EP0657556A1 - Austenitic alloys and their applications - Google Patents

Austenitic alloys and their applications Download PDF

Info

Publication number
EP0657556A1
EP0657556A1 EP94118682A EP94118682A EP0657556A1 EP 0657556 A1 EP0657556 A1 EP 0657556A1 EP 94118682 A EP94118682 A EP 94118682A EP 94118682 A EP94118682 A EP 94118682A EP 0657556 A1 EP0657556 A1 EP 0657556A1
Authority
EP
European Patent Office
Prior art keywords
weight
max
alloys
alloys according
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94118682A
Other languages
German (de)
French (fr)
Other versions
EP0657556B1 (en
Inventor
Michael Dr. Köhler
Ulrich Dr. Heubner
Kurt-Wilhelm Dr. Eichenhofer
Michael Dr. Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Krupp VDM GmbH
Original Assignee
Bayer AG
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Krupp VDM GmbH filed Critical Bayer AG
Publication of EP0657556A1 publication Critical patent/EP0657556A1/en
Application granted granted Critical
Publication of EP0657556B1 publication Critical patent/EP0657556B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the invention relates to high-chromium, corrosion-resistant, austenitic alloys and their use.
  • Table A shows, by way of example, the metallic materials which are possible according to the prior art for the handling of oxidizing acids (nickel alloys and high-alloy special stainless steels, 2nd edition, Expert Verlag, 1993). With the exception of superferrite, they are so-called austenitic alloys, i.e. around those with a cubic surface-centered lattice structure.
  • the alloys according to the prior art shown in Table A are within a range of between about 17 and 29% by weight for the main alloy element chromium. With regard to the corrosion resistance to max.
  • already relatively low-alloyed materials can be used with 67% nitric acid.
  • a suitable material is Cronifer 1809 LCLSi, with the addition LSi indicating a restricted silicon content (low silicon).
  • Nickel-rich materials such as Nicrofer 6030, which is also listed in Table A, offer advantages if halogen compounds are present or if nitric acid / hydrofluoric acid mixtures are used, such as when reprocessing nuclear reactor fuel elements.
  • the molybdenum-containing material Nicrofer 3127 hMo (1.4562) according to EP 0 292 061 with its chromium content of 26 to 28% is of interest where, in addition to the relatively high resistance to nitric acid, particular importance is attached to high resistance to pitting and crevice corrosion.
  • a typical removal rate in boiling azeotropic nitric acid (Huey test) for this material is approx. 0.11 mm / year.
  • the Cronifer 1815 LCSi (1.4361) alloyed with about 4% silicon shows excellent resistance up to the boiling point of the nitric acid.
  • the materials that can be used to produce urea have a composition similar to that of steels that are particularly corrosion-resistant to nitric acid.
  • the Nicrofer 2509 Si7 steel alloyed with 7% silicon has been developed in accordance with EP-A 0516 955 for working with hot, highly concentrated sulfuric acid.
  • the superferrite Cronifer 2803 Mo (1.4575) also has a special interest. Because of their limited processability, superferrites are only suitable for small wall thicknesses, which are usually 2 mm and below.
  • Alloys with, for example, about 31% chromium and about 46% chromium have been found in nitric acid-hydrofluoric acid mixtures for their corrosion resistance examined ("Materials and Corrosion" 43 , (1992) pp. 191-200). These alloys with high chromium contents could no longer be produced as austenitic materials and could only be processed using special processes such as powder metallurgy.
  • British Patent 1 114 996 claims alloys with 14 to 35% chromium and 0 to 25% iron.
  • EP-A 0 261 880 describes alloys with 27 to 31% chromium, 7 to 11% iron and the rest essentially nickel.
  • Alloys with chromium contents of more than 30% Cr can no longer be produced homogeneously and austenitically. In practice, chrome contents of max. 29% set.
  • the Superferrite 1.4575 with a chromium content of 26 to 30% is a ferritic alloy.
  • EP-A 0 130 967 describes the suitability of nickel alloys and stainless steels for hot sulfuric acid of 99% -101% at> 120 ° C in heat exchangers.
  • the alloys are selected according to the following formula: 0.35 (Fe-Mn) + 0.70 (Cr) + 0.30 (Ni) - 0.12 (Mo)> 39.
  • the above-mentioned molybdenum-containing stainless steels have a maximum of 28% chromium on.
  • molybdenum-free chromium and nickel alloys consisting of 21-35% chromium, 30-70% iron, 2-40% nickel and 0-20% manganese as well as usual accompanying elements are used as materials for objects that are against Sulfuric acid above 96% to 100% and are resistant to oleum.
  • EP-A 249 792 claims the use of alloys consisting of 21 to 55% chromium, 0 to 30% iron, 0 to 5% tungsten and 45 to 79% Ni in concentrated sulfuric acid.
  • DE-A 2 154 126 describes the use of austenitic nickel alloys with 26-48% nickel, 30-34% chromium, 4-5.25% molybdenum, 4-7.5% cobalt, 3-2.5% iron , 1-3.5% manganese etc. as a resistant material for objects in hot sulfuric acid above 65%.
  • high chromium contents are important for the resistance of nickel-chromium-iron alloys to alkali-induced stress corrosion cracking in hot alkaline solutions.
  • the chromium content should be at least 18%, preferably at least 26 to 27%, up to max. 35% and the iron content to max. 7% be restricted.
  • the alloy 690 with 29% chromium and 9% iron is particularly resistant to alkali-induced stress corrosion cracking.
  • US 4,853,185 describes in the high temperature range corrosion-resistant alloys consisting of approximately 30% to 45% nickel, approximately 12 to 32% chromium, at least one of the elements niobium with 0.01% to 2.0%, tantalum with 0.2 to 4 , 0% and vanadium with 0.05 to 1.0%, further up to 0.20% carbon, approximately 0.05 to 0.50% nitrogen, an addition of titanium of up to 0.20, which is effective for high-temperature strength %, Balance iron and impurities, where the sum of free carbon and nitrogen (C + N) F must be> 0.14 and ⁇ 0.29.
  • EP-A 340 631 describes a high-temperature-resistant steel tube with a low silicon content, which is not more than 0.1% by weight of carbon, not more than 0.15% by weight silicon, not more than 5% by weight manganese, 20 to 30% by weight chromium, 15 to 30% by weight nickel, 0.15 to 0.35% by weight nitrogen, 0.1 to 1.0% by weight of niobium and not more than 0.005% by weight of oxygen, at least one of the metals aluminum and magnesium in an amount of 0.020 to 1.0% by weight and 0.003 to 0.02, respectively % By weight and the rest iron and unavoidable impurities.
  • the object of the present invention was to provide alloys which can be used in a variety of ways and can be processed without problems and whose corrosion rates are low.
  • alloys according to the invention are high in chromium and still easy to process. They have only a low molybdenum content or no molybdenum and, contrary to expectations, have high corrosion resistance in hot, oxidizing acids.
  • the invention relates to austenitic, corrosion-resistant chromium, nickel and iron alloys of the following composition: 32-37 wt% chromium 28-36 wt% nickel Max. 2% by weight of manganese Max. 0.5% by weight silicon max 0.1% by weight aluminum Max. 0.03 wt% carbon Max. 0.01 wt% sulfur Max. 0.025 wt% phosphorus Max. 2% by weight molybdenum Max. 1% by weight copper as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.3-0.7% by weight of nitrogen.
  • Austenitic alloys with the following composition are also preferred: 32-35 wt% chromium 28-36 wt% nickel Max. 2% by weight of manganese Max. 0.5% by weight silicon Max. 0.1% by weight aluminum Max. 0.03 wt% carbon Max. 0.01 wt% sulfur Max. 0.025 wt% phosphorus Max. 2% by weight molybdenum Max. 1% by weight copper as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.4-0.6% by weight of nitrogen.
  • These preferred alloys are preferably used as wrought materials for the production of semi-finished products, e.g. Sheets, strips, rods, wires, forgings, pipes, used.
  • Austenitic alloys with the following composition are also preferred: 35-37 wt% chromium 28-36 wt% nickel Max. 2% by weight of manganese Max. 0.5% by weight silicon Max. 0.1% by weight aluminum Max. 0.03 wt% carbon Max. 0.01 wt% sulfur Max. 0.025 wt% phosphorus Max. 2% by weight molybdenum Max. 1% by weight copper as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.4-0.7% by weight of nitrogen.
  • These preferred alloys are preferably used as materials for the production of castings, e.g. Pumps and fittings.
  • Austenitic alloys with the following composition are also preferred 32.5-33.5 wt% chromium 30.0-32.0 wt% nickel 0.5-1.0% by weight of manganese 0.01-0.5% by weight silicon 0.02 - 0.1 weight aluminum Max. 0.02 wt% carbon Max. 0.01 wt% sulfur Max. 0.02 wt% phosphorus 0.5-2% by weight molybdenum 0.3-1% by weight copper 0.35-0.5% by weight nitrogen or 34.0-35.0 wt% chromium 30.0-32.0 wt% nickel 0.5-1.0% by weight of manganese 0.01-0.5% by weight silicon 0.02-0.1% by weight aluminum Max. 0.02 wt% carbon Max. 0.01 wt% sulfur Max.
  • the alloys can contain up to 0.08% by weight of rare earths, up to 0.015% by weight of calcium and / or up to 0.015% by weight of magnesium as admixtures due to the manufacturing process .
  • the alloys according to the invention can also be used as materials for articles which, compared to mixtures of sulfuric acid and sodium dichromate and / or chromic acid, contain 0.1 to 40% by weight, preferably 0.3 to 20% by weight, nitric acid and 50 to 90% by weight .-% sulfuric acid up to 130 ° C or from 0.01 to 15% by weight hydrofluoric acid and 80-98% by weight sulfuric acid up to 180 ° C or from up to 25% by weight nitric acid and up to 10% by weight hydrofluoric acid are resistant up to 80 ° C.
  • the alloys according to the invention Compared to organic acids, e.g. Formic acid and acetic acid, the alloys according to the invention have sufficient resistance and stability.
  • the alloys according to the invention can also be used as materials for objects which are resistant to cooling water up to boiling temperature and to sea water up to 50 ° C.
  • the alloys according to the invention are used as a material for the production of components for use in marine engineering systems, in environmental technology, space travel, reactor technology and in chemical process technology.
  • the alloys according to the invention can be produced in the available plants of the stainless steel producers by the known methods and show good processability.
  • the overall corrosion behavior of the alloys according to the invention is excellent. Expensive alloy elements such as tungsten, niobium, tantalum can be dispensed with without sacrificing good properties.
  • the alloys according to the invention also offer the advantage of an unusually universal corrosion resistance.
  • the alloys are exposed to acids on one side of the apparatus and on the other side of the apparatus with chloride-containing cooling and heating media, such as in heat exchangers. Two completely different corrosion resistances are therefore required at the same time, namely acid resistance on the one hand and pitting, crevice and stress crack corrosion resistance on the other hand.
  • the extraordinary resistance profile is achieved with a comparatively economical alloy budget, which is otherwise only achieved with expensive NiCrMo alloys (see Table B) or selectively on the acid side only with the highest alloyed, specially developed materials for special applications (see Table C).
  • the alloys according to the invention are distinguished by an unusual elimination inertia under thermal stress in comparison to materials from the prior art.
  • This behavior is in the production of semi-finished products and their further processing, e.g. the design of bobbin lace and the production of welded connections are extremely positive. This is particularly evident from the time-temperature sensitization diagrams (Fig. 1, 2).
  • This material property is also important for the behavior of welds that are not subjected to a final heat treatment after the apparatus has been manufactured, and for the production of molded parts.
  • the mechanical-technological values for the various alloy variants claimed in example 1 show a further engineering benefit which can be implemented in the form of a cost advantage.
  • high strength values (example 1) can be implemented, for example, in offshore and reactor technology with regard to component dimensioning, which means that savings can be realized through lower material consumption.
  • Example 2 shows the corrosion behavior in sulfuric acid (98-99.1% H2SO4) for different temperatures.
  • the alloys according to the invention have excellent corrosion resistance up to 200 ° C. Under flowing conditions, which dominate in operational practice, even lower corrosion rates are determined (example 12).
  • the alloy according to the invention In alkaline media, e.g. in 70% sodium hydroxide solution at 170 ° C., the alloy according to the invention also shows excellent corrosion resistance. As can be seen from Example 3, it is practically equivalent to that of the high nickel-containing materials Alloy 201, 400, 600 and 690 (17, 15, 16, 11), while the material 12 (Alloy G-30) drops sharply here. Even at lower alkali concentrations and temperatures, the alloys according to the invention stand out positively from the known ones (example 13).
  • the copper-nickel alloys CuNi30MnlFe (18) have proven to be very stable according to the prior art, more resistant than many of the tried and tested high-alloyed steels and nickel-chromium-molybdenum Alloys.
  • the alloys according to the invention also have a corrosion behavior superior to that of the prior art.
  • another advantage of the alloys according to the invention is their higher strength, which makes them more suitable for the pressure vessel application mentioned here.
  • Example 5 the mass loss rates determined in boiling azeotropic nitric acid are compared with one another. It can be seen that the alloys according to the invention suffer only very little corrosion removal. This is lower than that of the well-known materials AISI 310 L (4) and Alloy 28 (7). In super-azeotropic nitric acids, the corrosion behavior of the invention Alloys cheaper than the behavior of "HNO3 special alloys" (Example 14).
  • the alloys according to the invention according to Example 6 show a high resistance in the so-called iron (III) chloride test at a pitting corrosion temperature of 60 ° C. This corresponds to that of the alloy 28 (7).
  • the alloys according to the invention show a clear superiority, which can be used immediately in this combination when using plants for producing azeotropic nitric acid. The same applies to the alloy Alloy G-30 (12).
  • Example 7 shows the corrosion behavior in mixed acids from sulfuric acid and nitric acid.
  • the alloy according to the invention is superior to the known alloys both at low and at high H2SO4 contents.
  • Example 8 shows a comparison of the mass loss rates in sulfuric acid-hydrofluoric acid solutions.
  • the alloys according to the invention are compared in high-chromium alloyed materials AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) and 1.4465 (5). It can be seen that the alloys according to the invention have less corrosion removal than the materials corresponding to the prior art.
  • Example 9 A comparison of the mass loss rates was also made in phosphoric acid solutions. The results obtained are shown in Example 9.
  • the alloys according to the invention are compared with materials which, according to the prior art, are used specifically for handling phosphoric acid solutions. While in solution 1 the material Alloy 904 L (3) corresponding to the state of the art can be regarded as sufficient, in solution 2 this is not the case.
  • the corrosion resistance of the alloys according to the invention is not significantly different from that of the material Alloy G-30 (12), but the low corrosion removal with the alloys according to the invention is achieved with significantly less expenditure on expensive alloy additives.
  • Example 10 shows the corrosion behavior in nitric acid / hydrofluoric acid mixtures.
  • the alloys according to the invention are far superior to the prior art.
  • Example 15 demonstrates the favorable corrosion behavior of the alloys according to the invention compared to known alloys in chromic acid.
  • the alloy 2 'according to the invention is also resistant to intergranular corrosion after a thermal load of up to 8 hours in the temperature range between 600 and 1000 ° C, both in the case of a test in accordance with SEP 1877 II and in Huey -Test.
  • alloys according to the invention are widely applicable, and they can preferably be used in the following areas:
  • the steels in Table 1 were melted on a 100 kg scale from raw materials known per se and cast into blocks.
  • the blocks were formed into 5 (12) mm thick sheets.
  • the final solution annealing was carried out at at least 1120 ° C. with subsequent quenching. There was a fully austenitic, excretion-free, homogeneous structure.
  • the mechanical properties of the alloys indicate good cold formability.
  • the materials 17, 15, 16 are typical materials for this application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Glass Compositions (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

The invention relates to high chromium content, corrosion resistant, austenitic alloys having the following composition: 32-37% by weight of chromium 28-36% by weight of nickel max. 2% by weight of manganese max. 0.5% by weight of silicon max. 0.1% by weight of aluminium max. 0.03% by weight of carbon max. 0.025% by weight of phosphorus max. 0.01% by weight of sulphur max. 2% by weight of molybdenum max. 1% by weight of copper 0.3-0.7% by weight of nitrogen and usual minor constituents and impurities resulting from the production method and the remainder as iron. These alloys are suitable as materials for articles which are resistant to chemical attack.

Description

Die Erfindung betrifft hochchromhaltige, korrosionsbeständige, austenitische Legierungen und deren Verwendung.The invention relates to high-chromium, corrosion-resistant, austenitic alloys and their use.

Tabelle A zeigt beispielhaft die nach dem Stand der Technik für die Handhabung von oxidierenden Säuren in Frage kommenden metallischen Werkstoffe (Nickellegierungen und hochlegierte Sonderedelstähle, 2. Auflage, Expert Verlag, 1993). Mit Ausnahme des Superferrits handelt es sich bei ihnen um sogenannte austenitische Legierungen, d.h. um solche mit kubischflächenzentrierter Gitterstruktur. Die Legierungen gemäß dem in Tabelle A gezeigten Stand der Technik liegen innerhalb einer sich zwischen etwa 17 und 29 Gew.-% erstreckenden Bandbreite für das Hauptlegierungselement Chrom. Im Hinblick auf die Korrosionsbeständigkeit gegenüber max. 67 %iger Salpetersäure sind schon verhältnismäßig niedriglegierte Werkstoffe brauchbar. Ein entsprechender Werkstoff ist Cronifer 1809 LCLSi, wobei der Nachsatz LSi auf einen eingeschränkten Silizium-gehalt (low silicon) hinweist.Table A shows, by way of example, the metallic materials which are possible according to the prior art for the handling of oxidizing acids (nickel alloys and high-alloy special stainless steels, 2nd edition, Expert Verlag, 1993). With the exception of superferrite, they are so-called austenitic alloys, i.e. around those with a cubic surface-centered lattice structure. The alloys according to the prior art shown in Table A are within a range of between about 17 and 29% by weight for the main alloy element chromium. With regard to the corrosion resistance to max. Already relatively low-alloyed materials can be used with 67% nitric acid. A suitable material is Cronifer 1809 LCLSi, with the addition LSi indicating a restricted silicon content (low silicon).

Nickelreiche Werkstoffe wie der gleichfalls in Tabelle A eingetragene Nicrofer 6030 bieten Vorteile, sofern Halogenverbindungen anwesend sind bzw. mit Salpetersäure / Flußsäuremischungen gearbeitet wird, wie beispielsweise bei der Wiederaufarbeitung von Kernreaktor-Brennelementen.Nickel-rich materials such as Nicrofer 6030, which is also listed in Table A, offer advantages if halogen compounds are present or if nitric acid / hydrofluoric acid mixtures are used, such as when reprocessing nuclear reactor fuel elements.

In "Werkstoffe und Korrosion" 43, 191-200 (1992), "Korrosion nichtrostender Stähle und Nickelbasislegierungen in Salpetersäure-Flußsäure-Gemischen" werden verschiedene molybdänhaltige Chrom-Nickel-Eisen-Stähle mit bis 29 % Chrom, bis 39 % Nickel und bis 6,5 % Molybdän beschrieben. Bei erhöhten Molybdängehalten verbessert sich die Beständigkeit in Salpetersäure-Flußsäure-Gemischen.In "Materials and Corrosion" 43 , 191-200 (1992), "Corrosion of stainless steels and nickel-based alloys in nitric acid-hydrofluoric acid mixtures", various molybdenum-containing chromium-nickel-iron steels with up to 29% chromium, up to 39% nickel and bis 6.5% molybdenum described. With increased molybdenum contents, the resistance in nitric acid-hydrofluoric acid mixtures improves.

In "Werkstoffe und Korrosion" 44, 83-88 (1993), "Avesta 654 SMO TM-A new nitrogen-enhanced superaustenitic stainless steel" werden austenitische Edelstähle mit bis 22 % Nickel, bis 25 % Chrom und Stickstoffgehalten von 0,2 bis 0,5 Gew.-% beschrieben.In "Materials and Corrosion" 44 , 83-88 (1993), "Avesta 654 SMO TM-A new nitrogen-enhanced superaustenitic stainless steel" austenitic stainless steels with up to 22% nickel, up to 25% chromium and nitrogen contents from 0.2 to 0.5 wt .-% described.

Der molybdänhaltige Werkstoff Nicrofer 3127 hMo (1.4562) gemäß EP 0 292 061 ist mit seinem Chromgehalt von 26 bis 28 % dort von Interesse, wo neben verhältnismäßig großer Salpetersäurebeständigkeit besonderer Wert auf hohe Beständigkeit gegenüber Loch- und Spaltkorrosion gelegt wird. Eine typische Abtragsrate in siedender azeotroper Salpetersäure (Huey-Test) für diesen Werkstoff ist ca. 0,11 mm/Jahr.The molybdenum-containing material Nicrofer 3127 hMo (1.4562) according to EP 0 292 061 with its chromium content of 26 to 28% is of interest where, in addition to the relatively high resistance to nitric acid, particular importance is attached to high resistance to pitting and crevice corrosion. A typical removal rate in boiling azeotropic nitric acid (Huey test) for this material is approx. 0.11 mm / year.

Beim Arbeiten mit mehr als 67 %iger Salpetersäure oder unter sonst äußerst stark oxidierenden Bedingungen zeigt der mit etwa 4 % Silizium legierte Cronifer 1815 LCSi (1.4361) eine ausgezeichnete Beständigkeit bis zum Siedepunkt der Salpetersäure. Die für die Harnstofferzeugung in Frage kommenden Werkstoffe haben ähnliche Zusammensetzung wie die gegen Salpetersäure besonders korrosionsbeständigen Stähle.When working with more than 67% nitric acid or under otherwise extremely strongly oxidizing conditions, the Cronifer 1815 LCSi (1.4361) alloyed with about 4% silicon shows excellent resistance up to the boiling point of the nitric acid. The materials that can be used to produce urea have a composition similar to that of steels that are particularly corrosion-resistant to nitric acid.

Für das Arbeiten mit heißer, hochkonzentrierter Schwefelsäure ist der mit 7 % Silizium legierte Stahl Nicrofer 2509 Si7 gemäß EP-A 0516 955 entwickelt worden. Hier hat gemäß der Lehre von DE-OS 38 30 365 auch der Superferrit Cronifer 2803 Mo (1.4575) ein spezielles Interesse. Superferrite kommen wegen ihrer eingeschränkten Verarbeitbarkeit allerdings nur für geringe Wanddicken in Frage, die in der Regel bei 2 mm und darunter liegen.The Nicrofer 2509 Si7 steel alloyed with 7% silicon has been developed in accordance with EP-A 0516 955 for working with hot, highly concentrated sulfuric acid. According to the teaching of DE-OS 38 30 365, the superferrite Cronifer 2803 Mo (1.4575) also has a special interest. Because of their limited processability, superferrites are only suitable for small wall thicknesses, which are usually 2 mm and below.

Legierungen mit beispielsweise etwa 31 % Chrom und etwa 46 % Chrom wurden im Hinblick auf ihre Korrosionsbeständigkeit in Salpetersäure-Flußsäuregemischen untersucht ("Werkstoffe und Korrosion" 43, (1992) S. 191-200). Diese Legierungen mit hohen Chromgehalten konnten nicht mehr als austenitische Werkstoffe hergestellt werden und nur mittels Sonderverfahren, wie z.B. der Pulvermetallurgie verarbeitet werden.Alloys with, for example, about 31% chromium and about 46% chromium have been found in nitric acid-hydrofluoric acid mixtures for their corrosion resistance examined ("Materials and Corrosion" 43 , (1992) pp. 191-200). These alloys with high chromium contents could no longer be produced as austenitic materials and could only be processed using special processes such as powder metallurgy.

In der Britischen Patentschrift 1 114 996 werden Legierungen mit 14 bis 35 % Chrom und 0 bis 25 % Eisen beansprucht.British Patent 1 114 996 claims alloys with 14 to 35% chromium and 0 to 25% iron.

Die EP-A 0 261 880 beschreibt Legierungen mit 27 bis 31 % Chrom, 7 bis 11 % Eisen und dem Rest im wesentlichen Nickel.EP-A 0 261 880 describes alloys with 27 to 31% chromium, 7 to 11% iron and the rest essentially nickel.

Legierungen mit Chromgehalten von mehr als 30 % Cr sind nicht mehr ohne weiteres homogen und austenitisch darstellbar. In der Praxis werden daher Chromgehalte von max. 29 % eingestellt. Bei dem Superferrit 1.4575 mit Chromgehalten von 26 bis 30 % handelt es sich um eine ferritische Legierung.Alloys with chromium contents of more than 30% Cr can no longer be produced homogeneously and austenitically. In practice, chrome contents of max. 29% set. The Superferrite 1.4575 with a chromium content of 26 to 30% is a ferritic alloy.

In EP-A 0 130 967 wird die Eignung von Nickellegierungen und Edelstählen für heiße Schwefelsäure von 99 %-101 % bei > 120°C in Wärmetauschern beschrieben. Die Auswahl der Legierungen erfolgt nach folgender Formel: 0,35 (Fe-Mn) + 0,70 (Cr) + 0,30 (Ni) - 0,12 (Mo) > 39. Die genannten molybdänhaltigen Edelstähle weisen maximal 28 % Chrom auf.EP-A 0 130 967 describes the suitability of nickel alloys and stainless steels for hot sulfuric acid of 99% -101% at> 120 ° C in heat exchangers. The alloys are selected according to the following formula: 0.35 (Fe-Mn) + 0.70 (Cr) + 0.30 (Ni) - 0.12 (Mo)> 39. The above-mentioned molybdenum-containing stainless steels have a maximum of 28% chromium on.

In EP-A 0 200 862 werden molybdänfreie Chrom-, Nickel-Legierungen bestehend aus 21-35 % Chrom, 30-70 % Eisen, 2-40 % Nickel und 0-20 % Mangan sowie üblichen Begleitelementen als Werkstoffe für Gegenstände, die gegen Schwefelsäure oberhalb 96 % bis 100 % und gegen Oleum beständig sind, beansprucht.In EP-A 0 200 862, molybdenum-free chromium and nickel alloys consisting of 21-35% chromium, 30-70% iron, 2-40% nickel and 0-20% manganese as well as usual accompanying elements are used as materials for objects that are against Sulfuric acid above 96% to 100% and are resistant to oleum.

EP-A 249 792 beansprucht die Verwendung von Legierungen bestehend aus 21 bis 55 % Chrom, 0 bis 30 % Eisen, 0 bis 5 % Wolfram und 45 bis 79 % Ni in konzentrierter Schwefelsäure.EP-A 249 792 claims the use of alloys consisting of 21 to 55% chromium, 0 to 30% iron, 0 to 5% tungsten and 45 to 79% Ni in concentrated sulfuric acid.

In US 4 410 489 wird für die Handhabung von Phosphorsäure eine Legierung bestehend aus 26-35 % Chrom, 2-6 % Molybdän, 1-4 % Wolfram, 0,3-2 % (Niob+Tantal), 1-3 % Kupfer, 10-18 % Eisen, bis 1,5 % Mangan, bis 1 % Silizium, Rest im wesentlichen Nickel vorgeschlagen. Vorzugsweise soll der Chromgehalt bei 30 % liegen.In US 4,410,489, an alloy consisting of 26-35% chromium, 2-6% molybdenum, 1-4% tungsten, 0.3-2% (niobium + tantalum), 1-3% copper is used for handling phosphoric acid , 10-18% iron, up to 1.5% manganese, up to 1% Silicon, rest essentially nickel suggested. The chromium content should preferably be 30%.

In DE-A 2 154 126 wird die Verwendung austenitischer Nickel-Legierungen mit 26-48 % Nickel, 30-34 % Chrom, 4-5,25 % Molybdän, 4-7,5 % Kobalt, 3-2,5 % Eisen, 1-3,5 % Mangan etc. als widerstandsfähiger Werkstoff für Gegenstände in heißer Schwefelsäure oberhalb 65 % beansprucht.DE-A 2 154 126 describes the use of austenitic nickel alloys with 26-48% nickel, 30-34% chromium, 4-5.25% molybdenum, 4-7.5% cobalt, 3-2.5% iron , 1-3.5% manganese etc. as a resistant material for objects in hot sulfuric acid above 65%.

In US 4 853 185 werden Edelstähle mit 25-45 % Nickel, 12-32 % Chrom, 0,1 bis 2 % Niob, 0,2 bis 4 % Tantal, 0,05 bis 1 % Vanadium und 0,05-0,5 % Stickstoff neben weiteren Bestandteilen beschrieben. Die Legierungen sollen gegenüber CO, CO₂ und Schwefelverbindungen resistent sein.In US 4,853,185 stainless steels with 25-45% nickel, 12-32% chromium, 0.1 to 2% niobium, 0.2 to 4% tantalum, 0.05 to 1% vanadium and 0.05-0, 5% nitrogen is described along with other ingredients. The alloys are said to be resistant to CO, CO₂ and sulfur compounds.

Hohe Chromgehalte sind gemäß der US-Patentschrift 3 565 611 für die Beständigkeit von Nickel-Chrom-Eisen-Legierungen gegenüber laugeninduzierter Spannungsrißkorrosion in heißen alkalischen Lösungen von Bedeutung. Dabei soll der Chromgehalt wenigstens 18 %, vorzugsweise wenigstens 26 bis 27 %, bis max. 35 % betragen und der Eisengehalt auf max. 7 % eingeschränkt sein. Die Legierung 690 ist mit 29 % Chrom und 9 % Eisen besonders beständig gegenüber laugeninduzierter Spannungsrißkorrosion.According to US Pat. No. 3,565,611, high chromium contents are important for the resistance of nickel-chromium-iron alloys to alkali-induced stress corrosion cracking in hot alkaline solutions. The chromium content should be at least 18%, preferably at least 26 to 27%, up to max. 35% and the iron content to max. 7% be restricted. The alloy 690 with 29% chromium and 9% iron is particularly resistant to alkali-induced stress corrosion cracking.

US 4 853 185 beschreibt im Hochtemperaturbereich korrosionsbeständige Legierungen, bestehend aus ungefähr 30 % bis 45 % Nickel, ungefähr 12 bis 32 % Chrom, wenigstens einem der Elemente Niob mit 0,01 % bis 2,0 %, Tantal mit 0,2 bis 4,0 % und Vanadium mit 0,05 bis 1,0 %, ferner bis zu 0,20 % Kohlenstoff, ungefähr 0,05 bis 0,50 % Stickstoff einem für die Hochtemperaturfestigkeit wirkungsvollen Zusatz von Titan in Höhe von bis zu 0,20 %, Rest Eisen und Verunreinigungen, wobei die Summe an freiem Kohlenstoff und Stickstoff (C + N)F > 0,14 und < 0,29 sein muß. Der Ausdruck (C + N)F ist dabei definiert als:

Figure imgb0001

EP-A 340 631 beschreibt ein hochtemperaturbeständiges Stahlrohr mit niedrigem Siliziumgehalt, welches nicht mehr als 0,1 Gew.-% Kohlenstoff, nicht mehr als 0,15 Gew.-% Silizium, nicht mehr als 5 Gew.-% Mangan, 20 bis 30 Gew.-% Chrom, 15 bis 30 Gew.-% Nickel, 0,15 bis 0,35 Gew.-% Stickstoff, 0,1 bis 1,0 Gew.-% Niob und nicht mehr als 0,005 Gew.-% Sauerstoff, mindestens eines der Metalle Aluminium und Magnesium in einer Menge von 0,020 bis 1,0 Gew.-% bzw. 0,003 bis 0,02 Gew.-% und Rest Eisen und unvermeidbare Verunreinigungen aufweist.US 4,853,185 describes in the high temperature range corrosion-resistant alloys consisting of approximately 30% to 45% nickel, approximately 12 to 32% chromium, at least one of the elements niobium with 0.01% to 2.0%, tantalum with 0.2 to 4 , 0% and vanadium with 0.05 to 1.0%, further up to 0.20% carbon, approximately 0.05 to 0.50% nitrogen, an addition of titanium of up to 0.20, which is effective for high-temperature strength %, Balance iron and impurities, where the sum of free carbon and nitrogen (C + N) F must be> 0.14 and <0.29. The expression (C + N) F is defined as:
Figure imgb0001

EP-A 340 631 describes a high-temperature-resistant steel tube with a low silicon content, which is not more than 0.1% by weight of carbon, not more than 0.15% by weight silicon, not more than 5% by weight manganese, 20 to 30% by weight chromium, 15 to 30% by weight nickel, 0.15 to 0.35% by weight nitrogen, 0.1 to 1.0% by weight of niobium and not more than 0.005% by weight of oxygen, at least one of the metals aluminum and magnesium in an amount of 0.020 to 1.0% by weight and 0.003 to 0.02, respectively % By weight and the rest iron and unavoidable impurities.

Aufgabe der vorliegenden Erfindung war es, Legierungen zur Verfügung zu stellen, die vielfältig einsetzbar und problemlos verarbeitbar sind und deren Korrosionsraten niedrig sind.The object of the present invention was to provide alloys which can be used in a variety of ways and can be processed without problems and whose corrosion rates are low.

Diese Aufgabe konnte mit den erfindungsgemäßen Legierungen gelöst werden. Diese Legierungen sind hochchromhaltig und trotzdem gut verarbeitbar. Sie weisen nur einen geringen Molybdängehalt bzw. kein Molybdän auf und haben wider Erwarten eine hohe Korrosionsbeständigkeit in heißen, oxidierenden Säuren.This object could be achieved with the alloys according to the invention. These alloys are high in chromium and still easy to process. They have only a low molybdenum content or no molybdenum and, contrary to expectations, have high corrosion resistance in hot, oxidizing acids.

Gegenstand der Erfindung sind austenitische, korrosionsbeständige Chrom-, Nickel-, Eisen-Legierungen folgender Zusammensetzung:
   32-37 Gew.-% Chrom
   28-36 Gew.-% Nickel
   max. 2 Gew.-% Mangan
   max. 0,5 Gew.-% Silizium
   max 0,1 Gew.-% Aluminium
   max. 0,03 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,025 Gew.-% Phosphor
   max. 2 Gew.-% Molybdän
   max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, welche dadurch gekennzeichnet sind, daß die Legierungen zusätzlich 0,3-0,7 Gew.-% Stickstoff enthalten.
The invention relates to austenitic, corrosion-resistant chromium, nickel and iron alloys of the following composition:
32-37 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
max 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.025 wt% phosphorus
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.3-0.7% by weight of nitrogen.

Bevorzugt sind Legierungen mit 0,5 bis 2 Gew.-% Molybdän und 0,3 bis 1 Gew.-% Kupfer.Alloys with 0.5 to 2% by weight of molybdenum and 0.3 to 1% by weight of copper are preferred.

Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung:
   32-35 Gew.-% Chrom
   28-36 Gew.-% Nickel
   max. 2 Gew.-% Mangan
   max. 0,5 Gew.-% Silizium
   max. 0,1 Gew.-% Aluminium
   max. 0,03 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,025 Gew.-% Phosphor
   max. 2 Gew.-% Molybdän
   max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, welche dadurch gekennzeichnet sind, daß die Legierungen zusätzlich 0,4-0,6 Gew.-% Stickstoff enthalten.
Austenitic alloys with the following composition are also preferred:
32-35 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.025 wt% phosphorus
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.4-0.6% by weight of nitrogen.

Diese bevorzugten Legierungen werden vorzugsweise als Knetwerkstoffe zur Herstellung von Halbzeug, wie z.B. Blechen, Bändern, Stangen, Drähten, Schmiedeteilen, Rohren, eingesetzt.These preferred alloys are preferably used as wrought materials for the production of semi-finished products, e.g. Sheets, strips, rods, wires, forgings, pipes, used.

Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung:
   35-37 Gew.-% Chrom
   28-36 Gew.-% Nickel
   max. 2 Gew.-% Mangan
   max. 0,5 Gew.-% Silizium
   max. 0,1 Gew.-% Aluminium
   max. 0,03 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,025 Gew.-% Phosphor
   max. 2 Gew.-% Molybdän
   max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, welche dadurch gekennzeichnet sind, daß die Legierungen zusätzlich 0,4-0,7 Gew.-% Stickstoff enthalten.
Austenitic alloys with the following composition are also preferred:
35-37 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.025 wt% phosphorus
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, which are characterized in that the alloys additionally contain 0.4-0.7% by weight of nitrogen.

Diese bevorzugten Legierungen werden vorzugsweise als Werkstoffe zur Herstellung von Gußteilen eingesetzt, wie z.B. Pumpen und Armaturen.These preferred alloys are preferably used as materials for the production of castings, e.g. Pumps and fittings.

Weiterhin bevorzugt sind austenitische Legierungen mit folgender Zusammensetzung
   32,5 - 33,5 Gew.-% Chrom
   30,0 - 32,0 Gew.-% Nickel
   0,5 - 1,0 Gew.-% Mangan
   0,01 - 0,5 Gew.-% Silizium
   0,02 - 0,1 Gew.-Aluminium
   max. 0,02 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,02 Gew.-% Phosphor
   0,5-2 Gew.-% Molybdän
   0,3-1 Gew.-% Kupfer
   0,35 - 0,5 Gew.-% Stickstoff oder
   34,0 - 35,0 Gew.-% Chrom
   30,0 - 32,0 Gew.-% Nickel
   0,5 - 1,0 Gew.-% Mangan
   0,01 - 0,5 Gew.-% Silizium
   0,02 - 0,1 Gew.-% Aluminium
   max. 0,02 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,02 Gew.-% Phosphor
   max. 0,5 Gew.-% Molybdän
   max. 0,3 Gew.-% Kupfer
   0,4 - 0,6 Gew.-% Stickstoff oder
   35,0 - 36,0 Gew.-% Chrom
   30,0 - 32,0 Gew.-% Nickel
   0,5 - 1,0 Gew.-% Mangan
   0,01 - 0,5 Gew.-% Silizium
   0,02 - 0,1 Gew.-% Aluminium
   max. 0,02 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,02 Gew.-% Phosphor
   max. 0,5 Gew.-% Molybdän
   max. 0,3 Gew.-% Kupfer
   0,4 - 0,6 Gew.-% Stickstoff oder
   36,0 - 37,0 Gew.-% Chrom
   30,0 - 32,0 Gew.-% Nickel
   0,5 - 1,0 Gew.-% Mangan
   0,01 - 0,5 Gew.-% Silizium
   0,02 - 0,1 Gew.-% Aluminium
   max. 0,02 Gew.-% Kohlenstoff
   max. 0,01 Gew.-% Schwefel
   max. 0,02 Gew.-% Phosphor
   max. 0,5 Gew.-% Molybdän
   max. 0,3 Gew.-% Kupfer
   0,4 - 0,7 Gew.-% Stickstoff
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen.
Austenitic alloys with the following composition are also preferred
32.5-33.5 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02 - 0.1 weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
0.5-2% by weight molybdenum
0.3-1% by weight copper
0.35-0.5% by weight nitrogen or
34.0-35.0 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
0.4-0.6% by weight nitrogen or
35.0 - 36.0 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
0.4-0.6% by weight nitrogen or
36.0-37.0 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
0.4-0.7% by weight nitrogen
as well as usual manufacturing-related admixtures and impurities and the rest as iron.

Zur Schmelzbehandlung mit dem Ziel einer ausreichenden Desoxidation und Entschwefelung können die Legierungen bei Bedarf bis zu 0,08 Gew.-% Seltene Erden, bis zu 0,015 Gew.-% Calcium und/oder bis zu 0,015 Gew.-% Magnesium als herstellungsbedingte Beimengungen enthalten.For melt treatment with the aim of adequate deoxidation and desulfurization, the alloys can contain up to 0.08% by weight of rare earths, up to 0.015% by weight of calcium and / or up to 0.015% by weight of magnesium as admixtures due to the manufacturing process .

Die erfindungsgemäßen Legierungen werden als Werkstoff für Gegenstände verwendet, die gegenüber

  • a) Natronlauge oder Kalilauge einer Konzentration von 1 bis 90 Gew.-%, vorzugsweise 1 bis 70 Gew.-%, bei Temperaturen bis 200°C, insbesondere 170°C,
  • b) Harnstofflösungen einer Konzentration von 5 bis 90 Gew.-%,
  • c) Salpetersäure einer Konzentration von 0,1 bis 70 Gew. -%, bei Temperaturen bis zum Siedepunkt und bis 90 Gew.-% bei Temperaturen bis 75°C und > 90 Gew.-% bei Temperaturen bis 30°C,
  • d) Flußsäure einer Konzentration von 1 bis 40 Gew.-%, vorzugsweise 1 bis 25 Gew.-%,
  • e) Phosphorsäure einer Konzentration bis 85 Gew.-%, vorzugsweise von 26-52 Gew.-%, bei Temperaturen bis zu 120°C bzw. bis zu 300°C bei Konzentrationen <10 Gew.-%,
  • f) Chromsäure einer Konzentration bis 40 Gew.-%, vorzugsweise bis 30 Gew.-%,
  • g) Oleum einer Konzentration bis 100 Gew.-%, vorzugsweise 20 bis 40 Gew.-% bei Temperaturen bis zur jeweiligen Siedetemperatur oder
  • h) Schwefelsäure einer Konzentration von 80 bis 100 Gew.-%, vorzugsweise 85 bis 99,7 Gew.-%, besonders bevorzugt 95 bis 99 Gew.-% bei hohen Temperaturen bis zu 250°C beständig sind.
The alloys according to the invention are used as material for objects that are opposed
  • a) sodium hydroxide solution or potassium hydroxide solution in a concentration of 1 to 90% by weight, preferably 1 to 70% by weight, at temperatures up to 200 ° C., in particular 170 ° C.,
  • b) urea solutions with a concentration of 5 to 90% by weight,
  • c) nitric acid at a concentration of 0.1 to 70% by weight, at temperatures up to the boiling point and up to 90% by weight at temperatures up to 75 ° C. and> 90% by weight at temperatures up to 30 ° C.,
  • d) hydrofluoric acid in a concentration of 1 to 40% by weight, preferably 1 to 25% by weight,
  • e) phosphoric acid of a concentration of up to 85% by weight, preferably of 26-52% by weight, at temperatures up to 120 ° C or up to 300 ° C at concentrations <10% by weight,
  • f) chromic acid in a concentration of up to 40% by weight, preferably up to 30% by weight,
  • g) oleum in a concentration of up to 100% by weight, preferably 20 to 40% by weight at temperatures up to the respective boiling point or
  • h) sulfuric acid at a concentration of 80 to 100 wt .-%, preferably 85 to 99.7 wt .-%, particularly preferably 95 to 99 wt .-% are stable at high temperatures up to 250 ° C.

Die erfindungsgemäßen Legierungen sind auch als Werkstoffe für Gegenstände einsetzbar, die gegenüber Mischungen aus Schwefelsäure und Natriumdichromat und/oder Chromsäure, aus 0,1 bis 40 Gew.-%, vorzugsweise 0,3 bis 20 Gew.-% Salpetersäure und 50 bis 90 Gew.-% Schwefelsäure bis 130°C oder aus 0,01 bis 15 Gew.-% Flußsäure und 80-98 Gew.-% Schwefelsäure bis 180°C oder aus bis 25 Gew.-% Salpetersäure und bis 10 Gew.-% Flußsäure bis 80°C beständig sind.The alloys according to the invention can also be used as materials for articles which, compared to mixtures of sulfuric acid and sodium dichromate and / or chromic acid, contain 0.1 to 40% by weight, preferably 0.3 to 20% by weight, nitric acid and 50 to 90% by weight .-% sulfuric acid up to 130 ° C or from 0.01 to 15% by weight hydrofluoric acid and 80-98% by weight sulfuric acid up to 180 ° C or from up to 25% by weight nitric acid and up to 10% by weight hydrofluoric acid are resistant up to 80 ° C.

Gegenüber organischen Säuren, wie z.B. Ameisensäure und Essigsäure, weisen die erfindungsgemäßen Legierungen eine ausreichende Beständigkeit und Stabilität auf.Compared to organic acids, e.g. Formic acid and acetic acid, the alloys according to the invention have sufficient resistance and stability.

Die erfindungsgemäßen Legierungen können auch als Werkstoffe für Gegenstände eingesetzt werden, die gegenüber Kühlwasser bis Siedetemperatur und gegenüber Meerwasser bis 50°C beständig sind.The alloys according to the invention can also be used as materials for objects which are resistant to cooling water up to boiling temperature and to sea water up to 50 ° C.

Aufgrund der guten Verarbeitbarkeit und Korrosionsbeständigkeit werden die erfindungsgemäßen Legierungen als Werkstoff zur Herstellung von Bauteilen für den Einsatz in meerestechnischen Anlagen, in der Umwelttechnik, Raumfahrt, Reaktortechnik und in der chemischen Prozeßtechnik verwendet.Because of the good processability and corrosion resistance, the alloys according to the invention are used as a material for the production of components for use in marine engineering systems, in environmental technology, space travel, reactor technology and in chemical process technology.

Die erfindungsgemäßen Legierungen sind in den verfügbaren Anlagen der Edelstahlerzeuger nach den bekannten Verfahren herstellbar und zeigen gute Verarbeitbarkeit.The alloys according to the invention can be produced in the available plants of the stainless steel producers by the known methods and show good processability.

Das Korrosionsverhalten der erfindungsgemäßen Legierungen ist insgesamt hervorragend. Auf teure Legierungselemente wie Wolfram, Niob, Tantal kann ohne Einbuße der guten Eigenschaften verzichtet werden.The overall corrosion behavior of the alloys according to the invention is excellent. Expensive alloy elements such as tungsten, niobium, tantalum can be dispensed with without sacrificing good properties.

Die erfindungsgemäßen Legierungen bieten weiterhin den Vorteil einer ungewöhnlich universellen Korrosionsbeständigkeit. So werden die Legierungen auf der einen Apparateseite durch Säuren beaufschlagt und auf der anderen Apparateseite mit chloridhaltigen Kühl- und Heizmedien, wie z.B. in Wärmetauschern. Es werden also gleichzeitig zwei völlig verschiedene Korrosionsbeständigkeiten gefordert, nämlich Säurebeständigkeit einerseits und Loch-, Spalt- und Spannungsrißkorrosionsbeständigkeit andererseits.The alloys according to the invention also offer the advantage of an unusually universal corrosion resistance. The alloys are exposed to acids on one side of the apparatus and on the other side of the apparatus with chloride-containing cooling and heating media, such as in heat exchangers. Two completely different corrosion resistances are therefore required at the same time, namely acid resistance on the one hand and pitting, crevice and stress crack corrosion resistance on the other hand.

Gleichzeitig wird das außergewöhnliche Beständigkeitsprofil mit einem vergleichsweise sparsamen Legierungshaushalt erzielt, das ansonsten nur mit teuren NiCrMo-Legierungen (s. Tabelle B) oder punktuell auf der Säureseite nur mit höchstlegierten, speziell entwickelten Werkstoffen für Spezialanwendungen erreicht wird (s. Tabelle C).At the same time, the extraordinary resistance profile is achieved with a comparatively economical alloy budget, which is otherwise only achieved with expensive NiCrMo alloys (see Table B) or selectively on the acid side only with the highest alloyed, specially developed materials for special applications (see Table C).

Zusätzliche Vorteile sind:

  • a) Schonung der Rohstoffressourcen an Ni und Mo im Vergleich zu den vorgenannten höchstlegierten Werkstoffen,
  • b) Kostenersparnisse bei der Legierungsherstellung durch geringe Gehalte teurer Legierungsbestandteile sowie bei der Apparateherstellung durch leichte Verarbeitbarkeit.
Additional advantages are:
  • a) Conservation of raw material resources in Ni and Mo in comparison to the aforementioned high-alloy materials,
  • b) Cost savings in the production of alloys due to the low content of expensive alloy components and in the manufacture of the apparatus due to easy processability.

Hinsichtlich der Verarbeitbarkeit zeichnen sich die erfindungsgemäßen Legierungen im Vergleich zu Werkstoffen aus dem Stand der Technik durch eine ungewöhnliche Ausscheidungsträgheit bei thermischer Belastung aus. Dieses Verhalten ist bei der Herstellung von Halbzeugen und deren Weiterverarbeitung, z.B. der Formgebung von Klöpperböden und dem Herstellen von Schweißverbindungen ausgesprochen positiv. Dies geht insbesondere aus den Zeit-Temperatur-Sensibilisierungs-Diagrammen (Abb. 1, 2) hervor. Bedeutungsvoll ist diese Werkstoffeigenschaft auch für das Verhalten von Schweißnähten, die keiner abschließenden Wärmebehandlung nach der Apparatefertigung unterzogen werden sowie für die Herstellung von Gußformteilen.With regard to processability, the alloys according to the invention are distinguished by an unusual elimination inertia under thermal stress in comparison to materials from the prior art. This behavior is in the production of semi-finished products and their further processing, e.g. the design of bobbin lace and the production of welded connections are extremely positive. This is particularly evident from the time-temperature sensitization diagrams (Fig. 1, 2). This material property is also important for the behavior of welds that are not subjected to a final heat treatment after the apparatus has been manufactured, and for the production of molded parts.

Aus den in Beispiel 1 dargestellten mechanisch-technologischen Werten für die verschiedenen beanspruchten Legierungsvarianten geht ein weiterer ingenieurtechnischer Nutzen, der sich in Form eines Kostenvorteiles umsetzen läßt, hervor. Die im Vergleich zu Standardausteniten hohen Festigkeitskennwerte (Beispiel 1) lassen sich z.B. in der Offshore- und Reaktortechnik vorteilhaft in Bezug auf die Bauteildimensionierung umsetzen, d.h., es läßt sich ein Einsparpotential durch geringeren Materialverbrauch realisieren.The mechanical-technological values for the various alloy variants claimed in example 1 show a further engineering benefit which can be implemented in the form of a cost advantage. The Compared to standard austenites, high strength values (example 1) can be implemented, for example, in offshore and reactor technology with regard to component dimensioning, which means that savings can be realized through lower material consumption.

Beispiel 2 zeigt das Korrosionsverhalten in Schwefelsäure (98-99,1 % H₂SO₄) für verschiedene Temperaturen. Die erfindungsgemäßen Legierungen weisen bis 200°C eine ausgezeichnete Korrosionsbeständigkeit auf. Unter strömenden Bedingungen, wie sie in der betrieblichen Praxis dominieren, werden noch geringere Korrosionsgeschwindigkeiten ermittelt (Beispiel 12).Example 2 shows the corrosion behavior in sulfuric acid (98-99.1% H₂SO₄) for different temperatures. The alloys according to the invention have excellent corrosion resistance up to 200 ° C. Under flowing conditions, which dominate in operational practice, even lower corrosion rates are determined (example 12).

In alkalischen Medien, wie z.B. in 70 %iger Natronlauge bei 170°C zeigt die erfindungsgemäße Legierung gleichfalls eine hervorragende Korrosionsbeständigkeit. Wie aus Beispiel 3 ersichtlich, ist sie derjenigen der hochnickelhaltigen Werkstoffe Alloy 201, 400, 600 und 690 (17, 15, 16, 11) praktisch gleichwertig, während der Werkstoff 12 (Alloy G-30) hier stark abfällt. Auch bei niedrigeren Laugenkonzentrationen und -temperaturen heben sich die erfindungsgemäßen Legierungen von den bekannten positiv ab (Beispiel 13).In alkaline media, e.g. in 70% sodium hydroxide solution at 170 ° C., the alloy according to the invention also shows excellent corrosion resistance. As can be seen from Example 3, it is practically equivalent to that of the high nickel-containing materials Alloy 201, 400, 600 and 690 (17, 15, 16, 11), while the material 12 (Alloy G-30) drops sharply here. Even at lower alkali concentrations and temperatures, the alloys according to the invention stand out positively from the known ones (example 13).

In Ethanol-Wassergemischen mit Zusatz von Phosphorsäure in Druckbehältern bei hohen Temperaturen haben sich die Kupfer-Nickel-Legierungen CuNi30MnlFe (18) gemäß dem Stand der Technik als sehr beständig erwiesen, beständiger als zahlreiche der erprobten sehr hochlegierten Stähle und Nickel-Chrom-Molybdän-Legierungen. Wie Beispiel 4 zeigt, weisen die erfindungsgemäßen Legierungen auch hier ein diesem Stand der Technik überlegenes Korrosionsverhalten auf. Im Vergleich zu dem Kupferwerkstoff ist als weiterer Vorteil der erfindungsgemäßen Legierungen deren höhere Festigkeit zu berücksichtigen, welche sie für die hier angesprochene Druckbehälteranwendung geeigneter macht.In ethanol-water mixtures with the addition of phosphoric acid in pressure vessels at high temperatures, the copper-nickel alloys CuNi30MnlFe (18) have proven to be very stable according to the prior art, more resistant than many of the tried and tested high-alloyed steels and nickel-chromium-molybdenum Alloys. As example 4 shows, the alloys according to the invention also have a corrosion behavior superior to that of the prior art. Compared to the copper material, another advantage of the alloys according to the invention is their higher strength, which makes them more suitable for the pressure vessel application mentioned here.

In Beispiel 5 werden die in siedender azeotroper Salpetersäure ermittelten Massenverlustraten miteinander verglichen. Man erkennt, daß die erfindungsgemäßen Legierungen einen nur sehr geringen Korrosionsabtrag erleiden. Dieser liegt niedriger als der der bekannten Werkstoffe AISI 310 L (4) und Alloy 28 (7). In überazeotropen Salpetersäuren ist das Korrosionsverhalten der erfindungsgemäßen Legierungen günstiger als das Verhalten von "HNO₃-Speziallegierungen" (Beispiel 14).In Example 5, the mass loss rates determined in boiling azeotropic nitric acid are compared with one another. It can be seen that the alloys according to the invention suffer only very little corrosion removal. This is lower than that of the well-known materials AISI 310 L (4) and Alloy 28 (7). In super-azeotropic nitric acids, the corrosion behavior of the invention Alloys cheaper than the behavior of "HNO₃ special alloys" (Example 14).

In vielen Fällen ist für die Werkstoff-Anwendung nicht nur die Beständigkeit gegenüber gleichförmigem Korrosionsabtrag durch z.B. Salpetersäure ausschlaggebend, sondern es wird beispielsweise kühlwasserseitig zugleich auch eine hohe Beständigkeit gegen Lochkorrosion gefordert. Hier zeigen die erfindungsgemäßen Legierungen gemäß Beispiel 6 im sogenannten Eisen(III)chlorid-Test bei einer Lochkorrosionstemperatur von 60°C eine hohe Beständigkeit. Diese entspricht derjenigen der Legierung Alloy 28 (7). Die erfindungsgemäßen Legierungen zeigen jedoch in der Kombination ihrer Lochkorrosionsbeständigkeit mit der Beständigkeit gegenüber gleichförmigem Korrosionsabtrag in siedender azeotroper Salpetersäure als typischer oxidierender Säure eine deutliche Überlegenheit, was sich bei Verwendung von Anlagen zur Herstellung azeotroper Salpetersäure in dieser Kombination sofort nutzen läßt. Das gleiche gilt auch für die Legierung Alloy G-30 (12). Diese ist zwar in ihrer Lochkorrosionsbeständigkeit den erfindungsgemäßen Legierungen etwas überlegen, im Hinblick auf ihre Beständigkeit gegenüber gleichförmigem Korrosionsabtrag in siedender azeotroper Salpetersäure aber sehr schlecht. In neutralen chloridhaltigen Lösungen, wie Kühlwässern, kommt bei elektrochemischen Korrosionsversuchen die sehr gute Lochkorrosionsbeständigkeit der erfindungsgemäßen Legierungen zum Ausdruck (Beispiel 11).In many cases, it is not only the resistance to uniform corrosion removal, e.g. Nitric acid is crucial, but it is also required, for example, a high resistance to pitting corrosion on the cooling water side. Here, the alloys according to the invention according to Example 6 show a high resistance in the so-called iron (III) chloride test at a pitting corrosion temperature of 60 ° C. This corresponds to that of the alloy 28 (7). However, in the combination of their pitting corrosion resistance with the resistance to uniform corrosion removal in boiling azeotropic nitric acid as typical oxidizing acid, the alloys according to the invention show a clear superiority, which can be used immediately in this combination when using plants for producing azeotropic nitric acid. The same applies to the alloy Alloy G-30 (12). Although its pitting corrosion resistance is somewhat superior to the alloys according to the invention, it is very poor in terms of its resistance to uniform corrosion removal in boiling azeotropic nitric acid. In neutral chloride-containing solutions, such as cooling water, the very good pitting corrosion resistance of the alloys according to the invention is expressed in electrochemical corrosion tests (Example 11).

Beispiel 7 zeigt das Korrosionsverhalten in Mischsäuren aus Schwefelsäure und Salpetersäure. Die erfindungsgemäße Legierung ist sowohl bei niedrigen wie auch bei hohen H₂SO₄-Gehalten den bekannten Legierungen überlegen.Example 7 shows the corrosion behavior in mixed acids from sulfuric acid and nitric acid. The alloy according to the invention is superior to the known alloys both at low and at high H₂SO₄ contents.

Beispiel 8 zeigt einen Vergleich der Massenverlustraten in Schwefelsäure-Flußsäurelösungen. Die erfindungsgemäßen Legierungen sind hoch in Chrom legierten Werkstoffen AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) und 1.4465 (5) gegenübergestellt. Man erkennt, daß die erfindungsgemäßen Legierungen einen geringeren Korrosionsabtrag aufweisen als die dem Stand der Technik entsprechenden Werkstoffe.Example 8 shows a comparison of the mass loss rates in sulfuric acid-hydrofluoric acid solutions. The alloys according to the invention are compared in high-chromium alloyed materials AISI 310 L (4), Alloy 28 (7), Alloy G-30 (12) and 1.4465 (5). It can be seen that the alloys according to the invention have less corrosion removal than the materials corresponding to the prior art.

Ein Vergleich der Massenverlustraten wurde auch in Phosphorsäure-Lösungen vorgenommen. Die erhaltenen Ergebnisse sind in Beispiel 9 wiedergegeben. Die erfindungsgemäßen Legierungen werden mit Werkstoffen, welche gemäß dem Stand der Technik speziell für den Umgang mit Phosphorsäure-Lösungen verwendet werden, verglichen. Während in Lösung 1 der dem Stand der Technik entsprechende Werkstoff Alloy 904 L (3) als ausreichend betrachtet werden kann, ist dies in Lösung 2 nicht der Fall. Die Korrosionsbeständigkeit der erfindungsgemäßen Legierungen ist von derjenigen des Werkstoffs Alloy G-30 (12) zwar nicht wesentlich verschieden, der geringe Korrosionsabtrag bei den erfindungsgemäßen Legierungen wird aber mit wesentlich weniger Aufwand an teuren Legierungszusätzen erreicht.A comparison of the mass loss rates was also made in phosphoric acid solutions. The results obtained are shown in Example 9. The alloys according to the invention are compared with materials which, according to the prior art, are used specifically for handling phosphoric acid solutions. While in solution 1 the material Alloy 904 L (3) corresponding to the state of the art can be regarded as sufficient, in solution 2 this is not the case. The corrosion resistance of the alloys according to the invention is not significantly different from that of the material Alloy G-30 (12), but the low corrosion removal with the alloys according to the invention is achieved with significantly less expenditure on expensive alloy additives.

Beispiel 10 zeigt das Korrosionsverhalten in Salpetersäure/Flußsäuregemischen. Die erfindungsgemäßen Legierungen sind dem Stand der Technik weit überlegen.Example 10 shows the corrosion behavior in nitric acid / hydrofluoric acid mixtures. The alloys according to the invention are far superior to the prior art.

Beispiel 15 belegt das günstige Korrosionsverhalten der erfindungsgemäßen Legierungen im Vergleich zu bekannten Legierungen in Chromsäure.Example 15 demonstrates the favorable corrosion behavior of the alloys according to the invention compared to known alloys in chromic acid.

Die erfindungsgemäße Legierung 2' ist gemäß Abb. 1 und 2 auch nach einer bis zu 8 h gehenden thermischen Beanspruchung im Temperaturbereich zwischen 600 und 1000°C beständig gegen interkristalline Korrosion, und zwar sowohl im Fall einer Prüfung gemäß SEP 1877 II als auch im Huey-Test.The alloy 2 'according to the invention is also resistant to intergranular corrosion after a thermal load of up to 8 hours in the temperature range between 600 and 1000 ° C, both in the case of a test in accordance with SEP 1877 II and in Huey -Test.

Aufgrund der obigen Versuchsergebnisse wird deutlich, daß die erfindungsgemäßen Legierungen breit anwendbar sind, wobei sie bevorzugt in folgenden Bereichen eingesetzt werden können:On the basis of the above test results, it is clear that the alloys according to the invention are widely applicable, and they can preferably be used in the following areas:

Herstellung von Schwefelsäure, insbesondere im Bereich der Absorbtionen,
Verarbeitung von Schwefelsäure, z.B. Sulfierung, Sulfonierung und Nitrierung sowie Konzentrierung,
Herstellung von azeotroper Salpetersaure und Verarbeitung sowie Lagerung von Salpetersaure,
Herstellung von Flußsäure aus Schwefelsäure und Flußspat sowie Verarbeitung der Flußsäure und Verfahren, bei denen Flußsäure als Katalysator eingesetzt wird,
Anwendung von Flußsäure-, Schwefelsäure-, Salpetersäure-haltigen Ätzbädern, z.B. für Nickellegierungen und nichtrostende Stähle bzw. in der Galvanotechnik, Herstellung von Chromsäure aus Schwefelsäure oder Oleum und Natriumdichromat,
Einsatz in Kühlwassersystemen und Anlagen zur Luftreinhaltung,
Lagerung und Eindampfung von Alkalien, z.B. Herstellung von Natronlauge-Perlen,
Verwendung heißer Alkalien bei chemischen Prozessen sowie als Elektrodenmaterialien in elektrolytischen Prozessen, ferner für Beizbäder in der Stahl- und Metallindustrie.
Production of sulfuric acid, especially in the area of absorption,
Processing of sulfuric acid, eg sulfonation, sulfonation and nitration as well as concentration,
Production of azeotropic nitric acid and processing and storage of nitric acid,
Production of hydrofluoric acid from sulfuric acid and fluorspar, processing of hydrofluoric acid and processes using hydrofluoric acid as a catalyst
Use of etching baths containing hydrofluoric acid, sulfuric acid, nitric acid, for example for nickel alloys and stainless steels or in electroplating, production of chromic acid from sulfuric acid or oleum and sodium dichromate,
Use in cooling water systems and systems for air pollution control,
Storage and evaporation of alkalis, e.g. production of sodium hydroxide beads,
Use of hot alkalis in chemical processes and as electrode materials in electrolytic processes, also for pickling baths in the steel and metal industry.

Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.The invention is illustrated by the following examples.

BeispieleExamples

Figure imgb0002
Figure imgb0002
Figure imgb0003
Figure imgb0003

Die Durchführung der Korrosionsversuche wurde nach folgenden, für den Fachmann bekannten Angaben durchgeführt:

  • a) Ermittlung von Abtragsraten/Korrosionsgeschwindigkeiten:
    Zur Untersuchung des Korrosionsverhaltens der Werkstoffe in diversen Säuren, Mischsäuren und Alkalien wurden folgende DIN-Normen berücksichtigt:
    DIN 50905, T1: Korrosion der Metalle;
    Korrosionsuntersuchungen: Grundsätze, Ausgabe Januar 1987
    DIN 50905, T2: Korrosion der Metalle;
    Korrosionsuntersuchungen: Korrosiongrößen bei gleichmäßiger Flächenkorrosion, Ausgabe Janauar 1987,
    DIN 50905, T3: Korrosion der Metalle;
    Korrosionuntersuchungen: Korrosionsgrößen bei ungleichmäßiger und örtlicher Korrosion ohne mechanische Belastung, Ausgabe Januar 1987
    DIN 50905, T4: Korrosion der Metalle;
    Korrosionsuntersuchungen: Durchführung von chemischen Korrosionsversuchen ohne mechanische Belastungen in Flüßigkeiten im Laboratorium, Ausgabe Januar 1987
    ISO/DIS 8407: Metals and alloys - Procedure for removal of corrosion products from test specimens, submitted 1985-11-28 by ISO/TC 156
  • b) Ermittlung der Loch- und Spaltkorrosionsbeständigkeit:
    Zur Ermittlung der kritischen Lochfraßtemperatur (CPT) bzw. Spaltkorrosionstemperatur (CCT) wurden Vorschriften in Anlehnung an amerikanische Prüfvorschriften angewandt:
    • 1. Treseder, R.S.; MTI Manual No. 3, Guideline information on newer Wrought iron- and nickel base corrosion resistent alloys, The Materials Technology Institute of the Chemical Process Industry, Columbus 1980 Appendix B-Methode MTI-2
    • 2. ASTM G48: Test for pitting and crevice corrosion resistance of stainless steels and related alloy by the use of ferric chloride solution.
  • c) Zum Vergleich der Lockkorrosionsbeständigkeit (Ranking) verschiedener nichtrostender Stähle mittels elektrochemischer Methoden wird seit geraumer Zeit die Technik des zyklischen potentiodynamischen Potentialvorschubs eingesetzt (Wilde, B.E.; Corrosion 28 (1972), 283-291; Kuron, D., Gräfen, H.; Z. Werkstofftechn. 8 182-191 (1977)).
    Hierbei werden folgende Korrosionspotentiale ermittelt:
    • freies Korrosionspotential (UK)
      [Open circuit potential (Ecorr)]
    • dynamisches Lochkorrosionspotential (ULD)
      [Pitting potential (Ep)]
    • Lochpassivierungspotential (ULP)
      [pit repassivation potential (Epp)]
    Bei der Durchführung der elektrochemischen Versuche werden folgende Prüfnormen berücksichtigt:
    ASTM G3-74 (Reaproved 1981)
    ASTM G5-87
    Als Unterscheidungskriterium wird nach den vorgenannten Methoden die sogenannte "kritische Lochfraßtemperatur" (CPT) [Lau, P., Bernhardsson, S.; Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels, Corrosion 85, Paper No. 64, Boston (1985); Qvarfort, R.; Critical Temperature measurements of stainless Steels with an improved Elektrochemical Method, Corrosion Sci., No. 8, 987-993, (1989)] ermittelt, bei der ULP < UK ist, d.h. nicht repassivierbarer Lochfraß auftritt. Die Potentialvorschubgeschwindigkeit dE/dT beträgt 180 mV·h⁻¹.
The corrosion tests were carried out according to the following information known to the person skilled in the art:
  • a) Determination of removal rates / corrosion rates:
    The following DIN standards were taken into account to investigate the corrosion behavior of the materials in various acids, mixed acids and alkalis:
    DIN 50905, T1 : corrosion of metals;
    Corrosion tests: principles, January 1987 edition
    DIN 50905, T2 : corrosion of metals;
    Corrosion investigations: Corrosion sizes with uniform surface corrosion, edition Janauar 1987,
    DIN 50905, T3 : corrosion of metals;
    Corrosion tests: Corrosion sizes in the event of uneven and local corrosion without mechanical stress, January 1987 edition
    DIN 50905, T4 : corrosion of metals;
    Corrosion tests: Conducting chemical corrosion tests without mechanical stress in liquids in the laboratory, January 1987 edition
    ISO / DIS 8407: Metals and alloys - Procedure for removal of corrosion products from test specimens, submitted 1985-11-28 by ISO / TC 156
  • b) Determination of pitting and crevice corrosion resistance:
    To determine the critical pitting temperature (CPT) or crevice corrosion temperature (CCT), regulations based on American test regulations were applied:
    • 1. Treseder, RS; MTI Manual No. 3, Guideline information on newer Wrought iron- and nickel base corrosion resistant alloys, The Materials Technology Institute of the Chemical Process Industry, Columbus 1980 Appendix B-Method MTI-2
    • 2. ASTM G48: Test for pitting and crevice corrosion resistance of stainless steels and related alloy by the use of ferric chloride solution.
  • c) The technique of cyclic potentiodynamic potential feed has been used for some time to compare the corrosion resistance (ranking) of various stainless steels using electrochemical methods (Wilde, BE; Corrosion 28 (1972), 283-291; Kuron, D., Gräfen, H. ; Z. Werkstofftechn. 8 182-191 (1977)).
    The following corrosion potentials are determined:
    • free corrosion potential (U K )
      [Open circuit potential (E corr )]
    • dynamic pitting corrosion potential (U LD )
      [Pitting potential (E p )]
    • Hole passivation potential (U LP )
      [pit repassivation potential (E pp )]
    The following test standards are taken into account when carrying out the electrochemical tests:
    ASTM G3-74 (Reaproved 1981)
    ASTM G5-87
    The so-called "critical pitting temperature" (CPT) [Lau, P., Bernhardsson, S .; Electrochemical Techniques for the Study of Pitting and Crevice Corrosion Resistance of Stainless Steels, Corrosion 85, Paper No. 64, Boston (1985); Qvarfort, R .; Critical Temperature measurements of stainless Steels with an improved Elektrochemical Method, Corrosion Sci., No. 8, 987-993, (1989)], in which U LP <U K , ie non-repassivable pitting occurs. The potential feed rate dE / dT is 180 mV · h⁻¹.

In einem Vakuuminduktionsofen wurden die Stähle der Tabelle 1 im 100 kg Maßstab aus an sich bekannten Rohstoffen erschmolzen und zu Blöcken vergossen. Die Blöcke wurden zu 5 (12) mm dicken Blechen umgeformt. Die abschließende Lösungsglühung erfolgte bei mindestens 1120°C mit anschließender Abschreckung. Es lag jeweils ein vollaustenitisches, ausscheidungsfreies, homogenes Gefüge vor.In a vacuum induction furnace, the steels in Table 1 were melted on a 100 kg scale from raw materials known per se and cast into blocks. The blocks were formed into 5 (12) mm thick sheets. The final solution annealing was carried out at at least 1120 ° C. with subsequent quenching. There was a fully austenitic, excretion-free, homogeneous structure.

Beispiel 1example 1

Mechanische Eigenschaften der Stähle gemaß Tabelle 1 und typische Vergleichswerkstoffe:
Ergebnis der mechanischen Prüfung:

Figure imgb0004
Mechanical properties of the steels according to Table 1 and typical comparison materials:
Result of the mechanical test:
Figure imgb0004

Die mechanischen Eigenschaften der Legierungen deuten auf eine gute Kaltumformbarkeit.The mechanical properties of the alloys indicate good cold formability.

Beispiel 2Example 2

Laborkorrosionsversuche in ruhender Schwefelsäure (99,1 Gew.-% H₂SO₄) bei verschiedenen Temperaturen und nach 7 Tagen Prüfzeit (Blechdicke 4,5 mm):
Abtrag in [mm/a] Werkstoff 100°C 125°C 150°C 175°C 200°C 2' 0,25 0,43 0,14 0,16 0,12 3' 0,13 0,62 0,15 0,06 0,03 4' 0,13 0,48 0,06 0,06 0,03 5' 0,17 0,45 0,05 0,11 0,16 6' 0,16 0,63 0,04 0,01 0,02 7' 0,06 - - 0,03 0,05 4 0,34 - 0,15 0,05 0,04 20 0,35 - 0,04 0,09 0,05
Laboratory corrosion tests in quiescent sulfuric acid (99.1% by weight H₂SO₄) at various temperatures and after a test period of 7 days (sheet thickness 4.5 mm):
Removal in [mm / a] material 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 2 ' 0.25 0.43 0.14 0.16 0.12 3 ' 0.13 0.62 0.15 0.06 0.03 4 ' 0.13 0.48 0.06 0.06 0.03 5 ' 0.17 0.45 0.05 0.11 0.16 6 ' 0.16 0.63 0.04 0.01 0.02 7 ' 0.06 - - 0.03 0.05 4th 0.34 - 0.15 0.05 0.04 20th 0.35 - 0.04 0.09 0.05

Korrosionsversuche in ruhender Schwefelsäure (98 Gew.-% H₂SO₄ und 98,5 Gew.-% H₂SO₄) bei verschiedenen Temperaturen und nach 7 Tagen Prüfzeit (Blechdicke 4,5 mm):
Abtrag in [mm/a] 98 % H₂SO₄ 98,5 % H₂SO₄ Werkstoff 100°C 125°C 150°C 175°C 200°C 100°C 125°C 150°C 175°C 200°C 2' 0,25 0,54 0,22 0,21 0,03 0,09 0,06 0,11 0,01 0,03 3' 0,22 0,06 0,32 0,21 0,09 0,14 0,13 0,10 0,21 0,04 4' 0,18 0,07 0,35 0,20 0,09 0,14 0,11 0,18 0,08 0,12 5' 0,20 0,42 0,07 0,16 0,08 0,07 0,11 0,10 0,53 0,06 6' 0,21 0,04 0,19 0,17 0,08 0,08 0,09 0,07 0,01 0,03 7' 0,04 0,07 0,08 0,16 0,34 0,11 0,11 0,14 0,32 0,09 20 0,38 0,43 0,98 0,38 0,07 0,11 0,06 0,77 0,21 0,81
Corrosion tests in quiescent sulfuric acid (98% by weight H₂SO₄ and 98.5% by weight H₂SO₄) at different temperatures and after a test period of 7 days (sheet thickness 4.5 mm):
Removal in [mm / a] 98% H₂SO₄ 98.5% H₂SO₄ material 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 100 ° C 125 ° C 150 ° C 175 ° C 200 ° C 2 ' 0.25 0.54 0.22 0.21 0.03 0.09 0.06 0.11 0.01 0.03 3 ' 0.22 0.06 0.32 0.21 0.09 0.14 0.13 0.10 0.21 0.04 4 ' 0.18 0.07 0.35 0.20 0.09 0.14 0.11 0.18 0.08 0.12 5 ' 0.20 0.42 0.07 0.16 0.08 0.07 0.11 0.10 0.53 0.06 6 ' 0.21 0.04 0.19 0.17 0.08 0.08 0.09 0.07 0.01 0.03 7 ' 0.04 0.07 0.08 0.16 0.34 0.11 0.11 0.14 0.32 0.09 20th 0.38 0.43 0.98 0.38 0.07 0.11 0.06 0.77 0.21 0.81

Beispiel 3Example 3

Laborkorrosionsversuche in Natronlauge bei verschiedenen Temperaturen und Konzentrationen nach 14 Tagen Prüfzeit:
Abtrag in [mm/a] Gew.-% NaO 130°C 160°C 170°C 250°C 50 60 70 60 80 70 80 90 2' 0,01 0,06 0,05 0,19 0,19 0,03 0,13 0,85
Laboratory corrosion tests in sodium hydroxide solution at various temperatures and concentrations after a test period of 14 days:
Removal in [mm / a] % By weight NaO 130 ° C 160 ° C 170 ° C 250 ° C 50 60 70 60 80 70 80 90 2 ' 0.01 0.06 0.05 0.19 0.19 0.03 0.13 0.85

Vergleichswerkstoffe in 70 % NaOH bei 170°C Nr. 17 15 16 13 14 12 11 Abtrag [mm/a] 0,09 0,03 0,02 0,51 0,48 0,26 0,03 Comparative materials in 70% NaOH at 170 ° C No. 17th 15 16 13 14 12th 11 Removal [mm / a] 0.09 0.03 0.02 0.51 0.48 0.26 0.03

Die Werkstoffe 17, 15, 16 sind typische Werkstoffe für diese AnwendungThe materials 17, 15, 16 are typical materials for this application

Beispiel 4Example 4

Versuche im Autoklaven mit einem Ethanol-Wassergemisch mit 7,5 Gew.-% Phosphorsäure bei 280°C und 7 Tagen Prüfzeit:
Der erfindungsgemäße Werkstoff Nr. 2' weist eine Abtragsrate von 0,2 mm/a auf.
Autoclave tests with an ethanol-water mixture with 7.5% by weight phosphoric acid at 280 ° C and 7 days test time:
Material no. 2 'according to the invention has a removal rate of 0.2 mm / a.

Vergleichswerkstoffe unter gleichen Bedingungen: Nr. 2 7 8 13 12 14 15 18 Abtrag [mm/a] 1,77 0,44 0,44 0,53 0,63 0,41 0,41 0,26 Comparative materials under the same conditions: No. 2nd 7 8th 13 12th 14 15 18th Removal [mm / a] 1.77 0.44 0.44 0.53 0.63 0.41 0.41 0.26

Beispiel 5Example 5

Korrosionsverhalten in siedender azeotroper Salpetersäure im Huey-Test-Destillationsverfahren: Nr. Massenverlustraten in [g/m²·h] 48 h (5 Zyklen) 48 h (10 Zyklen) 48 h (15 Zyklen) 2' 0,04 0,04 0,04 3' 0,04 0,04 0,04 4' 0,04 0,04 0,04 5' 0,03 0,04 0,04 6' 0,04 0,04 0,04 7' 0,04 0,04 0,04 1 0,12 0,12 0,12 4 0,06 0,07 0,07 5 0,09 0,09 0,09 7 0,07 0,07 0,07 8 0,09 0,10 0,10 12 0,14 0,13 0,13 Corrosion behavior in boiling azeotropic nitric acid in the Huey test distillation process: No. Mass loss rates in [g / m² · h] 48 h (5 cycles) 48 h (10 cycles) 48 h (15 cycles) 2 ' 0.04 0.04 0.04 3 ' 0.04 0.04 0.04 4 ' 0.04 0.04 0.04 5 ' 0.03 0.04 0.04 6 ' 0.04 0.04 0.04 7 ' 0.04 0.04 0.04 1 0.12 0.12 0.12 4th 0.06 0.07 0.07 5 0.09 0.09 0.09 7 0.07 0.07 0.07 8th 0.09 0.10 0.10 12th 0.14 0.13 0.13

Beispiel 6Example 6

Bestimmung der Lochfraß- und Spaltkorrosionstemperaturen im FeCl₃-Test bei 10 Gew.-% FeCl₃·6H₂O: Nr CPT [°C] CCT [°C] 2' 60 40 3' 85 - 4' 85 - 5' 85 - 6' 70 35 7' 85 40 2 10 -2,5 3 45 25 4 25 ≦ 20 5 40 25 7 60 35 8 85 60 9 >90 > 90 10 50 ≦ 20 11 45 ≦ 20 12 75 50 Determination of pitting and crevice corrosion temperatures in the FeCl₃ test at 10% by weight FeCl₃ · 6H₂O: No CPT [° C] CCT [° C] 2 ' 60 40 3 ' 85 - 4 ' 85 - 5 ' 85 - 6 ' 70 35 7 ' 85 40 2nd 10th -2.5 3rd 45 25th 4th 25th ≦ 20 5 40 25th 7 60 35 8th 85 60 9 > 90 > 90 10th 50 ≦ 20 11 45 ≦ 20 12th 75 50

Beispiel 7Example 7

Korrosionsverhalten in Mischungen aus Schwefelsäuren unterschiedlicher Konzentration bei verschiedenen Salpetersäuregehalten bei 100°C; nach 7 Tagen Prüfzeit:
Abtrag in [mm/a] Gew.-% H₂SO₄ 66,5 76 80 50 Gew.-% HNO₃ 0 3 5 0 3 5 5 5 Werkstoff Nr. 2' > 50 0,08 0,08 1,18 0,15 0,18 0,10 0,03 2 > 50 0,54 0,53 > 50 0,60 0,80 0,85 0,28 7 35,43 0,08 0,09 21,55 0,13 0,13 0,24 0,05 8 > 50 0,07 0,09 13,85 0,11 0,12 0,21 0,05 12 49,4 0,10 0,08 9,06 0,10 0,11 0,17 0,05
Corrosion behavior in mixtures of sulfuric acids of different concentrations with different nitric acid contents at 100 ° C; after 7 days of testing:
Removal in [mm / a] % By weight H₂SO₄ 66.5 76 80 50 % By weight HNO₃ 0 3rd 5 0 3rd 5 5 5 Material number. 2 ' > 50 0.08 0.08 1.18 0.15 0.18 0.10 0.03 2nd > 50 0.54 0.53 > 50 0.60 0.80 0.85 0.28 7 35.43 0.08 0.09 21.55 0.13 0.13 0.24 0.05 8th > 50 0.07 0.09 13.85 0.11 0.12 0.21 0.05 12th 49.4 0.10 0.08 9.06 0.10 0.11 0.17 0.05

Beispiel 8Example 8

Korrosionsversuche in Schwefelsäure-Flußsäurelösungen:

Lösung 1:
92,4 % H₂SO₄ / 7,6 % H₂0 / Spuren HF ; T=150°C
Lösung 2:
91,2 % H₂SO₄ / 7,4% H₂0 / 1,4 % HF; T=140°C
Lösung 3:
90-94 % H₂SO₄ / 4-7 % H₂0 / 2-3 % HF; T=140°C
Abtrag in [mm/a] Prüfzeit Werkstoff Lösung 1 [14 d] Lösung 2 [14 d] Lösung 3 [89d] 2' 0,15 0,02 0,01 19 0,84 0,17 0,31 4 0,26 0,10 0,07 5 0,33 0,05 0,05 3 0,39 0,09 0,14 7 0,51 0,05 0,04 8 0,71 0,06 0,08 13 0,60 0,14 0,09 12 1,01 0,06 0,04 Corrosion tests in sulfuric acid-hydrofluoric acid solutions:
Solution 1:
92.4% H₂SO₄ / 7.6% H₂0 / trace HF; T = 150 ° C
Solution 2:
91.2% H₂SO₄ / 7.4% H₂0 / 1.4% HF; T = 140 ° C
Solution 3:
90-94% H₂SO₄ / 4-7% H₂0 / 2-3% HF; T = 140 ° C
Removal in [mm / a] Test time material Solution 1 [14 d] Solution 2 [14 d] Solution 3 [89d] 2 ' 0.15 0.02 0.01 19th 0.84 0.17 0.31 4th 0.26 0.10 0.07 5 0.33 0.05 0.05 3rd 0.39 0.09 0.14 7 0.51 0.05 0.04 8th 0.71 0.06 0.08 13 0.60 0.14 0.09 12th 1.01 0.06 0.04

Beispiel 9Example 9

Abtrag [mm/a] in wäßrigen Phosphorsäure-Lösungen

Lösung 1:
75 % gew.-%ige H₃PO₄; 80°C, 14 Tage
Lösung 2:
75 % gew.-%ige H₃PO₄, 0,63 Gew.-% F⁻, 0,3 Gew.-% Fe³⁺, 14 mmol/l Cl⁻; 80°C, 14 Tage
Werkstoff-Nr. Lösung 1 Lösung 2 2' <0,01 0,18 3 0,07 1,70 7 0,01 0,42 12 0,01 0,19 Removal [mm / a] in aqueous phosphoric acid solutions
Solution 1:
75% by weight H₃PO₄; 80 ° C, 14 days
Solution 2:
75% by weight H₃PO₄, 0.63% by weight F⁻, 0.3% by weight Fe³⁺, 14 mmol / l Cl⁻; 80 ° C, 14 days
Material number. Solution 1 Solution 2 2 ' <0.01 0.18 3rd 0.07 1.70 7 0.01 0.42 12th 0.01 0.19

Beispiel 10Example 10

Korrosionsverhalten in Salpetersäure/Flußsäuregemischen; Massenverlustraten in [g/m²h]; T = 90°C Werkstoff Nr. Lsg.1 Lsg.2 Lsg.3 Lsg.4 Lsg.5 Lsg.6 Lsg.7 2' <0,01 0,27 0,96 0,31 0,63 1,63 3,05 6' <0,01 0,28 1,45 0,29 0,68 1,64 3,00 7' <0,01 0,24 1,19 0,27 0,67 1,66 3,08 7 <0,01 5,74 20,74 0,96 1,78 3,38 5,46 21 <0,01 1,11 5,23 1,51 3,61 8,10 11,63 11 <0,01 0,61 6,34 1,46 1,97 4,69 7,42 12 <0,01 0,28 1,21 0,49 1,45 2,39 4,49 Lösung 1: 2 mol/l HNO₃
Lösung 2: 2 mol/l HNO₃ + 0,5 mol/l HF
Lösung 3: 2 mol/l HNO₃ + 2 mol/l HF
Lösung 4: 0,25 mol/l HF + 6 mol/l HNO₃
Lösung 5: 0,25 mol/l HF + 9 mol/l HNO₃
Lösung 6: 0,25 mol/l HF + 12 mol/l HNO₃
Lösung 7: 0,25 mol/l HF + 15 mol/l HNO₃.
Corrosion behavior in nitric acid / hydrofluoric acid mixtures; Mass loss rates in [g / m²h]; T = 90 ° C Material number. Solution 1 Solution 2 Sol.3 Sol. 4 Solution 5 Solution 6 Solution 7 2 ' <0.01 0.27 0.96 0.31 0.63 1.63 3.05 6 ' <0.01 0.28 1.45 0.29 0.68 1.64 3.00 7 ' <0.01 0.24 1.19 0.27 0.67 1.66 3.08 7 <0.01 5.74 20.74 0.96 1.78 3.38 5.46 21 <0.01 1.11 5.23 1.51 3.61 8.10 11.63 11 <0.01 0.61 6.34 1.46 1.97 4.69 7.42 12th <0.01 0.28 1.21 0.49 1.45 2.39 4.49 Solution 1: 2 mol / l HNO₃
Solution 2: 2 mol / l HNO₃ + 0.5 mol / l HF
Solution 3: 2 mol / l HNO₃ + 2 mol / l HF
Solution 4: 0.25 mol / l HF + 6 mol / l HNO₃
Solution 5: 0.25 mol / l HF + 9 mol / l HNO₃
Solution 6: 0.25 mol / l HF + 12 mol / l HNO₃
Solution 7: 0.25 mol / l HF + 15 mol / l HNO₃.

Beispiel 11Example 11

Bestimmung des Lochfraßverhaltens durch potentiodynamische Stromdichtepotentialkurven als Funktion des Lochkorrosionspotentials [ULP]; Anforderung: ULP < UR (freies Korrosionspotential)
Lochfraßkorrosionstemperaturen in 1,0 n NaCl-Lösung, Potentialvorschubgeschwindigkeit

Figure imgb0005
Nr. CPT [°C] 2' 80 6' 90 7' >95 2 45 3 75 4 60 5 60 8 >95 Determination of pitting behavior by potentiodynamic current density potential curves as a function of pitting corrosion potential [U LP ]; Requirement: U LP <U R (free corrosion potential)
Pitting corrosion temperatures in 1.0 N NaCl solution, potential feed rate
Figure imgb0005
No. CPT [° C] 2 ' 80 6 ' 90 7 ' > 95 2nd 45 3rd 75 4th 60 5 60 8th > 95

Beispiel 12Example 12

Korrosionsversuche unter Betriebsbedingungen in Schwefelsäure (96-98,5 Gew.-%) bei T = 135 - 140°C Werkstoff Abtrag in [mm · a⁻¹] nach [14 d] nach [34 d] nach [50 d] 2' 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 6' 0,01 0,01 <0,01 0,01 <0,01 <0,01 7' 0,01 <0,01 <0,01 <0,01 <0,01 <0,01 20 0,01 <0,01 <0,01 0,01 <0,01 <0,01

Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Tabelle C Werkstoffe für Spezialanwendungen Werkstoff W.-Nr. Anwendung Literatur 1.4361 azeotrope, hochkonzentrierte HNO₃ Horn, E.-M.; Kohl, H.: Werkstoffe und Korrosion 37, 57-69 (1986) 1.4575 konzentrierte Schwefelsäure, ≧ 94 % EP-A 361 554 1.4335 konzentrierte Schwefelsäure DE-A 3 508 532 Sandvik SX konzentrierte Schwefelsäure GB 15 34 926 1.4361 H₂SO₄-Herstellung US 45 43 244 1.4390 konzentrierte HNO₃ konzentrierte Schwefelsäure EP-A 516 955
Figure imgb0011

Abb. 1 und 2: Zeit-Temperatur-Sensibilisierungs-Diagramm der Legierung 2'; Flächenbezogene Massenverlustrate
Figure imgb0012
Corrosion tests under operating conditions in sulfuric acid (96-98.5% by weight) at T = 135 - 140 ° C material Removal in [mm · a⁻¹] after [14 d] after [34 d] after [50 d] 2 ' 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 6 ' 0.01 0.01 <0.01 0.01 <0.01 <0.01 7 ' 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 20th 0.01 <0.01 <0.01 0.01 <0.01 <0.01
Figure imgb0006
Figure imgb0007
Figure imgb0008
Figure imgb0009
Figure imgb0010
Table C. Materials for special applications Material mat.no. application literature 1.4361 azeotropic, highly concentrated HNO₃ Horn, E.-M .; Kohl, H .: Materials and Corrosion 37, 57-69 (1986) 1.4575 concentrated sulfuric acid, ≧ 94% EP-A 361 554 1.4335 concentrated sulfuric acid DE-A 3 508 532 Sandvik SX concentrated sulfuric acid GB 15 34 926 1.4361 H₂SO₄ production US 45 43 244 1.4390 concentrated HNO₃ concentrated sulfuric acid EP-A 516 955
Figure imgb0011

Fig. 1 and 2: Time-temperature sensitization diagram of alloy 2 '; Area-related mass loss rate
Figure imgb0012

Claims (24)

Austenitische, korrosionsbeständige Chrom-, Nickel-, Eisen-Legierungen folgender Zusammensetzung:
32-37 Gew.-% Chrom
28-36 Gew.-% Nickel
max. 2 Gew.-% Mangan
max. 0,5 Gew.-% Silizium
max. 0,1 Gew.-% Aluminium
max. 0,03 Gew.-% Kohlenstoff
max. 0,025 Gew.-% Phosphor
max. 0,01 Gew.-% Schwefel
max. 2 Gew.-% Molybdän
max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,3-0,7 Gew.-% Stickstoff enthalten.
Austenitic, corrosion-resistant chromium, nickel, iron alloys with the following composition:
32-37 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.025 wt% phosphorus
Max. 0.01 wt% sulfur
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.3-0.7% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
32-37 Gew.-% Chrom
28-36 Gew.-% Nickel
max. 2 Gew.-% Mangan
max. 0,5 Gew.-% Silizium
max. 0,1 Gew.-% Aluminium
max. 0,03 Gew.-% Kohlenstoff
max. 0,025 Gew.-% Phosphor
max. 0,01 Gew.-% Schwefel
0,5-2 Gew.-% Molybdän
0,3-1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,3-0,7 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
32-37 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.025 wt% phosphorus
Max. 0.01 wt% sulfur
0.5-2% by weight molybdenum
0.3-1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.3-0.7% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
32-35 Gew.-% Chrom
28-36 Gew.-% Nickel
max. 2 Gew.-% Mangan
max. 0,5 Gew.-% Silizium
max. 0,1 Gew.-% Aluminium
max. 0,03 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,025 Gew.-% Phosphor
max. 2 Gew.-% Molybdän
max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,4-0,6 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
32-35 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.025 wt% phosphorus
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.4-0.6% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1, mit folgender Zusammensetzung:
35-37 Gew.-% Chrom
28-36 Gew.-% Nickel
max. 2 Gew.-% Mangan
max. 0,5 Gew.-% Silizium
max. 0,1 Gew.-% Aluminium
max. 0,03 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,025 Gew.-% Phosphor
max. 2 Gew.% Molybdän
max. 1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,4-0,7 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1, having the following composition:
35-37 wt% chromium
28-36 wt% nickel
Max. 2% by weight of manganese
Max. 0.5% by weight silicon
Max. 0.1% by weight aluminum
Max. 0.03 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.025 wt% phosphorus
Max. 2% by weight molybdenum
Max. 1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.4-0.7% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
32,5 - 33,5 Gew.-% Chrom
30,0 - 32,0 Gew.-% Nickel
0,5 - 1,0 Gew.-% Mangan
0,01 - 0,5 Gew.-% Silizium
0,02 - 0,1 Gew.-% Aluminium
max. 0,02 Gew.-% Kohlenstoff
max 0,01 Gew.-% Schwefel
max. 0,02 Gew.-% Phosphor
0,5-2 Gew.-% Molybdän
0,3-1 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,35-0,5 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
32.5-33.5 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
max. 0.01 wt.% sulfur
Max. 0.02 wt% phosphorus
0.5-2% by weight molybdenum
0.3-1% by weight copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.35-0.5% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
32,5 - 33,5 Gew.-% Chrom
30,0 - 32,0 Gew.-% Nickel
0,5 - 1,0 Gew.-% Mangan
0,01 - 0,5 Gew.-% Silizium
0,02 - 0,1 Gew.-% Aluminium
max. 0,02 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,02 Gew.-% Phosphor
max. 0,5 Gew.-% Molybdän
max. 0,3 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,35-0,5 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
32.5-33.5 wt% chromium
30.0-32.0 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.35-0.5% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
34,0 - 35,0 Gew.-% Chrom
30 - 32 Gew.-% Nickel
0,5 - 1,0 Gew.-% Mangan
0,01 - 0,5 Gew.-% Silizium
0,02 - 0,1 Gew.-% Aluminium
max. 0,02 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,02 Gew.-% Phosphor
max. 0,5 Gew.-% Molybdän
max. 0,3 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,4-0,6 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
34.0-35.0 wt% chromium
30-32 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.4-0.6% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
35,0 - 36,0 Gew.-% Chrom
30 - 32 Gew.-% Nickel
0,5 - 1,0 Gew.-% Mangan
0,01 - 0,5 Gew.-% Silizium
0,02 - 0,1 Gew.-% Aluminium
max. 0,02 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,02 Gew.-% Phosphor
max. 0,5 Gew.-% Molybdän
max. 0,3 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunnreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,4-0,6 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
35.0 - 36.0 wt% chromium
30-32 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.4-0.6% by weight of nitrogen.
Austenitische Legierungen gemäß Anspruch 1 mit folgender Zusammensetzung:
36,0 - 37,0 Gew.-% Chrom
30 - 32 Gew.-% Nickel
0,5 - 1,0 Gew.-% Mangan
0,01 - 0,5 Gew.-% Silizium
0,02 - 0,1 Gew.-% Aluminium
max. 0,02 Gew.-% Kohlenstoff
max. 0,01 Gew.-% Schwefel
max. 0,02 Gew.-% Phosphor
max. 0,5 Gew.-% Molybdän
max. 0,3 Gew.-% Kupfer
sowie übliche herstellungsbedingte Beimengungen und Verunreinigungen und den Rest als Eisen, dadurch gekennzeichnet, daß die Legierungen zusätzlich 0,4-0,7 Gew.-% Stickstoff enthalten.
Austenitic alloys according to claim 1 with the following composition:
36.0-37.0 wt% chromium
30-32 wt% nickel
0.5-1.0% by weight of manganese
0.01-0.5% by weight silicon
0.02-0.1% by weight aluminum
Max. 0.02 wt% carbon
Max. 0.01 wt% sulfur
Max. 0.02 wt% phosphorus
Max. 0.5 wt% molybdenum
Max. 0.3 wt% copper
as well as usual manufacturing-related admixtures and impurities and the rest as iron, characterized in that the alloys additionally contain 0.4-0.7% by weight of nitrogen.
Legierungen gemäß den Ansprüchen 3, 5, 6 und 7 als Knetwerkstoffe zur Herstellung von Blechen, Bändern, Stangen, Drähten, Schmiedeteilen, Rohren.Alloys according to claims 3, 5, 6 and 7 as wrought materials for the production of sheets, strips, rods, wires, forgings, pipes. Legierungen gemäß den Ansprüchen 3 bis 9 als Werkstoffe zur Herstellung von Gußteilen.Alloys according to claims 3 to 9 as materials for the production of castings. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Natronlauge oder Kalilauge einer Konzentration von 1 Gew.-% bis 90 Gew.-%, insbesondere von 1 bis 70 Gew.-%, bei Temperaturen bis zu 200°C, insbesondere bis 170°C, beständig sind.Use of the alloys according to claims 1-9 as a material for articles which, compared to sodium hydroxide solution or potassium hydroxide solution, have a concentration of 1% by weight to 90% by weight, in particular 1 to 70% by weight, at temperatures up to 200 ° C, especially up to 170 ° C, are stable. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Harnstofflösungen einer Konzentration von 5 Gew.-% bis 90 Gew.-% beständig sind.Use of the alloys according to claims 1-9 as a material for objects which are resistant to urea solutions at a concentration of 5% by weight to 90% by weight. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Salpetersäure einer Konzentration von 0,1 Gew.-% bis 70 Gew.-%, bei Temperaturen bis zum Siedepunkt und bis 90 Gew.-% bei Temperaturen bis 75°C und >90 Gew.-% bei Temperaturen bis 30°C, beständig sind.Use of the alloys according to claims 1-9 as a material for articles which, compared to nitric acid, have a concentration of 0.1% by weight to 70% by weight, at temperatures up to the boiling point and up to 90% by weight at temperatures up to 75 ° C and> 90 wt .-% at temperatures up to 30 ° C, are stable. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Flußsäure einer Konzentration von 1 Gew.-% bis 40 Gew.-%, bevorzugt von 1 bis 25 Gew.-%, beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to hydrofluoric acid at a concentration of 1% by weight to 40% by weight, preferably 1 to 25% by weight. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Phosphorsäure einer Konzentration bis 85 Gew.-% bei Temperaturen bis 120°C und bis 10 Gew.-% bei Temperaturen bis 300°C beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to phosphoric acid at a concentration of up to 85% by weight at temperatures up to 120 ° C and up to 10% by weight at temperatures up to 300 ° C. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Chromsäure einer Konzentration bis 40 Gew.-%, bevorzugt bis 30 Gew.-%, beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to chromic acid in a concentration of up to 40% by weight, preferably up to 30% by weight. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Oleum einer Konzentration bis 100 Gew.-%, insbesondere 20 bis 40 Gew.-%, bei Temperaturen bis zum jeweiligen Siedepunkt beständig sind.Use of the alloys according to claims 1-9 as a material for objects which are resistant to oleum in a concentration of up to 100% by weight, in particular 20 to 40% by weight, at temperatures up to the respective boiling point. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Schwefelsäure einer Konzentration von 80 Gew.-% bis 100 Gew.-%, insbesondere gegenüber 85 bis 99,7 Gew.-%, besonders bevorzugt 95 Gew.-% bis 99 Gew.-%, bei Temperaturen bis 250°C beständig sind.Use of the alloys according to claims 1-9 as a material for objects which, compared to sulfuric acid, have a concentration of 80% by weight to 100% by weight, in particular 85% to 99.7% by weight, particularly preferably 95% by weight. % to 99 wt .-%, are stable at temperatures up to 250 ° C. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Mischungen aus Schwefelsäure und Natriumdichromat und/oder Chromsäure beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to mixtures of sulfuric acid and sodium dichromate and / or chromic acid. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber wäßrigen Mischungen aus 0,1 bis 40 Gew.-% Salpetersäure, bevorzugt 0,3 bis 20 Gew.-%, und 50 bis 90 Gew.-% Schwefelsäure bei Temperaturen bis 130°C beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are compared to aqueous mixtures of 0.1 to 40% by weight of nitric acid, preferably 0.3 to 20% by weight, and 50 to 90% by weight of sulfuric acid are stable at temperatures up to 130 ° C. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber wäßrigen Mischungen aus 0,01 bis 15 Gew-% Flußsäure und 80 bis 98 Gew.-% Schwefelsäure bei Temperaturen bis 180°C beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to aqueous mixtures of 0.01 to 15% by weight of hydrofluoric acid and 80 to 98% by weight of sulfuric acid at temperatures up to 180 ° C. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber wäßrigen Mischungen aus bis 25 Gew.-% Salpetersäure und bis 10 Gew.-% Flußsäure bei Temperaturen bis 80°C beständig sind.Use of the alloys according to claims 1-9 as a material for articles which are resistant to aqueous mixtures of up to 25% by weight of nitric acid and up to 10% by weight of hydrofluoric acid at temperatures up to 80 ° C. Verwendung der Legierungen gemäß den Ansprüchen 1-9 als Werkstoff für Gegenstände, die gegenüber Kühlwasser bis Siedetemperatur und gegenüber Meerwasser bis 50°C beständig sind.Use of the alloys according to claims 1-9 as a material for objects which are resistant to cooling water up to boiling temperature and to sea water up to 50 ° C.
EP94118682A 1993-12-10 1994-11-28 Austenitic alloys and their applications Expired - Lifetime EP0657556B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4342188 1993-12-10
DE4342188A DE4342188C2 (en) 1993-12-10 1993-12-10 Austenitic alloys and their uses

Publications (2)

Publication Number Publication Date
EP0657556A1 true EP0657556A1 (en) 1995-06-14
EP0657556B1 EP0657556B1 (en) 1999-02-10

Family

ID=6504695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94118682A Expired - Lifetime EP0657556B1 (en) 1993-12-10 1994-11-28 Austenitic alloys and their applications

Country Status (14)

Country Link
US (1) US5695716A (en)
EP (1) EP0657556B1 (en)
JP (1) JP3355510B2 (en)
KR (1) KR950018592A (en)
AT (1) ATE176690T1 (en)
AU (1) AU694456B2 (en)
CA (1) CA2137522C (en)
DE (2) DE4342188C2 (en)
DK (1) DK0657556T3 (en)
ES (1) ES2128495T3 (en)
FI (1) FI107168B (en)
PL (1) PL179404B1 (en)
TW (1) TW363084B (en)
ZA (1) ZA949832B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19748205A1 (en) * 1997-10-31 1999-05-06 Abb Research Ltd Process for producing a workpiece from a chrome alloy and its use
WO2002002837A1 (en) * 2000-06-30 2002-01-10 Schoeller-Bleckmann Oilfield Technology Gmbh & Co Kg Corrosion resistant material
WO2008002150A1 (en) * 2006-06-28 2008-01-03 Hydrogen Technologies As Use of an austenitic stainless steel and an electrolyser made of such steel
EP2228578A1 (en) * 2009-03-13 2010-09-15 NV Bekaert SA High nitrogen stainless steel wire for flexible pipe
US8430075B2 (en) 2008-12-16 2013-04-30 L.E. Jones Company Superaustenitic stainless steel and method of making and use thereof
CN109338345A (en) * 2018-11-30 2019-02-15 中国科学院金属研究所 A kind of environment-friendly type surface passivation treatment method of medical high-nitrogen nickel-free stainless steel
CN110295276A (en) * 2018-03-21 2019-10-01 吉林常春高氮合金研发中心有限公司 The method for improving high nitrogen steel ships propeller corrosion resistance

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002795A1 (en) * 2000-01-24 2001-08-02 Basf Ag Material for a plant for the production of anhydrous formic acid
US6709528B1 (en) * 2000-08-07 2004-03-23 Ati Properties, Inc. Surface treatments to improve corrosion resistance of austenitic stainless steels
DE10045212A1 (en) * 2000-09-13 2002-03-28 Seefelder Mestechnik Gmbh & Co Procedure for the determination of mercury
DE10128032A1 (en) * 2001-06-08 2002-12-12 Outokumpu Oy Process for protecting steel part of apparatus against corrosion comprises using anodic protection, in which an anode, cathode and reference electrode are connected together
US7118636B2 (en) * 2003-04-14 2006-10-10 General Electric Company Precipitation-strengthened nickel-iron-chromium alloy
WO2005078148A1 (en) * 2004-02-12 2005-08-25 Sumitomo Metal Industries, Ltd. Metal tube for use in carburizing gas atmosphere
DE102004041250A1 (en) * 2004-08-26 2006-03-02 Degussa Ag Preparation of 2-hydroxy-4-methylthiobutyric acid
FR2939052B1 (en) 2008-12-01 2010-12-10 Rhodia Operations INSTALLATION OF CRYSTALLIZATION OF ADIPIC ACID
JP6582904B2 (en) * 2015-11-12 2019-10-02 東洋インキScホールディングス株式会社 Hot melt adhesive sheet for electromagnetic induction heating, adhesive structure using the same, and method for producing adhesive structure
GB2546808B (en) * 2016-02-01 2018-09-12 Rolls Royce Plc Low cobalt hard facing alloy
GB2546809B (en) * 2016-02-01 2018-05-09 Rolls Royce Plc Low cobalt hard facing alloy
US20190071754A1 (en) * 2016-03-30 2019-03-07 Hitachi, Ltd. Cr BASED TWO-PHASE ALLOY AND PRODUCT THEREOF
WO2017168640A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Chromium-based two-phase alloy product and method for producing same
MA53483A (en) * 2018-08-29 2021-12-08 Chemetics Inc AUSTENITIC STAINLESS ALLOY WITH SUPERIOR CORROSION RESISTANCE
DE102018133255A1 (en) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Super austenitic material
CN112941413A (en) * 2021-02-01 2021-06-11 南京理工大学 Anti-irradiation nuclear power reactor pressure vessel alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836985A (en) * 1988-08-19 1989-06-06 Carondelet Foundry Company Ni-Cr-Fe corrosion resistant alloy
US4853185A (en) * 1988-02-10 1989-08-01 Haynes International, Imc. Nitrogen strengthened Fe-Ni-Cr alloy
EP0438992A1 (en) * 1990-01-15 1991-07-31 Avesta Sheffield Aktiebolag Austenitic stainless steel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565611A (en) * 1968-04-12 1971-02-23 Int Nickel Co Alloys resistant to corrosion in caustic alkalies
US3758296A (en) * 1970-10-29 1973-09-11 Lewis & Co Inc Charles Corrosion resistant alloy
US4172716A (en) * 1973-05-04 1979-10-30 Nippon Steel Corporation Stainless steel having excellent pitting corrosion resistance and hot workabilities
JPS524418A (en) * 1975-06-24 1977-01-13 Sandvik Ab Stainless steel
FI760020A (en) 1976-01-07 1977-07-08 Rauma Repola Oy
JPS5521547A (en) * 1978-08-01 1980-02-15 Hitachi Metals Ltd Austenite stainless steel having high strength and pitting corrosion resistance
US4424083A (en) * 1980-11-21 1984-01-03 Exxon Research And Engineering Co. Carburization resistance of austenitic stainless steel tubes
US4410489A (en) * 1981-07-17 1983-10-18 Cabot Corporation High chromium nickel base alloys
CA1181569A (en) * 1982-06-11 1985-01-29 Frank Smith Apparatus and process
US4670242A (en) * 1984-11-09 1987-06-02 Monsanto Company Heat recovery from concentrated sulfuric acid
US4576813A (en) * 1983-07-05 1986-03-18 Monsanto Company Heat recovery from concentrated sulfuric acid
JPS6141746A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp High strength and high corrosion resistance heat resisting steel superior in hot workability
DE3508532A1 (en) * 1985-03-09 1986-09-18 Bayer Ag, 5090 Leverkusen USE OF A CHROME ALLOY
DE3620167A1 (en) * 1986-06-14 1987-12-17 Bayer Ag USE OF A CHROME ALLOY
US4798633A (en) * 1986-09-25 1989-01-17 Inco Alloys International, Inc. Nickel-base alloy heat treatment
DE3716665A1 (en) * 1987-05-19 1988-12-08 Vdm Nickel Tech CORROSION RESISTANT ALLOY
JPH01275739A (en) * 1988-04-28 1989-11-06 Sumitomo Metal Ind Ltd Low si high strength and heat-resistant steel tube having excellent ductility and toughness
DE3830365C2 (en) * 1988-09-07 1996-06-27 Metallgesellschaft Ag Use of ferritic chromium - molybdenum steels as a material resistant to concentrated sulfuric acid
DE4118437A1 (en) * 1991-06-05 1992-12-10 I P Bardin Central Research In HIGH SILICON, CORROSION-RESISTANT, AUSTENITIC STEEL
JPH06141746A (en) * 1992-11-02 1994-05-24 Yoshikazu Kide Remote control fishing ship

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853185A (en) * 1988-02-10 1989-08-01 Haynes International, Imc. Nitrogen strengthened Fe-Ni-Cr alloy
FR2626893A1 (en) * 1988-02-10 1989-08-11 Haynes Int Inc NITROGEN-CONSOLIDATED FE-NI-CR ALLOY
US4836985A (en) * 1988-08-19 1989-06-06 Carondelet Foundry Company Ni-Cr-Fe corrosion resistant alloy
EP0438992A1 (en) * 1990-01-15 1991-07-31 Avesta Sheffield Aktiebolag Austenitic stainless steel

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616779B2 (en) 1997-10-31 2003-09-09 Alstom Workpiece made from a chromium alloy
EP0913491A1 (en) * 1997-10-31 1999-05-06 Abb Research Ltd. Process for producing a workpiece from a chromium alloy and its use
DE19748205A1 (en) * 1997-10-31 1999-05-06 Abb Research Ltd Process for producing a workpiece from a chrome alloy and its use
US6406572B1 (en) 1997-10-31 2002-06-18 Abb Research Ltd Process for the production of a workpiece from a chromium alloy, and its use
CN1093885C (en) * 1997-10-31 2002-11-06 阿尔斯通公司 Method of making Cr alloy workpieces and its use
US6764647B2 (en) 2000-06-30 2004-07-20 Choeller-Bleckmann Oilfield Technology Gmbh & Co. Kg Corrosion resistant material
WO2002002837A1 (en) * 2000-06-30 2002-01-10 Schoeller-Bleckmann Oilfield Technology Gmbh & Co Kg Corrosion resistant material
WO2008002150A1 (en) * 2006-06-28 2008-01-03 Hydrogen Technologies As Use of an austenitic stainless steel and an electrolyser made of such steel
RU2457271C2 (en) * 2006-06-28 2012-07-27 Хайдрожден Текнолоджиз Ас Application of structural material and electrolysis unit made from such material
US8430075B2 (en) 2008-12-16 2013-04-30 L.E. Jones Company Superaustenitic stainless steel and method of making and use thereof
EP2228578A1 (en) * 2009-03-13 2010-09-15 NV Bekaert SA High nitrogen stainless steel wire for flexible pipe
CN110295276A (en) * 2018-03-21 2019-10-01 吉林常春高氮合金研发中心有限公司 The method for improving high nitrogen steel ships propeller corrosion resistance
CN109338345A (en) * 2018-11-30 2019-02-15 中国科学院金属研究所 A kind of environment-friendly type surface passivation treatment method of medical high-nitrogen nickel-free stainless steel

Also Published As

Publication number Publication date
CA2137522C (en) 2004-04-27
FI945771A (en) 1995-06-11
DE59407804D1 (en) 1999-03-25
CA2137522A1 (en) 1995-06-11
ES2128495T3 (en) 1999-05-16
TW363084B (en) 1999-07-01
PL306180A1 (en) 1995-06-12
ATE176690T1 (en) 1999-02-15
EP0657556B1 (en) 1999-02-10
PL179404B1 (en) 2000-08-31
US5695716A (en) 1997-12-09
JP3355510B2 (en) 2002-12-09
FI107168B (en) 2001-06-15
DK0657556T3 (en) 1999-09-20
FI945771A0 (en) 1994-12-08
JPH07197181A (en) 1995-08-01
KR950018592A (en) 1995-07-22
DE4342188C2 (en) 1998-06-04
AU694456B2 (en) 1998-07-23
ZA949832B (en) 1995-08-22
DE4342188A1 (en) 1995-06-14
AU8030794A (en) 1995-06-15

Similar Documents

Publication Publication Date Title
EP0657556B1 (en) Austenitic alloys and their applications
DE68902498T2 (en) IRON-BASED SHAPED ALLOY ALLOY WITH EXCELLENT SHAPED LENGTH PROPERTIES AND VERY GOOD CORROSION RESISTANCE.
DE69208059T2 (en) Stainless duplex steel with improved strength and corrosion resistance properties
DE2752083C2 (en) Austenitic, stainless steel
DE68911266T2 (en) Corrosion-resistant nickel-based alloy.
DE2822224A1 (en) STAINLESS SPRING SHEETS, METHOD OF MANUFACTURING AND USING THE SAME
EP2632628B1 (en) Ni-fe-cr-mo alloy
DE1458330C3 (en) Use of a tough, precipitation hardenable, rustproof, chrome, nickel and aluminum containing steel alloy
DE3445056A1 (en) AUSTENITIC, STAINLESS STEEL ALLOY AND ITEMS MADE FROM THIS
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
DE3312109A1 (en) CORROSION-RESISTANT NICKEL-IRON ALLOY
DE69106372T2 (en) ALLOY WITH LOW THERMAL EXPANSION COEFFICIENT AND ITEM PRODUCED FROM IT.
DE3125301A1 (en) CORROSION-RESISTANT NICKEL ALLOY
EP0292061A1 (en) Corrosion-resistant alloy
DE60111925T2 (en) CORROSION RESISTANT AUSTENITIC ALLOY
DE3720055A1 (en) CORROSION-RESISTANT AND WEAR-RESISTANT STEEL
DE68916235T2 (en) Zirconium-based alloy with increased resistance to corrosion by nitric acid and with good creep resistance.
DE69112680T2 (en) Corrosion-resistant cast alloy.
DE1608180B1 (en) USING A NICKEL-CHROME STEEL ALLOY
DE2331134B2 (en) Roll-clad materials made from a base material made from steel and from cladding layers made from corrosion-resistant, austenitic steels
EP0516955B1 (en) Corrosion resistant austenitic steel with high silicon content
DE2634403C2 (en) Stainless alloy steel casting
DE3737314C2 (en) Jacket pipe for a tubular heater made of austenitic, stainless steel
DE1758819A1 (en) Steel resistant to stress corrosion cracking
EP0361554B1 (en) Use of ferritic chromium-molybdenum steels as materials resisting concentrated sulfuric acid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950628

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980520

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 176690

Country of ref document: AT

Date of ref document: 19990215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59407804

Country of ref document: DE

Date of ref document: 19990325

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2128495

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990430

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011031

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20011102

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20011114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011119

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

BERE Be: lapsed

Owner name: *KRUPP VDM G.M.B.H.

Effective date: 20021130

Owner name: *BAYER A.G.

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAYER AG

Free format text: BAYER AG# #51368 LEVERKUSEN (DE) $ KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE) -TRANSFER TO- BAYER AG# #51368 LEVERKUSEN (DE) $ KRUPP VDM GMBH#PLETTENBERGER STRASSE 2#58791 WERDOHL (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59407804

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: BAYER AG, DE

Free format text: FORMER OWNERS: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE; BAYER AG, 51373 LEVERKUSEN, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNERS: THYSSENKRUPP VDM GMBH, 58791 WERDOHL, DE; BAYER AG, 51373 LEVERKUSEN, DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: OUTOKUMPU VDM GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

Effective date: 20130221

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: BAYER AG, DE

Free format text: FORMER OWNER: THYSSENKRUPP VDM GMBH, BAYER AG, , DE

Effective date: 20130221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131120

Year of fee payment: 20

Ref country code: AT

Payment date: 20131113

Year of fee payment: 20

Ref country code: SE

Payment date: 20131121

Year of fee payment: 20

Ref country code: DE

Payment date: 20131121

Year of fee payment: 20

Ref country code: CH

Payment date: 20131121

Year of fee payment: 20

Ref country code: GB

Payment date: 20131120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131128

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59407804

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59407804

Country of ref document: DE

Representative=s name: CICHY, WOLFGANG, DIPL.-ING., DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNERS: BAYER AG, 51373 LEVERKUSEN, DE; OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: BAYER AG, DE

Free format text: FORMER OWNERS: BAYER AG, 51373 LEVERKUSEN, DE; OUTOKUMPU VDM GMBH, 58791 WERDOHL, DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: VDM METALS GMBH, DE

Free format text: FORMER OWNER: BAYER AG, OUTOKUMPU VDM GMBH, , DE

Effective date: 20140526

Ref country code: DE

Ref legal event code: R081

Ref document number: 59407804

Country of ref document: DE

Owner name: BAYER AG, DE

Free format text: FORMER OWNER: BAYER AG, OUTOKUMPU VDM GMBH, , DE

Effective date: 20140526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59407804

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59407804

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 176690

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141127

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG