WO2005078148A1 - Metal tube for use in carburizing gas atmosphere - Google Patents

Metal tube for use in carburizing gas atmosphere Download PDF

Info

Publication number
WO2005078148A1
WO2005078148A1 PCT/JP2005/000892 JP2005000892W WO2005078148A1 WO 2005078148 A1 WO2005078148 A1 WO 2005078148A1 JP 2005000892 W JP2005000892 W JP 2005000892W WO 2005078148 A1 WO2005078148 A1 WO 2005078148A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
oxide scale
metal tube
content
Prior art date
Application number
PCT/JP2005/000892
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Nishiyama
Nobuo Otsuka
Takeo Kudo
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2005517917A priority Critical patent/JPWO2005078148A1/en
Priority to CA002556128A priority patent/CA2556128A1/en
Priority to DK05709298.3T priority patent/DK1717330T3/en
Priority to EP05709298.3A priority patent/EP1717330B1/en
Publication of WO2005078148A1 publication Critical patent/WO2005078148A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation

Definitions

  • Metal tube for use in carburizing gas atmosphere Metal tube for use in carburizing gas atmosphere
  • the present invention relates to a metal pipe which has high strength at high temperatures and excellent corrosion resistance and can be used in a carburizing gas atmosphere containing a hydrocarbon gas or a CO gas.
  • the metal tube of the present invention has excellent shielding performance for carburizing gas, and is suitable as a material for a cracking furnace tube, a reforming furnace tube, a heating furnace tube, a heat exchanger tube, or the like in a petroleum refining or petrochemical plant.
  • the present invention makes it possible to control the shielding properties of a metal tube used in a carburizing gas atmosphere against carburizing gas.
  • a dense oxide film composed of oxides of elements such as Cr and Si that is, chromium oxide and silicon oxide
  • Cr and Si that is, chromium oxide and silicon oxide
  • the diffusion of elements from the inside of the material to the surface is insufficient, so that an acid having a corrosion inhibiting effect can be obtained.
  • the gas of the same composition also changes to become carburizable by the reforming reaction, resulting in carburization by intrusion of C from the metal surface.
  • Japanese Unexamined Patent Publication No. 9-78204 describes an atmosphere of 400-700 ° C containing H, C ⁇ , CO, and H ⁇ .
  • an Fe-based alloy or an M-based alloy containing 11 to 60% (mass%, hereinafter the same) of Cr is superior.
  • This patent publication discloses a material containing at least 24% Cr and at least 35% M for an Fe-based alloy, a material containing at least 20% Cr and at least 60% Ni for a Ni-based alloy, and further adding Nb to the material. Materials are disclosed. However, in general, increasing the amount of Cr or Ni cannot sufficiently suppress carburization, and it is desired to further suppress metal dusting.
  • Japanese Patent Application Laid-Open No. 2003-73763 discloses an atmosphere gas containing 400, 700 ° C containing H, C ⁇ , CO, and H 2 O.
  • JP-A-53-66832 and JP-A-53-66835 disclose 25Cr to 20Ni (HK 40) low-Si heat-resistant steel and 25Cr to 35Ni low-Si heat-resistant steel in air at around 1000 ° C.
  • a method for performing pre-oxidation for more than 100 hours is disclosed.
  • Japanese Patent Application Laid-Open No. 57-43989 discloses a technique for pre-oxidizing an austenitic heat-resistant steel containing 20-35% Cr in the atmosphere.
  • Japanese Patent Application Laid-Open No. H11-29776 proposes a method of improving the carburization resistance by heating a high M—Cr alloy in a vacuum to form a scale film.
  • JP-T-2000-509105 proposes a method for improving carburization resistance by forming a concentrated layer of Si or Cr by surface treatment.
  • the present invention provides a cracking furnace tube for ethylene plants, a reforming furnace tube, and the like, which has a function of shielding from carburizing gas and thereby exhibits excellent metal dusting resistance, carburizing resistance, and coking resistance.
  • the purpose is to provide a metal tube suitable for use.
  • the inventors of the present invention analyzed the surface condition of various metal pipe materials in order to investigate the behavior of locally generating metal dusting, carburizing, and caulking (carbon deposition) even in a metal pipe having a high Cr content.
  • the oxide layer formed on the surface of the metal tube is dense, the above corrosion does not occur, but if a defect such as partial cracking or peeling occurs in the oxide layer, the oxide At the same time as C entered, it was found that the exposed metal acted as a catalyst to cause carbon deposition.
  • a protective oxide scale or a thin layer formed by surface treatment is formed on the metal surface to block C, and (2) penetration C
  • flux flux
  • penetration C it is effective to suppress the dissociative adsorption of gas.
  • Cu, Ag, Pt It is important that these elements exist.
  • the present inventors have focused on the fact that gas adsorption is a phenomenon that occurs on the surface of a metal material. If a Cu-enriched layer exists only on the metal surface, the dissociation of the adsorbed gas is essentially reduced. However, we thought that carburization and metal dusting could be suppressed. In other words, the Cu content in the metal material (alloy) is limited to a level that does not affect the manufacturability and weldability, but the Cu concentration on the surface is A confirmation test was conducted based on the idea that desired performance could be obtained by performing a process for increasing the performance.
  • FIGS. 1 (A) and 1 (B) show that the Cu content is different and therefore the surface Cu concentration is different by 25%.
  • the Cu concentration is a value obtained by converting the measured value obtained by elemental analysis in the depth direction of the metal surface force by AES (Auger analysis) into atomic%.
  • AES Alger analysis
  • Figs. 2 (A) and 2 (B) show the 25% Cr-35% Ni-0.5% Cu_bal.Fe alloy [Fig.2 (A)] or 25% Cr-55% Ni-2.5% A
  • the relationship between the thickness of the Cu-enriched layer and the occurrence of pits when a Cu-enriched layer is formed on the surface of a 0.3% Cu-bal.Fe alloy [Fig. 2 (B)] under different conditions is shown.
  • the corrosion test conditions are the same as above.
  • the Cu concentration of the Cu-enriched layer of the test alloy is in the range of about 0.4-0.8 at.% 2 (A) and about 0.2-0.5 at.% [Fig.2 (B)].
  • FIG. 1 (A) and FIG. The same various plate-shaped test pieces as in the test shown in (B) were subjected to atmospheric oxidation treatment at 1100 ° C for 5 minutes to form an oxide scale, and then subjected to a corrosion test under the same conditions as above.
  • Figure 3 (A) shows the results obtained with a 25% Cr_35% Ni-bal.Fe alloy
  • Figure 3 (B) shows the results. / ⁇ _55% ⁇ -2.5. /.
  • the results obtained with the bal.Fe alloy are shown below.
  • the horizontal axis shows the Cu concentration immediately below the preliminary oxidation scale in atomic percent. From these figures, it can be seen that pits are suppressed by the presence of oxide scale on the metal surface in advance. The pits are further suppressed when the Cu concentration below the scale is 0.1 atomic% or more. Power to be done.
  • the present invention based on such findings includes a base material containing 35% by mass of Cr: 15% by mass of Ni: 30% by mass, Al: 0.001 by 10%, and Cu: 0.01 to 10% by mass%.
  • a metal tube provided with a Cu-enriched layer on its surface, wherein the Cu-enriched layer has a Cu concentration of 0.1 atomic% or more and a thickness of 0.3 band or more. This is a metal tube for use in a carburizing gas atmosphere.
  • the metal tube may further include an oxide scale layer having a Cr content of 50% by mass or more or a total content of Cr + Al of 50% by mass or more outside the Cu-enriched layer.
  • a second oxide scale layer having a Si content of 50% by mass or more may be further provided between the oxide scale layer and the Cu-enriched layer.
  • the metal tube of the present invention may have an irregular inner surface and / or outer surface.
  • the base material is preferably, by mass%, C: 0.01-0.6%, Si: 0.01-5%, Mn: 0.01-10%, P: 0.08% or less, S: 0.05% or less, Cr: 15-35 %, Ni: 30% to 75%, Cu: 0.01% to 10%, N: 0.001% to 0.25%, Al: 0.001% to 10%, 0 (oxygen): 0.02% or less, with the balance being Fe and impurities. are doing.
  • This chemical composition may further contain at least one element selected from the following (i) to (vi) in mass%.
  • the present invention provides a base material containing 0 : 0 mass, Cr: 15-35%, Ni: 30-75%, A1: 0.001-10%, Cu: 0.01-10%.
  • a Cu-enriched layer is formed on the surface of the metal tube, and the Cu-enriched layer has a Cu concentration of 0.1 atomic% or more, and A method for improving the metal dusting resistance, carburization resistance and coking resistance of the metal pipe, characterized in that the thickness of the thickened layer is 0.3 nm or more.
  • an oxide scale layer having a Cr content of 50% or more or a total content of Cr + Al of 50% by mass or more may be provided outside the Cu-enriched layer.
  • a second oxide scale layer mainly composed of Si having a Si content of 50% or more may be provided between the kale and the Cu-concentrated layer.
  • the metal pipe of the present invention has a function of shielding from carburizing gas, and is excellent in metal dusting resistance, carburization resistance, and coking resistance. It can be used for cracking furnace tubes, reforming furnace tubes, heating furnace tubes, pipes, heat exchanger tubes, etc., and can greatly improve the durability and operation efficiency of the equipment.
  • FIGS. 1 (A) and 1 (B) show 25% Cr-35 having different Cu contents.
  • 3 is a graph showing the relationship between the surface Cu concentration and pit generation in the Ni-bal.Fe alloy and the 25% Cr_55% Ni_2.5% A bal.Fe alloy.
  • FIGS. 2 (A) and 2 (B) each show 25% Cr-35.
  • /. 3 is a graph showing the relationship between the thickness of a Cu-enriched layer and the occurrence of pits in a Ni-0.5% Cu-baLFe alloy and a 25% Cr-55% Ni_2.5% A 0.3% Cu-bal.Fe alloy.
  • FIG. 3 In FIGS. 3 (A) and 3 (B), the Cu content is different at 25 Q /. Cr_35Q /. 5 is a graph showing the relationship between the pit formation and the Cu concentration just below the oxide scale in the Ni_bal.Fe alloy and the 25% Cr-55% Ni_2.5% A bal.Fe alloy.
  • the metal tube according to the present invention is composed of a base material containing 15 to 35% of Cr, 30 to 75% of Ni, 0.001 to 10% of Al, and 0.01 to 10% of Cu. With layers.
  • the Cu-enriched layer can be provided on one or both of the inner surface and the outer surface of the metal tube.
  • the object of the present invention can be achieved by forming a Cu-enriched layer only on the surface of the metal tube exposed to the carburizing gas atmosphere.
  • a Cu-enriched layer can be formed on the inner surface
  • a Cu-enriched layer can be formed on the outer surface.
  • a Cu-enriched layer may be formed on both surfaces of the metal tube.
  • Cu-enriched layer refers to a region having a concentration (% by mass) higher than the average Cu concentration (% by mass) of the base material, and the thickness of the Cu-enriched layer is determined on the metal surface (one or two layers on the metal surface). If there is more than one oxide scale layer, the position where the Cu concentration is equivalent to the average Cu concentration of the base metal from the interface with the innermost oxide scale layer (that is, the Cu-enriched layer and the base metal Distance in the depth direction (that is, in the radial direction of the metal tube) to the interface of the metal pipe.
  • the oxide scale layer that can be formed on the surface of the metal tube according to the present invention includes, for example, an oxide scale layer mainly composed of Cr (having a Cr content of 50% or more), an oxide scale layer mainly composed of Cr, and Si There can be a second oxide scale layer that is mainly (Si content is 50% or more) or an oxide scale layer that is mainly Cr + Al (the total content of Cr + Al is 50% or more).
  • the Cu concentration of the Cu-enriched layer refers to the average value of the Cu concentration in the layer.
  • the average value of the measured values (atomic% conversion value) in the layer is defined as the Cu concentration of the Cu-enriched layer.
  • the Cu concentration and the thickness of the Cu-enriched layer can be measured using AES.
  • AES can measure the concentration of metal elements on the surface by irradiating the surface with an electron bell and detecting the emitted electrons. By cutting a small piece from a part of the metal tube and performing AES while sputtering from the surface, it is also possible to analyze in the depth direction from the surface. In this way, by measuring the Cu concentration in the surface layer of the material in the depth direction until the Cu concentration becomes constant, the thickness of the Cu-enriched layer can be determined. The Cu concentration in the concentrated layer can be determined.
  • the Cu-enriched layer is provided on the surface of the metal tube.
  • the surface layer of a metal tube means the portion near the tube surface, and its location depends on the method of forming the Cu-enriched layer. That is, the Cu-enriched layer may be the outermost layer of the metal tube, but if one or more oxide scale layers exist outside the Cu-enriched layer, the Cu-enriched layer is oxidized. It exists between the scale layer and the base material.
  • the Cu concentration of the Cu-enriched layer is 0.1 atomic% or more. If the Cu concentration of the Cu-enriched layer is less than 0.1 atomic%, it will not be possible to perform the shielding function by suppressing the adsorption of hydrocarbons and C-dissociative gas such as C ⁇ during the operation of the plant. In addition, even when the oxide scale layer described above exists on the metal surface, if the Cu concentration of the Cu concentrated layer immediately below the metal oxide layer is less than 0.1 atomic%, the oxide scale layer may be damaged, such as cracking or peeling. The gas adsorption on the exposed metal surface cannot be suppressed when exposed.
  • the Cu concentration of the Cu-enriched layer is preferably at least 0.3 at%, more preferably at least 1.0 at%.
  • the thickness of the Cu-enriched layer is 0.3 nm or more. If the thickness of the Cu-enriched layer is less than 0.3 nm, the shielding function cannot be achieved by suppressing adsorption of hydrocarbons and C-class gases such as CO from the carburizing gas during plant operation.
  • the thickness of the Cu-enriched layer is preferably 0.5 nm or more.
  • the thickness of the Cu-enriched layer can be easily adjusted by, for example, changing the conditions of the alternating electrolytic treatment and the atmosphere control heat treatment.
  • the upper limit of the thickness of the Cu-enriched layer is not particularly specified, but usually does not exceed 100 nm.
  • the means for generating the Cu-enriched layer is not limited to these, but includes “alternate electrolytic treatment”, “atmosphere control heat treatment”, “pickling treatment” and the like. These two or more techniques may be used in combination.
  • Alternating electrolytic treatment is a method in which the potential applied to the metal is swept to a noble potential region where the alloying element dissolves in the electrolyte, and then swept to a lower potential region, thereby depositing Cu on the surface. It is. Cu is more electrically noble than Ni, Cr, and Fe, and thus precipitates preferentially in a low potential region.
  • This treatment can form a Cu-enriched layer on the surface of the metal tube on the side where the electrolyte contacts. This process can reliably form a Cu-enriched layer.
  • the thickness and Cu content of the Cu-enriched layer can be changed by applying potential and application time in the noble and noble potential regions.
  • the atmosphere control heat treatment Alternatively, by forming a Cr + Al-based oxide scale or a second Si-based oxide scale, the Cr, Al, and Si concentrations immediately below the oxide scale decrease, so that the Cu concentration becomes relatively higher than the inside of the base material, A Cu-enriched layer can be formed.
  • the Cu concentration in the surface layer can be increased to form a Cu-enriched layer.
  • oxide scale layer a first oxide scale layer mainly composed of Cr or Cr + Al [hereinafter referred to as an oxide scale layer (A)] is preferably present on the surface of the metal tube.
  • oxide scale layer (B) Oxide scale layer
  • the oxide scale layer (A) has an oxide scale force mainly composed of Cr or Cr + Al. Whether this oxide scale is mainly composed of Cr or mainly composed of Cr + Al depends on the A1 content in the alloy. Generally, when the A1 content is 1.5% or more, the oxide scale is mainly composed of Cr + Al, and when the A1 content is less than 1.5%, the oxide scale is mainly composed of Cr.
  • the metal tube may be heated in an oxidizing atmosphere to a temperature at which surface oxidation occurs.
  • the thickness of the formed oxide scale layer can be changed depending on conditions such as heating temperature, time, and partial pressure of oxygen in the atmosphere.
  • the oxygen partial pressure should be higher than the dissociation pressure of Cr-based oxide.
  • the composition of the oxide scale layer is determined solely by the alloy composition of the base material.
  • a skeneole oxide layer mainly composed of Cr or Cr + Al is very important from the viewpoint of metal dusting resistance, carburization resistance and coking resistance.
  • An oxide scale layer mainly composed of Cr with a Cr content of 50% or more has excellent shielding properties against penetration of highly dense carbon into steel. And the total content of A1 is 50.
  • the oxide scale layer mainly composed of Cr + Al having a ratio of / o or more has a higher density and exhibits excellent protection. All of these oxide scale layers are thermodynamically stable up to high temperatures even in a high-temperature carburizing environment such as an ethylene cracking furnace, and have long-term protection. In addition, all of these oxide scale layers are resistant to coking. Since the catalytic action is small, coking on the metal surface is suppressed. As a result, the thermal conductivity to the fluid in the pipe is maintained well for a long time, and the yield of reaction products such as olefins is stabilized.
  • the oxide scale layer (B) is an oxide scale force mainly composed of Si.
  • the oxide scale layer may be heated to a temperature at which surface oxidation occurs in an oxidizing atmosphere.
  • the thickness of the oxide scale layer to be formed can be changed depending on conditions such as heating temperature, time, and partial pressure of oxygen in the atmosphere.
  • the composition of the oxide scale layer is determined solely by the base steel composition.
  • oxide scale layer (B) of S cast having a Si content of 50% or more is to be generated, it is preferably present between the Cu-concentrated layer and the oxide scale layer (A).
  • the oxide scale layer (B) promotes the uniform formation of the above-described oxide scanole layer (A), and the damaged portion is regenerated when the oxide scale layer (A) is damaged, such as cracking or peeling. It has the function of assisting in this.
  • the oxide scale layer (B) mainly composed of Si between the Cu-concentrated layer and the oxide scale layer (A) a gas having an oxygen partial pressure equal to or higher than the dissociation pressure of the oxide mainly composed of Cr is used. If the metal chamber is heated in the middle, the dissociation pressure of the oxide mainly composed of Si is smaller than the dissociation pressure of the oxide mainly composed of Cr, so that the inner oxide scale layer (B) and the outer oxide scale layer (A ) Can be formed at the same time.
  • the thickness of each oxide scale layer can be changed depending on the heating temperature and time.
  • the oxide scale layer (B) can be easily formed by increasing the Si content in the base alloy (for example, to 0.4% or more).
  • the thickness of the oxide scale layer can be measured, for example, by observing a cross-sectional micro sample with an optical microscope.
  • the element content of the oxide scale layer (A) and the oxide scale layer (B) can be measured by EDX (energy monodisperse X-ray spectrometer). The measurement is generally performed by performing C element deposition on the surface using a cross-sectional micro sample and then performing elemental quantitative analysis by EDX.
  • the element content in the scale is the elemental content measured for each of the target scale layers. From the analysis results, it can be determined as the value of the Cr, Al, and Si contents when the total amount of metal elements alone is 100%.
  • the inner surface and / or outer surface of the metal tube according to the present invention may be a surface having an irregular shape such as having a projection or having an irregular cross section.
  • a surface having such an irregular cross section is susceptible to attack by a carburizing gas, so that the oxide scale is easily peeled off.
  • the inner surface and / or the outer surface of the metal tube have high carburization resistance and a high ability to repair the coating, the inner surface and the Z or outer surface having such an irregular cross section are provided. The effect of the present invention is particularly remarkable in the case of a bent metal tube.
  • the metal material (base material) constituting the metal tube according to the present invention has the following composition (% by mass except for the Cu concentration (expressed in atomic%) of the Cu-concentrated layer, and the balance Fe and impurities).
  • the alloy has the following composition (% by mass except for the Cu concentration (expressed in atomic%) of the Cu-concentrated layer, and the balance Fe and impurities).
  • the alloy has the following composition (% by mass except for the Cu concentration (expressed in atomic%) of the Cu-concentrated layer, and the balance Fe and impurities).
  • the alloy has the following composition (% by mass except for the Cu concentration (expressed in atomic%) of the Cu-concentrated layer, and the balance Fe and impurities).
  • the more preferred range is 0.01% —0.3%.
  • Si has a strong affinity for oxygen, it promotes the uniform formation of a Cr-based oxide scale layer (A). This effect is exhibited by containing 0.01% or more of Si. However, if the Si content exceeds 5%, the weldability deteriorates and the structure becomes unstable.
  • the preferred range of the Si content is 0.1-3%, and the more preferred range is 0.3-2.5%.
  • the upper limit of the Si content is set to 1%. Is preferred. In this case, the more preferable range of the Si content is 0.05 to 0.6%.
  • Mn is added in an amount of 0.01 Q / o or more to improve deoxidation and processability. Since Mn is an austenite forming element, it is possible to partially replace Ni with Mn. However, the addition of excess Mn inhibits the formation of an oxide scale layer mainly composed of Cr, The upper limit of the amount is 10%. A preferred range of the Mn content is 0.1-5%, and a more preferred range is 0.1-2%.
  • P and S segregate at the grain boundaries and degrade hot workability. Therefore, it is preferable to reduce as much as possible, but excessive reduction leads to high cost, so P: 0.08. / o or less, S: 0.05% or less. Preferably, P: 0.05% or less, S: 0.03% or less, more preferably, P: 0.04% or less, S: 0.015% or less.
  • Cr is an important element in the present invention. In order to stably form a Cr-based oxide scale, it is necessary to contain 15% or more of Cr. If the alloy contains more than 1.5% of A1, a denser and more protective oxide scale will be formed, consisting mainly of Cr and A1. However, since excessive Cr addition deteriorates the structure stability as well as the processability, the upper limit is set to 35%. A preferred range of the Cr content is 20-33%, and a more preferred range is 22-32%.
  • M is an element capable of obtaining a stable austenite structure in accordance with the Cr content, and is therefore contained in an amount of 30 to 75%. Also, when C enters steel, it has a function to reduce the penetration speed. However, an unnecessarily high content of M causes high costs and difficulty in manufacturing.
  • the preferred range of the Ni content is 35-70%, and the more preferred range is 40-65%.
  • Cu is one of the most important elements in the present invention.
  • Cu has a very large effect of suppressing the adsorption of carburizing gas to the metal surface.
  • the base metal alloy needs to contain 0.01% or more Cu.
  • a preferred range for the Cu content is 0.03-5%, and a more preferred range is 0.1-3%.
  • N 0.001—0.25%
  • N is an element effective for improving high-temperature strength. To achieve this effect, N should be contained at 0.001% or more. An excessive amount of soybean paste greatly impairs processability, so the upper limit is 0.25%. The preferred N content range is 0.001% 0.2%. [0064] However, when the Al content is 1.5% or more, the N content is preferably 0.1% or less because A1 and N form a compound and lower the creep strength. The more preferable range of the N content in this case is 0.001% -0.05%.
  • Al is an element effective for improving hot workability even in a trace amount. Therefore, A1
  • Add at least 0.001% for this purpose, it is preferable to contain A1 in an amount of 0.01% or more.
  • A1 also contributes to the formation of a dense and highly protective oxide scale mainly composed of Cr and A1 when the oxide scale is previously formed on the surface and when exposed to a carburizing gas environment. . Further, even when an oxide scale is not formed in advance, an oxide scale mainly composed of A1 and A1 is generated in a use environment, so that metal dusting resistance and carburization resistance of the metal pipe can be significantly improved. For this purpose, it is effective to contain 1.5% or more of A1. On the other hand, when A1 is contained in an amount exceeding 10%, a hardenable precipitate is precipitated in the alloy, so that the toughness and creep ductility of the alloy are significantly reduced. When forming an oxide scale layer mainly composed of Cr and A1, the preferred range of the A1 content is 2 to 8%, the more preferred range is 2 to 4%, and the most preferred range is 2.2 to 3.5%.
  • the A1 content is preferably less than 1.5%.
  • the more preferable range of the A1 content is 0.01 to 1.2%, and the most preferable range is 0.01 to 0.5%.
  • Co has the effect of stabilizing the austenite phase, part of Ni is 0.01. It can be replaced with Co over / o. On the other hand, if Co is added in excess of 5%, the hot workability of the alloy becomes significant. Decline.
  • the preferred range of the Co content is 0.01-3%.
  • Mo and W are both solid solution strengthening elements and are effective in improving the high temperature strength of the alloy. In order to exert its effect, each can be added in an amount of 0.01% or more. However, excessive addition of each of these elements impairs processability and inhibits tissue stability. Therefore, the content of both Mo and W should be 10% or less. For both Mo and W, the preferred range is 0.01-8%, and the more preferred range is 0.1-5%.
  • Ti and Nb have a great effect on improving high-temperature strength, ductility and toughness even with a very small amount of added syrup. However, if each is less than 0.01%, the effect cannot be obtained, and if it exceeds 2%, workability and weldability are reduced.
  • the preferred range is 0.01-1.5%, and the more preferred range is 0.02-1.2%.
  • B 0.001—0.1%
  • Zr 0.001—0.1%
  • Hf 0.001—0.5%
  • B, Zr and Hf are all effective elements for strengthening grain boundaries and improving hot workability and high-temperature strength properties.However, if less than 0.001%, the effect cannot be obtained and excessive addition (More than 0.1% for B and Zr, more than 0.5% for ⁇ ?) Deteriorates weldability.
  • Mg 0.0005—0.1%
  • Ca 0.0005—0.1%
  • Mg and Ca are both effective elements for improving hot workability, and the effect is remarkable at 0.0005% or more.
  • excessive addition of these elements deteriorates the weldability, so the upper limits are each set to 0.1%.
  • Y, La, Ce, Nd one or more of 0.0005-0.15% each:
  • Y, La, Ce, and Nd are effective elements for improving oxidation resistance, but their effects are not obtained at less than 0.0005%, and excessive addition lowers the workability, so the upper limit is set. To 0.15%. The preferable lower limit of the amount of added kamitsu of each of these elements is 0.005%.
  • the metal pipe having a function of shielding from carburizing gas according to the present invention can be obtained by combining means selected from melting, forging, hot working, cold working, welding, and the like. What is necessary is just to shape
  • the surface of the metal tube after the final heat treatment may be subjected to surface processing such as pickling, shot blasting, mechanical cutting, grinder polishing, and electrolytic polishing. It is also possible to combine a plurality of these. After that, a Cu-enriched layer is generated by the means described above.
  • the formation of the oxide scale (A) and the oxide scale (B) may be achieved at the time of the final heat treatment, or may be formed by performing a heat treatment after the surface processing treatment or the treatment for forming the Cu-enriched layer.
  • the metal pipe according to the present invention has one or more protruding shapes on the inner surface and / or outer surface of the tube, it does not impair the function of shielding from carburizing gas at all.
  • a protrusion shape include a fin tube used for an ethylene cracking furnace tube, and can be formed, for example, during hot working or by welding.
  • This example illustrates the case where the A1 content of the base material is less than 1.5% and an oxide scale is formed, where a Cr-based oxide scale layer is formed.
  • Each metal material having the chemical composition shown in Table 1 was melted in a high-frequency heating vacuum furnace to form a billet, and the billet was subjected to hot forging and cold rolling to obtain a gold material having an outer diameter of 56 mm and a wall thickness of 6 mm.
  • a genus tube was made. The metal tube was uniformly subjected to solution heat treatment at 1200 ° C for 10 minutes in air.
  • each metal tube was subjected to alternating electrolytic treatment (abbreviated as ACE1) or atmosphere control heat treatment (abbreviated as ACHT) to form a Cu-enriched layer on the inner and outer surfaces of the tube.
  • ACE1 alternating electrolytic treatment
  • ACHT atmosphere control heat treatment
  • some metal pipes were shot peened (abbreviated as SP) on the outer surface of the pipe to introduce distortion into the metal surface.
  • the Cr-based oxide scale layer (A) and the Si-based oxide scale layer (B) were formed during the atmosphere control heat treatment.
  • a Cu-enriched layer was formed inside the oxide scale layer at the same time as the oxide scale layer was formed.
  • it was demonstrated that a Cu-enriched layer Therefore, the surface treatment and the alternating electrolytic treatment were not performed on the metal tube that had been subjected to this heat treatment.
  • a 20 mm square test piece was cut out from each of the above metal tubes, and the Cu concentration on the surface of the test piece was measured in the depth direction by AES, and the Cu-enriched layer was determined based on the Cu content of the base material. Was determined, and its thickness and Cu concentration were determined.
  • the oxide scale layer formed on the surface was measured in addition to the AES measurement for the Cu-enriched layer described above. That is, first, a cross-sectional micro-mouth test piece was prepared, and the thickness of the oxide scale layer was measured by microscopic observation. Using the same test piece, the Cr content and the Si content of the Cr-based oxide scale layer (A) and the Si-based oxide scale layer (B) on the surface were measured by EDX, respectively. These contents were measured at any three locations for each of the target scale layers, and the Cr, Al, and Si contents were calculated when the total amount of metal elements was 100%, and calculated from their average values. .
  • test piece having a width of 20 mm and a length of 25 mm was cut out from the above metal tube. This test piece was heated at 650 ° C in a carburizing gas atmosphere of 60% CO-26% H-11.5% CO-2.5% HO by volume ratio.
  • test piece was taken out at regular intervals during this period, and the test piece was taken out at regular intervals and the surface was visually observed to determine the presence or absence of pits, and the time until the occurrence of pits was recorded. Table of results
  • a pit occurrence time of 1000 hours means that a pit occurred after 1000 hours.
  • test piece having a width of 20 mm and a length of 30 mm was cut out from the metal tube.
  • the specimen was kept at 1050 ° C for 300 hours in a carburizing gas atmosphere with a volume ratio of 15% CH -3% CO -82% H.
  • the amount of C (% by mass) invading the base material was measured as follows. [0085] After removing the oxide scale formed on the surface of the test piece after holding in the gas atmosphere, metal chips were sampled at a 0.5 mm pitch in the depth direction from the surface, and 0.5 to 1.0 mm deep. The amount of C at the depth of 1.0-1.5 mm was quantified by chemical analysis, and after reducing the amount of the base metal C before the test, the average value of both C amounts was defined as the amount of invading C at a depth of 1 mm. Table 2 also shows the results.
  • SB Shotblast last
  • ACEI Alternating treatment
  • He Pickling
  • HD Pickling descaling
  • Mac Luo grinding
  • ACHT Atmosphere control
  • SP Shot peening
  • Grd Grinder grinding
  • the underline also deviates from the specified range force of the present invention.
  • Ffifg charcoal resistance 15% CH 4 - 3 0 /. C0 2 -82% H 2 gas, 1050 ° CX 300B.
  • the metal pipe of alloy No. 33 whose chemical composition deviates from the condition specified in the present invention has a short pit generation time of less than 100 hours, and has poor metal dusting resistance.
  • this metal pipe is inferior in carburization resistance with a large amount of penetration C of 2%.
  • the conditions in which the Cu concentration and the thickened layer thickness of the Cu-enriched layer are specified in the present invention are specified in the present invention.
  • the test metal tube that satisfies the above requirements has excellent metal dusting resistance, which has a long time until the occurrence of pits, has less than 1% penetration C, and has excellent carburization resistance.
  • a test metal tube in which at least one of the Cu concentration and the thickness of the Cu-enriched layer does not satisfy the conditions specified in the present invention has a short time until the occurrence of pits, is inferior in metal dusting resistance, and has a low penetration rate. It has a high C content and is inferior in carburization resistance.
  • a Cu-enriched layer can be formed just below the oxide scale layer generated by this heat treatment simply by performing the atmosphere control heat treatment (ACHT) on the metal tube.
  • ACHT atmosphere control heat treatment
  • the Si content is as low as about 0.01%, the force S generated only by the Cr-based oxide scale layer (A), and under the heat treatment conditions used in this example, the Si content is about Above 0.4%, it appears that a silicon-based oxide scale layer (B) is continuously and significantly formed between the oxide scale layer (A) and the Cu-enriched layer.
  • This example illustrates a case where the A1 content of the base material is 1.5% or more and an oxide scale is formed, and an oxide scale layer mainly composed of Cr and A1 is formed. Since the A1 content is as high as 1.5% or more, the Si content is set to 1% or less for the above-described reason.
  • the composition of the oxide scale layer, the thickness and the Cu concentration (atomic%) of the Cu-enriched layer, and the evaluation test of the metal dusting resistance and the carburization resistance were also performed in Examples.
  • the procedure was the same as in 1.
  • the metal pipe of this example has a high A1 content of 1.5% or more, it has better metal dusting resistance and carburization resistance than the metal pipe manufactured in Example 1. Therefore, in the metal dusting resistance evaluation test, the test time was extended from 1000 hours in Example 1 to 3000 hours, and in the carburization resistance evaluation test, the test temperature was increased from 1050 ° C to 1100 ° C. Conditions were more stringent.
  • the oxide scale layer (A) generated by the atmosphere control heat treatment was mainly composed of Cr and A1, so that the Cr + The total content of Al was measured by EDX.
  • all of the test metal tubes subjected to the atmosphere control heat treatment had a Si content of less than 0.3%, and the oxide scale layer (B) mainly composed of Si was not formed in the form of a continuous layer. The measurement of the scale layer (B) was not performed.
  • the underline of 0.02 Zr is out of the range of the present invention.
  • SB Shot blast
  • ACB Alternating 3 ⁇ 4
  • Pic Release
  • RD Pickling descaling
  • Mac Thigh grinding
  • ACHT Atmosphere control treatment
  • SP Three-pinning
  • Grd Grinder grinding
  • ACHT Atmosphere control heat treatment
  • SP Shot pinning
  • Grd Grinder grinding
  • the metal pipe of alloy No. 36 whose chemical composition deviates from the condition specified in the present invention, is inferior in metal dusting resistance with a short pit generation time of 200 hours.
  • this metal pipe has a low penetration carburization capacity of ⁇ .0% and is inferior in carburization resistance.
  • the conditions specified in the present invention for the Cu concentration and the thickened layer thickness of the Cu-enriched layer are as follows.
  • the test metal tube that satisfies is excellent in metal dusting resistance, which has a long time until the occurrence of pits, has less than 1% penetration C, and has excellent carburization resistance.
  • a test metal tube in which at least one of the Cu concentration and the thickness of the Cu-enriched layer does not satisfy the conditions specified in the present invention has a short time to pit generation and is inferior in metal dusting resistance.
  • the amount of intrusion C is large and the carburization resistance is poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A metal tube for use in a carburizing gas atmosphere, which comprises a Cu-rich layer having a Cu concentration of 0.1 atomic % or more and a thickness of 0.3 nm or more in the surface portion thereof, and comprises a base material having an alloy composition, in mass %, wherein Cr: 15 to 35 %, Ni: 30 to 75 %, Al: 0.001 to 10 %, and Cu: 0.01 to 10 %. The metal tube may further comprise an oxide scale layer containing Cr as a main component and having a Cr content of 50 % or more or an oxide scale layer containing Cr and Al as main components and having a total content of (Cr + Al) of 50 % or more, on the outside of the above Cu-rich layer, and may still further comprise a second oxide scale layer containing Si as a main component and having a Si content of 50 % or more, between the above oxide scale layer and the above Cu-rich layer. The above metal tube has a function of shielding the base material from a carburizing gas, and is excellent in the resistance to metal dusting, to carburizing and to coking.

Description

明 細 書  Specification
浸炭性ガス雰囲気下で使用するための金属管  Metal tube for use in carburizing gas atmosphere
技術分野  Technical field
[0001] この発明は、高温強度が高ぐ耐食性に優れた、炭化水素ガスや COガスを含有す る浸炭性ガス雰囲気下で使用できる金属管に関する。本発明の金属管は、浸炭性ガ スの遮蔽性能に優れ、石油精製や石油化学プラントなどにおける分解炉管ゃ改質炉 管、加熱炉管もしくは熱交換器管等の素材として好適である。  The present invention relates to a metal pipe which has high strength at high temperatures and excellent corrosion resistance and can be used in a carburizing gas atmosphere containing a hydrocarbon gas or a CO gas. INDUSTRIAL APPLICABILITY The metal tube of the present invention has excellent shielding performance for carburizing gas, and is suitable as a material for a cracking furnace tube, a reforming furnace tube, a heating furnace tube, a heat exchanger tube, or the like in a petroleum refining or petrochemical plant.
[0002] この発明は、浸炭性ガス雰囲気で使用される金属管の浸炭性ガスに対する遮蔽性 を制御可能にする。  [0002] The present invention makes it possible to control the shielding properties of a metal tube used in a carburizing gas atmosphere against carburizing gas.
背景技術  Background art
[0003] 水素、メタノール、液体燃料 (GTL)およびジメチルエーテル (DME)といったクリーン エネルギーの燃料は、今後の大幅な需要増大が予想される。従って、合成ガスを製 造する改質装置は大型化し、熱効率がより高く量産に適した装置が要求される。また [0003] Demand for clean energy fuels such as hydrogen, methanol, liquid fuel (GTL) and dimethyl ether (DME) is expected to increase significantly in the future. Therefore, a reformer for producing synthesis gas becomes larger, and a device having higher thermal efficiency and suitable for mass production is required. Also
、従来の石油精製や石油化学プラントにおける改質装置、あるいは石油などを原料 とするアンモニア製造装置、水素製造装置などにおいても、エネルギー効率をより高 めるために、排熱回収のための熱交換が多用されるようになってきている。 In order to improve energy efficiency, heat exchange for waste heat recovery is also required in conventional reformers at petroleum refining and petrochemical plants, ammonia and hydrogen production systems using petroleum, etc. Is increasingly used.
[0004] このような高温ガスの熱を有効活用するためには、従来対象とされてきたよりも低い 、 400— 700°Cの温度域における熱交換が重要である。そのため、反応管や熱交換器 等の金属管に使用される高 Cr高 Ni金属材料がこのような温度域で示す、浸炭現象に 伴う腐食が問題となっている。  [0004] In order to effectively utilize the heat of such a high-temperature gas, it is important to perform heat exchange in a temperature range of 400 to 700 ° C, which is lower than conventionally targeted. For this reason, corrosion due to the carburizing phenomenon of high Cr high Ni metal materials used in metal tubes such as reaction tubes and heat exchangers in such a temperature range has become a problem.
[0005] 改質装置により製造される合成ガス、すなわち、 H、 CO、 CO、 H 0、およびメタ  [0005] The synthesis gas produced by the reformer, ie, H, CO, CO, H0, and meta
2 2 2  2 2 2
ンなどの炭化水素類を含むガスは、改質装置の本体部分である反応管などを構成す る金属材料とは 1000°C前後ないしはそれ以上の高温で接している。このような高い温 度域では、金属材料の表面に、 Feや Nはり酸化傾向の大きい、 Crや Siといった元素 の酸化物(即ち、酸化クロムや酸化珪素)からなる緻密な酸化皮膜が生成するため、 材料の腐食が抑止される。ところ力 熱交換部分など相対的に温度の低い部分では 、元素の材料内部から表面への拡散が不十分であるため、腐食抑止効果のある酸 化皮膜の形成が遅れることに加え、同じ組成のガスでも、改質反応によって浸炭性を 帯びるように変化するため、金属表面から Cが侵入する、浸炭が生じる。 Gases containing hydrocarbons, such as hydrocarbons, come into contact with the metallic materials that make up the reaction tubes, which are the main part of the reformer, at a high temperature of around 1000 ° C or higher. In such a high temperature range, a dense oxide film composed of oxides of elements such as Cr and Si (that is, chromium oxide and silicon oxide), which has a large tendency to oxidize Fe or N, is formed on the surface of the metal material. Therefore, corrosion of the material is suppressed. However, in a relatively low temperature portion such as a heat exchange portion, the diffusion of elements from the inside of the material to the surface is insufficient, so that an acid having a corrosion inhibiting effect can be obtained. In addition to the delayed formation of the oxide film, the gas of the same composition also changes to become carburizable by the reforming reaction, resulting in carburization by intrusion of C from the metal surface.
[0006] エチレン分解炉管等においては、管を構成する金属材料の浸炭が進み、 Crや Feな どの金属の炭化物からなる浸炭層が管内面に形成されると、その部分の体積が膨張 する。その結果、微細な割れが生じやすくなり、最悪の場合には管の破断に至る。ま た、割れにより露出した金属表面では、金属を触媒とする炭素析出(コーキング)が発 生し、管内流路断面積の減少や伝熱特性の低下を生ずる。  [0006] In an ethylene cracking furnace tube or the like, when the carburizing of the metal material constituting the tube progresses and a carburized layer made of a carbide of a metal such as Cr or Fe is formed on the inner surface of the tube, the volume of that portion expands. . As a result, fine cracks are likely to occur, and in the worst case, the pipe is broken. In addition, carbon deposition (caulking) using a metal as a catalyst occurs on the metal surface exposed by the cracks, resulting in a reduction in the cross-sectional area of the pipe flow path and a reduction in heat transfer characteristics.
[0007] 一方、改質炉管や熱交換器等に見られるようにガスの浸炭性がより厳しい環境下で は、浸炭により生成した炭化物が過飽和となり、その後グラフアイトが直接析出するな どの現象により母材金属が管表面から剥離脱落し、管が減肉する、メタルダスティン グと呼ばれる金属材料の腐食消耗が進行する。また、剥離した金属粉末が触媒とな り、前述したコーキングも発生する。  [0007] On the other hand, in an environment in which the carburizing property of gas is more severe, as seen in reforming furnace tubes and heat exchangers, phenomena such as carbides produced by carburizing become supersaturated and then graphite is directly deposited. As a result, the base metal is peeled off from the pipe surface and the pipe is reduced in thickness, and the corrosion and consumption of metal material called metal dusting progresses. Further, the peeled metal powder serves as a catalyst, and the above-described coking occurs.
[0008] 上記のような浸炭に起因する亀裂、腐食、管内閉塞が拡大すると、装置故障等によ る操業中断に至る恐れがある。従って、浸炭性ガス雰囲気下で使用される金属管の 材料選定には十分な配慮が必要である。  [0008] If the cracks, corrosion, and clogging in the pipe due to carburization as described above increase, the operation may be interrupted due to equipment failure or the like. Therefore, sufficient consideration must be given to the selection of materials for metal pipes used in carburizing gas atmospheres.
[0009] 金属材料の浸炭やメタルダステイングによる腐食に対しては、従来より種々の対策 が検討されてきた。  [0009] Various countermeasures against corrosion due to carburization of metal materials and metal dusting have been conventionally studied.
例えば、特開平 9-78204号には、 H、 C〇、 CO、 H〇を含む 400— 700°Cの雰囲気  For example, Japanese Unexamined Patent Publication No. 9-78204 describes an atmosphere of 400-700 ° C containing H, C〇, CO, and H〇.
2 2 2  2 2 2
ガス中での耐メタルダステイング性に関して、 Crを 11一 60% (質量%、以下同様)含 む Fe基合金または M基合金が優れていることが指摘されている。この特許公報は、 Fe基合金では Crを 24%以上かつ Mを 35%以上、 Ni基合金では Crを 20%以上かつ Ni を 60%以上とした材料、およびこれにさらに Nbを添カ卩した材料を開示している。しか し、一般には、 Crや Niを増しただけでは十分に浸炭を抑止することができず、より一 層のメタルダステイング抑制が望まれる。  Regarding the resistance to metal dusting in gas, it has been pointed out that an Fe-based alloy or an M-based alloy containing 11 to 60% (mass%, hereinafter the same) of Cr is superior. This patent publication discloses a material containing at least 24% Cr and at least 35% M for an Fe-based alloy, a material containing at least 20% Cr and at least 60% Ni for a Ni-based alloy, and further adding Nb to the material. Materials are disclosed. However, in general, increasing the amount of Cr or Ni cannot sufficiently suppress carburization, and it is desired to further suppress metal dusting.
[0010] 特開平 11-172473号では、鉄、ニッケルおよびクロムを含む高温合金のメタルダス ティングによる腐食を抑制するために、元素周期表の第 VIII族、第 IB族、第 IV族およ び第 V族から選ばれた 1種以上の金属およびそれらの混合物を通常の物理的あるい は化学的手段で金属材料の表面に付着させ、不活性雰囲気中でアニーリングして、 0.01— 10 μ πιの厚さの薄層を材料表面に形成する。この場合、 Sn, Pb, Bi等が特に 有効である。し力 この方法は、初期には効果があっても、長期にわたる使用により 薄層が剥離して効果がなくなるように思われる。 [0010] In Japanese Patent Application Laid-Open No. 11-172473, in order to suppress corrosion due to metal dusting of a high-temperature alloy containing iron, nickel and chromium, groups VIII, IB, IV and IV of the periodic table of the elements are used. One or more metals selected from Group V and their mixtures are deposited on the surface of the metallic material by conventional physical or chemical means, annealed in an inert atmosphere, A thin layer of 0.01-10 μπι is formed on the surface of the material. In this case, Sn, Pb, Bi, etc. are particularly effective. This method appears to be ineffective initially, but with prolonged use, the thin layer will delaminate and become ineffective.
[0011] 特開平 2003-73763号には、 H、 C〇、 CO、 H Oを含む 400 700°Cの雰囲気ガス [0011] Japanese Patent Application Laid-Open No. 2003-73763 discloses an atmosphere gas containing 400, 700 ° C containing H, C〇, CO, and H 2 O.
2 2 2  2 2 2
中での耐メタルダステイング性に関して鉄中の溶質元素の観点から Cとの相互作用 について調べた結果として、相互作用助係数 Ωが正の値を示す合金元素がメタルダ スティング抑制に有効であることが記載されている。この特許公報は、 Si、 Al、 Niの他 、 Cu、 Coの含有量が制御された金属材料を開示している。これらの合金成分は飛躍 的にメタルダステイング性を高める力 Si、 Al、 Cu等の合金元素の含有量を高めること は熱間加工性や溶接性を低下させるため、安定供給製造やプラント施工面を考える となお改善の余地がある。  Investigation of the interaction with C from the viewpoint of solute elements in iron with respect to the metal dusting resistance in steel shows that alloy elements with a positive interaction assistance coefficient Ω are effective in suppressing metal dusting. Is described. This patent publication discloses a metal material in which the contents of Cu and Co are controlled in addition to Si, Al and Ni. These alloy components dramatically increase the metal dusting property. Increasing the content of alloying elements such as Si, Al, and Cu lowers hot workability and weldability, so stable supply manufacturing and plant construction Considering this, there is still room for improvement.
[0012] 浸炭性ガスから金属を遮断するために、材料に予め酸化処理を施す方法や表面 処理を行う技術も従来技術に示されてレ、る。  [0012] In order to shield the metal from the carburizing gas, a method of subjecting the material to an oxidation treatment in advance and a technique of performing a surface treatment are also shown in the prior art.
例えば、特開昭 53— 66832号および特開昭 53— 66835号には、 25Cr~20Ni (HK 40) 低 Si系耐熱鋼や 25Cr~35Ni低 Si系耐熱鋼を 1000°C付近の大気中で 100時間以上の 予酸化を行う方法が開示されている。特開昭 57— 43989号公報には、 20— 35%の Cr を含有するオーステナイト系耐熱鋼に大気中で予備酸化を行う技術が開示されてい る。特開平 11一 29776号には、高 M— Cr合金を真空中で加熱してスケールの皮膜を 生成させることにより耐浸炭性を向上させる方法が提案されている。特表 2000- 509105号には、表面処理にょリ Siや Crの濃化層を形成することにより耐浸炭性を向 上させる方法が提案されてレ、る。  For example, JP-A-53-66832 and JP-A-53-66835 disclose 25Cr to 20Ni (HK 40) low-Si heat-resistant steel and 25Cr to 35Ni low-Si heat-resistant steel in air at around 1000 ° C. A method for performing pre-oxidation for more than 100 hours is disclosed. Japanese Patent Application Laid-Open No. 57-43989 discloses a technique for pre-oxidizing an austenitic heat-resistant steel containing 20-35% Cr in the atmosphere. Japanese Patent Application Laid-Open No. H11-29776 proposes a method of improving the carburization resistance by heating a high M—Cr alloy in a vacuum to form a scale film. JP-T-2000-509105 proposes a method for improving carburization resistance by forming a concentrated layer of Si or Cr by surface treatment.
[0013] これらはレ、ずれも特殊な熱処理や表面処理を必要とし、経済性に劣る。また、予酸 化スケールや表面処理層が剥離した後のスケールの修復(スケール再生)を考慮し ていないため、表面が一旦損傷すると、その後の効果は期待できない。  [0013] These require special heat treatments and surface treatments, and are inferior in economy. Also, restoration of scale (scale regeneration) after exfoliation of the pre-oxidized scale or the surface treatment layer is not considered, so once the surface is damaged, the subsequent effects cannot be expected.
[0014] 雰囲気ガス中に H Sを添加する方法も考えられている力 H Sは改質に用いられる  [0014] A method of adding H 2 S to the atmosphere gas is also considered. Force H S is used for reforming
2 2  twenty two
触媒の活性を著しく低下させる恐れがあるので、その適用は限定される。  Its application is limited because it can significantly reduce the activity of the catalyst.
従って、メタルダステイングを十分に抑止し、さらに製造性や溶接性といった必要特 性を満足できる金属材料は今なお求められている。 発明の開示 Therefore, there is still a need for a metal material that can sufficiently suppress metal dusting and satisfy the required characteristics such as manufacturability and weldability. Disclosure of the invention
[0015] この発明は、浸炭性ガスからの遮蔽機能を備え、それにより優れた耐メタルダスティ ング性、耐浸炭性および耐コーキング性を発揮する、エチレンプラント用分解炉管ゃ 改質炉管等に適した金属管を提供することである。  [0015] The present invention provides a cracking furnace tube for ethylene plants, a reforming furnace tube, and the like, which has a function of shielding from carburizing gas and thereby exhibits excellent metal dusting resistance, carburizing resistance, and coking resistance. The purpose is to provide a metal tube suitable for use.
[0016] 発明者らは、 Cr含有量の高い金属管においても局部的にメタルダステイング、浸炭 およびコーキング(炭素堆積)が発生する挙動を調查するため、種々の金属管材料 について表面状態の解析を行った。その結果、金属管表面に生成した酸化物層が 緻密であると、上記腐食が発生しないが、酸化物層に部分的な割れや剥離といった 欠陥が発生していると、その部分からガス中の Cが侵入すると同時に、露出した金属 が触媒となって炭素析出が発生することが判明した。  [0016] The inventors of the present invention analyzed the surface condition of various metal pipe materials in order to investigate the behavior of locally generating metal dusting, carburizing, and caulking (carbon deposition) even in a metal pipe having a high Cr content. Was done. As a result, if the oxide layer formed on the surface of the metal tube is dense, the above corrosion does not occur, but if a defect such as partial cracking or peeling occurs in the oxide layer, the oxide At the same time as C entered, it was found that the exposed metal acted as a catalyst to cause carbon deposition.
[0017] この Cが侵入する現象を詳細に検討した結果、炭化水素や COガスが金属表面に 吸着され、その後に解離により Cが分離し、この分離した吸着 Cが鋼中に侵入すると レ、う解離性吸着過程を経て Cの侵入が進行することが判明した。この解離性吸着に ついてさらに詳しく検討した結果、 Cu、 Agまたは Ptの存在が、この解離性吸着の抑制 に効果的であることを見出した。  [0017] As a result of a detailed study of the phenomenon of C infiltration, hydrocarbons and CO gas are adsorbed on the metal surface, and then C is separated by dissociation. It was found that the invasion of C progressed through the dissociative adsorption process. As a result of further study on the dissociative adsorption, it was found that the presence of Cu, Ag or Pt was effective in suppressing the dissociative adsorption.
[0018] 上記の機構から、浸炭やメタルダステイングを抑制するには、 (1)金属表面に保護 性の酸化スケールや表面処理による薄層を形成して Cを遮断する、 (2)侵入 Cの速度 (flux)を低減する、と言う手段の他に、第 3の手段として、ガスの解離性吸着を抑制す ることが有効であり、そのためには金属材料の表面に Cu、 Ag、 Ptといった元素が存在 することが重要であると言える。  From the above mechanism, to suppress carburization and metal dusting, (1) a protective oxide scale or a thin layer formed by surface treatment is formed on the metal surface to block C, and (2) penetration C In addition to the means of reducing the flux (flux) of the gas, as a third means, it is effective to suppress the dissociative adsorption of gas. For this purpose, Cu, Ag, Pt It is important that these elements exist.
[0019] しかし、これら元素を合金に添加すると、製造性や溶接性とレ、つた特性を阻害する 可能性が高ぐまた Agや Ptはコスト高を招く。従って、これらの元素の含有量は、上記 耐浸炭性、耐メタルダステイング性および耐コーキング性を失うことなく可能な限り少 なくすることが望ましい。  However, when these elements are added to the alloy, the possibility of inhibiting the manufacturability, weldability, resilience, and cracking properties is increased, and Ag and Pt increase costs. Therefore, it is desirable to minimize the content of these elements as much as possible without losing the above-mentioned resistance to carburization, resistance to metal dusting and resistance to coking.
[0020] 本発明者らは、ガスの吸着が金属材料の表面で起きる現象であることに着目して、 金属表面にのみ Cu濃化層が存在すれば、本質的に吸着ガスの解離を低減し、浸炭 やメタルダステイングを抑制できるのではなレ、かと考えた。すなわち、金属材料 (合金) 中の Cu含有量は製造性や溶接性に問題ないレベルに制限するが、表面の Cu濃度 を高める処理を施すことによって、所望の性能を得るという考えに基づき、確認試験 を行った。 The present inventors have focused on the fact that gas adsorption is a phenomenon that occurs on the surface of a metal material. If a Cu-enriched layer exists only on the metal surface, the dissociation of the adsorbed gas is essentially reduced. However, we thought that carburization and metal dusting could be suppressed. In other words, the Cu content in the metal material (alloy) is limited to a level that does not affect the manufacturability and weldability, but the Cu concentration on the surface is A confirmation test was conducted based on the idea that desired performance could be obtained by performing a process for increasing the performance.
[0021] 図 1(A)および図 1(B)は、 Cu含有量が異なり、従って、表面 Cu濃度の異なる 25% [0021] FIGS. 1 (A) and 1 (B) show that the Cu content is different and therefore the surface Cu concentration is different by 25%.
Cr-35%Ni- bal.Fe合金 [図 1(A)]または 25%Cr-55%Ni-2.5%A卜 bal.Fe合金 [図 1(B)] 力、らなる各種板状試験片について、 650°C、 60%CO-26%H -11.5%CO -2.5%HCr-35% Ni-bal.Fe alloy [Fig.1 (A)] or 25% Cr-55% Ni-2.5% A bal.Fe alloy [Fig.1 (B)] About 650 ° C, 60% CO-26% H -11.5% CO -2.5% H
O (vol%)ガス中で腐食試験を行った時の、表面 Cu濃度とピットが発生する時間との 関係を示す。これらの図より、金属表面の Cu濃度が 0.1原子%を超えると、ピット発生 、すなわちメタルダステイング、に対する抑制効果が現れている。なお、 Cu濃度は AES (ォージェ分析)により金属表面力 深さ方向に元素分析して得た計測値を原子 %に換算した値である。表面に Crまたは Crと A1を主体とする酸化スケール層、または この酸化スケール層とさらに Si主体の第 2の酸化スケール層、が存在するときは、その ような酸化スケール層の部分を実質的に除いた金属表面での計測値を Cu濃度とす る。 This shows the relationship between the surface Cu concentration and the time during which pits are formed when a corrosion test is performed in O (vol%) gas. These figures show that when the Cu concentration on the metal surface exceeds 0.1 atomic%, the effect of suppressing pit generation, that is, metal dusting, appears. The Cu concentration is a value obtained by converting the measured value obtained by elemental analysis in the depth direction of the metal surface force by AES (Auger analysis) into atomic%. When there is an oxide scale layer mainly composed of Cr or Cr and A1 on the surface, or this oxide scale layer and further a second oxide scale layer mainly composed of Si, such an oxide scale layer is substantially removed. The measured value on the removed metal surface is defined as the Cu concentration.
[0022] 図 2(A)および図 2(B)は、 25%Cr-35%Ni-0.5%Cu_bal.Fe合金 [図 2(A)]または 25% Cr-55%Ni-2.5%A卜 0.3%Cu-bal.Fe合金 [図 2(B)]の表面に異なる条件下で Cu濃化 層を形成した時の、 Cu濃化層の厚みとピット発生との関係を示す。腐食試験条件は 上記と同じである。試験合金の Cu濃化層の Cu濃度は約 0.4— 0.8原子%園 2(A)ほた は約 0.2— 0.5原子% [図 2(B)]の範囲である。これらの図より、 Cu濃化層厚みが 0.3 nm (ナノメータ)以上あれば、ピット発生時間が延長される、すなわち耐メタルダスティン グ性に効果がある、ことがわかる。  [0022] Figs. 2 (A) and 2 (B) show the 25% Cr-35% Ni-0.5% Cu_bal.Fe alloy [Fig.2 (A)] or 25% Cr-55% Ni-2.5% A The relationship between the thickness of the Cu-enriched layer and the occurrence of pits when a Cu-enriched layer is formed on the surface of a 0.3% Cu-bal.Fe alloy [Fig. 2 (B)] under different conditions is shown. The corrosion test conditions are the same as above. The Cu concentration of the Cu-enriched layer of the test alloy is in the range of about 0.4-0.8 at.% 2 (A) and about 0.2-0.5 at.% [Fig.2 (B)]. These figures show that if the thickness of the Cu-enriched layer is 0.3 nm (nanometer) or more, the pit generation time is prolonged, that is, the metal dusting resistance is effective.
[0023] 金属表面に酸化スケールを形成させたときに、酸化スケール直下の Cu濃化層が耐 メタルダステイング性に効果を有していることを確認するため、図 1(A)および図 1(B)に 示した試験と同じ各種板状試験片を 1100°Cで 5分大気酸化処理を行って酸化スケー ルを形成した後に、上記と同じ条件で腐食試験を行った。図 3(A)は 25%Cr_35% Ni-bal.Fe合金で得られた結果を、図 3(B)は 25。/οΟ·_55%Μ-2.5。/。Α卜 bal.Fe合金で 得られた結果をそれぞれ示す。横軸は予備酸化スケール直下の Cu濃度を原子%で 示す。これらの図より、金属表面に予め酸化スケールが存在することでピット発生が 抑制される力 スケール直下の Cu濃度が 0.1原子%以上ではピット発生がさらに抑制 されること力 Sゎカゝる。 [0023] In order to confirm that when the oxide scale was formed on the metal surface, the Cu-enriched layer immediately below the oxide scale had an effect on the metal dusting resistance, FIG. 1 (A) and FIG. The same various plate-shaped test pieces as in the test shown in (B) were subjected to atmospheric oxidation treatment at 1100 ° C for 5 minutes to form an oxide scale, and then subjected to a corrosion test under the same conditions as above. Figure 3 (A) shows the results obtained with a 25% Cr_35% Ni-bal.Fe alloy, and Figure 3 (B) shows the results. /οΟ·_55%Μ-2.5. /. The results obtained with the bal.Fe alloy are shown below. The horizontal axis shows the Cu concentration immediately below the preliminary oxidation scale in atomic percent. From these figures, it can be seen that pits are suppressed by the presence of oxide scale on the metal surface in advance. The pits are further suppressed when the Cu concentration below the scale is 0.1 atomic% or more. Power to be done.
[0024] これからわかるように、表面に予め酸ィ匕スケールが形成されていても、欠陥が発生 すると金属表面が露出するためピットの形成を阻止することはできなレ、。これに対し、 スケール直下に Cu濃化層が存在すると、予備酸化スケールに欠陥が発生し、金属表 面が露出しても、露出した金属表面は Cu濃化層であるため、ガスの解離性吸着が抑 制され、ピット形成が阻止される。  [0024] As can be seen, even if the oxide scale is previously formed on the surface, the formation of pits cannot be prevented because the metal surface is exposed when a defect occurs. On the other hand, if a Cu-enriched layer exists directly below the scale, defects occur in the pre-oxidized scale, and even if the metal surface is exposed, the exposed metal surface is a Cu-enriched layer. Adsorption is suppressed and pit formation is prevented.
[0025] かかる知見に基づくこの発明は、 1側面において、質量%で、 Cr:15 35%、 Ni:30 一 75%、 Al:0.001 10%、 Cu:0.01— 10%を含む母材から構成される金属管であつ て、該金属管がその表層部に Cu濃化層を備え、該 Cu濃化層の Cu濃度が 0.1原子% 以上で、その厚さが 0.3匪以上であることを特徴とする浸炭性ガス雰囲気下で使用 するための金属管である。  [0025] In one aspect, the present invention based on such findings includes a base material containing 35% by mass of Cr: 15% by mass of Ni: 30% by mass, Al: 0.001 by 10%, and Cu: 0.01 to 10% by mass%. A metal tube provided with a Cu-enriched layer on its surface, wherein the Cu-enriched layer has a Cu concentration of 0.1 atomic% or more and a thickness of 0.3 band or more. This is a metal tube for use in a carburizing gas atmosphere.
[0026] この金属管は、前記 Cu濃化層の外側に、 Cr含有量 50質量%以上または Cr+Alの 合計含有量が 50質量%以上の酸化スケール層をさらに備えていてもよい。その場合 、この酸化スケール層と前記 Cu濃化層との間に、 Si含有量 50質量%以上の第 2酸化 スケール層をさらに備えていてもよい。  [0026] The metal tube may further include an oxide scale layer having a Cr content of 50% by mass or more or a total content of Cr + Al of 50% by mass or more outside the Cu-enriched layer. In this case, a second oxide scale layer having a Si content of 50% by mass or more may be further provided between the oxide scale layer and the Cu-enriched layer.
[0027] 本発明の金属管は、管内面および/または管外面が不規則形状を呈していてもよ レ、。  [0027] The metal tube of the present invention may have an irregular inner surface and / or outer surface.
前記母材は、好ましくは、質量%で、 C: 0.01— 0.6%, Si:0.01— 5%、 Mn:0.01— 10 %、 P:0.08%以下、 S:0.05%以下、 Cr:15— 35%、 Ni:30— 75%、 Cu:0.01— 10%、 N:0.001— 0.25%、 Al:0.001— 10%、 0(酸素): 0.02%以下、残部が Feおよび不純物 力 なる化学組成を有している。この化学組成は、質量%で、下記 (i)ないし (vi)から選 ばれた少なくとも 1種の元素をさらに含有していてもよい。  The base material is preferably, by mass%, C: 0.01-0.6%, Si: 0.01-5%, Mn: 0.01-10%, P: 0.08% or less, S: 0.05% or less, Cr: 15-35 %, Ni: 30% to 75%, Cu: 0.01% to 10%, N: 0.001% to 0.25%, Al: 0.001% to 10%, 0 (oxygen): 0.02% or less, with the balance being Fe and impurities. are doing. This chemical composition may further contain at least one element selected from the following (i) to (vi) in mass%.
(i) Co :0.01— 5%、  (i) Co: 0.01-5%,
(ii) Mo: 0.01— 10%および W: 0.01 10%の 1種または 2種、  (ii) one or two of Mo: 0.01-10% and W: 0.01 10%,
(iii) Ti: 0.01 2%および Nb: 0.01— 2%の 1種または 2種、  (iii) One or two types of Ti: 0.01 2% and Nb: 0.01-2%,
(iv) B: 0.001 0.1%、 Zr :0.001 0.1%および Hf: 0.001— 0.5%の 1種または 2種以 上、  (iv) One or more of B: 0.001 0.1%, Zr: 0.001 0.1% and Hf: 0.001—0.5%,
(V) Mg: 0.0005 0.1%および Ca: 0.0005 0.1%の 1種または 2種、 (vi) Υ : 0·0005— 0.15%、 La : 0.0005— 0.15%、 Ce : 0.0005— 0.15%および Nd : 0.0005 一 0.15 %の 1種または 2種以上。 (V) One or two of Mg: 0.0005 0.1% and Ca: 0.0005 0.1%, (vi) Υ: 0 · 0005—0.15%, La: 0.0005—0.15%, Ce: 0.0005—0.15%, and Nd: 0.0005—0.15% or more.
[0028] 別の側面からは、本発明は、質量0 /0で、 Cr : 15— 35%、 Ni : 30— 75%、 A1 : 0.001— 10%、 Cu : 0.01— 10%を含む母材力、ら構成される、浸炭性ガス雰囲気で使用される 金属管において、該金属管の表層部に Cu濃化層を形成し、該 Cu濃化層における Cu 濃度を 0.1原子%以上、かつ Cu濃化層厚みを 0.3 nm以上とすることを特徴とする、当 該金属管の耐メタルダステイング性、耐浸炭性および耐コーキング性の改善方法で ある。 [0028] From another aspect, the present invention provides a base material containing 0 : 0 mass, Cr: 15-35%, Ni: 30-75%, A1: 0.001-10%, Cu: 0.01-10%. In a metal tube used in a carburizing gas atmosphere, a Cu-enriched layer is formed on the surface of the metal tube, and the Cu-enriched layer has a Cu concentration of 0.1 atomic% or more, and A method for improving the metal dusting resistance, carburization resistance and coking resistance of the metal pipe, characterized in that the thickness of the thickened layer is 0.3 nm or more.
[0029] この方法においても、前記 Cu濃化層の外側に、 Cr含有量 50%以上または Cr+Al の合計含有量が 50質量%以上の酸化スケール層を設けてもよぐさらに前記酸化ス ケールと前記 Cu濃化層との間に Si含有量 50%以上の Si主体の第 2酸化スケール層を 設けてもよい。  [0029] In this method as well, an oxide scale layer having a Cr content of 50% or more or a total content of Cr + Al of 50% by mass or more may be provided outside the Cu-enriched layer. A second oxide scale layer mainly composed of Si having a Si content of 50% or more may be provided between the kale and the Cu-concentrated layer.
[0030] この発明の金属管は、浸炭性ガスからの遮蔽機能を有しており、耐メタルダスティン グ性、耐浸炭性および耐コーキング性に優れているので、石油精製や石油化学ブラ ントなどにおける分解炉管、改質炉管、加熱炉管、配管、或いは熱交換器管などに 利用することができ、装置の耐久性や操業効率を大幅に向上させることができる。 図面の簡単な説明  [0030] The metal pipe of the present invention has a function of shielding from carburizing gas, and is excellent in metal dusting resistance, carburization resistance, and coking resistance. It can be used for cracking furnace tubes, reforming furnace tubes, heating furnace tubes, pipes, heat exchanger tubes, etc., and can greatly improve the durability and operation efficiency of the equipment. Brief Description of Drawings
[0031] [図 1]図 1 (A)および図 1 (B)は、それぞれ Cu含有量が異なる 25%Cr-35。/0Ni-bal.Fe合 金および 25%Cr_55%Ni_2.5%A卜 bal.Fe合金における表面 Cu濃度とピット発生との 関連を示すグラフである。 [FIG. 1] FIGS. 1 (A) and 1 (B) show 25% Cr-35 having different Cu contents. 3 is a graph showing the relationship between the surface Cu concentration and pit generation in the Ni-bal.Fe alloy and the 25% Cr_55% Ni_2.5% A bal.Fe alloy.
[図 2]図 2(A)および図 2(B)は、それぞれ 25%Cr-35。/。Ni-0.5%Cu-baLFe合金および 25%Cr-55%Ni_2.5%A卜 0.3%Cu-bal.Fe合金における Cu濃化層の厚みとピット発生 との関連を示すグラフである。  [FIG. 2] FIGS. 2 (A) and 2 (B) each show 25% Cr-35. /. 3 is a graph showing the relationship between the thickness of a Cu-enriched layer and the occurrence of pits in a Ni-0.5% Cu-baLFe alloy and a 25% Cr-55% Ni_2.5% A 0.3% Cu-bal.Fe alloy.
[図 3]図 3(A)および図 3(B)は、それぞれ Cu含有量が異なるは 25Q/。Cr_35Q/。Ni_bal.Fe 合金および 25%Cr-55%Ni_2.5%A卜 bal.Fe合金における酸化スケール直下の Cu濃 度とピット発生との関連を示すグラフである。  [FIG. 3] In FIGS. 3 (A) and 3 (B), the Cu content is different at 25 Q /. Cr_35Q /. 5 is a graph showing the relationship between the pit formation and the Cu concentration just below the oxide scale in the Ni_bal.Fe alloy and the 25% Cr-55% Ni_2.5% A bal.Fe alloy.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 次に、この発明をより詳しく説明する。以下の説明において、各元素の含有量の「% 」表示は「質量%」を意味する。 Next, the present invention will be described in more detail. In the following description, “% "" Means "% by mass".
この発明に係る金属管は、 Cr: 15— 35%、 Ni : 30— 75%、 Al : 0.001— 10%、 Cu : 0.01 一 10%を含む母材から構成され、その表層部に Cu濃化層を備える。  The metal tube according to the present invention is composed of a base material containing 15 to 35% of Cr, 30 to 75% of Ni, 0.001 to 10% of Al, and 0.01 to 10% of Cu. With layers.
[0033] Cu濃化層は、金属管の内面と外面の一方または両方に設けることができる。金属 管の浸炭性ガス雰囲気に曝される側の表面だけに Cu濃化層を形成すれば、本発明 の目的を達成することができる。例えば、反応管や分解炉管では内面に Cu濃化層を 形成し、熱交換型の反応管では、外面に Cu濃化層を形成することができる。しかし、 これらの場合でも、金属管の両面に Cu濃化層を形成しても構わない。  [0033] The Cu-enriched layer can be provided on one or both of the inner surface and the outer surface of the metal tube. The object of the present invention can be achieved by forming a Cu-enriched layer only on the surface of the metal tube exposed to the carburizing gas atmosphere. For example, in a reaction tube or a cracking furnace tube, a Cu-enriched layer can be formed on the inner surface, and in a heat exchange type reaction tube, a Cu-enriched layer can be formed on the outer surface. However, even in these cases, a Cu-enriched layer may be formed on both surfaces of the metal tube.
[0034] (i) Cu濃化層  [0034] (i) Cu-enriched layer
「Cu濃化層」は、母材の平均 Cu濃度 (質量%)より高い濃度 (質量%)を有する領域 を言い、 Cu濃化層の厚さは、金属表面 (金属表面に 1層または 2層以上の酸化スケ ール層が存在する場合は、最も内側の酸化スケール層との界面)から母材の平均 Cu 濃度と同等の Cu濃度となる位置 (即ち、 Cu濃化層と母材との界面)までの深さ方向 (即 ち、金属管の半径方向)の距離である。  “Cu-enriched layer” refers to a region having a concentration (% by mass) higher than the average Cu concentration (% by mass) of the base material, and the thickness of the Cu-enriched layer is determined on the metal surface (one or two layers on the metal surface). If there is more than one oxide scale layer, the position where the Cu concentration is equivalent to the average Cu concentration of the base metal from the interface with the innermost oxide scale layer (that is, the Cu-enriched layer and the base metal Distance in the depth direction (that is, in the radial direction of the metal tube) to the interface of the metal pipe.
[0035] 本発明に係る金属管の表面に生成しうる酸化スケール層としては、例えば、 Cr主体 (Cr含有量が 50%以上)の酸化スケール層、 Cr主体の酸化スケール層とその内側の Si 主体 (Si含有量が 50%以上)の第 2の酸化スケール層、または Cr+Al主体 (Cr+Alの 合計含有量が 50%以上)の酸化スケール層、が存在可能である。  The oxide scale layer that can be formed on the surface of the metal tube according to the present invention includes, for example, an oxide scale layer mainly composed of Cr (having a Cr content of 50% or more), an oxide scale layer mainly composed of Cr, and Si There can be a second oxide scale layer that is mainly (Si content is 50% or more) or an oxide scale layer that is mainly Cr + Al (the total content of Cr + Al is 50% or more).
[0036] Cu濃化層の Cu濃度は層内の Cu濃度の平均値を云う。実施例におけるように AESに より Cu濃度を測定した場合には、その層内の測定値 (原子%換算値)の平均値を Cu 濃化層の Cu濃度とする。  [0036] The Cu concentration of the Cu-enriched layer refers to the average value of the Cu concentration in the layer. When the Cu concentration is measured by AES as in the embodiment, the average value of the measured values (atomic% conversion value) in the layer is defined as the Cu concentration of the Cu-enriched layer.
[0037] Cu濃化層の Cu濃度および厚みは、 AESを用いて測定できる。 AESでは、測定表面 に電子鐘を照射し、放出されたォージ工電子を検出することにより、表面の金属元素 濃度を測定できる。金属管の一部から小片を切り出し、その表面からスパッタリングし ながら AESを実施することにより、表面から深さ方向に分析することもできる。このよう にして、 Cu濃度が一定になるまで深さ方向に材料表層の Cu濃度を測定することによ り、 Cu濃化層の厚みが決定でき、この濃化層内の平均 Cu濃度として Cu濃化層の Cu 濃度を求めることができる。 [0038] Cu濃化層は金属管の表層部に設けられる。金属管の表層部とは、管表面の近傍 部分という意味であって、その存在位置は Cu濃化層の生成方法によって異なる。即 ち、 Cu濃化層は金属管の最外層となることもあるが、 Cu濃化層の外側に 1層または 2 層以上の酸化スケール層が存在する場合には、 Cu濃化層は酸化スケール層と母材 との間に存在する。 [0037] The Cu concentration and the thickness of the Cu-enriched layer can be measured using AES. AES can measure the concentration of metal elements on the surface by irradiating the surface with an electron bell and detecting the emitted electrons. By cutting a small piece from a part of the metal tube and performing AES while sputtering from the surface, it is also possible to analyze in the depth direction from the surface. In this way, by measuring the Cu concentration in the surface layer of the material in the depth direction until the Cu concentration becomes constant, the thickness of the Cu-enriched layer can be determined. The Cu concentration in the concentrated layer can be determined. [0038] The Cu-enriched layer is provided on the surface of the metal tube. The surface layer of a metal tube means the portion near the tube surface, and its location depends on the method of forming the Cu-enriched layer. That is, the Cu-enriched layer may be the outermost layer of the metal tube, but if one or more oxide scale layers exist outside the Cu-enriched layer, the Cu-enriched layer is oxidized. It exists between the scale layer and the base material.
[0039] Cu濃化層の Cu濃度は 0.1原子%以上である。 Cu濃化層の Cu濃度が 0.1原子%未 満では、プラント運転時に浸炭性ガスからの炭化水素や C〇等の C解離性ガスの吸 着抑制による遮蔽機能を果たすことができない。また、金属表面に前述したような酸 化スケール層が存在する場合にも、その直下の Cu濃化層の Cu濃度が 0.1原子%未 満であると、酸化スケール層が亀裂、剥離等の損傷を受けたときに、露出する金属表 面でガスの吸着を抑制することができなレ、。 Cu濃化層の Cu濃度は好ましくは 0.3原子 %以上であり、より好ましくは 1.0原子%以上である。  [0039] The Cu concentration of the Cu-enriched layer is 0.1 atomic% or more. If the Cu concentration of the Cu-enriched layer is less than 0.1 atomic%, it will not be possible to perform the shielding function by suppressing the adsorption of hydrocarbons and C-dissociative gas such as C〇 during the operation of the plant. In addition, even when the oxide scale layer described above exists on the metal surface, if the Cu concentration of the Cu concentrated layer immediately below the metal oxide layer is less than 0.1 atomic%, the oxide scale layer may be damaged, such as cracking or peeling. The gas adsorption on the exposed metal surface cannot be suppressed when exposed. The Cu concentration of the Cu-enriched layer is preferably at least 0.3 at%, more preferably at least 1.0 at%.
[0040] Cu濃化層の厚みは 0.3 nm以上である。 Cu濃化層の厚みが 0.3 nm未満であると、プ ラント運転時に浸炭性ガスからの炭化水素や CO等の C種ガスの吸着抑制による遮 蔽機能を果たすことができなレ、。 Cu濃化層の厚みは好ましくは 0.5 nm以上である。  [0040] The thickness of the Cu-enriched layer is 0.3 nm or more. If the thickness of the Cu-enriched layer is less than 0.3 nm, the shielding function cannot be achieved by suppressing adsorption of hydrocarbons and C-class gases such as CO from the carburizing gas during plant operation. The thickness of the Cu-enriched layer is preferably 0.5 nm or more.
Cu濃化層の厚みは、例えば交番電解処理および雰囲気制御熱処理の条件を変更 することによって容易に調整可能である。 Cu濃化層の厚みの上限は特に規定されな レ、が、通常は 100 nmを超えることはない。  The thickness of the Cu-enriched layer can be easily adjusted by, for example, changing the conditions of the alternating electrolytic treatment and the atmosphere control heat treatment. The upper limit of the thickness of the Cu-enriched layer is not particularly specified, but usually does not exceed 100 nm.
[0041] Cu濃化層の生成手段は、これらに限られないが、「交番電解処理」、「雰囲気制御 熱処理」、「酸洗処理」等がある。これらの 2以上の手法を併用してもよい。  The means for generating the Cu-enriched layer is not limited to these, but includes “alternate electrolytic treatment”, “atmosphere control heat treatment”, “pickling treatment” and the like. These two or more techniques may be used in combination.
これらの手法のうち最も好ましいのは交番電解処理である。交番電解処理は、金属 への印加電位を、合金元素が電解液中に溶解する貴の電位域に掃引した後、次い で卑の電位域に掃引することにより、表面に Cuを析出させる方法である。 Cuは Ni、 Cr 、 Feより電気的に貴であるため、卑の電位域では優先的に析出する。この処理は、電 解液が接触する側の金属管の表面に Cu濃化層を形成することができる。この処理は 確実に Cu濃化層を形成することができる。 Cu濃化層の厚みと Cu含有量は、貴および 卑の電位域での印加電位と印加時間により変化させることができる。  The most preferable of these methods is an alternating electrolytic treatment. Alternating electrolytic treatment is a method in which the potential applied to the metal is swept to a noble potential region where the alloying element dissolves in the electrolyte, and then swept to a lower potential region, thereby depositing Cu on the surface. It is. Cu is more electrically noble than Ni, Cr, and Fe, and thus precipitates preferentially in a low potential region. This treatment can form a Cu-enriched layer on the surface of the metal tube on the side where the electrolyte contacts. This process can reliably form a Cu-enriched layer. The thickness and Cu content of the Cu-enriched layer can be changed by applying potential and application time in the noble and noble potential regions.
[0042] 酸化スケール層を金属表面に存在させる場合には、雰囲気制御熱処理によって Cr または Cr+Al主体の酸化スケールや第 2の Si主体の酸化スケールを形成させること により、その直下の Cr、 Al、 Si濃度が低下するため、 Cu濃度が母材内部より相対的に 高くなり、 Cu濃化層を形成することができる。 When the oxide scale layer is present on the metal surface, the atmosphere control heat treatment Alternatively, by forming a Cr + Al-based oxide scale or a second Si-based oxide scale, the Cr, Al, and Si concentrations immediately below the oxide scale decrease, so that the Cu concentration becomes relatively higher than the inside of the base material, A Cu-enriched layer can be formed.
[0043] また、酸洗処理を利用して、優先的に Cu以外の元素を溶解させることにより、表層 の Cu濃度を高めて、 Cu濃化層を形成することもできる。  [0043] Further, by preferentially dissolving elements other than Cu by using the pickling treatment, the Cu concentration in the surface layer can be increased to form a Cu-enriched layer.
交番電解や酸洗処理を施した後に、酸化熱処理により金属管の表面に酸化スケー ル層を生成させた場合でも、酸化スケール層と母材合金との間に Cu濃化層を形成す ること力 Sできる。  Even if an oxide scale layer is formed on the surface of the metal tube by oxidation heat treatment after alternating electrolysis or pickling, a Cu-enriched layer is formed between the oxide scale layer and the base metal alloy. Power S can.
[0044] (ii)酸化スケール層  (Ii) Oxide scale layer
酸化スケール層として、 Crまたは Cr+Al主体の第 1の酸化スケール層 [以下、酸化 スケール層 (A)という]を金属管の表面に存在させることが好ましぐその内側に Si主体 の第 2の酸化スケール層 [以下、酸化スケール層 (B)とレ、う]をさらに存在させてもょレ、。  As the oxide scale layer, a first oxide scale layer mainly composed of Cr or Cr + Al [hereinafter referred to as an oxide scale layer (A)] is preferably present on the surface of the metal tube. Oxide scale layer [hereinafter referred to as oxide scale layer (B)].
[0045] 酸化スケール層 (A)は、 Cr主体または Cr+Al主体の酸化スケール力 なる。この酸 化スケールが Cr主体となる力、 Cr+Al主体となるかは、合金中の A1含有量に依存す る。一般に、 A1含有量が 1.5%以上であると酸化スケールは Cr+Al主体となり、 A1含 有量が 1.5%未満であると酸化スケールは Cr主体となる。  [0045] The oxide scale layer (A) has an oxide scale force mainly composed of Cr or Cr + Al. Whether this oxide scale is mainly composed of Cr or mainly composed of Cr + Al depends on the A1 content in the alloy. Generally, when the A1 content is 1.5% or more, the oxide scale is mainly composed of Cr + Al, and when the A1 content is less than 1.5%, the oxide scale is mainly composed of Cr.
[0046] 酸化スケール層 (A)を生成させるには、金属管を酸化雰囲気中において表面酸化 が起こる温度に加熱すればよい。加熱温度、時間、雰囲気中の酸素分圧等の条件 によって、生成した酸化スケール層の厚さを変更できる。酸素分圧は Cr主体の酸化 物の解離圧以上にすればよい。また、酸化スケール層の組成はもっぱら母材の合金 組成により決まる。  In order to form the oxide scale layer (A), the metal tube may be heated in an oxidizing atmosphere to a temperature at which surface oxidation occurs. The thickness of the formed oxide scale layer can be changed depending on conditions such as heating temperature, time, and partial pressure of oxygen in the atmosphere. The oxygen partial pressure should be higher than the dissociation pressure of Cr-based oxide. The composition of the oxide scale layer is determined solely by the alloy composition of the base material.
[0047] Cr主体または Cr + Al主体の酸化スケーノレ層は耐メタルダステイング性、耐浸炭性お よび耐コーキング性の観点から、非常に重要である。 Cr含有量 50%以上の Cr主体の 酸化スケール層は緻密度が高ぐ炭素の鋼中侵入に対する遮蔽特性に富む。 と A1 の合計含有量が 50。/o以上の Cr + Al主体の酸化スケール層は、緻密度がさらに高く なり、優れた保護性を示すようになる。また、これらの酸化スケール層はいずれも、ェ チレン分解炉等の高温浸炭環境においても、高温まで熱力学的に安定で、長期に わたる保護性を有する。さらに、これらの酸化スケール層はいずれも、コーキングに対 する触媒作用が小さいため、金属表面へのコーキングを抑制する。その結果、管内 流体への熱伝導性が長時間良好に保持され、ォレフィンなどの反応生成物の収率 が安定する。 [0047] A skeneole oxide layer mainly composed of Cr or Cr + Al is very important from the viewpoint of metal dusting resistance, carburization resistance and coking resistance. An oxide scale layer mainly composed of Cr with a Cr content of 50% or more has excellent shielding properties against penetration of highly dense carbon into steel. And the total content of A1 is 50. The oxide scale layer mainly composed of Cr + Al having a ratio of / o or more has a higher density and exhibits excellent protection. All of these oxide scale layers are thermodynamically stable up to high temperatures even in a high-temperature carburizing environment such as an ethylene cracking furnace, and have long-term protection. In addition, all of these oxide scale layers are resistant to coking. Since the catalytic action is small, coking on the metal surface is suppressed. As a result, the thermal conductivity to the fluid in the pipe is maintained well for a long time, and the yield of reaction products such as olefins is stabilized.
[0048] 酸化スケール層は、 Cr含有量または Cr + Alの合計含有量 (酸化スケールが A1も含有 する場合)が 80%以上になると、スケール層がより緻密になり、炭素の鋼中侵入に対し 強固な遮蔽層として効果を発揮する。その結果、耐浸炭性が飛躍的に向上する。さ らに望ましい Cr含有量または Cr+Al含有量は 85%以上である。  [0048] When the Cr content or the total content of Cr + Al (when the oxide scale also contains A1) is 80% or more, the scale layer becomes denser, and carbon invades steel. On the other hand, it is effective as a strong shielding layer. As a result, the carburization resistance is dramatically improved. Further desirable Cr content or Cr + Al content is 85% or more.
[0049] 酸化スケール層 (B)は Si主体の酸化スケール力 なる。この酸化スケール層を生成さ せるには、酸化雰囲気中において表面酸化が起こる温度に加熱すればよい。加熱 温度、時間、雰囲気中の酸素分圧等の条件によって、生成する酸化スケール層の厚 さを変更できる。酸化スケール層の組成はもっぱら母材鋼組成によって決まる。  [0049] The oxide scale layer (B) is an oxide scale force mainly composed of Si. In order to generate this oxide scale layer, the oxide scale layer may be heated to a temperature at which surface oxidation occurs in an oxidizing atmosphere. The thickness of the oxide scale layer to be formed can be changed depending on conditions such as heating temperature, time, and partial pressure of oxygen in the atmosphere. The composition of the oxide scale layer is determined solely by the base steel composition.
[0050] Si含有量 50%以上の S注体の酸化スケール層 (B)を生成させる場合、これは Cu濃化 層と酸化スケール層 (A)との間に存在させることが好ましい。酸化スケール層 (B)は、 上述の酸化スケーノレ層 (A)が均一に生成するのを促進するほか、酸化スケール層 (A) に亀裂や剥離といった損傷が生じた場合に、損傷部が再生することを補助する働き を有する。  When an oxide scale layer (B) of S cast having a Si content of 50% or more is to be generated, it is preferably present between the Cu-concentrated layer and the oxide scale layer (A). The oxide scale layer (B) promotes the uniform formation of the above-described oxide scanole layer (A), and the damaged portion is regenerated when the oxide scale layer (A) is damaged, such as cracking or peeling. It has the function of assisting in this.
[0051] Si主体の酸化スケール層 (B)を、 Cu濃化層と酸化スケール層 (A)との間に形成する には、 Cr主体の酸化物の解離圧以上の酸素分圧を有するガス中で金属置を加熱す れば、 Si主体の酸化物の解離圧の方が Cr主体の酸化物の解離圧より小さいため、内 側の酸化スケール層 (B)と外側の酸化スケール層 (A)とを同時に形成することができる 。加熱温度、時間によって、各酸化スケール層の厚さを変更できる。  [0051] In order to form the oxide scale layer (B) mainly composed of Si between the Cu-concentrated layer and the oxide scale layer (A), a gas having an oxygen partial pressure equal to or higher than the dissociation pressure of the oxide mainly composed of Cr is used. If the metal chamber is heated in the middle, the dissociation pressure of the oxide mainly composed of Si is smaller than the dissociation pressure of the oxide mainly composed of Cr, so that the inner oxide scale layer (B) and the outer oxide scale layer (A ) Can be formed at the same time. The thickness of each oxide scale layer can be changed depending on the heating temperature and time.
[0052] 酸化スケール層 (B)は、母材合金中の Si含有量を高める (例、 0.4%以上に)ことにより 、その生成を容易にすることができる。  [0052] The oxide scale layer (B) can be easily formed by increasing the Si content in the base alloy (for example, to 0.4% or more).
酸化スケール層の厚さは、例えば断面ミクロ試料を光学顕微鏡で観察して測定でき る。また、酸化スケール層 (A)や酸化スケール層 (B)の元素含有量は、 EDX (エネルギ 一分散型 X線分光装置)により測定できる。測定は、断面ミクロ試料を用いて、表面 に C蒸着を施してから EDXにより元素定量分析することにより行うのが一般的である。 スケール中の元素含有量は、対象とするスケール層の各々について測定した元素分 析結果から、金属元素のみを合計 100%とした時の Cr、 Al、 Siの含有量の値として求 められる。 The thickness of the oxide scale layer can be measured, for example, by observing a cross-sectional micro sample with an optical microscope. The element content of the oxide scale layer (A) and the oxide scale layer (B) can be measured by EDX (energy monodisperse X-ray spectrometer). The measurement is generally performed by performing C element deposition on the surface using a cross-sectional micro sample and then performing elemental quantitative analysis by EDX. The element content in the scale is the elemental content measured for each of the target scale layers. From the analysis results, it can be determined as the value of the Cr, Al, and Si contents when the total amount of metal elements alone is 100%.
[0053] この発明にかかる金属管の管内面および/または管外面は、突起を有する、或い は異形断面を備える、といった不規則形状を呈する表面であってもよい。一般に、そ のような不規則断面を備える表面は、浸炭性ガスによる攻撃を受け易ぐそのため酸 化スケールの剥離などが起こり易い。しかし、本発明によれば、金属管の管内面およ び/または管外面の耐浸炭性が高ぐかつ皮膜の修復能が高いため、そのような不 規則断面の内面および Zまたは外面を備えた金属管の場合にこの発明の効果が特 に顕著になる。  [0053] The inner surface and / or outer surface of the metal tube according to the present invention may be a surface having an irregular shape such as having a projection or having an irregular cross section. Generally, a surface having such an irregular cross section is susceptible to attack by a carburizing gas, so that the oxide scale is easily peeled off. However, according to the present invention, since the inner surface and / or the outer surface of the metal tube have high carburization resistance and a high ability to repair the coating, the inner surface and the Z or outer surface having such an irregular cross section are provided. The effect of the present invention is particularly remarkable in the case of a bent metal tube.
[0054] この発明にかかる金属管を構成する金属材料 (母材)は、次に述べる組成(Cu濃化 層の Cu濃度 (原子%表示)を除いて質量%、残部は Feおよび不純物)を有する合金 であることが好ましい。  The metal material (base material) constituting the metal tube according to the present invention has the following composition (% by mass except for the Cu concentration (expressed in atomic%) of the Cu-concentrated layer, and the balance Fe and impurities). Preferably, the alloy has
[0055] C : 0.01— 0.6% [0055] C: 0.01—0.6%
高温強度を確保するために 0.01 %以上の Cの含有が有効である。 C含有量が 0.6% を超えると合金の靭性が極端に悪くなる。 C含有量の好ましい範囲は 0.01%— 0.45% In order to secure high-temperature strength, it is effective to contain 0.01% or more of C. If the C content exceeds 0.6%, the toughness of the alloy becomes extremely poor. Preferred range of C content is 0.01%-0.45%
、より好ましい範囲は 0 · 01 %— 0 · 3 %である。 The more preferred range is 0.01% —0.3%.
[0056] Si : 0.01— 5% [0056] Si: 0.01-5%
Siは酸素との親和力が強いため、 Cr主体の酸化スケール層 (A)を均一に形成するこ とを助長する。この作用は、 Siを 0.01%以上含有することで発揮される。ただし、 Si含 有量が 5%を超えると溶接性が劣化し、組織も不安定になる。 Si含有量の好ましい範 囲は 0.1— 3%、より好ましい範囲は 0.3— 2.5%である。  Since Si has a strong affinity for oxygen, it promotes the uniform formation of a Cr-based oxide scale layer (A). This effect is exhibited by containing 0.01% or more of Si. However, if the Si content exceeds 5%, the weldability deteriorates and the structure becomes unstable. The preferred range of the Si content is 0.1-3%, and the more preferred range is 0.3-2.5%.
[0057] 但し、 A1含有量が 1.5%以上である場合には、 Siと A1の共存は溶接性を極端に低下 させる他、組織も不安定になるので、 Si含有量の上限を 1 %とすることが好ましい。そ の場合のより好ましい Si含有量の範囲は 0.05— 0.6%である。 [0057] However, when the A1 content is 1.5% or more, the coexistence of Si and A1 extremely deteriorates the weldability and also makes the structure unstable, so the upper limit of the Si content is set to 1%. Is preferred. In this case, the more preferable range of the Si content is 0.05 to 0.6%.
[0058] Mn : 0.01 10% [0058] Mn: 0.01 10%
Mnは、脱酸および加工性改善のために 0.01 Q/o以上の量で添加される。 Mnはォー ステナイト生成元素であることから、 Niの一部を Mnで置換することも可能である。しか し、過剰の Mnの添加は Cr主体の酸化スケール層の形成を阻害することから、 Mn含 有量の上限を 10%とする。 Mn含有量の好ましい範囲は 0.1— 5%、より好ましい範囲 は 0.1— 2%である。 Mn is added in an amount of 0.01 Q / o or more to improve deoxidation and processability. Since Mn is an austenite forming element, it is possible to partially replace Ni with Mn. However, the addition of excess Mn inhibits the formation of an oxide scale layer mainly composed of Cr, The upper limit of the amount is 10%. A preferred range of the Mn content is 0.1-5%, and a more preferred range is 0.1-2%.
[0059] P : 0.08%以下、 S : 0.05%以下  [0059] P: 0.08% or less, S: 0.05% or less
Pおよび Sは、結晶粒界に偏析し、熱間加工性を劣化させる。そのため、極力低減 することが好ましいが、過剰な低減はコスト高を招くため、 P : 0.08。/o以下、 S : 0.05% 以下とする。好ましくは、 P : 0.05%以下、 S : 0.03%以下であり、より好ましくは、 P : 0.04%以下、 S : 0.015%以下である。  P and S segregate at the grain boundaries and degrade hot workability. Therefore, it is preferable to reduce as much as possible, but excessive reduction leads to high cost, so P: 0.08. / o or less, S: 0.05% or less. Preferably, P: 0.05% or less, S: 0.03% or less, more preferably, P: 0.04% or less, S: 0.015% or less.
[0060] Cr : 15 35%  [0060] Cr: 15 35%
Crは、本発明において重要な元素である。 Cr主体の酸化スケールを安定に形成す るためには 15%以上の Crの含有が必要である。合金が A1を 1.5%以上含有する場合 には、 Crと A1が主体の、より緻密で保護性の高い酸化スケールが生成する。しかし、 過剰な Crの添カ卩は加工性とともに組織安定性を劣化させるので、上限を 35%とする 。 Cr含有量の好ましい範囲は 20— 33%、より好ましい範囲は 22— 32%である。  Cr is an important element in the present invention. In order to stably form a Cr-based oxide scale, it is necessary to contain 15% or more of Cr. If the alloy contains more than 1.5% of A1, a denser and more protective oxide scale will be formed, consisting mainly of Cr and A1. However, since excessive Cr addition deteriorates the structure stability as well as the processability, the upper limit is set to 35%. A preferred range of the Cr content is 20-33%, and a more preferred range is 22-32%.
[0061] M : 30— 75%  [0061] M: 30-75%
Mは、 Cr含有量に応じて安定したオーステナイト組織を得ることができる元素である ので、 30— 75%の量で含有させる。また、 Cが鋼中に侵入した場合、侵入速度を低減 する働きもある。しかし、必要以上の Mの含有は、コスト高と製造難を招く。 Ni含有量 の好ましい範囲は 35— 70%、より好ましい範囲は 40— 65%である。  M is an element capable of obtaining a stable austenite structure in accordance with the Cr content, and is therefore contained in an amount of 30 to 75%. Also, when C enters steel, it has a function to reduce the penetration speed. However, an unnecessarily high content of M causes high costs and difficulty in manufacturing. The preferred range of the Ni content is 35-70%, and the more preferred range is 40-65%.
[0062] Cu : 0.01— 10%  [0062] Cu: 0.01-10%
Cuは本発明において最も重要な元素のひとつである。 Cuは金属表面への浸炭性 ガスの吸着を抑制する効果が非常に大きい。表層部に Cu濃度 0.1原子%以上の01 濃化層を形成するには、母材の合金に 0.01%以上の Cuの添カ卩が必要である。一方、 10%を超えて Cuを添加すると、著しく熱間加工性を低下させる。 Cu含有量の好まし い範囲は 0.03— 5 %、より好ましい範囲は 0.1— 3 %である。  Cu is one of the most important elements in the present invention. Cu has a very large effect of suppressing the adsorption of carburizing gas to the metal surface. In order to form a 01 enriched layer with a Cu concentration of 0.1 atomic% or more on the surface layer, the base metal alloy needs to contain 0.01% or more Cu. On the other hand, if Cu is added in excess of 10%, the hot workability is significantly reduced. A preferred range for the Cu content is 0.03-5%, and a more preferred range is 0.1-3%.
[0063] N : 0.001— 0.25%  [0063] N: 0.001—0.25%
Nは高温強度改善に有効な元素である。この効果を得るために 0.001%以上の Nを 含有させる。過剰な添カ卩は加工性を大きく阻害するため、 0.25%を上限とする。好ま しくい N含有量の範囲は 0.001% 0.2%である。 [0064] 但し、 Al含有量が 1.5%以上である場合には、 A1と Nが化合物を形成してクリープ強 度を低下させることから、 N含有量を 0.1 %以下とすることが好ましい。この場合のより 好ましい N含有量の範囲は 0.001 %— 0.05 %である。 N is an element effective for improving high-temperature strength. To achieve this effect, N should be contained at 0.001% or more. An excessive amount of soybean paste greatly impairs processability, so the upper limit is 0.25%. The preferred N content range is 0.001% 0.2%. [0064] However, when the Al content is 1.5% or more, the N content is preferably 0.1% or less because A1 and N form a compound and lower the creep strength. The more preferable range of the N content in this case is 0.001% -0.05%.
[0065] A1 : 0.001- 10% [0065] A1: 0.001-10%
Alは、微量でも熱間加工性を改善するのに有効な元素である。そのため、 A1を Al is an element effective for improving hot workability even in a trace amount. Therefore, A1
0.001 %以上の量で添加する。この目的にとって、 A1を 0.01%以上の量で含有させる ことが好ましい。 Add at least 0.001%. For this purpose, it is preferable to contain A1 in an amount of 0.01% or more.
[0066] A1はまた、表面に予め酸化スケールを形成する場合、浸炭性ガス環境に曝された 場合に、 Crと A1が主体の緻密で保護性の高い酸化スケールが生成するのに寄与す る。また、予め酸化スケールを形成しない場合においても、使用環境中において と A1が主体の酸化スケールが生成するため、金属管の耐メタルダステイング性と耐浸炭 性を著しく高めることができる。このためには、 1.5%以上の A1を含有させることが有効 である。一方、 10%を超える量で A1を含有させると、硬化型析出物が合金中に析出 するため、合金の靱性ゃクリープ延性が著しく低下する。 Crと A1が主体の酸化スケー ル層を形成させる場合の A1含有量の好ましい範囲は 2— 8%、より好ましい範囲は 2— 4%、最も好ましい範囲は 2.2— 3.5%である。  [0066] A1 also contributes to the formation of a dense and highly protective oxide scale mainly composed of Cr and A1 when the oxide scale is previously formed on the surface and when exposed to a carburizing gas environment. . Further, even when an oxide scale is not formed in advance, an oxide scale mainly composed of A1 and A1 is generated in a use environment, so that metal dusting resistance and carburization resistance of the metal pipe can be significantly improved. For this purpose, it is effective to contain 1.5% or more of A1. On the other hand, when A1 is contained in an amount exceeding 10%, a hardenable precipitate is precipitated in the alloy, so that the toughness and creep ductility of the alloy are significantly reduced. When forming an oxide scale layer mainly composed of Cr and A1, the preferred range of the A1 content is 2 to 8%, the more preferred range is 2 to 4%, and the most preferred range is 2.2 to 3.5%.
[0067] 但し、 Si主体の酸化スケール層 (B)を生成させるには、 A1含有量を 1.5%未満とする ことが好ましい。その場合の A1含有量のより好ましい範囲は 0.01— 1.2%、最も好まし い範囲は 0.01— 0.5%である。  [0067] However, in order to generate an oxide scale layer (B) mainly composed of Si, the A1 content is preferably less than 1.5%. In this case, the more preferable range of the A1 content is 0.01 to 1.2%, and the most preferable range is 0.01 to 0.5%.
[0068] 酸素 (〇):0.02%以下  [0068] Oxygen (〇): 0.02% or less
酸素は不純物として存在する。酸素含有量が 0.02%を超えると、合金中に酸化物 系介在物が多量存在し、加工性が低下する他、金属管表面疵の原因になるので、酸 素含有量の上限を 0.02%とする。  Oxygen exists as an impurity. If the oxygen content exceeds 0.02%, a large amount of oxide-based inclusions are present in the alloy, reducing workability and causing metal tube surface flaws.Therefore, the upper limit of the oxygen content is set to 0.02%. I do.
[0069] 上記の合金元素に加えて、所望により以下に示す元素を少なくとも 1種添加するこ とあできる。  [0069] In addition to the above alloying elements, at least one of the following elements can be added as desired.
Co : 0.01— 5%  Co: 0.01-5%
Coはオーステナイト相を安定にする作用を有するので、 Niの一部を 0.01。/o以上の Coで置換してもよレ、。一方、 5%を超えて Coを添加すると、合金の熱間加工性が著し く低下する。 Co含有量の好ましい範囲は 0.01— 3%である。 Since Co has the effect of stabilizing the austenite phase, part of Ni is 0.01. It can be replaced with Co over / o. On the other hand, if Co is added in excess of 5%, the hot workability of the alloy becomes significant. Decline. The preferred range of the Co content is 0.01-3%.
[0070] Mo : 0.01— 10%および W : 0.01— 10%の 1種または 2種  [0070] 1 or 2 types of Mo: 0.01-10% and W: 0.01-10%
Moおよび Wはいずれも固溶強化元素であり、合金の高温強度向上に有効である。 その効果を発揮させるために、それぞれ 0.01 %以上の量で添加することができる。し かし、これらの各元素の過剰添カ卩は加工性の劣化と組織安定性を阻害するので、 Mo 、 Wともに 10%以下にする。 Moと Wのいずれも、好ましい範囲は 0.01— 8%、より好ま しい範囲は 0.1— 5%である。  Mo and W are both solid solution strengthening elements and are effective in improving the high temperature strength of the alloy. In order to exert its effect, each can be added in an amount of 0.01% or more. However, excessive addition of each of these elements impairs processability and inhibits tissue stability. Therefore, the content of both Mo and W should be 10% or less. For both Mo and W, the preferred range is 0.01-8%, and the more preferred range is 0.1-5%.
[0071] Ti: 0.01 2 %および Nb: 0 · 01 2 %の 1種または 2種  [0071] One or two kinds of Ti: 0.01 2% and Nb: 0 · 01 2%
Tiおよび Nbは極微量の添カ卩でも高温強度および延性、靱性の改善に大きな効果 がある。しかし、それぞれ 0.01 %未満ではその効果が得られず、 2%を超えると加工 性や溶接性の低下を生ずる。 Tiと Nbのいずれも、好ましい範囲は 0.01— 1.5%、より好 ましい範囲は 0.02— 1.2%である。  Ti and Nb have a great effect on improving high-temperature strength, ductility and toughness even with a very small amount of added syrup. However, if each is less than 0.01%, the effect cannot be obtained, and if it exceeds 2%, workability and weldability are reduced. For both Ti and Nb, the preferred range is 0.01-1.5%, and the more preferred range is 0.02-1.2%.
[0072] B : 0.001— 0.1 %、 Zr : 0.001— 0.1 %および Hf: 0.001— 0.5%の 1種または 2種以上  [0072] One or more of B: 0.001—0.1%, Zr: 0.001—0.1% and Hf: 0.001—0.5%
B、 Zrおよび Hfはいずれも粒界を強化し、熱間加工性および高温強度特性を改善 するのに有効な元素であるが、いずれも 0.001 %未満ではその効果が得られず、過剰 な添加(Bと Zrでは 0.1 %超、 ΗΠ?は 0.5%超)は溶接性を劣化させる。  B, Zr and Hf are all effective elements for strengthening grain boundaries and improving hot workability and high-temperature strength properties.However, if less than 0.001%, the effect cannot be obtained and excessive addition (More than 0.1% for B and Zr, more than 0.5% for ΗΠ?) Deteriorates weldability.
[0073] Mg : 0.0005— 0.1 %および Ca : 0.0005— 0.1 %の 1種または 2種:  [0073] One or two types of Mg: 0.0005—0.1% and Ca: 0.0005—0.1%:
Mgおよび Caはいずれも熱間加工性を改善するのに有効な元素であり、その効果は 0.0005%以上で顕著となる。しかし、これらの元素の過剰な添カ卩は溶接性を劣化させ るため、その上限をそれぞれ 0.1 %とする。  Mg and Ca are both effective elements for improving hot workability, and the effect is remarkable at 0.0005% or more. However, excessive addition of these elements deteriorates the weldability, so the upper limits are each set to 0.1%.
[0074] Y、 La、 Ce、 Nd :それぞれ 0.0005— 0.15%の 1種または 2種以上:  [0074] Y, La, Ce, Nd: one or more of 0.0005-0.15% each:
Y、 La、 Ce、 Ndは、耐酸化性の向上に有効な元素であるが、いずれも 0.0005%未 満ではその効果が得られず、過剰な添加は加工性を低下させるのでそれぞれの上 限を 0.15%とする。これらの各元素の添カ卩量の好ましい下限は 0.005%である。  Y, La, Ce, and Nd are effective elements for improving oxidation resistance, but their effects are not obtained at less than 0.0005%, and excessive addition lowers the workability, so the upper limit is set. To 0.15%. The preferable lower limit of the amount of added kamitsu of each of these elements is 0.005%.
[0075] この発明に係る浸炭性ガスからの遮蔽機能を有する金属管は、溶解、錡造、熱間 加工、冷間加工、溶接等から選択された手段を組み合わせることによって、継目無管 、溶接管等の所要の金属管形状に成形すればよい。或いは、粉末冶金や遠心铸造 等の手法によって所要の金属管形状に成形してもよい。 [0076] 最終熱処理を施した後の金属管表面に対して、酸洗、ショットブラスト、機械切削、 グラインダ研磨および電解研磨等の表面加工処理を施してよい。また、これらを複数 組み合わせることも可能である。その後、前述した手段によって Cu濃化層を生成させ る。酸化スケール (A)および酸化スケール (B)の形成は、最終熱処理時に達成してもよ いし、表面加工処理後もしくは Cu濃化層の生成処理後に熱処理を行って生成させて あよい。 [0075] The metal pipe having a function of shielding from carburizing gas according to the present invention can be obtained by combining means selected from melting, forging, hot working, cold working, welding, and the like. What is necessary is just to shape | mold into a required metal tube shape, such as a tube. Alternatively, it may be formed into a required metal tube shape by a method such as powder metallurgy or centrifugal structure. [0076] The surface of the metal tube after the final heat treatment may be subjected to surface processing such as pickling, shot blasting, mechanical cutting, grinder polishing, and electrolytic polishing. It is also possible to combine a plurality of these. After that, a Cu-enriched layer is generated by the means described above. The formation of the oxide scale (A) and the oxide scale (B) may be achieved at the time of the final heat treatment, or may be formed by performing a heat treatment after the surface processing treatment or the treatment for forming the Cu-enriched layer.
[0077] なお、本発明に係る金属管は、管内面および/または管外面に 1または 2以上の突 起形状を有していても、浸炭性ガスからの遮蔽機能を何ら損なうことはなレ、。このよう な突起形状の例としては、エチレン分解炉管に用いられるフィンチューブなどが挙げ られ、例えば、熱間加工時または溶接により形成することができる。  [0077] It should be noted that even if the metal pipe according to the present invention has one or more protruding shapes on the inner surface and / or outer surface of the tube, it does not impair the function of shielding from carburizing gas at all. ,. Examples of such a protrusion shape include a fin tube used for an ethylene cracking furnace tube, and can be formed, for example, during hot working or by welding.
[0078] 以下の実施例は本発明を例示するものであり、本発明はこれらの実施例に限定さ れるものではない。実施例中、%は特に指定しない限り質量%である。  The following examples illustrate the present invention, and the present invention is not limited to these examples. In Examples,% is mass% unless otherwise specified.
実施例 1  Example 1
[0079] 本例は、母材の A1含有量が 1.5%未満であり、酸化スケールを形成した場合に、 Cr 主体の酸化スケール層が生成する場合について例示する。  [0079] This example illustrates the case where the A1 content of the base material is less than 1.5% and an oxide scale is formed, where a Cr-based oxide scale layer is formed.
表 1に示す化学組成の各金属材料を高周波加熱真空炉により溶製し、ビレットを形 成し、そのビレットの熱間鍛造および冷間圧延を行って、外径 56 mm、肉厚 6mmの金 属管を作製した。金属管は一律、大気中で 1200°C、 10分の条件で固溶化熱処理を 行った。次いで、金属管を約 30 mm長さの輪切りに切断し、切断した金属管の一部に 、ショットブラスト (外面のみ) (SBと略記)、酸洗 (Picと略記)、酸洗デスケーリング (PiDと 略記)、機械切肖 IJ (外面のみ) (Macと略記)、グラインダ研削 (Grdと略記)、またはこれら の組み合わせからなる表面加工処理を施した。その後、各金属管に交番電解処理 (ACE1と略記)または雰囲気制御熱処理 (ACHTと略記)を施して、管の内外面に Cu濃 化層を形成した。さらに一部の金属管には、金属表面に歪みを入れるため、管の外 面にショットピーユング (SPと略記)を行った。本例では、 Cr主体の酸化スケール層 (A) および Si主体の酸化スケール層 (B)は、雰囲気制御熱処理の際に生成させた。この雰 囲気制御熱処理により、酸化スケール層の生成と同時に、その内側に Cu濃化層が生 成した。本例では、雰囲気制御熱処理により Cu濃化層が生成することを実証するた め、この熱処理を施した金属管については、表面加工処理と交番電解処理を行わな かった。 Each metal material having the chemical composition shown in Table 1 was melted in a high-frequency heating vacuum furnace to form a billet, and the billet was subjected to hot forging and cold rolling to obtain a gold material having an outer diameter of 56 mm and a wall thickness of 6 mm. A genus tube was made. The metal tube was uniformly subjected to solution heat treatment at 1200 ° C for 10 minutes in air. Next, the metal pipe was cut into round slices having a length of about 30 mm, and a portion of the cut metal pipe was shot blasted (only on the outer surface) (abbreviated as SB), pickled (abbreviated as Pic), pickled descaling ( PiD), machine cutting IJ (outer surface only) (abbreviated as Mac), grinder grinding (abbreviated as Grd), or a combination of these surface treatments. Thereafter, each metal tube was subjected to alternating electrolytic treatment (abbreviated as ACE1) or atmosphere control heat treatment (abbreviated as ACHT) to form a Cu-enriched layer on the inner and outer surfaces of the tube. In addition, some metal pipes were shot peened (abbreviated as SP) on the outer surface of the pipe to introduce distortion into the metal surface. In this example, the Cr-based oxide scale layer (A) and the Si-based oxide scale layer (B) were formed during the atmosphere control heat treatment. By this atmosphere control heat treatment, a Cu-enriched layer was formed inside the oxide scale layer at the same time as the oxide scale layer was formed. In this example, it was demonstrated that a Cu-enriched layer Therefore, the surface treatment and the alternating electrolytic treatment were not performed on the metal tube that had been subjected to this heat treatment.
[0080] 交番電解処理は、 pH = 3の硫酸浴中で、貴な電位 + 1.1 V、卑な電位一 0.6 V (いず れも vs SCE)で、各 0.15秒ずつ交互に印加を繰り返すことにより、合計 120秒間の印加 を行った。ただし、表 2の比較例 4-B、 17-Aは、貴な電位を一 0.25 Vに変更した。また 、雰囲気熱処理は、酸素分圧 10— 1 10— 8 MPa (残り:水素ガスと水蒸気)の低酸素雰囲 気 1120— 1220°C X 3分の熱処理により行った。 [0080] In the alternating electrolytic treatment, in a sulfuric acid bath at pH = 3, application is repeated alternately at a noble potential of +1.1 V and a low potential of −0.6 V (both vs. SCE) for 0.15 seconds each. The application was performed for a total of 120 seconds. However, in Comparative Examples 4-B and 17-A of Table 2, the noble potential was changed to one 0.25 V. The atmosphere heat treatment, the oxygen partial pressure 10- 1 10- 8 MPa: was performed by heat treatment of hypoxia Kiri囲vapor 1120- 1220 ° CX 3 minutes (the remaining hydrogen gas and water vapor).
[0081] 上記の各金属管から、 20 mm角の試験片を切り出し、この試験片の表面の Cu濃度 を AESにより深さ方向に測定し、母材の Cu含有量を基準に Cu濃化層の存在を決定し 、その厚みおよび Cu濃度を求めた。  [0081] A 20 mm square test piece was cut out from each of the above metal tubes, and the Cu concentration on the surface of the test piece was measured in the depth direction by AES, and the Cu-enriched layer was determined based on the Cu content of the base material. Was determined, and its thickness and Cu concentration were determined.
[0082] 雰囲気制御熱処理を施した金属管については、上記の Cu濃化層に関する AES測 定に加えて、表面に形成された酸化スケール層の測定を行った。即ち、まず断面ミク 口試験片を作製し、顕微鏡観察により酸化スケール層の厚みを測定した。また、同じ 試験片を用いて表面の Cr主体の酸化スケール層 (A)と Si主体の酸化スケール層 (B)の それぞれ Cr含有量および Si含有量を EDXにより測定した。これらの含有量は、対象と するスケール層各々について任意の 3ケ所で測定し、金属元素の合計量を 100%とし た時の Cr、 Al、 Si含有量を求め、それらの平均値から算出した。  [0082] For the metal tube subjected to the atmosphere control heat treatment, the oxide scale layer formed on the surface was measured in addition to the AES measurement for the Cu-enriched layer described above. That is, first, a cross-sectional micro-mouth test piece was prepared, and the thickness of the oxide scale layer was measured by microscopic observation. Using the same test piece, the Cr content and the Si content of the Cr-based oxide scale layer (A) and the Si-based oxide scale layer (B) on the surface were measured by EDX, respectively. These contents were measured at any three locations for each of the target scale layers, and the Cr, Al, and Si contents were calculated when the total amount of metal elements was 100%, and calculated from their average values. .
[0083] [耐メタルダステイング性評価]  [Evaluation of metal dusting resistance]
上記の金属管から、幅 20 mm X長さ 25 mmの試験片を切り出した。この試験片を、 体積比で 60%CO-26%H -11.5%CO -2.5%H Oの浸炭性ガス雰囲気中で 650°C  A test piece having a width of 20 mm and a length of 25 mm was cut out from the above metal tube. This test piece was heated at 650 ° C in a carburizing gas atmosphere of 60% CO-26% H-11.5% CO-2.5% HO by volume ratio.
2 2 2  2 2 2
に 1000時間まで保持し、その間所定時間ごとに試験片を取り出して表面を目視観察 することによりピットの有無を調べ、ピットが発生するまでの時間を記録した。結果を表 The test piece was taken out at regular intervals during this period, and the test piece was taken out at regular intervals and the surface was visually observed to determine the presence or absence of pits, and the time until the occurrence of pits was recorded. Table of results
2に示す。表 2において、例えば、ピット発生時間が 1000時間とは、 1000時間経過時 にピットが発生してレ、たことを意味する。 See Figure 2. In Table 2, for example, a pit occurrence time of 1000 hours means that a pit occurred after 1000 hours.
[0084] [耐浸炭性評価] [0084] [Carburization resistance evaluation]
上記金属管から、幅 20 mm X長さ 30 mmの試験片を切り出した。この試験片を、体 積比で 15%CH -3%CO -82 %Hの、浸炭性ガス雰囲気中で 1050°Cに 300時間保  A test piece having a width of 20 mm and a length of 30 mm was cut out from the metal tube. The specimen was kept at 1050 ° C for 300 hours in a carburizing gas atmosphere with a volume ratio of 15% CH -3% CO -82% H.
4 2 2  4 2 2
持し、母材に侵入した C量 (質量%)を次のようにして測定した。 [0085] 前記ガス雰囲気中で保持した後の試験片の表面に形成された酸化スケールを除 去した後、表面より深さ方向に 0.5 mmピッチで金属切り粉を採取し、 0.5- 1.0 mm深 さにおける C量と 1.0— 1.5 mm深さにおける C量を化学分析により定量し、試験前の 母材 C量を減じた後、両 C量の平均値を lmm深さにおける侵入 C量とした。その結果 も表 2に示す。 The amount of C (% by mass) invading the base material was measured as follows. [0085] After removing the oxide scale formed on the surface of the test piece after holding in the gas atmosphere, metal chips were sampled at a 0.5 mm pitch in the depth direction from the surface, and 0.5 to 1.0 mm deep. The amount of C at the depth of 1.0-1.5 mm was quantified by chemical analysis, and after reducing the amount of the base metal C before the test, the average value of both C amounts was defined as the amount of invading C at a depth of 1 mm. Table 2 also shows the results.
[0086] [表 1] 合金 母 材 化 学 組 成 (質量%) 残部 Fe+不純物  [0086] [Table 1] Alloy base metal chemical composition (% by mass) balance Fe + impurities
Figure imgf000020_0001
Figure imgf000020_0001
下線は本発明の 範囲力も外れる。 [0087] [表 2 - 1] Underlines also deviate from the range of the present invention. [0087] [Table 2-1]
Figure imgf000021_0001
Figure imgf000021_0001
') SB:ショットブ'ラスト、 ACEI:交番 処理、 He:酸洗、 HD;酸洗デスケーリング、 Mac:羅研削、 ACHT:雰囲気制御 理、 SP:ショットピー-ング、 Grd :グラインダ研削;  ') SB: Shotblast last, ACEI: Alternating treatment, He: Pickling, HD: Pickling descaling, Mac: Luo grinding, ACHT: Atmosphere control, SP: Shot peening, Grd: Grinder grinding;
21斷!^ケ―ル層: (A)=Cr主体の酸 ケ―ル層、(B)=S注体の酸ィ ケール層; 3)耐メタルダステイング性: 60%CO- 26%H2- 11.5%C02 - 2.50/oH20,ガス (650¾); *赚炭性: 15%CH4—3%C02 - 82%Η2ガス、 1050°C X 300時間。 2 1 cut! ^ Kale layer: (A) = Cr-based acid layer, (B) = S-cast acid layer; 3 ) Metal dusting resistance: 60% CO- 26% H 2 - 11.5% C0 2 - 2.5 0 / oH 2 0, gas (650¾); *赚炭resistance: 15% CH 4 -3% C0 2 - 82% Η 2 gas, 1050 ° CX 300 hours.
下線は本発明の規定範囲力も外れる。  The underline also deviates from the specified range force of the present invention.
[0088] [表 2 - 2] 耐メタル.ダス ム 供 [0088] [Table 2-2] Metal-resistant.
固溶化讓理 Cu濃 謝 ケール層 3 赚炭 ) 試 ティング性 3) Solution solubilization Cu concentration Kale layer 3 charcoal) Testability 3)
金 後の金属管の  Of metal tube after gold
材 Cu濃度 厚み (A) Cr量 (B) Si量 ピット発生 侵入。量 Material Cu concentration Thickness (A) Cr amount (B) Si amount Pit generation Intrusion. amount
No. 処理工程') No. Processing step ')
No. 源子0 /。) (nm) («*%) 0■ (h) (K»%)No. Genko 0 /. ) (Nm) («*%) 0 ■ (h) (K»%)
26 26- A SB→ACE1 1.02 0.5 - - >1000 0.526 26- A SB → ACE1 1.02 0.5--> 1000 0.5
27 27-A HD→ACE1 1.32 0.4 - - 1000 0.627 27-A HD → ACE1 1.32 0.4--1000 0.6
28 28-A SB→ACE1 0.40 >1 - - 〉1000 0.328 28-A SB → ACE1 0.40> 1--〉 1000 0.3
29 29-A HD→ACE1 0.39 0.4 - - >誦 0.229 29-A HD → ACE1 0.39 0.4--> recitation 0.2
30 30- A SB— ACE1 1.11 0.5 - ― 1000 0.430 30- A SB— ACE1 1.11 0.5-― 1000 0.4
31 31-A RD→ACE1 0.53 0.6 一 - >1000 0.431 31-A RD → ACE1 0.53 0.6 one-> 1000 0.4
32 32- A ACHT 0.43 0.5 71 - 層 0 0.332 32- A ACHT 0.43 0.5 71-Layer 0 0.3
33 33-A SB—ACE1 検出できず 0 - - く 100 1.9 33 33-A SB—ACE1 Not detected 0--100 100 1.9
RD→ACE1→  RD → ACE1 →
34 34- A 15.5 0.2 - - >1000 ぐ 0.1  34 34- A 15.5 0.2--> 1000
SP  SP
35 35-A SB→ACE1 32.1 0.3 - - 層 0 ぐ 0.1 35 35-A SB → ACE1 32.1 0.3--Layer 0 g 0.1
" SB:ショットブラスト、 ACE1:交番 処理、 Rc:酸洗、 PiD:酸洗デスケ—リング、 Mac:漏研削、 ACHT:雰囲気制御熱処理、 SP:ショットピーニング、 Grd :グラインダ棚 IJ; "SB: Shot blast, ACE1: Alternating treatment, Rc: Pickling, PiD: Pickling descaling, Mac: Leak grinding, ACHT: Atmosphere control heat treatment, SP: Shot peening, Grd: Grinder shelf IJ;
2)酸 it^ケール層: (A)=Cr主体の謝!^ケ一ル層、(B)=S注体の謝 ケ一ル層;  2) Acid it ^ Kale layer: (A) = Cr-based layer! ^ Kale layer, (B) = S cast layer.
9耐メタルダステイング性: 60%CO-26%H2- 11.5%C02- 2.5%H2〇,ガス ftSOt);9 resistant metal Dasute Ing resistance: 60% CO-26% H 2 - 11.5% C0 2 - 2.5% H 2 〇, gas ftSOt);
) ffifg炭性: 15%CH4— 30/。C02-82%H2ガス、 1050°C X 300B寺間。 ) Ffifg charcoal resistance: 15% CH 4 - 3 0 /. C0 2 -82% H 2 gas, 1050 ° CX 300B.
下線は本発明の規定範囲から外れる。  Underlines depart from the scope of the present invention.
[0089] 表 2からわかるように、化学組成が本発明で規定する条件から外れる合金番号 33の 金属管は、ピット発生時間が 100時間未満と短く、耐メタルダステイング性に劣つてレヽ る。また、この金属管は侵入 C量力 2%と多ぐ耐浸炭性にも劣っている。 [0089] As can be seen from Table 2, the metal pipe of alloy No. 33 whose chemical composition deviates from the condition specified in the present invention has a short pit generation time of less than 100 hours, and has poor metal dusting resistance. In addition, this metal pipe is inferior in carburization resistance with a large amount of penetration C of 2%.
[0090] 一方、化学組成が本発明に規定する条件を満たす合金番号 1一 32および 34— 35 の金属管のうち、 Cu濃化層の Cu濃度および濃化層厚みが本発明で規定する条件を 満たす供試金属管は、ピット発生までの時間が長ぐ耐メタルダステイング性に優れ ており、さらに侵入 C量が 1 %未満で、耐浸炭性にも優れている。しかし、 Cu濃化層の Cu濃度と厚みの少なくとも一方が本発明で規定する条件を満たさない供試金属管は 、ピット発生までの時間が短ぐ耐メタルダステイング性に劣っている上、侵入 C量が 多ぐ耐浸炭性にも劣っている。  [0090] On the other hand, among the metal tubes of alloy numbers 1-32 and 34-35 whose chemical compositions satisfy the conditions specified in the present invention, the conditions in which the Cu concentration and the thickened layer thickness of the Cu-enriched layer are specified in the present invention. The test metal tube that satisfies the above requirements has excellent metal dusting resistance, which has a long time until the occurrence of pits, has less than 1% penetration C, and has excellent carburization resistance. However, a test metal tube in which at least one of the Cu concentration and the thickness of the Cu-enriched layer does not satisfy the conditions specified in the present invention has a short time until the occurrence of pits, is inferior in metal dusting resistance, and has a low penetration rate. It has a high C content and is inferior in carburization resistance.
[0091] また、表 2から、金属管に雰囲気制御熱処理 (ACHT)を施すだけでも、この熱処理 により生成した酸化スケール層の直下に Cu濃化層を形成することができることがわか る。酸化スケール層は、 Si含有量が 0.01%程度と低い場合には、 Cr主体の酸化スケ ール層 (A)だけが生成する力 S、本例で採用した熱処理条件では、 Si含有量が約 0.4% 以上になると、酸化スケール層 (A)と Cu濃化層との間に Si主体の酸化スケール層 (B) が連続して顕著に生成するようである。 実施例 2 [0091] Also, from Table 2, it can be seen that a Cu-enriched layer can be formed just below the oxide scale layer generated by this heat treatment simply by performing the atmosphere control heat treatment (ACHT) on the metal tube. In the oxide scale layer, when the Si content is as low as about 0.01%, the force S generated only by the Cr-based oxide scale layer (A), and under the heat treatment conditions used in this example, the Si content is about Above 0.4%, it appears that a silicon-based oxide scale layer (B) is continuously and significantly formed between the oxide scale layer (A) and the Cu-enriched layer. Example 2
[0092] 本例は、母材の A1含有量が 1.5%以上であり、酸化スケールを形成した場合に、 Cr および A1主体の酸化スケール層が生成する場合について例示する。 A1含有量が 1.5 %以上と多いため、上述した理由により Si含有量は 1 %以下とした。  [0092] This example illustrates a case where the A1 content of the base material is 1.5% or more and an oxide scale is formed, and an oxide scale layer mainly composed of Cr and A1 is formed. Since the A1 content is as high as 1.5% or more, the Si content is set to 1% or less for the above-described reason.
[0093] 表 3に示す化学組成を有する各金属材料を用いて、実施例 1に記載したのと同様 にして、供試金属管を作製した。但し、表 4の比較例 2-B、 6-Cでは、交番電解処理 において、貴な電位を一 0.25 Vに変更した。  [0093] Using each of the metal materials having the chemical compositions shown in Table 3, a test metal tube was produced in the same manner as described in Example 1. However, in Comparative Examples 2-B and 6-C of Table 4, the noble potential was changed to 0.25 V in the alternating electrolytic treatment.
[0094] 作成された金属管について、酸化スケール層の組成および Cu濃化層の厚みと Cu 濃度 (原子%)の測定、ならびに耐メタルダステイング性および耐浸炭性の評価試験を 、やはり実施例 1と同様に実施した。但し、本例の金属管は、 A1含有量が 1.5%以上と 高いため、実施例 1で作製した金属管より耐メタルダステイング性および耐浸炭性の いずれにも優れている。そのため、耐メタルダステイング性評価試験では、試験時間 を実施例 1の 1000時間から、 3000時間に延長し、耐浸炭性評価試験では、試験温度 を 1050°Cから 1100°Cに高めて、試験条件をより厳しくした。  [0094] For the prepared metal tube, the composition of the oxide scale layer, the thickness and the Cu concentration (atomic%) of the Cu-enriched layer, and the evaluation test of the metal dusting resistance and the carburization resistance were also performed in Examples. The procedure was the same as in 1. However, since the metal pipe of this example has a high A1 content of 1.5% or more, it has better metal dusting resistance and carburization resistance than the metal pipe manufactured in Example 1. Therefore, in the metal dusting resistance evaluation test, the test time was extended from 1000 hours in Example 1 to 3000 hours, and in the carburization resistance evaluation test, the test temperature was increased from 1050 ° C to 1100 ° C. Conditions were more stringent.
[0095] また、本例では、 A1含有量が 1.5%と高力 たため、雰囲気制御熱処理 (ACHT)によ り生成した酸化スケール層 (A)は Crおよび A1主体であったので、その Cr + Alの合計含 有量を EDXにより測定した。また、雰囲気制御熱処理を施した供試金属管はいずれ も Si含有量力 .3%より低いものであり、 Si主体の酸化スケール層 (B)が連続的な層の 形態では生成しなかったため、酸化スケール層 (B)の測定は行わな力、つた。  [0095] In this example, since the A1 content was as high as 1.5%, the oxide scale layer (A) generated by the atmosphere control heat treatment (ACHT) was mainly composed of Cr and A1, so that the Cr + The total content of Al was measured by EDX. In addition, all of the test metal tubes subjected to the atmosphere control heat treatment had a Si content of less than 0.3%, and the oxide scale layer (B) mainly composed of Si was not formed in the form of a continuous layer. The measurement of the scale layer (B) was not performed.
[0096] 以上の測定結果を表 4にまとめて示す。  [0096] Table 4 summarizes the above measurement results.
[0097] [表 3] [0097] [Table 3]
合金 母材 化 学組成 (質量%)残部 Fe+不純物 Alloy Base metal Chemical composition (mass%) balance Fe + impurities
Να C Si Mn P S Cr Ni Al Cu N 瞧 その他  Να C Si Mn P S Cr Ni Al Cu N 瞧 Other
0.004 B, 0.003 Ca, 0.004 B, 0.003 Ca,
1 0.06 0.08 0.22 0.007 く 0.001 20.5 67.2 3.1 1.5 0.011 0.006 1 0.06 0.08 0.22 0.007 0.00 0.001 20.5 67.2 3.1 1.5 0.011 0.006
2.0 Mo 2.0 Mo
2 0.01 0.11 0.19 0.005 く 0.001 19.9 68.1 2.9 0.1 0.012 0.003 0.003 Ca, 0.04 La2 0.01 0.11 0.19 0.005 less 0.001 19.9 68.1 2.9 0.1 0.012 0.003 0.003 Ca, 0.04 La
3 0.02 0.33 0.15 0.021 く 0.001 ' 25.5 65.5 2.9 0.1 0.007 0.004 0.004 Hf, 0.11 Ti3 0.02 0.33 0.15 0.021 Ku 0.001 '25.5 65.5 2.9 0.1 0.007 0.004 0.004 Hf, 0.11 Ti
4 0.03 0.21 0.11 0.011 0.001 21.1 68.1 2.6 1.5 0.005 0.003 0.04 Ce, 1.1 W4 0.03 0.21 0.11 0.011 0.001 21.1 68.1 2.6 1.5 0.005 0.003 0.04 Ce, 1.1 W
5 0.06 0.01 0.02 0.014 0.011 26.6 63.5 2.5 1.5 0.001 0.008 0.08 Nb5 0.06 0.01 0.02 0.014 0.011 26.6 63.5 2.5 1.5 0.001 0.008 0.08 Nb
6 0.06 0.03 0.11 0.011 0.005 30.1 60.2 2.9 0.2 0.011 0.005 0.002 Mg6 0.06 0.03 0.11 0.011 0.005 30.1 60.2 2.9 0.2 0.011 0.005 0.002 Mg
7 0.01 0.09 0.19 0.002 0.001 16.4 62.5 1.6 1.1 0.008 0.003 0.05 Y7 0.01 0.09 0.19 0.002 0.001 16.4 62.5 1.6 1.1 0.008 0.003 0.05 Y
8 0.09 0.33 0.45 0.017 0.003 22.1 64.2 3.2 0.7 0.005 0.004 0.03 Zr8 0.09 0.33 0.45 0.017 0.003 22.1 64.2 3.2 0.7 0.005 0.004 0.03 Zr
9 0.02 0.87 0.25 0.018 0.007 24.3 56.3 1.8 0.2 0.006 0.006 7.1 Mo9 0.02 0.87 0.25 0.018 0.007 24.3 56.3 1.8 0.2 0.006 0.006 7.1 Mo
10 0.02 0.33 0.22 0.022 0.003 22.1 57.3 3.1 0.2 0.006 0.006 -10 0.02 0.33 0.22 0.022 0.003 22.1 57.3 3.1 0.2 0.006 0.006-
11 0.03 0.54 0.29 0.025 0.002 19.8 37.1 2.9 0.3 0.001 0.015 1.2 Co, 0.01 La11 0.03 0.54 0.29 0.025 0.002 19.8 37.1 2.9 0.3 0.001 0.015 1.2 Co, 0.01 La
12 0.03 0.14 0.19 0.016 0.009 21.1 63.2 2.6 0.5 0.005 0.009 1.15 Ή, 0.002 Mg12 0.03 0.14 0.19 0.016 0.009 21.1 63.2 2.6 0.5 0.005 0.009 1.15 Ή, 0.002 Mg
13 0.03 0.22 0.18 0.012 0.022 20.4 67.4 2.9 0.1 0.004 0.006 2.1 Mo, 0.11 Nb13 0.03 0.22 0.18 0.012 0.022 20.4 67.4 2.9 0.1 0.004 0.006 2.1 Mo, 0.11 Nb
14 0.02 0.18 2.50 0.011 0.021 25.4 66.4 3.1 0.8 0.187 0.006 -14 0.02 0.18 2.50 0.011 0.021 25.4 66.4 3.1 0.8 0.187 0.006-
0.5 W, 0.05 Nb,0.5 W, 0.05 Nb,
15 0.06 0.08 0.02 0.054 0.011 26.5 63.2 3.6 1.2 0.014 0.004 15 0.06 0.08 0.02 0.054 0.011 26.5 63.2 3.6 1.2 0.014 0.004
0.003 B 0.003 B
16 0.03 0.11 0.44 0.028 0.007 25.3 60.1 3.1 0.2 0.028 0.004 0.02 Ce, 0.004 Ca 16 0.03 0.11 0.44 0.028 0.007 25.3 60.1 3.1 0.2 0.028 0.004 0.02 Ce, 0.004 Ca
0.11 Ti, 0.005 Ca, 0.11 Ti, 0.005 Ca,
17 0.08 0.06 1.06 0.002 0.001 20.3 73.4 2.8 0.2 0.015 0.006 17 0.08 0.06 1.06 0.002 0.001 20.3 73.4 2.8 0.2 0.015 0.006
0.04 Nd 0.04 Nd
18 0.05 0.15 0.26 0.004 0.032 18.7 66.3 8.5 3.9 0.001 0.005 0.23 Co, 0.003 Mg18 0.05 0.15 0.26 0.004 0.032 18.7 66.3 8.5 3.9 0.001 0.005 0.23 Co, 0.003 Mg
19 0.01 0.21 0.29 0.007 0.002 20.4 45.0 2.8 1.4 0.004 0.004 0.81 Co19 0.01 0.21 0.29 0.007 0.002 20.4 45.0 2.8 1.4 0.004 0.004 0.81 Co
20 0.33 0.28 3.34 0.008 く 0.001 22.1 58.4 2.6 1.1 0.011 0.004 0.05 Co, 1.9 Mo20 0.33 0.28 3.34 0.008 d 0.001 22.1 58.4 2.6 1.1 0.011 0.004 0.05 Co, 1.9 Mo
21 0.07 0.16 0.15 0.002 <0.001 24.7 65.0 2.9 0.2 0.023 0.004 0.11 Hf, 0.03 Co21 0.07 0.16 0.15 0.002 <0.001 24.7 65.0 2.9 0.2 0.023 0.004 0.11 Hf, 0.03 Co
22 0.06 0.06 0.08 0.013 0.002 26.0 63.3 3.2 2.8 0.009 0.005 1.8 Mo, 0.03 Zr22 0.06 0.06 0.08 0.013 0.002 26.0 63.3 3.2 2.8 0.009 0.005 1.8 Mo, 0.03 Zr
23 0.09 0.19 0.15 0.019 0.004 19.1 53.5 4.3 1.4 0.019 0.003 0.86 W, 0.004 Ca23 0.09 0.19 0.15 0.019 0.004 19.1 53.5 4.3 1.4 0.019 0.003 0.86 W, 0.004 Ca
24 0.03 0.29 0.18 0.023 0.005 24.3 60.2 2.6 1.3 0.008 0.005 0.32 Nb, 0.04 Nd24 0.03 0.29 0.18 0.023 0.005 24.3 60.2 2.6 1.3 0.008 0.005 0.32 Nb, 0.04 Nd
25 0.01 0.20 0.04 0.029 0.003 22.0 58.3 2.6 1.5 0.007 0.005 0.007 B, 0.002 Mg25 0.01 0.20 0.04 0.029 0.003 22.0 58.3 2.6 1.5 0.007 0.005 0.007 B, 0.002 Mg
26 0.07 0.25 0.15 0.012 く 0.001 24.4 63.0 2.9 0.4 0.021 0.005 0.26 W 26 0.07 0.25 0.15 0.012 less 0.001 24.4 63.0 2.9 0.4 0.021 0.005 0.26 W
27 0.07 0.12 0.20 0.015 0.005 23.2 66.2 3.1 2.4 0.010 0.005 0.43 Ti 27 0.07 0.12 0.20 0.015 0.005 23.2 66.2 3.1 2.4 0.010 0.005 0.43 Ti
28 0.04 0.11 0.15 0.014 く 0皿 19.9 57.6 3.6 2.4 0.021 0.004 0.031 B28 0.04 0.11 0.15 0.014 0 plate 19.9 57.6 3.6 2.4 0.021 0.004 0.031 B
29 0.03 0.04 0.13 0.021 0.005 22.1 59.2 3.1 1.2 0.011 0.003 0.03 Hf29 0.03 0.04 0.13 0.021 0.005 22.1 59.2 3.1 1.2 0.011 0.003 0.03 Hf
30 0.03 0.22 0.11 0.026 0.003 23.0 58.3 2.9 1.8 0.007 0.004 0.015 Ca30 0.03 0.22 0.11 0.026 0.003 23.0 58.3 2.9 1.8 0.007 0.004 0.015 Ca
31 0.04 0.25 0.13 0.008 く 0.001 21.9 63.2 3.4 1.2 0.008 0.004 0.05 La31 0.04 0.25 0.13 0.008 d 0.001 21.9 63.2 3.4 1.2 0.008 0.004 0.05 La
32 0.06 0.12 0.09 0.012 く 0.001 25.9 62.9 3.1 0.8 0.019 0.003 0.03 Ce32 0.06 0.12 0.09 0.012 less 0.001 25.9 62.9 3.1 0.8 0.019 0.003 0.03 Ce
33 0.09 0.07 0.13 0.019 0.002 20.0 56.3 4.1 1.4 0.019 0.004 0.05 Nd33 0.09 0.07 0.13 0.019 0.002 20.0 56.3 4.1 1.4 0.019 0.004 0.05 Nd
34 0.04 0.15 0.08 0.020 0.003 23.1 58.4 3.6 1.2 0.013 0.004 -34 0.04 0.15 0.08 0.020 0.003 23.1 58.4 3.6 1.2 0.013 0.004-
35 0.05 0.24 0.14 0.024 0.003 22.1 58.2 3.1 1.8 0.016 0.004 -35 0.05 0.24 0.14 0.024 0.003 22.1 58.2 3.1 1.8 0.016 0.004-
36 0.07 0.35 0.21 0.011 0.002 24.9 59.1 2.6 0 0.030 0.009 -36 0.07 0.35 0.21 0.011 0.002 24.9 59.1 2.6 0 0.030 0.009-
0.05 La, 6.5 o,0.05 La, 6.5 o,
37 0.09 0.11 0.15 0.017 0.001 203.4 57.9 2.8 7.9 0.007. 0.004 37 0.09 0.11 0.15 0.017 0.001 203.4 57.9 2.8 7.9 0.007. 0.004
0.02 Zr 下線は本発明の規¾»から外れる。  The underline of 0.02 Zr is out of the range of the present invention.
4-1] 供 耐メタル 4-1] Supply metal
□ 固溶化跳理 Cu濃ィ ΰ1 酸ィ! ^ケール層 赚炭 試 ダステイング性3) 金 後の金属管の □ Solution soaking Cu concentration ΰ1 acidity! ^ Kale layer 赚 Coal test Dusting 3 )
材 濃度 厚み (A) Cr+Al合言+» ピット発生 侵入 Material Concentration Thickness (A) Cr + Al signal + »Pit generation Penetration
Να 処理工程〖) Να treatment process 〖)
Να (原子0 /0) (nm) (質量%) 時間 (h) («*%)Να (atom 0/0) (nm) (% by weight) Time (h) ( «*%)
1 1-A SB→Hc→ACEl 0.9 0.6 ― 〉3000 0.41 1-A SB → Hc → ACEl 0.9 0.6 ―〉 3000 0.4
2 2- A SB→ACE1 0.3 0.3 - 2500 0.62 2- A SB → ACE1 0.3 0.3-2500 0.6
2 - B SB→Rc→ACEl <0.1 0.3 - 200 1.62-B SB → Rc → ACEl <0.1 0.3-200 1.6
2-C RD→ACE1 0.35 0.5 - 3000 0.62-C RD → ACE1 0.35 0.5-3000 0.6
2- D PD→Hc→ACEl 0.35 0.5 ― 3000 0.62- D PD → Hc → ACEl 0.35 0.5 ― 3000 0.6
2-E Mac→ACEl 0.3 0.3 - 3000 0.62-E Mac → ACEl 0.3 0.3-3000 0.6
2-F Mac→Pic→ACH 0.25 0.3 - 2500 0.72-F Mac → Pic → ACH 0.25 0.3-2500 0.7
2-G ACHT 0.2 0.8 90 2500 0.72-G ACHT 0.2 0.8 90 2500 0.7
3 3- A ac→ACEl 0.1 0.3 - 2000 0.63 3- A ac → ACEl 0.1 0.3-2000 0.6
4 4- A SB→Hc→ACEl 1.1 0.4 ― 3000 0.44 4- A SB → Hc → ACEl 1.1 0.4 ― 3000 0.4
5 5-A ACHT 1.3 0.3 80 >3000 0.45 5-A ACHT 1.3 0.3 80> 3000 0.4
6 6-A HD-→ACE1 0.3 0.4 - 3000 0.46 6-A HD- → ACE1 0.3 0.4-3000 0.4
6-B SB→ACH 0.3 0.4 - 3000 0.46-B SB → ACH 0.3 0.4-3000 0.4
6-C SB→ACS 0.3 01 - 200 1.56-C SB → ACS 0.3 01-200 1.5
7 7- A SB→Rc→ACEl 0.7 0.5 - 2500 0.77 7- A SB → Rc → ACEl 0.7 0.5-2500 0.7
8 8-A SB→Rc→ACEl 0.55 0.6 - >3000 0.38 8-A SB → Rc → ACEl 0.55 0.6-> 3000 0.3
9 9-A PD→ACE1 0.3 0.3 - 2500 0.69 9-A PD → ACE1 0.3 0.3-2500 0.6
10 10-A RD→ACE1 0.45 0.4 - 3000 0.510 10-A RD → ACE1 0.45 0.4-3000 0.5
11 11-A Mac→ACEl 0.4 0.3 - 2500 0.711 11-A Mac → ACEl 0.4 0.3-2500 0.7
12 12- A ac→ACEl 0.6 0.4 ― >3000 0.412 12- A ac → ACEl 0.6 0.4 ―> 3000 0.4
13 13-A ac-→ACE1 0.4 0.7 - 3000 0.613 13-A ac- → ACE1 0.4 0.7-3000 0.6
14 14- A PiD→ACH 0.8 0.5 - >3000 0.414 14- A PiD → ACH 0.8 0.5-> 3000 0.4
15 15- A SB—ACE1 1.2 >1 - >3000 0.315 15- A SB—ACE1 1.2> 1-> 3000 0.3
16 16- A ac→Rc-→ACEl 0.35 0.9 - 3000 0.516 16- A ac → Rc- → ACEl 0.35 0.9-3000 0.5
17 17- A PD→ACE1 0.3 0.6 - 2500 0.717 17- A PD → ACE1 0.3 0.6-2500 0.7
18 18-A ACHT 4.2 1 >95 >3000 0.218 18-A ACHT 4.2 1> 95> 3000 0.2
19 19-A SB→Rc→ACEl 1.1 0.6 - >3000 0.419 19-A SB → Rc → ACEl 1.1 0.6-> 3000 0.4
20 20-A ACHT 1.3 0.6 70 >3000 0.420 20-A ACHT 1.3 0.6 70> 3000 0.4
21 21-A Mac→ACEl 0.2 >1 - 2500 0.521 21-A Mac → ACEl 0.2> 1-2500 0.5
22 22 - A SB→ACE1 3.0 0.6 - >3000 0.322 22-A SB → ACE1 3.0 0.6-> 3000 0.3
23 23-A HD→ACE1 1.3 0.3 - >3000 0.223 23-A HD → ACE1 1.3 0.3-> 3000 0.2
24 24- A HD→ACE1 1.2 0.3 - >3000 0.324 24- A HD → ACE1 1.2 0.3-> 3000 0.3
25 25-A Grri→ACH 1.0 >1 - >3000 0.325 25-A Grri → ACH 1.0> 1-> 3000 0.3
。 SB:ショットブラスト、 ACB:交番 ¾||処理、 Pic:離、 RD :酸洗デスケ一リング、 Mac:腿研削、 ACHT:雰囲気制 処理、 SP:シ 3ットピ一ニング、 Grd:グラインダ研削; . SB: Shot blast, ACB: Alternating ¾ || treatment, Pic: Release, RD: Pickling descaling, Mac: Thigh grinding, ACHT: Atmosphere control treatment, SP: Three-pinning, Grd: Grinder grinding;
2)酸ィ ケール層: (A)=Crおよび A1主体の酸ィ ケ一ル層; 2 ) Acid layer: (A) = acid layer mainly composed of Cr and A1;
3)耐メタルダステイング性: 60%CO-26%H2 - 11.5%C02- 2.5%H20,ガス(650で); 3) resistant metal Dasute Ing resistance: 60% CO-26% H 2 - 11.5% C0 2 - 2.5% H 2 0, gas (650);
4) 曼炭性: 15%CH4— 3%C〇2-82%H2ガス、 1100°C X 300時間。 4) Manchar: 15% CH 4 — 3% C〇 2 -82% H 2 gas, 1100 ° C × 300 hours.
下線は本発明の規定範囲から外れる。 2] 供 耐メタル Underlines depart from the scope of the present invention. 2] Supply metal
固溶化熱処理 Cu濃 bl 酸 ケ一ル層  Solution heat treatment Cu concentrated bl acid
試 ダステイング性 3) 赚炭 ft4) 金 後の金属管の Test Dusting 3) Charcoal ft 4 ) Gold
材 濃度 厚み (A) Cr+Al合計量 ピット発生 侵入 C量 Material Concentration Thickness (A) Cr + Al total amount Pit generation Penetration C amount
Να 処理工程') Να treatment process')
No. 源子0/。) 、nm) (質量0 /。) 綱 (h) (質量0 /。)No. Genko 0 /. ), Nm) (mass 0 /.) Class (h) (mass 0 /.)
26 26-A ac→ACEl 0.4 0.6 - 〉3000 0.526 26-A ac → ACEl 0.4 0.6-〉 3000 0.5
27 27- A ACE1 2.1 0.7 ― >3000 0.327 27- A ACE1 2.1 0.7 ―> 3000 0.3
28 28- A ACE1 1.3 0.9 - >3000 0.228 28- A ACE1 1.3 0.9-> 3000 0.2
29 29-A RD→ACE1 1.4 0.6 〉3000 0.329 29-A RD → ACE1 1.4 0.6〉 3000 0.3
30 30-A Grd→ACEl 0.9 0.4 - >3000 0.530 30-A Grd → ACEl 0.9 0.4-> 3000 0.5
31 31-A ACH 0.5 >1 - >3000 0.331 31-A ACH 0.5> 1-> 3000 0.3
32 32- A PD→ACE1 2.1 0.7 - >3000 0.432 32- A PD → ACE1 2.1 0.7-> 3000 0.4
33 33- A SB→ACE1 1.2 0.4 - 〉3000 0.333 33- A SB → ACE1 1.2 0.4-〉 3000 0.3
34 34- A ACE1 1.7 0.3 - 2500 0.234 34- A ACE1 1.7 0.3-2500 0.2
35 35-A ACHT 1.0 0.9 75 >3000 0.335 35-A ACHT 1.0 0.9 75> 3000 0.3
36 36-A SB→ACE1 検出できず 0 - 200 2.036 36-A SB → ACE1 Cannot be detected 0-200 2.0
37 37-A ACE1 12.4 0.8 - >3000 0.137 37-A ACE1 12.4 0.8-> 3000 0.1
0 SB:ショットブラスト、 ACE1:交番 処理、 Pic :酸洗、 PiD :酸冼デスケーリング、 Mac 0 SB: Shot blast, ACE1: Alternating treatment, Pic: Pickling, PiD: Acid descaling, Mac
ACHT:雰囲気制御熱処理、 SP:ショットピ一ニング、 Grd :グラインダ研削;  ACHT: Atmosphere control heat treatment, SP: Shot pinning, Grd: Grinder grinding;
2)酸ィ ケール層: (A)= Crおよび A1主体の酸 ケール層;  2) Acid layer: (A) = acid layer mainly composed of Cr and A1;
31耐メタルダステイング性: 60%CO- 26%H2- 11.5%C02- 2.5%H20,ガス(650"Ό; 3 1 resistant metal Dasute Ing resistance: 60% CO- 26% H 2 - 11.5% C0 2 - 2.5% H 2 0, gas (650 "Ό;
4) 炭性: 15%CH4- 3%C02- 82% ガス、 1100で X 300時間。 4) Charcoal resistance: 15% CH 4 - 3% C0 2 - 82% gas, 1100 X 300 hours.
下線は本発明の規定範囲力、ら外れる。  Underlines deviate from the specified range of the present invention.
[0100] 表 4からわかるように、化学組成が本発明で規定する条件から外れる合金番号 36の 金属管は、ピット発生時間が 200時間と短ぐ耐メタルダステイング性に劣っている。ま た、この金属管は侵入 C量力^.0%と多ぐ耐浸炭性にも劣っている。 [0100] As can be seen from Table 4, the metal pipe of alloy No. 36, whose chemical composition deviates from the condition specified in the present invention, is inferior in metal dusting resistance with a short pit generation time of 200 hours. In addition, this metal pipe has a low penetration carburization capacity of ^ .0% and is inferior in carburization resistance.
[0101] 一方、化学組成が本発明に規定する条件を満たす合金番号 1一 35および 37の金 属管のうち、 Cu濃化層の Cu濃度および濃化層厚みが本発明で規定する条件を満た す供試金属管は、ピット発生までの時間が長ぐ耐メタルダステイング性に優れており 、さらに侵入 C量が 1 %未満で、耐浸炭性にも優れている。しかし、 Cu濃化層の Cu濃 度と厚みの少なくとも一方が本発明で規定する条件を満たさない供試金属管は、ピッ ト発生までの時間が短ぐ耐メタルダステイング性に劣っている上、侵入 C量が多ぐ 耐浸炭性にも劣っている。  [0101] On the other hand, of the metal tubes of alloy numbers 1-135 and 37 whose chemical composition satisfies the conditions specified in the present invention, the conditions specified in the present invention for the Cu concentration and the thickened layer thickness of the Cu-enriched layer are as follows. The test metal tube that satisfies is excellent in metal dusting resistance, which has a long time until the occurrence of pits, has less than 1% penetration C, and has excellent carburization resistance. However, a test metal tube in which at least one of the Cu concentration and the thickness of the Cu-enriched layer does not satisfy the conditions specified in the present invention has a short time to pit generation and is inferior in metal dusting resistance. However, the amount of intrusion C is large and the carburization resistance is poor.
[0102] 実施例 1と比較すると、母材の A1含有量を高くすることにより、耐メタルダステイング 性と耐浸炭性のいずれもより高くなることがわかる。  [0102] Compared to Example 1, it can be seen that, by increasing the A1 content of the base material, both the metal dusting resistance and the carburization resistance become higher.

Claims

請求の範囲  The scope of the claims
質量0 /0で、 Cr:15 35%、 Ni:30— 75%、 Al:0.001— 10%、 Cu: 0.01— 10%を含む 母材力 構成される金属管であって、該金属管がその表層部に Cu濃化層を備え、該 Cu濃化層の Cu濃度が 0.1原子%以上で、その厚さが 0.3匪以上であることを特徴と する、浸炭性ガス雰囲気下で使用するための金属管。 Mass 0/0, Cr: 15 35 %, Ni: 30- 75%, Al: 0.001- 10%, Cu: 0.01- 10% A matrix power composed metal tube containing, the metal tube For use in carburizing gas atmosphere, characterized by having a Cu-enriched layer on the surface layer, characterized in that the Cu-enriched layer has a Cu concentration of 0.1 atomic% or more and a thickness of 0.3 band or more. Metal tube.
前記 Cu濃化層の外側に、 Cr含有量 50質量%以上または Cr + Alの合計含有量が 50質量%以上の酸化スケール層をさらに備える、請求項 1記載の金属管。  The metal tube according to claim 1, further comprising an oxide scale layer having a Cr content of 50% by mass or more or a total content of Cr + Al of 50% by mass or more outside the Cu-enriched layer.
前記酸化スケール層と前記 Cu濃化層との間に、 Si含有量 50質量%以上の第 2酸化 スケール層を備える、請求項 2記載の金属管。  3. The metal tube according to claim 2, further comprising a second oxide scale layer having a Si content of 50% by mass or more between the oxide scale layer and the Cu-enriched layer.
管内面および/または管外面が不規則形状を呈する、請求項 1ないし 3のいずれ かに記載の金属管。  4. The metal tube according to claim 1, wherein the inner surface and / or the outer surface of the tube have an irregular shape.
前記母材が、質量%で、 C:0.01— 0.6%、 Si :0.01— 5%, Mn:0.01— 10%、 P:0.08 %以下、 S:0.05%以下、 Cr:15— 35%、 Ni:30— 75%、 Cu:0.01— 10%、 N:0.001— 0.25%、 Al:0.001— 10%、 0(酸素): 0.02%以下、残部が Feおよび不純物からなるィ匕 学組成を有する、請求項 1なレ、し 4のレ、ずれに記載の金属管。  The base material is, in mass%, C: 0.01-0.6%, Si: 0.01-5%, Mn: 0.01-10%, P: 0.08% or less, S: 0.05% or less, Cr: 15-35%, Ni : 30-75%, Cu: 0.01-10%, N: 0.001-0.25%, Al: 0.001-10%, 0 (oxygen): 0.02% or less, with the balance being Fe and impurities, 5. The metal tube according to claim 1, wherein the metal tube is shifted.
前記化学組成が、質量%で、下記 (i)ないし (vi)から選ばれた少なくとも 1種の元素を さらに含有する、請求項 5に記載の金属管。  The metal tube according to claim 5, wherein the chemical composition further contains, in mass%, at least one element selected from the following (i) to (vi).
(i) Co :0.01— 5%、  (i) Co: 0.01-5%,
(ii) Mo :0.01— 10%および W: 0.01— 10%の 1種または 2種、  (ii) one or two kinds of Mo: 0.01-10% and W: 0.01-10%,
(iii) Ti: 0 · 01— 2 %および Nb: 0.01— 2 %の 1種または 2種、  (iii) 1 or 2 types of Ti: 0 · 01—2% and Nb: 0.01—2%,
(iv) B: 0.001 0.1%、 Zr :0.001 0.1%および Hf: 0.001 0.5%の 1種または 2種以上  (iv) One or more of B: 0.001 0.1%, Zr: 0.001 0.1% and Hf: 0.001 0.5%
(V) Mg: 0.0005 0.1%および Ca: 0.0005 0.1%の 1種または 2種、 (V) One or two of Mg: 0.0005 0.1% and Ca: 0.0005 0.1%,
(vi) Y: 0.0005-0.15%, La:0.0005— 0.15%、 Ce:0.0005— 0.15%および Nd:0.0005 一 0.15 %の 1種または 2種以上。  (vi) One or more of Y: 0.0005-0.15%, La: 0.0005—0.15%, Ce: 0.0005—0.15%, and Nd: 0.0005-0.15%.
PCT/JP2005/000892 2004-02-12 2005-01-25 Metal tube for use in carburizing gas atmosphere WO2005078148A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005517917A JPWO2005078148A1 (en) 2004-02-12 2005-01-25 Metal tube for use in carburizing gas atmosphere
CA002556128A CA2556128A1 (en) 2004-02-12 2005-01-25 Metal tube for use in a carburizing gas atmosphere
DK05709298.3T DK1717330T3 (en) 2004-02-12 2005-01-25 METAL PIPES FOR USE IN CARBON GASA MOSPHERE
EP05709298.3A EP1717330B1 (en) 2004-02-12 2005-01-25 Metal tube for use in carburizing gas atmosphere

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004035262 2004-02-12
JP2004-035261 2004-02-12
JP2004035261 2004-02-12
JP2004-035262 2004-02-12

Publications (1)

Publication Number Publication Date
WO2005078148A1 true WO2005078148A1 (en) 2005-08-25

Family

ID=34863448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000892 WO2005078148A1 (en) 2004-02-12 2005-01-25 Metal tube for use in carburizing gas atmosphere

Country Status (5)

Country Link
EP (1) EP1717330B1 (en)
JP (1) JPWO2005078148A1 (en)
CA (1) CA2556128A1 (en)
DK (1) DK1717330T3 (en)
WO (1) WO2005078148A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975267A1 (en) * 2006-01-11 2008-10-01 Sumitomo Metal Industries, Ltd Metallic material having excellent metal dusting resistance
WO2009107585A1 (en) * 2008-02-27 2009-09-03 住友金属工業株式会社 Carburization-resistant metal material
JP2010516902A (en) * 2007-01-31 2010-05-20 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron-nickel-chromium-silicon alloy
WO2010093034A1 (en) * 2009-02-16 2010-08-19 住友金属工業株式会社 Method for producing metal tube
JP2012505314A (en) * 2008-10-13 2012-03-01 シュミット ウント クレメンス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Nickel-chromium-alloy
JP2014001413A (en) * 2012-06-15 2014-01-09 Nippon Steel & Sumitomo Metal Ni-BASED ALLOY
WO2016104417A1 (en) * 2014-12-26 2016-06-30 株式会社クボタ Heat-resistant pipe having alumina barrier layer
WO2018225831A1 (en) * 2017-06-08 2018-12-13 新日鐵住金株式会社 Nuclear-grade ni-base alloy pipe
JP2019065313A (en) * 2017-09-28 2019-04-25 新日鐵住金株式会社 Method for producing austenitic alloy material
WO2020067444A1 (en) * 2018-09-27 2020-04-02 日本製鉄株式会社 Austenitic alloy
EP3540088A4 (en) * 2016-11-09 2020-04-29 Kubota Corporation Tubular body used in high temperature atmosphere and method for forming metal oxide layer on inner surface of tubular body
JP2020514545A (en) * 2017-03-01 2020-05-21 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Iron spinel surface to prevent caulking
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
JP2021088740A (en) * 2019-12-04 2021-06-10 日本製鉄株式会社 Austenitic stainless steel
JP2021526593A (en) * 2018-11-08 2021-10-07 青島新力通工業有限責任公司 Antioxidant heat-resistant alloy and its manufacturing method
JP2023504842A (en) * 2019-12-06 2023-02-07 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-chromium-iron-aluminum alloy with excellent workability, creep strength and corrosion resistance and its use
CN117987691A (en) * 2024-04-07 2024-05-07 上海核工程研究设计院股份有限公司 Wear-resistant corrosion-resistant nickel-based alloy and manufacturing method and application thereof

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
JP4506958B2 (en) * 2004-08-02 2010-07-21 住友金属工業株式会社 Welded joint and its welding material
DE102009012003A1 (en) 2009-02-26 2010-09-02 Basf Se Protective coating for metallic surfaces and their manufacture
DE102009061021B4 (en) * 2009-05-20 2015-05-07 VDM Metals GmbH Process for producing a metal foil
JP4631986B1 (en) 2009-09-16 2011-02-23 住友金属工業株式会社 Ni-based alloy product and manufacturing method thereof
JP4656251B1 (en) 2009-09-18 2011-03-23 住友金属工業株式会社 Ni-based alloy material
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CA2815357A1 (en) * 2010-10-21 2012-04-26 Exxonmobil Research And Engineering Company Alumina forming bimetallic tube for refinery process furnaces and method of making and using
DE102010049781A1 (en) * 2010-10-29 2012-05-03 Thyssenkrupp Vdm Gmbh Ni-Fe-Cr-Mo alloy
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9399807B2 (en) * 2012-04-30 2016-07-26 Haynes International, Inc. Acid and alkali resistant Ni—Cr—Mo—Cu alloys with critical contents of chromium and copper
US20130287624A1 (en) * 2012-04-30 2013-10-31 Haynes International, Inc. STABILIZED ACID AND ALKALI RESISTANT Ni-Cr-Mo-Co ALLOYS
US9394591B2 (en) * 2012-04-30 2016-07-19 Haynes International, Inc. Acid and alkali resistant nickel-chromium-molybdenum-copper alloys
DE102012015828B4 (en) * 2012-08-10 2014-09-18 VDM Metals GmbH Use of a nickel-chromium-iron-aluminum alloy with good processability
CN103882264A (en) * 2012-12-19 2014-06-25 海恩斯国际公司 Acid And Alkali Resistant Ni-cr-mo-cu Alloys With Critical Contents Of Chromium And Copper
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
RU2578277C1 (en) * 2015-05-18 2016-03-27 Байдуганов Александр Меркурьевич High-temperature alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
RU2632497C2 (en) * 2016-02-10 2017-10-05 Байдуганов Александр Меркурьевич Heat-resistant alloy
RU2635411C2 (en) * 2016-04-11 2017-11-13 Байдуганов Александр Меркурьевич Heat-resistant alloy
RU2653376C1 (en) * 2017-12-05 2018-05-08 Юлия Алексеевна Щепочкина Corrosive-resistant alloy
RU2693417C1 (en) * 2019-02-08 2019-07-02 Сергей Васильевич Афанасьев Heat-resistant alloy of austenite structure with intermetallic hardening

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729129B2 (en) * 1990-04-13 1995-04-05 新日本製鐵株式会社 Stretch rolling method for austenitic high alloy seamless steel pipe with excellent sour resistance
JPH11302796A (en) * 1998-04-20 1999-11-02 Nippon Steel Corp Hot rolled stainless steel strip for building construction, excellent in corrosion resistance, and its production
JP3355510B2 (en) * 1993-12-10 2002-12-09 バイエル アクチェンゲゼルシャフト Austenitic alloys and their use
JP2003073763A (en) * 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd Metal material having metal dusting resistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938365A (en) * 1982-08-28 1984-03-02 Kubota Ltd Heat-resistant cast steel
KR100259557B1 (en) * 1993-10-20 2000-06-15 고지마 마타오 Stainless steel for high purity gas
JP4042362B2 (en) * 2000-08-11 2008-02-06 住友金属工業株式会社 Ni-base alloy product and manufacturing method thereof
JP3998053B2 (en) * 2002-02-27 2007-10-24 バブコック日立株式会社 Damage estimation method for austenitic heat transfer tube
CN1280445C (en) * 2003-07-17 2006-10-18 住友金属工业株式会社 Stainless steel and stainless steel pipe having resistance to carburization and coking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729129B2 (en) * 1990-04-13 1995-04-05 新日本製鐵株式会社 Stretch rolling method for austenitic high alloy seamless steel pipe with excellent sour resistance
JP3355510B2 (en) * 1993-12-10 2002-12-09 バイエル アクチェンゲゼルシャフト Austenitic alloys and their use
JPH11302796A (en) * 1998-04-20 1999-11-02 Nippon Steel Corp Hot rolled stainless steel strip for building construction, excellent in corrosion resistance, and its production
JP2003073763A (en) * 2001-06-19 2003-03-12 Sumitomo Metal Ind Ltd Metal material having metal dusting resistance

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975267A4 (en) * 2006-01-11 2012-04-25 Sumitomo Metal Ind Metallic material having excellent metal dusting resistance
EP1975267A1 (en) * 2006-01-11 2008-10-01 Sumitomo Metal Industries, Ltd Metallic material having excellent metal dusting resistance
JP2010516902A (en) * 2007-01-31 2010-05-20 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron-nickel-chromium-silicon alloy
WO2009107585A1 (en) * 2008-02-27 2009-09-03 住友金属工業株式会社 Carburization-resistant metal material
KR101210113B1 (en) 2008-02-27 2012-12-07 수미도모 메탈 인더스트리즈, 리미티드 Carburization-resistant metal material
JP2018131690A (en) * 2008-10-13 2018-08-23 シュミット ウント クレメンス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSchmidt + Clemens GmbH + Co. KG Nickel-chromium alloy
JP2017128815A (en) * 2008-10-13 2017-07-27 シュミット ウント クレメンス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトSchmidt + Clemens GmbH + Co. KG Nickel-chromium alloy
JP2012505314A (en) * 2008-10-13 2012-03-01 シュミット ウント クレメンス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Nickel-chromium-alloy
US10053756B2 (en) 2008-10-13 2018-08-21 Schmidt + Clemens Gmbh + Co. Kg Nickel chromium alloy
US9249482B2 (en) 2008-10-13 2016-02-02 Schmidt + Clemens Gmbh + Co. Kg Nickel-chromium-alloy
JP2014185397A (en) * 2008-10-13 2014-10-02 Schmidt & Clemens Gmbh & Co Kg Nickel-chromium alloy
JP4586938B2 (en) * 2009-02-16 2010-11-24 住友金属工業株式会社 Metal tube manufacturing method
WO2010093034A1 (en) * 2009-02-16 2010-08-19 住友金属工業株式会社 Method for producing metal tube
JPWO2010093034A1 (en) * 2009-02-16 2012-08-16 住友金属工業株式会社 Metal tube manufacturing method
JP2014001413A (en) * 2012-06-15 2014-01-09 Nippon Steel & Sumitomo Metal Ni-BASED ALLOY
WO2016104417A1 (en) * 2014-12-26 2016-06-30 株式会社クボタ Heat-resistant pipe having alumina barrier layer
JP2016125088A (en) * 2014-12-26 2016-07-11 株式会社クボタ Heat resistant tube having alumina barrier layer
US11162151B2 (en) 2016-11-09 2021-11-02 Kubota Corporation Tube body that is to be used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube body
EP3540088A4 (en) * 2016-11-09 2020-04-29 Kubota Corporation Tubular body used in high temperature atmosphere and method for forming metal oxide layer on inner surface of tubular body
JP2020514545A (en) * 2017-03-01 2020-05-21 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Iron spinel surface to prevent caulking
US12065744B2 (en) 2017-03-01 2024-08-20 Nova Chemicals (International) S.A. Anti-coking iron spinel surface
JP7090631B2 (en) 2017-03-01 2022-06-24 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム Iron spinel surface to prevent caulking
US11215356B2 (en) 2017-06-08 2022-01-04 Nippon Steel Corporation Ni-based alloy pipe for nuclear power
JPWO2018225831A1 (en) * 2017-06-08 2020-03-19 日本製鉄株式会社 Ni-base alloy tube for nuclear power
WO2018225831A1 (en) * 2017-06-08 2018-12-13 新日鐵住金株式会社 Nuclear-grade ni-base alloy pipe
JP2019065313A (en) * 2017-09-28 2019-04-25 新日鐵住金株式会社 Method for producing austenitic alloy material
WO2020067444A1 (en) * 2018-09-27 2020-04-02 日本製鉄株式会社 Austenitic alloy
JP2021526593A (en) * 2018-11-08 2021-10-07 青島新力通工業有限責任公司 Antioxidant heat-resistant alloy and its manufacturing method
JP7084551B2 (en) 2018-11-08 2022-06-14 青島新力通工業有限責任公司 Antioxidant heat-resistant alloy and its manufacturing method
WO2021066142A1 (en) * 2019-10-03 2021-04-08 東京都公立大学法人 Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy molded article, and method for producing same
US11846006B2 (en) 2019-10-03 2023-12-19 Tokyo Metropolitan Public University Corporation Heat-resistant alloy, heat-resistant alloy powder, heat-resistant alloy structural component, and manufacturing method of the same
JP2021088740A (en) * 2019-12-04 2021-06-10 日本製鉄株式会社 Austenitic stainless steel
JP7415144B2 (en) 2019-12-04 2024-01-17 日本製鉄株式会社 austenitic stainless steel
JP2023504842A (en) * 2019-12-06 2023-02-07 ファオデーエム メタルズ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Nickel-chromium-iron-aluminum alloy with excellent workability, creep strength and corrosion resistance and its use
CN117987691A (en) * 2024-04-07 2024-05-07 上海核工程研究设计院股份有限公司 Wear-resistant corrosion-resistant nickel-based alloy and manufacturing method and application thereof

Also Published As

Publication number Publication date
EP1717330A1 (en) 2006-11-02
EP1717330B1 (en) 2018-06-13
CA2556128A1 (en) 2005-08-25
DK1717330T3 (en) 2018-09-24
EP1717330A4 (en) 2012-03-21
JPWO2005078148A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2005078148A1 (en) Metal tube for use in carburizing gas atmosphere
JP4329883B1 (en) Carburization-resistant metal material
KR100591362B1 (en) Stainless steel and stainless steel pipe having resistance to carburization and coking
JP5177330B1 (en) Carburization-resistant metal material
JP4692289B2 (en) Metal material with excellent metal dusting resistance
JP3952861B2 (en) Metal material with metal dusting resistance
EP1975267B1 (en) Metallic material having excellent metal dusting resistance
KR101874218B1 (en) Welded joint
US20200087759A1 (en) Austenitic Alloy Material and Austenitic Alloy Pipe
MX2011003923A (en) Nickel-chromium alloy.
JP4687467B2 (en) Metal material with excellent workability and metal dusting resistance
JP4442331B2 (en) Stainless steel and stainless steel pipe with carburization and caulking resistance
JP2008214734A (en) Metallic material having excellent metal dusting resistance
JP4280898B2 (en) Metal dusting metal material with excellent high temperature strength
JP4415544B2 (en) Metal dusting metal material with excellent high temperature strength
JP6844486B2 (en) Manufacturing method of austenite alloy material
JP6780558B2 (en) Corrosion suppression method for Cr-containing alloys

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517917

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005709298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2556128

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005709298

Country of ref document: EP