI 310 L 1.43351.4335    -- X-2-CrNi-25-20X-2-CrNi-25-20 20-2520-25 55    -- 1.44651.4465    -- X-2-CrNiMo-25-25-2X-2-CrNiMo-25-25-2 25-25-225-25-2 66    -- 1.44661.4466    -- X-2-CrNiMo-25-22-2X-2-CrNiMo-25-22-2 22-25-222-25-2 77 Alloy-28Alloy-28 1.45631.4563 N06028N06028 X-1-NiCrMoCuX-1 NiCrMoCu 31-27-3,5-1,3-3531-27-3.5-1.3-35 88th Alloy-31Alloy-31 1.45621.4562 N06031N06031 X-1-NiCrMoCu-31-27-6X-1-NiCrMoCu-31-27-6 31-27-631-27-6 99 AllcorrAllcorr    -- N06110N06110 NiCr30Mo10FeNiCr30Mo10Fe 58-31-1058-31-10 1010th MC-AlloyMC Alloy    --    -- NiCr45MoNiCr45Mo 53-45-153-45-1 1111 Alloy 690Alloy 690 2.46422.4642 N06690N06690 NiCr29FeNiCr29Fe 61-29-0,5-961-29-0.5-9 1212th Alloy G-30Alloy G-30 2.46032.4603 N06030N06030 NiCr30FeMoNiCr30FeMo 30-30-6-2-17-5Co30-30-6-2-17-5Co 1313 Alloy C-22Alloy C-22 2.46022.4602 N06022N06022 NiCr22Mo14WNiCr22Mo14W 57-21-13-4-3,2W57-21-13-4-3.2W 1414 Alloy 59Alloy 59 2.46052.4605 N06059N06059 NiCr22Mo16NiCr22Mo16 51-22-1651-22-16 1515 Alloy 400Alloy 400 2.43602.4360 N04400N04400 NiCu30FeNiCu30Fe 63-30-263-30-2 1616 Alloy 600Alloy 600 2.48162.4816 N06600N06600 NiCrl5FeNiCrl5Fe 73-16-9-0,25Ti73-16-9-0.25Ti 1717th Alloy 201Alloy 201 2.40682.4068 N02201N02201 LC-Ni99,2LC-Ni99.2 > 99> 99 1818th    -- 2.08822.0882 N71500N71500 CuNi30MnlFeCuNi30MnlFe 3030th 1919th    -- 1.45051.4505    -- X-3-CrNiMoTi-18-20-2X-3-CrNiMoTi-18-20-2 20-18-220-18-2 2020th AISI 310AISI 310 1.48411.4841 S31000S31000 X-15-CrNiSi-25-20-2X-15-CrNiSi-25-20-2 20-2520-25 2121 Alloy G3Alloy G3 2.46192.4619 N06985N06985 NiCr22Mo7CuNiCr22Mo7Cu 48-23-7-248-23-7-2 2222 AISI 317AISI 317 1.44391.4439 S31726S31726 X-2-CrNiMoN-17-13-5X-2-CrNiMoN-17-13-5 13-17-513-17-5

    Die Durchführung der Korrosionsversuche wurde nach folgenden, für den Fachmann bekannten Angaben durchgeführt:

  • a) Ermittlung von Abtragsraten/Korrosionsgeschwindigkeiten:
    Zur Untersuchung des Korrosionsverhaltens der Werkstoffe in diversen Säuren, Mischsäuren und Alkalien wurden folgende DIN-Normen berücksichtigt:
  • DIN 50905, T1: Korrosion der Metalle;
    Korrosionsuntersuchungen: Grundsätze, Ausgabe Januar 1987
  • DIN 50905, T2: Korrosion der Metalle;
    Korrosionsuntersuchungen: Korrosiongrößen bei gleichmäßiger Flächenkorrosion, Ausgabe Janauar 1987,
  • DIN 50905, T3: Korrosion der Metalle;
    Korrosionuntersuchungen: Korrosionsgrößen bei ungleichmäßiger und örtlicher Korrosion ohne mechanische Belastung, Ausgabe Januar 1987
  • DIN 50905, T4: Korrosion der Metalle;
    Korrosionsuntersuchungen: Durchführung von chemischen Korrosionsversuchen ohne mechanische Belastungen in Flüßigkeiten im Laboratorium, Ausgabe Januar 1987
  • ISO/DIS 8407: Metals and alloys - Procedure for removal of corrosion products from test specimens, submitted 1985-11-28 by ISO/TC 156
  • b) Ermittlung der Loch- und Spaltkorrosionsbeständigkeit:
    Zur Ermittlung der kritischen Lochfraßtemperatur (CPT) bzw. Spaltkorrosionstemperatur (CCT) wurden Vorschriften in Anlehnung an amerikanische Prüfvorschriften angewandt:
  • 1. Treseder, R.S.; MTI Manual No. 3, Guideline information on newer Wrought iron- and nickel base corrosion resistent alloys, The Materials Technology Institute of the Chemical Process Industry, Columbus 1980 Appendix B-Methode MTI-2
  • 2. ASTM G48: Test for pitting and crevice corrosion resistance of stainless steels and related alloy by the use of ferric chloride solution.
  • c) Zum Vergleich der Lockkorrosionsbeständigkeit (Ranking) verschiedener nichtrostender Stähle mittels elektrochemischer Methoden wird seit geraumer Zeit die Technik des zyklischen potentiodynamischen Potentialvorschubs eingesetzt (Wilde, B.E.; Corrosion 28 (1972), 283-291; Kuron, D., Gräfen, H.; Z. Werkstofftechn. 8 182-191 (1977)). Hierbei werden folgende Korrosionspotentiale ermittelt:
    • freies Korrosionspotential (UK)
      [Open circuit potential (Ecorr)]
    • dynamisches Lochkorrosionspotential (ULD)
      [Pitting potential (Ep)]
    • Lochpassivierungspotential (ULP)
      [pit repassivation potential (Epp)]
    Bei der Durchführung der elektrochemischen Versuche werden folgende Prüfnormen berücksichtigt:
    ASTM G3-74 (Reaproved 1981)
    ASTM G5-87
    Als Unterscheidungskriterium wird nach den vorgenannten Methoden die sogenannte "kritische Lochfraßtemperatur" (CPT) [Lau, P., Bernhardsson, S.; Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels, Corrosion 85, Paper No. 64, Boston (1985); Qvarfort, R.; Critical Temperature measurements of stainless Steels with an improved Elektrochemical Method, Corrosion Sci., No. 8, 987-993, (1989)] ermittelt, bei der ULP <UK ist, d.h. nicht repassivierbarer Lochfraß auftritt. Die Potentialvorschubgeschwindigkeit dE/dT beträgt 180 mV·h-1.
  • The corrosion tests were carried out according to the following information known to the person skilled in the art:
  • a) Determination of removal rates / corrosion rates:
    The following DIN standards were taken into account to investigate the corrosion behavior of the materials in various acids, mixed acids and alkalis:
  • DIN 50905, T1 : corrosion of metals;
    Corrosion tests: principles, January 1987 edition
  • DIN 50905, T2 : corrosion of metals;
    Corrosion investigations: Corrosion sizes with uniform surface corrosion, edition Janauar 1987,
  • DIN 50905, T3 : corrosion of metals;
    Corrosion tests: Corrosion sizes in the event of uneven and local corrosion without mechanical stress, January 1987 edition
  • DIN 50905, T4 : corrosion of metals;
    Corrosion tests: Conducting chemical corrosion tests without mechanical stress in liquids in the laboratory, January 1987 edition
  • ISO / DIS 8407: Metals and alloys - Procedure for removal of corrosion products from test specimens, submitted 1985-11-28 by ISO / TC 156
  • b) Determination of pitting and crevice corrosion resistance:
    To determine the critical pitting temperature (CPT) or crevice corrosion temperature (CCT), regulations based on American test regulations were applied:
  • 1. Treseder, RS; MTI Manual No. 3, Guideline information on newer Wrought iron- and nickel base corrosion resistant alloys, The Materials Technology Institute of the Chemical Process Industry, Columbus 1980 Appendix B-Method MTI-2
  • 2. ASTM G48: Test for pitting and crevice corrosion resistance of stainless steels and related alloy by the use of ferric chloride solution.
  • c) The technique of cyclic potentiodynamic potential feed has been used for some time to compare the corrosion resistance (ranking) of various stainless steels using electrochemical methods (Wilde, BE; Corrosion 28 (1972), 283-291; Kuron, D., Gräfen, H. ; Z. Werkstofftechn. 8 182-191 (1977)). The following corrosion potentials are determined:
    • free corrosion potential (U K )
      [Open circuit potential (E corr )]
    • dynamic pitting corrosion potential (U LD )
      [Pitting potential (E p )]
    • Hole passivation potential (U LP )
      [pit repassivation potential (E pp )]
    The following test standards are taken into account when carrying out the electrochemical tests:
    ASTM G3-74 (Reaproved 1981)
    ASTM G5-87
    The so-called "critical pitting temperature" (CPT) [Lau, P., Bernhardsson, S .; Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels, Corrosion 85, Paper No. 64, Boston (1985); Qvarfort, R .; Critical Temperature measurements of stainless Steels with an improved Elektrochemical Method, Corrosion Sci., No. 8, 987-993, (1989)], in which U LP <U K , ie non-repassivable pitting occurs. The potential feed rate dE / dT is 180 mV · h -1 .
  • In einem Vakuuminduktionsofen wurden die Stähle der Tabelle 1 im 100 kg Maßstab aus an sich bekannten Rohstoffen erschmolzen und zu Blöcken vergossen. Die Blöcke wurden zu 5 (12) mm dicken Blechen umgeformt. Die abschließende Lösungsglühung erfolgte bei mindestens 1120°C mit anschließender Abschrekkung. Es lag jeweils ein vollaustenitisches, ausscheidungsfreies, homogenes Gefüge vor.The steels of Table 1 were tested on a 100 kg scale in a vacuum induction furnace melted from known raw materials and cast into blocks. The blocks were formed into 5 (12) mm thick sheets. The final one Solution annealing was carried out at at least 1120 ° C. with subsequent quenching. There was a fully austenitic, excretion-free, homogeneous structure in front.

    Beispiel 1example 1

    Mechanische Eigenschaften der Stähle gemäß Tabelle 1 und typische Vergleichswerkstoffe:Mechanical properties of the steels according to Table 1 and typical comparison materials:

    Ergebnis der mechanischen Prüfung: Werkstoff Dicke in [mm] Dehnungsgrenzen Zugfestigkeit Bruchdehnung Einschnürung Brinellhärte Kerbschlagarbeit RP0,2 in [N/mm2] RP1,0 in [N/mm2] Rm in [N/mm2] A5 in [%] Z in [%] HB AV in [J] 2' 5 504 516 777 53 - 164 - 2' 12 406 435 799 - - 173 >300 6' 5 389 426 803 54 50 216 - 6' 12 367 437 768 56 58 183 >300 7' 5 395 426 789 59 48 220 - 7' 12 374 422 756 58 58 179 >300 22 - 285 - 580-800 35 - - >105 2 - 210 - 500-730 35 - - >85 Result of the mechanical test: material Thickness in [mm] Strain Limits tensile strenght Elongation at break Constriction Brinell hardness Impact work R P0.2 in [N / mm 2 ] R P1.0 in [N / mm 2 ] R m in [N / mm 2 ] A 5 in [%] Z in [%] HB A V in [J] 2 ' 5 504 516 777 53 - 164 - 2 ' 12th 406 435 799 - - 173 > 300 6 ' 5 389 426 803 54 50 216 - 6 ' 12th 367 437 768 56 58 183 > 300 7 ' 5 395 426 789 59 48 220 - 7 ' 12th 374 422 756 58 58 179 > 300 22 - 285 - 580-800 35 - - > 105 2nd - 210 - 500-730 35 - - > 85

    Die mechanischen Eigenschaften der Legierungen deuten auf eine gute Kaltumformbarkeit. The mechanical properties of the alloys indicate good cold formability.

    Beispiel 2Example 2

    Laborkorrosionsversuche in ruhender Schwefelsäure (99,1 Gew.-% H2SO4) bei verschiedenen Temperaturen und nach 7 Tagen Prüfzeit (Blechdicke 4,5 mm): Abtrag in [mm/a] Werkstoff 100°C 125°C 150°C 175°C 200°C 2' 0,25 0,43 0,14 0,16 0,12 3' 0,13 0,62 0,15 0,06 0,03 4' 0,13 0,48 0,06 0,06 0,03 5' 0,17 0,45 0,05 0,11 0,16 6' 0,16 0,63 0,04 0,01 0,02 7' 0,06 - - 0,03 0,05 4 0,34 - 0,15 0,05 0,04 20 0,35 - 0,04 0,09 0,05 Laboratory corrosion tests in quiescent sulfuric acid (99.1% by weight H 2 SO 4 ) at various temperatures and after a test period of 7 days (sheet thickness 4.5 mm): Removal in [mm / a] material 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 2 ' 0.25 0.43 0.14 0.16 0.12 3 ' 0.13 0.62 0.15 0.06 0.03 4 ' 0.13 0.48 0.06 0.06 0.03 5 ' 0.17 0.45 0.05 0.11 0.16 6 ' 0.16 0.63 0.04 0.01 0.02 7 ' 0.06 - - 0.03 0.05 4th 0.34 - 0.15 0.05 0.04 20th 0.35 - 0.04 0.09 0.05

    Korrosionsversuche in ruhender Schwefelsäure (98 Gew.-% H2SO4 und 98,5 Gew.-% H2SO4) bei verschiedenen Temperaturen und nach 7 Tagen Prüfzeit (Blechdicke 4,5 mm): Abtrag in [mm/a] 98 % H2SO4 98,5 % H2SO4 Werkstoff 100°C 125°C 150°C 175°C 200°C 100°C 125°C 150°C 175°C 200°C 2' 0,25 0,54 0,22 0,21 0,03 0,09 0,06 0,11 0,01 0,03 3' 0,22 0,06 0,32 0,21 0,09 0,14 0,13 0,10 0,21 0,04 4' 0,18 0,07 0,35 0,20 0,09 0,14 0,11 0,18 0,08 0,12 5' 0,20 0,42 0,07 0,16 0,08 0,07 0,11 0,10 0,53 0,06 6' 0,21 0,04 0,19 0,17 0,08 0,08 0,09 0,07 0,01 0,03 7' 0,04 0,07 0,08 0,16 0,34 0,11 0,11 0,14 0,32 0,09 20 0,38 0,43 0,98 0,38 0,07 0,11 0,06 0,77 0,21 0,81 Corrosion tests in quiescent sulfuric acid (98% by weight H 2 SO 4 and 98.5% by weight H 2 SO 4 ) at different temperatures and after a test period of 7 days (sheet thickness 4.5 mm): Removal in [mm / a] 98% H 2 SO 4 98.5% H 2 SO 4 material 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 2 ' 0.25 0.54 0.22 0.21 0.03 0.09 0.06 0.11 0.01 0.03 3 ' 0.22 0.06 0.32 0.21 0.09 0.14 0.13 0.10 0.21 0.04 4 ' 0.18 0.07 0.35 0.20 0.09 0.14 0.11 0.18 0.08 0.12 5 ' 0.20 0.42 0.07 0.16 0.08 0.07 0.11 0.10 0.53 0.06 6 ' 0.21 0.04 0.19 0.17 0.08 0.08 0.09 0.07 0.01 0.03 7 ' 0.04 0.07 0.08 0.16 0.34 0.11 0.11 0.14 0.32 0.09 20th 0.38 0.43 0.98 0.38 0.07 0.11 0.06 0.77 0.21 0.81

    Beispiel 3Example 3

    Laborkorrosionsversuche in Natronlauge bei verschiedenen Temperaturen und Konzentrationen nach 14 Tagen Prüfzeit: Abtrag in [mm/a] Gew.-% NaO 130°C 160°C 170°C 250°C 50 60 70 60 80 70 80 90 2' 0,01 0,06 0,05 0,19 0,19 0,03 0,13 0,85 Laboratory corrosion tests in sodium hydroxide solution at various temperatures and concentrations after a test period of 14 days: Removal in [mm / a] % By weight NaO 130 ° C 160 ° C 170 ° C 250 ° C 50 60 70 60 80 70 80 90 2 ' 0.01 0.06 0.05 0.19 0.19 0.03 0.13 0.85

    Vergleichswerkstoffe in 70 % NaOH bei 170°C Nr. 17 15 16 13 14 12 11 Abtrag [mm/a] 0,09 0,03 0,02 0,51 0,48 0,26 0,03 Comparative materials in 70% NaOH at 170 ° C No. 17th 15 16 13 14 12th 11 Removal [mm / a] 0.09 0.03 0.02 0.51 0.48 0.26 0.03

    Die Werkstoffe 17, 15, 16 sind typische Werkstoffe für diese AnwendungThe materials 17, 15, 16 are typical materials for this application

    Beispiel 4Example 4

    Versuche im Autoklaven mit einem Ethanol-Wassergemisch mit 7,5 Gew.-% Phosphorsäure bei 280°C und 7 Tagen Prüfzeit:
    Der erfindungsgemäße Werkstoff Nr. 2' weist eine Abtragsrate von 0,2 mm/a auf.
    Autoclave tests with an ethanol-water mixture with 7.5% by weight phosphoric acid at 280 ° C and 7 days test time:
    Material no. 2 'according to the invention has a removal rate of 0.2 mm / a.

    Vergleichswerkstoffe unter gleichen Bedingungen: Nr. 2 7 8 13 12 14 15 18 Abtrag [mm/a] 1,77 0,44 0,44 0,53 0,63 0,41 0,41 0,26 Comparative materials under the same conditions: No. 2nd 7 8th 13 12th 14 15 18th Removal [mm / a] 1.77 0.44 0.44 0.53 0.63 0.41 0.41 0.26

    Beispiel 5Example 5

    Korrosionsverhalten in siedender azeotroper Salpetersäure im Huey-Test-Destillationsverfahren: Nr. Massenverlustraten in [g/m2•h] 48 h (5 Zyklen) 48 h (10 Zyklen) 48 h (15 Zyklen) 2' 0,04 0,04 0,04 3' 0,04 0,04 0,04 4' 0,04 0,04 0,04 5' 0,03 0,04 0,04 6' 0,04 0,04 0,04 7' 0,04 0,04 0,04 1 0,12 0,12 0,12 4 0,06 0,07 0,07 5 0,09 0,09 0,09 7 0,07 0,07 0,07 8 0,09 0,10 0,10 12 0,14 0,13 0,13 Corrosion behavior in boiling azeotropic nitric acid in the Huey test distillation process: No. Mass loss rates in [g / m 2 • h] 48 h (5 cycles) 48 h (10 cycles) 48 h (15 cycles) 2 ' 0.04 0.04 0.04 3 ' 0.04 0.04 0.04 4 ' 0.04 0.04 0.04 5 ' 0.03 0.04 0.04 6 ' 0.04 0.04 0.04 7 ' 0.04 0.04 0.04 1 0.12 0.12 0.12 4th 0.06 0.07 0.07 5 0.09 0.09 0.09 7 0.07 0.07 0.07 8th 0.09 0.10 0.10 12th 0.14 0.13 0.13

    Beispiel 6Example 6

    Bestimmung der Lochfraß- und Spaltkorrosionstemperaturen im FeCl3-Test bei 10 Gew.-% FeCl3•6H2O: Nr CPT [°C] CCT [°C] 2' 60 40 3' 85 - 4' 85 - 5' 85 - 6' 70 35 7' 85 40 2 10 -2,5 3 45 25 4 25 ≤ 20 5 40 25 7 60 35 8 85 60 9 >90 > 90 10 50 ≤ 20 11 45 ≤ 20 12 75 50 Determination of pitting and crevice corrosion temperatures in the FeCl 3 test at 10% by weight FeCl 3 • 6H 2 O: No CPT [° C] CCT [° C] 2 ' 60 40 3 ' 85 - 4 ' 85 - 5 ' 85 - 6 ' 70 35 7 ' 85 40 2nd 10th -2.5 3rd 45 25th 4th 25th ≤ 20 5 40 25th 7 60 35 8th 85 60 9 > 90 > 90 10th 50 ≤ 20 11 45 ≤ 20 12th 75 50

    Beispiel 7Example 7

    Korrosionsverhalten in Mischungen aus Schwefelsäuren unterschiedlicher Konzentration bei verschiedenen Salpetersäuregehalten bei 100°C; nach 7 Tagen Prüfzeit: Abtrag in [mm/a] Gew.-% H2SO4 66,5 76 80 50 Gew.-% HNO3 0 3 5 0 3 5 5 5 Werkstoff Nr. 2' > 50 0,08 0,08 1,18 0,15 0,18 0,10 0,03 2 > 50 0,54 0,53 > 50 0,60 0,80 0,85 0,28 7 35,43 0,08 0,09 21,55 0,13 0,13 0,24 0,05 8 > 50 0,07 0,09 13,85 0,11 0,12 0,21 0,05 12 49,4 0,10 0,08 9,06 0,10 0,11 0,17 0,05 Corrosion behavior in mixtures of sulfuric acids of different concentrations with different nitric acid contents at 100 ° C; after 7 days of testing: Removal in [mm / a] % By weight H 2 SO 4 66.5 76 80 50 % By weight HNO 3 0 3rd 5 0 3rd 5 5 5 Material number. 2 ' > 50 0.08 0.08 1.18 0.15 0.18 0.10 0.03 2nd > 50 0.54 0.53 > 50 0.60 0.80 0.85 0.28 7 35.43 0.08 0.09 21.55 0.13 0.13 0.24 0.05 8th > 50 0.07 0.09 13.85 0.11 0.12 0.21 0.05 12th 49.4 0.10 0.08 9.06 0.10 0.11 0.17 0.05

    Beispiel 8Example 8

    Korrosionsversuche in Schwefelsäure-Flußsäurelösungen:

    Lösung 1:
    92,4 % H2SO4 / 7,6 % H20 / Spuren HF ; T=150°C
    Lösung 2:
    91,2 % H2SO4 / 7,4% H20 / 1,4 % HF; T=140°C
    Lösung 3:
    90-94 % H2SO4 / 4-7 % H20 / 2-3 % HF; T=140°C
    Abtrag in [mm/a] Prüfzeit Werkstoff Lösung 1 [14 d] Lösung 2 [14 d] Lösung 3 [89d] 2' 0,15 0,02 0,01 19 0,84 0,17 0,31 4 0,26 0,10 0,07 5 0,33 0,05 0,05 3 0,39 0,09 0,14 7 0,51 0,05 0,04 8 0,71 0,06 0,08 13 0,60 0,14 0,09 12 1,01 0,06 0,04 Corrosion tests in sulfuric acid-hydrofluoric acid solutions:
    Solution 1:
    92.4% H 2 SO 4 / 7.6% H 2 0 / trace HF; T = 150 ° C
    Solution 2:
    91.2% H 2 SO 4 / 7.4% H 2 0 / 1.4% HF; T = 140 ° C
    Solution 3:
    90-94% H 2 SO 4 / 4-7% H 2 0 / 2-3% HF; T = 140 ° C
    Removal in [mm / a] Test time material Solution 1 [14 d] Solution 2 [14 d] Solution 3 [89d] 2 ' 0.15 0.02 0.01 19th 0.84 0.17 0.31 4th 0.26 0.10 0.07 5 0.33 0.05 0.05 3rd 0.39 0.09 0.14 7 0.51 0.05 0.04 8th 0.71 0.06 0.08 13 0.60 0.14 0.09 12th 1.01 0.06 0.04

    Beispiel 9Example 9

    Abtrag [mm/a] in wäßrigen Phosphorsäure-LösungenRemoval [mm / a] in aqueous phosphoric acid solutions Lösung 1:Solution 1: 75 % gew.-%ige H3PO4; 80°C, 14 Tage75% by weight H 3 PO 4 ; 80 ° C, 14 days Lösung 2:Solution 2: 75 % gew.-%ige H3PO4, 0,63 Gew.-% F-, 0,3 Gew.-% Fe3+, 14 mmol/l Cl-; 80°C, 14 Tage75% by weight H 3 PO 4 , 0.63% by weight F - , 0.3% by weight Fe 3+ , 14 mmol / l Cl - ; 80 ° C, 14 days Werkstoff-Nr.Material number. Lösung 1Solution 1 Lösung 2Solution 2 2'2 ' <0,01<0.01 0,180.18 33rd 0,070.07 1,701.70 77 0,010.01 0,420.42 1212th 0,010.01 0,190.19

    Beispiel 10Example 10

    Korrosionsverhalten in Salpetersäure/Flußsäuregemischen; Massenverlustraten in [g/m2h]; T = 90°C Werkstoff Nr. Lsg.1 Lsg.2 Lsg.3 Lsg.4 Lsg.5 Lsg.6 Lsg.7 2' <0,01 0,27 0,96 0,31 0,63 1,63 3,05 6' <0,01 0,28 1,45 0,29 0,68 1,64 3,00 7' <0,01 0,24 1,19 0,27 0,67 1,66 3,08 7 <0,01 5,74 20,74 0,96 1,78 3,38 5,46 21 <0,01 1,11 5,23 1,51 3,61 8,10 11,63 11 <0,01 0,61 6,34 1,46 1,97 4,69 7,42 12 <0,01 0,28 1,21 0,49 1,45 2,39 4,49 Lösung 1: 2 mol/l HNO3 Lösung 2: 2 mol/l HNO3 + 0,5 mol/l HF Lösung 3: 2 mol/l HNO3 + 2 mol/l HF Lösung 4: 0,25 mol/l HF + 6 mol/l HNO3 Lösung 5: 0,25 mol/l HF + 9 mol/l HNO3 Lösung 6: 0,25 mol/l HF + 12 mol/l HNO3 Lösung 7: 0,25 mol/l HF + 15 mol/l HNO3. Corrosion behavior in nitric acid / hydrofluoric acid mixtures; Mass loss rates in [g / m 2 h]; T = 90 ° C Material number. Solution 1 Solution 2 Sol.3 Sol. 4 Solution 5 Solution 6 Solution 7 2 ' <0.01 0.27 0.96 0.31 0.63 1.63 3.05 6 ' <0.01 0.28 1.45 0.29 0.68 1.64 3.00 7 ' <0.01 0.24 1.19 0.27 0.67 1.66 3.08 7 <0.01 5.74 20.74 0.96 1.78 3.38 5.46 21 <0.01 1.11 5.23 1.51 3.61 8.10 11.63 11 <0.01 0.61 6.34 1.46 1.97 4.69 7.42 12th <0.01 0.28 1.21 0.49 1.45 2.39 4.49 Solution 1: 2 mol / l HNO 3 Solution 2: 2 mol / l HNO 3 + 0.5 mol / l HF Solution 3: 2 mol / l HNO 3 + 2 mol / l HF Solution 4: 0.25 mol / l HF + 6 mol / l HNO 3 Solution 5: 0.25 mol / l HF + 9 mol / l HNO 3 Solution 6: 0.25 mol / l HF + 12 mol / l HNO 3 Solution 7: 0.25 mol / l HF + 15 mol / l HNO 3 .

    Beispiel 11Example 11

    Bestimmung des Lochfraßverhaltens durch potentiodynamische Stromdichtepotentialkurven als Funktion des Lochkorrosionspotentials [ULP]; Anforderung: ULP < UR (freies Korrosionspotential)
    Lochfraßkorrosionstemperaturen in 1,0 n NaCl-Lösung, Potentialvorschubgeschwindigkeit

    Figure 00290001
    Nr. CPT [°C] 2' 80 6' 90 7' >95 2 45 3 75 4 60 5 60 8 >95 Determination of pitting behavior by potentiodynamic current density potential curves as a function of pitting corrosion potential [U LP ]; Requirement: U LP <U R (free corrosion potential)
    Pitting corrosion temperatures in 1.0 N NaCl solution, potential feed rate
    Figure 00290001
    No. CPT [° C] 2 ' 80 6 ' 90 7 ' > 95 2nd 45 3rd 75 4th 60 5 60 8th > 95

    Beispiel 12Example 12

    Korrosionsversuche unter Betriebsbedingungen in Schwefelsäure (96-98,5 Gew.-%) bei T = 135 - 140°C Werkstoff Abtrag in [mm · a-1] nach [14 d] nach [34 d] nach [50 d] 2' 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 6' 0,01 0,01 <0,01 0,01 <0,01 <0,01 7' 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 20 0,01 <0,01 <0,01 0,01 <0,01 <0,01 Corrosion tests under operating conditions in sulfuric acid (96-98.5% by weight) at T = 135 - 140 ° C material Removal in [mm · a -1 ] after [14 d] after [34 d] after [50 d] 2 ' 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 6 ' 0.01 0.01 <0.01 0.01 <0.01 <0.01 7 ' 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 20th 0.01 <0.01 <0.01 0.01 <0.01 <0.01

    Beispiel 13Example 13

    Korrosionsverhalten in Natriumhydroxidlösungen (A = 20 Gew.-% NaOH und B = 50 Gew.-% NaOH) bei verschiedenen Temperaturen nach 28 Tagen

    Figure 00310001
    Corrosion behavior in sodium hydroxide solutions (A = 20% by weight NaOH and B = 50% by weight NaOH) at different temperatures after 28 days
    Figure 00310001

    Beispiel 14Example 14

    Korrosionsverhalten in Salpetersäuren verschiedener Konzentrationen bei unterschiedlichen Temperaturen; Massenverlustraten in [g/m2h]

    Lösung 1 =
    75 Gew.-%ige Salpetersäure
    Lösung 2 =
    80 Gew.-%ige Salpetersäure
    Lösung 3 =
    85 Gew.-%ige Salpetersäure
    Lösung 4 =
    98,5 Gew.-%ige Salpetersäure
    Figure 00320001
    Corrosion behavior in nitric acids of different concentrations at different temperatures; Mass loss rates in [g / m 2 h]
    Solution 1 =
    75% by weight nitric acid
    Solution 2 =
    80% by weight nitric acid
    Solution 3 =
    85% by weight nitric acid
    Solution 4 =
    98.5% by weight nitric acid
    Figure 00320001

    Beispiel 15Example 15

    Korrosionsverhalten in sauren chromathaltigen Lösungen; Abtrag in [mm/a]
    Testdauer: 10 Tage; Lösung 1 = 20 Gew.-%ige Chromatlösung, Lösung 2 = 40 Gew.-ige Chromatlösung

    Figure 00330001
    Figure 00340001
    Figure 00350001
    Werkstoffe für Spezialanwendungen Werkstoff W.-Nr. Anwendung Literatur 1.4361 azeotrope, hochkonzentrierte HNO3 Horn, E.-M.; Kohl, H.: Werkstoffe und Korrosion 37, 57-69 (1986) 1.4575 konzentrierte Schwefelsäure, ≥ 94 % EP-A 361 554 1.4335 konzentrierte Schwefelsäure DE-A 3 508 532 Sandvik SX konzentrierte Schwefelsäure GB 15 34 926 1.4361 H2SO4-Herstellung US 45 43 244 1.4390 konzentrierte HNO3 konzentrierte Schwefelsäure EP-A 516 955
    Figure 00370001
    Figure 00370002
    Abb. 1 und 2: Zeit-Temperatur-Sensibilisierungs-Diagramm der Legierung 2'; Flächenbezogene Massenverlustrat
    Figure 00370003
    Corrosion behavior in acidic chromate-containing solutions; Removal in [mm / a]
    Test duration: 10 days; Solution 1 = 20% by weight chromate solution, Solution 2 = 40% by weight chromate solution
    Figure 00330001
    Figure 00340001
    Figure 00350001
    Materials for special applications Material mat.no. application literature 1.4361 azeotropic, highly concentrated ENT 3 Horn, E.-M .; Kohl, H .: Materials and Corrosion 37, 57-69 (1986) 1.4575 concentrated sulfuric acid, ≥ 94% EP-A 361 554 1.4335 concentrated sulfuric acid DE-A 3 508 532 Sandvik SX concentrated sulfuric acid GB 15 34 926 1.4361 H 2 SO 4 production US 45 43 244 1.4390 concentrated HNO 3 concentrated sulfuric acid EP-A 516 955
    Figure 00370001
    Figure 00370002
    Fig. 1 and 2: Time-temperature sensitization diagram of alloy 2 '; Area-related mass loss rate
    Figure 00370003

    Claims (24)

    1. Austenitic, corrosion resistant chromium, nickel, iron alloys of the following composition:
      32-37 wt.% chromium
      28-36 wt.% nickel
      max. 2 wt.% manganese
      max. 0.5 wt.% silicon
      max. 0.1 wt.% aluminium
      max. 0.03 wt.% carbon
      max. 0.025 wt.% phosphorus
      max. 0.01 wt.% sulphur
      max. 2 wt.% molybdenum
      max. 1 wt.% copper
      0.3-0.7 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    2. Austenitic alloys according to claim 1 of the following composition:
      32-37 wt.% chromium
      28-36 wt.% nickel
      max. 2 wt.% manganese
      max. 0.5 wt.% silicon
      max. 0.1 wt.% aluminium
      max. 0.03 wt.% carbon
      max. 0.025 wt.% phosphorus
      max. 0.01 wt.% sulphur
      0.5-2 wt.% molybdenum
      0.3-1 wt.% copper
      0.3-0.7 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    3. Austenitic alloys according to claim 1 of the following composition:
      32-35 wt.% chromium
      28-36 wt.% nickel
      max. 2 wt.% manganese
      max. 0.5 wt.% silicon
      max. 0.1 wt.% aluminium
      max. 0.03 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.025 wt.% phosphorus
      max. 2 wt.% molybdenum
      max. 1 wt.% copper
      0.4-0.6 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    4. Austenitic alloys according to claim 1 of the following composition:
      35-37 wt.% chromium
      28-36 wt.% nickel
      max. 2 wt.% manganese
      max. 0.5 wt.% silicon
      max. 0.1 wt.% aluminium
      max. 0.03 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.025 wt.% phosphorus
      max. 2 wt.% molybdenum
      max. 1 wt.% copper
      0.4-0.7 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    5. Austenitic alloys according to claim 1 of the following composition:
      32.5-33.5 wt.% chromium
      30.0-32.0 wt.% nickel
      0.5-1.0 wt.% manganese
      0.01-0.5 wt.% silicon
      0.02-0.1 wt.% aluminium
      max. 0.02 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.02 wt.% phosphorus
      0.5-2 wt.% molybdenum
      0.3-1 wt.% copper
      0.35-0.5 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    6. Austenitic alloys according to claim 1 of the following composition:
      32.5-33.5 wt.% chromium
      30.0-32.0 wt.% nickel
      0.5-1.0 wt.% manganese
      0.01-0.5 wt.% silicon
      0.02-0.1 wt.% aluminium
      max. 0.02 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.02 wt.% phosphorus
      max. 0.5 wt.% molybdenum
      max. 0.3 wt.% copper
      0.35-0.5 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    7. Austenitic alloys according to claim 1 of the following composition:
      34.0-35.0 wt.% chromium
      30-32 wt.% nickel
      0.5-1.0 wt.% manganese
      0.01-0.5 wt.% silicon
      0.02-0.1 wt.% aluminium
      max. 0.02 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.02 wt.% phosphorus
      max. 0.5 wt.% molybdenum
      max. 0.3 wt.% copper
      0.4-0.6 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    8. Austenitic alloys according to claim 1 of the following composition:
      35.0-36.0 wt.% chromium
      30-32 wt.% nickel
      0.5-1.0 wt.% manganese
      0.01-0.5 wt.% silicon
      0.02-0.1 wt.% aluminium
      max. 0.02 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.02 wt.% phosphorus
      max. 0.5 wt.% molybdenum
      max. 0.3 wt.% copper
      0.4-0.6 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    9. Austenitic alloys according to claim 1 of the following composition:
      36.0-37.0 wt.% chromium
      30-32 wt.% nickel
      0.5-1.0 wt.% manganese
      0.01-0.5 wt.% silicon
      0.02-0.1 wt.% aluminium
      max. 0.02 wt.% carbon
      max. 0.01 wt.% sulphur
      max. 0.02 wt.% phosphorus
      max. 0.5 wt.% molybdenum
      max. 0.3 wt.% copper
      0.4-0.7 wt.% nitrogen
      together with conventional production-determined admixtures and impurities and the remainder as iron.
    10. Alloys according to claims 3, 5, 6 and 7 as wrought materials for the production of sheet, strip, bar, wire, forged articles, tubes.
    11. Alloys according to claims 3 to 9 as materials for the production of castings.
    12. Use of the alloys according to claims 1-9 as a material for articles which are resistant to sodium hydroxide solution or potassium hydroxide solution of a concentration from 1 wt.% to 90 wt.%, in particular from 1 to 70 wt.%, at temperatures of up to 200°C, in particular of up to 170°C.
    13. Use of the alloys according to claims 1-9 as a material for articles which are resistant to urea solutions of a concentration of 5 wt.% to 90 wt.%.
    14. Use of the alloys according to claims 1-9 as a material for articles which are resistant to nitric acid of a concentration of 0.1 wt.% to 70 wt.% at temperatures of up to boiling point and up to 90 wt.% at temperatures of up to 75°C and >90 wt.% at temperatures of up to 30°C.
    15. Use of the alloys according to claims 1-9 as a material for articles which are resistant to hydrofluoric acid of a concentration from 1 wt.% to 40 wt.%, preferably from 1 to 25 wt.%.
    16. Use of the alloys according to claims 1-9 as a material for articles which are resistant to phosphoric acid of a concentration of up to 85 wt.% at temperatures of up to 120°C and of up to 10 wt.% at temperatures of up to 300°C.
    17. Use of the alloys according to claims 1-9 as a material for articles which are resistant to chromic acid of a concentration of up to 40 wt.%, preferably of up to 30 wt.%.
    18. Use of the alloys according to claims 1-9 as a material for articles which are resistant to oleum of a concentration of up to 100 wt.%, in particular of 20 to 40 wt.%, at temperatures up to the particular boiling point.
    19. Use of the alloys according to claims 1-9 as a material for articles which are resistant to sulphuric acid of a concentration of 80 wt.% to 100 wt.%, in particular of 85 to 99.7 wt.%, particularly preferably 95 wt.% to 99 wt.% at temperatures of up to 250°C.
    20. Use of the alloys according to claims 1-9 as a material for articles which are resistant to mixtures of sulphuric acid and sodium dichromate and/or chromic acid.
    21. Use of the alloys according to claims 1-9 as a material for articles which are resistant to aqueous mixtures of 0.1 to 40 wt.% nitric acid, preferably 0.3 to 20 wt.%, and 50 to 90 wt.% sulphuric acid at temperatures of up to 130°C.
    22. Use of the alloys according to claims 1-9 as a material for articles which are resistant to aqueous mixtures of 0.01 to 15 wt.% hydrofluoric acid and 80 to 98 wt.% sulphuric acid at temperatures of up to 180°C.
    23. Use of the alloys according to claims 1-9 as a material for articles which are resistant to aqueous mixtures of up to 25 wt.% nitric acid and up to 10 wt.% hydrofluoric acid at temperatures of up to 80°C.
    24. Use of the alloys according to claims 1-9 as a material for articles which are resistant to cooling water at up to boiling temperature and to sea water at up to 50°C.
    EP94118682A 1993-12-10 1994-11-28 Austenitic alloys and their applications Expired - Lifetime EP0657556B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4342188A DE4342188C2 (en) 1993-12-10 1993-12-10 Austenitic alloys and their uses
    DE4342188 1993-12-10

    Publications (2)

    Publication Number Publication Date
    EP0657556A1 EP0657556A1 (en) 1995-06-14
    EP0657556B1 true EP0657556B1 (en) 1999-02-10

    Family

    ID=6504695

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94118682A Expired - Lifetime EP0657556B1 (en) 1993-12-10 1994-11-28 Austenitic alloys and their applications

    Country Status (14)

    Country Link
    US (1) US5695716A (en)
    EP (1) EP0657556B1 (en)
    JP (1) JP3355510B2 (en)
    KR (1) KR950018592A (en)
    AT (1) ATE176690T1 (en)
    AU (1) AU694456B2 (en)
    CA (1) CA2137522C (en)
    DE (2) DE4342188C2 (en)
    DK (1) DK0657556T3 (en)
    ES (1) ES2128495T3 (en)
    FI (1) FI107168B (en)
    PL (1) PL179404B1 (en)
    TW (1) TW363084B (en)
    ZA (1) ZA949832B (en)

    Families Citing this family (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19748205A1 (en) 1997-10-31 1999-05-06 Abb Research Ltd Process for producing a workpiece from a chrome alloy and its use
    DE10002795A1 (en) * 2000-01-24 2001-08-02 Basf Ag Material for a plant for the production of anhydrous formic acid
    AT408889B (en) * 2000-06-30 2002-03-25 Schoeller Bleckmann Oilfield T CORROSION-RESISTANT MATERIAL
    US6709528B1 (en) * 2000-08-07 2004-03-23 Ati Properties, Inc. Surface treatments to improve corrosion resistance of austenitic stainless steels
    DE10045212A1 (en) * 2000-09-13 2002-03-28 Seefelder Mestechnik Gmbh & Co Procedure for the determination of mercury
    DE10128032A1 (en) * 2001-06-08 2002-12-12 Outokumpu Oy Process for protecting steel part of apparatus against corrosion comprises using anodic protection, in which an anode, cathode and reference electrode are connected together
    US7118636B2 (en) * 2003-04-14 2006-10-10 General Electric Company Precipitation-strengthened nickel-iron-chromium alloy
    CA2556128A1 (en) * 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in a carburizing gas atmosphere
    DE102004041250A1 (en) * 2004-08-26 2006-03-02 Degussa Ag Preparation of 2-hydroxy-4-methylthiobutyric acid
    NO332412B1 (en) * 2006-06-28 2012-09-17 Hydrogen Technologies As Use of austenitic stainless steel as structural material in a device or structural member exposed to an environment comprising hydrofluoric acid and oxygen and / or hydrogen
    FR2939052B1 (en) 2008-12-01 2010-12-10 Rhodia Operations INSTALLATION OF CRYSTALLIZATION OF ADIPIC ACID
    US8430075B2 (en) 2008-12-16 2013-04-30 L.E. Jones Company Superaustenitic stainless steel and method of making and use thereof
    EP2228578A1 (en) * 2009-03-13 2010-09-15 NV Bekaert SA High nitrogen stainless steel wire for flexible pipe
    JP6582904B2 (en) * 2015-11-12 2019-10-02 東洋インキScホールディングス株式会社 Hot melt adhesive sheet for electromagnetic induction heating, adhesive structure using the same, and method for producing adhesive structure
    GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
    GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
    WO2017168640A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Chromium-based two-phase alloy product and method for producing same
    CN108884529B (en) * 2016-03-30 2021-08-20 株式会社日立制作所 Cr-based two-phase alloy and product thereof
    CN110295276A (en) * 2018-03-21 2019-10-01 吉林常春高氮合金研发中心有限公司 The method for improving high nitrogen steel ships propeller corrosion resistance
    US20210214825A1 (en) 2018-08-29 2021-07-15 Chemetics Inc. Austenitic stainless alloy with superior corrosion resistance
    CN109338345A (en) * 2018-11-30 2019-02-15 中国科学院金属研究所 A kind of environment-friendly type surface passivation treatment method of medical high-nitrogen nickel-free stainless steel
    DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material
    CN112941413A (en) * 2021-02-01 2021-06-11 南京理工大学 Anti-irradiation nuclear power reactor pressure vessel alloy

    Family Cites Families (23)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3565611A (en) * 1968-04-12 1971-02-23 Int Nickel Co Alloys resistant to corrosion in caustic alkalies
    US3758296A (en) * 1970-10-29 1973-09-11 Lewis & Co Inc Charles Corrosion resistant alloy
    US4172716A (en) * 1973-05-04 1979-10-30 Nippon Steel Corporation Stainless steel having excellent pitting corrosion resistance and hot workabilities
    FR2324752A1 (en) * 1975-06-24 1977-04-15 Sandvik Ab STAINLESS STEEL RESISTANT TO CONCENTRATED SULFURIC ACID
    FI760020A (en) 1976-01-07 1977-07-08 Rauma Repola Oy
    JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
    US4424083A (en) * 1980-11-21 1984-01-03 Exxon Research And Engineering Co. Carburization resistance of austenitic stainless steel tubes
    US4410489A (en) * 1981-07-17 1983-10-18 Cabot Corporation High chromium nickel base alloys
    CA1181569A (en) * 1982-06-11 1985-01-29 Frank Smith Apparatus and process
    US4576813A (en) * 1983-07-05 1986-03-18 Monsanto Company Heat recovery from concentrated sulfuric acid
    US4670242A (en) * 1984-11-09 1987-06-02 Monsanto Company Heat recovery from concentrated sulfuric acid
    JPS6141746A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp High strength and high corrosion resistance heat resisting steel superior in hot workability
    DE3508532A1 (en) * 1985-03-09 1986-09-18 Bayer Ag, 5090 Leverkusen USE OF A CHROME ALLOY
    DE3620167A1 (en) * 1986-06-14 1987-12-17 Bayer Ag USE OF A CHROME ALLOY
    US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment
    DE3716665A1 (en) * 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
    US4853185A (en) * 1988-02-10 1989-08-01 Haynes International, Imc. Nitrogen strengthened Fe-Ni-Cr alloy
    JPH01275739A (en) * 1988-04-28 1989-11-06 Sumitomo Metal Ind Ltd Low si high strength and heat-resistant steel tube having excellent ductility and toughness
    US4836985A (en) * 1988-08-19 1989-06-06 Carondelet Foundry Company Ni-Cr-Fe corrosion resistant alloy
    DE3830365C2 (en) * 1988-09-07 1996-06-27 Metallgesellschaft Ag Use of ferritic chromium - molybdenum steels as a material resistant to concentrated sulfuric acid
    SE465373B (en) * 1990-01-15 1991-09-02 Avesta Ab AUSTENITIC STAINLESS STEEL
    DE4118437A1 (en) * 1991-06-05 1992-12-10 I P Bardin Central Research In HIGH SILICON, CORROSION-RESISTANT, AUSTENITIC STEEL
    JPH06141746A (en) * 1992-11-02 1994-05-24 Yoshikazu Kide Remote control fishing ship

    Also Published As

    Publication number Publication date
    FI945771A (en) 1995-06-11
    ATE176690T1 (en) 1999-02-15
    AU8030794A (en) 1995-06-15
    PL306180A1 (en) 1995-06-12
    TW363084B (en) 1999-07-01
    JP3355510B2 (en) 2002-12-09
    US5695716A (en) 1997-12-09
    AU694456B2 (en) 1998-07-23
    DE59407804D1 (en) 1999-03-25
    PL179404B1 (en) 2000-08-31
    EP0657556A1 (en) 1995-06-14
    DK0657556T3 (en) 1999-09-20
    KR950018592A (en) 1995-07-22
    FI945771A0 (en) 1994-12-08
    JPH07197181A (en) 1995-08-01
    DE4342188C2 (en) 1998-06-04
    ZA949832B (en) 1995-08-22
    DE4342188A1 (en) 1995-06-14
    CA2137522A1 (en) 1995-06-11
    FI107168B (en) 2001-06-15
    ES2128495T3 (en) 1999-05-16
    CA2137522C (en) 2004-04-27

    Similar Documents

    Publication Publication Date Title
    EP0657556B1 (en) Austenitic alloys and their applications
    DE60201741T2 (en) STEEL AND TUBE FOR USE AT INCREASED TEMPERATURES
    JP3288497B2 (en) Austenitic stainless steel
    AT412727B (en) CORROSION RESISTANT, AUSTENITIC STEEL ALLOY
    DE60124227T2 (en) DUPLEX STAINLESS STEEL
    US4295769A (en) Copper and nitrogen containing austenitic stainless steel and fastener
    DE1458330C3 (en) Use of a tough, precipitation hardenable, rustproof, chrome, nickel and aluminum containing steel alloy
    DE3137694A1 (en) STAINLESS STEEL FERRITIC STEEL
    DE60214013T2 (en) USE OF A DUPLEX STEEL ALLOY
    DE2718767A1 (en) WELDED OBJECT MADE FROM AN ESSENTIALLY FERRITIC STAINLESS STEEL
    DE3445056A1 (en) AUSTENITIC, STAINLESS STEEL ALLOY AND ITEMS MADE FROM THIS
    DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
    DE3312109A1 (en) CORROSION-RESISTANT NICKEL-IRON ALLOY
    DE3720055A1 (en) CORROSION-RESISTANT AND WEAR-RESISTANT STEEL
    EP0455625B1 (en) High strength corrosion-resistant duplex alloy
    DE2331134B2 (en) Roll-clad materials made from a base material made from steel and from cladding layers made from corrosion-resistant, austenitic steels
    DE1608180B1 (en) USING A NICKEL-CHROME STEEL ALLOY
    DE2153186A1 (en) Ferritic chromium steel - used as corrosion-resistant material in chemical appts mfr
    DE2634403C2 (en) Stainless alloy steel casting
    DE2064976A1 (en) Process for the treatment of semi-ferritic steels. Eliminated from: 2025359
    DE2051609A1 (en) Austenitic, stainless steel
    DE69833630T2 (en) Nickel-based alloy and welding electrode made of a nickel-based alloy
    DE3830365C2 (en) Use of ferritic chromium - molybdenum steels as a material resistant to concentrated sulfuric acid
    DE1558508B2 (en) USING A MARTENSITE HARDENABLE CHROME NICKEL STEEL
    DE2706514A1 (en) IRON-NICKEL-CHROME-STEEL ALLOY

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19950628

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19980520

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 176690

    Country of ref document: AT

    Date of ref document: 19990215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59407804

    Country of ref document: DE

    Date of ref document: 19990325

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    ITF It: translation for a ep patent filed

    Owner name: ING. C. GREGORJ S.P.A.

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2128495

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990430

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20011031

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20011102

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20011114

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20011119

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021231

    BERE Be: lapsed

    Owner name: *KRUPP VDM G.M.B.H.

    Effective date: 20021130

    Owner name: *BAYER A.G.

    Effective date: 20021130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030601

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20030601

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20031213

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Owner name: BAYER AG

    Free format text: BAYER AG# #51368 LEVERKUSEN (DE) $ KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE) -TRANSFER TO- BAYER AG# #51368 LEVERKUSEN (DE) $ KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE)

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59407804

    Country of ref document: DE

    Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

    Effective date: 20130221

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: BAYER AG, DE

    Free format text: FORMER OWNERS: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE; BAYER AG, 51373 LEVERKUSEN, DE

    Effective date: 20130221

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: VDM METALS GMBH, DE

    Free format text: FORMER OWNERS: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE; BAYER AG, 51373 LEVERKUSEN, DE

    Effective date: 20130221

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: VDM METALS GMBH, DE

    Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

    Effective date: 20130221

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: OUTOKUMPU VDM GMBH, DE

    Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

    Effective date: 20130221

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: BAYER AG, DE

    Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

    Effective date: 20130221

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20131120

    Year of fee payment: 20

    Ref country code: AT

    Payment date: 20131113

    Year of fee payment: 20

    Ref country code: SE

    Payment date: 20131121

    Year of fee payment: 20

    Ref country code: DE

    Payment date: 20131121

    Year of fee payment: 20

    Ref country code: CH

    Payment date: 20131121

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20131120

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20131128

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59407804

    Country of ref document: DE

    Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59407804

    Country of ref document: DE

    Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

    Effective date: 20140526

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: VDM METALS GMBH, DE

    Free format text: FORMER OWNERS: BAYER AG, 51373 LEVERKUSEN, DE; OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

    Effective date: 20140526

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: BAYER AG, DE

    Free format text: FORMER OWNERS: BAYER AG, 51373 LEVERKUSEN, DE; OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

    Effective date: 20140526

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: VDM METALS GMBH, DE

    Free format text: FORMER OWNER: BAYER AG, OUTOKUMPU VDM GMBH, , DE

    Effective date: 20140526

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59407804

    Country of ref document: DE

    Owner name: BAYER AG, DE

    Free format text: FORMER OWNER: BAYER AG, OUTOKUMPU VDM GMBH, , DE

    Effective date: 20140526

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59407804

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59407804

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20141127

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK07

    Ref document number: 176690

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20141128

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20141127

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG