EP0644996B1 - Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas - Google Patents

Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas Download PDF

Info

Publication number
EP0644996B1
EP0644996B1 EP94913137A EP94913137A EP0644996B1 EP 0644996 B1 EP0644996 B1 EP 0644996B1 EP 94913137 A EP94913137 A EP 94913137A EP 94913137 A EP94913137 A EP 94913137A EP 0644996 B1 EP0644996 B1 EP 0644996B1
Authority
EP
European Patent Office
Prior art keywords
liquid
cooling
pressure
natural gas
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94913137A
Other languages
English (en)
French (fr)
Other versions
EP0644996A1 (de
Inventor
Maurice Grenier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engie SA
Original Assignee
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz de France SA filed Critical Gaz de France SA
Publication of EP0644996A1 publication Critical patent/EP0644996A1/de
Application granted granted Critical
Publication of EP0644996B1 publication Critical patent/EP0644996B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/60Integration in an installation using hydrocarbons, e.g. for fuel purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to a cooling process a fluid, especially for liquefying gas natural, as well as an integral waterfall type fluid cooling installation, where a mixture is compressed in at least two stages refrigerant composed of volatility constituents different and after at least each of the stages compression intermediates, we condense partially mixing at "room temperature", at least some of the condensed fractions as well as the high pressure gas fraction being cooled, relaxed, heat exchange relationships with the fluid to cool, then compressed again.
  • the refrigerant mixture consists of a number of fluids including, among others, nitrogen, hydrocarbons like methane, ethylene, ethane, propane, butane, pentane, etc.
  • the mixture is compressed, liquefied and then sub-cooled to the high pressure of the cycle which is generally between 20 and 50 bars.
  • This liquefaction can be carried out in one or more steps with separation of the condensed liquid at each step.
  • the liquid (s) obtained are, after their sub-cooling, relaxed at low pressure cycle, generally between 1.5 and 6 bars, and vaporized against the current of the natural gas to be liquefied and cycle gas to be cooled.
  • the refrigerant mixture After reheating in the vicinity of the room temperature, the refrigerant mixture is new tablet until high cycle pressure.
  • the invention aims to to obtain both a specific energy of the process and a relatively small investment, in best conditions.
  • the invention relates to a method according to claim 1.
  • room temperature stated at the beginning of the text as the room temperature thermodynamic reference corresponding to the coolant temperature (water in particular) available on the site and used in the cycle, increased by the difference in temperature fixed, by construction, at the outlet of the devices machine refrigerants (compressors, exchangers ). In practice, this difference is around 3 to 10 ° C, and preferably around 5 to 8 ° C.
  • the device head cooling temperature distillation (corresponding substantially to the temperature of the "liquid” acting for this purpose) will between about 0 and 20 ° C, and generally between 5 and 15 ° C, for an “ambient temperature” (or inlet line temperature) around 15 to 45 ° C, and generally between 30 and 40 ° C.
  • the subject of the invention is also a installation for cooling a fluid, in particular natural gas liquefaction, intended for the work of such a process.
  • the heat exchange line will consist of two plate heat exchangers in series, connected to each other by end domes, end to end.
  • the gas liquefaction facility natural shown in Figure 1 includes essentially: a single cycle compressor 1 to three stages 1A, 1B and 1C, each stage driving back, via a respective pipe 2A, 2B and 2C, in a respective refrigerant 3A, 3B and 3C water-cooled from sea, this water typically having a temperature of on the order of + 25 to + 35 ° C; a pump 4; a column of distillation 5 having some theoretical plateaus; of separator pots 6B, 6C, the top of which communicates respectively with the suction of stages 1B and 1C; a heat exchange line 7 comprising two heat exchangers in series, namely a "hot" heat exchanger 8 and a "cold” exchanger 9; a separator pot intermediate 10; an auxiliary liquid circuit 11 cooling ; an auxiliary heat exchanger 12; a denitrogenation column 13; and a storage of liquefied natural gas (LNG) 14.
  • LNG liquefied natural gas
  • the outlet of the 3A refrigerant leads into the separator 6, the bottom of which is connected to the suction of pump 4, while the latter flows back into the driving 2B.
  • 3B refrigerant outlet communicates with the tank in column 5, and the bottom of the separator 6C is connected by gravity, via a siphon 15 and a valve 16, at the head of column 5.
  • Exchangers 8, 9 are exchangers parallelepipedic with aluminum plates possibly brazed, with counter-current circulation of the set fluids in heat exchange relationship, and have the same length. They each include the passages necessary to ensure the functioning which will be described below.
  • the refrigerant mixture consisting of C1 to C5 hydrocarbons and nitrogen, comes out of the top (hot end) of the exchanger 8 in the gaseous state and via a line 17 to the suction of the first compressor stage 1A.
  • first intermediate pressure P1 typically of the order of 8 at 12 bar
  • second pressure intermediate P2 typically of the order of 14 to 20 bars, in lB
  • the mixture of the two phases is cooled and partially condensed in 3B, then distilled in 5.
  • the tank liquid in column 5 constitutes a first coolant, suitable for provide essential refrigeration of the exchanger hot 8.
  • this liquid is introduced laterally, via an input box 18, in the part upper part of this exchanger, sub-cooled in passages 19 to the cold end of the exchanger, towards - 20 to - 40 ° C, taken out laterally via a box of output 20, relaxed at low cycle pressure, which is typically of the order of 2.5 to 3.5 bars, in a expansion valve 21, and reintroduced in the form two-phase at the cold end of the same exchanger via a side box 22 and a distribution device suitable for spraying in low passages pressure 23 of the exchanger.
  • the head vapor of column 5 is cooled and partially condensed in passages 24 of exchanger 8 up to a temperature intermediate significantly below temperature ambient, for example up to + 5 to + 10 ° C, then introduced into pot 6C.
  • the liquid phase returns in reflux by gravity, via the siphon 15 and the valve 16, in head of column 5, while the vapor phase is compressed at high cycle pressure, typically from around 40 bars, in lC, then is reduced to + 30 to + 40 ° C in 3C.
  • This vapor phase is then cooled from the hot end to the cold end of the exchanger 8 in high pressure passages 25, and separated into two phases in 10.
  • the refrigeration of exchanger 9 is obtained by means of the high pressure fluid, the next way.
  • the liquid collected in 10 is sub-cooled in the hot part of the exchanger 9, in passages 27, then exited the exchanger, relaxed at the low pressure in an expansion valve 28, reintroduced into the exchanger and vaporized in the part hot low pressure passages 29 thereof.
  • the vapor phase from separator 10 is cooled, condensed and sub-cooled from the hot end to the cold end of the exchanger 9, and the liquid thus obtained is relaxed at low pressure in an expansion valve 30, and reintroduced at the cold end of the exchanger for be sprayed in the cold part of the lower passages pressure 29 then joined to the expanded fluid at 28.
  • Processed natural gas arriving at + 20 ° C, after drying, via line 31, is laterally introduced into the exchanger 8 and cooled to the cold end of it in passages 32.
  • natural gas is sent to a hydrocarbon removal device 33 in C2 to C5, and the remaining mixture, consisting mainly methane and nitrogen, with a small amount of ethane and propane, is divided in half streams: a first stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the auxiliary exchanger 12 then expanded to 1.2 bar in an expansion valve 34, and a second current, cooled, liquefied and sub-cooled from hot end to cold end of the exchanger 9 in passages 35, sub-cooled again around 8-10 ° C in a coil 36 forming column reboiler 13, and expanded to around 1.2 bar in an expansion valve 37.
  • the two relaxed currents are united then introduced at reflux at the top of column 13, which thus ensures the denitrogenation of natural gas.
  • the liquid of the bottom of this column constitutes nitrogenous LNG produced by the facility and sent to storage 14, while the overhead steam is reheated to - 20 to - 40 ° C from the cold end to the hot end of the exchanger 12 and is sent via a line 38 to the "fuel gas" network to be burned or used in a gas turbine of the installation used to drive the compressor 1.
  • a cut additional on natural gas can be performed in the exchanger 9 at a temperature allowing recover additional quantities of hydrocarbons in C2 and C3 in the apparatus 33.
  • the hottest part of exchanger 8 can be used to cool from + 40 at around + 20 ° C a suitable liquid, especially pentane, put into circulation in passages 40 of the exchanger by a pump 41 and serving to refrigerate another part of the installation, for example gas natural raw intended to be dried before treatment in the liquefaction plant.
  • This circulation of liquid constitutes the refrigerant circuit 11 cited above.
  • the cutoff at around - 20 to - 40 ° C between the two exchangers also correspond to heat exchange surfaces of the same order above and below this cut, so that we can use two exchangers 8 and 9 of maximum length under thermal performance conditions optimal, and a single separator pot 10, at the cutoff above, for the high pressure fluid.
  • the outlet of the 3B refrigerant opens in a 6D separator pot, the vapor phase of which supplies the 1D stage.
  • the repression of it is cooled by a 3D refrigerant then introduced to the base from column 5.
  • the liquid in the 6D pot constitutes a additional coolant, sub-cooled in additional passages 45 provided in the hot part exchanger 8, out of it, relaxed at low pressure in an expansion valve 46 and reintroduced in the exchanger to be vaporized in the part low pressure passages 23.
  • the overhead vapor from the column 5 is sent directly to the suction of the last stage of compression 1C, and the high fluid pressure is sent to the base of a dephlegmator 47 cooled by seawater runoff around tubes vertical 48.
  • the majority of heavy products are collected at the base of the dephlegmator, relaxed in an expansion valve 49 and introduced at reflux at the head from column 5, and the top vapor from the dephlegmator as above, forms the high refrigerant pressure, which is cooled to the cold end of exchanger 8 then, after phase separation at 10, to the cold end of the exchanger 9.
  • FIG. 3 shows a mode of realization of a heat exchanger which can be used as an intermediate refrigerant 3B.
  • This exchanger comprises a calender 50 in which a number of vertical tubes 51 open to their two ends extend between an upper shelf 52 and a lower plate 53. Between these plates, and at the outside of the tubes, are mounted a number horizontal baffles 54. Cooling water arrives via a lower pipe 55 on the tray 52, flows upward through tubes 51 and is discharged through an upper pipe 56. The two-phase mixture carried by line 2B penetrates laterally in the grille under the plate 52 and descends along the baffles, then exits by the pipe outlet 57 of the exchanger, located a little above the tray 53.
  • Figure 4 shows another variant arrangement of the distillation column 5.
  • the column head vapor is heated a few degrees Celsius in an exchanger auxiliary heat 58, then sent to suction of the last compression stage 1C.
  • the high fluid pressure after cooling and condensing partial in 3C around + 30 to + 40 ° C, is separated in two phases in a separator pot 59.
  • the vapor from this pot constitutes the high pressure refrigerant, while the liquid phase, after sub-cooling a few degrees Celsius in the exchanger 58, is expanded in an expansion valve 49 as in Figure 2 and then introduced under reflux at the top of column 5.
  • sub-cooling 58 is optional.
  • the denitrogenation column 13 must operate at 1.15 bar or 1.2 bar, and therefore the nitrogen-free LNG leaving the tank of this column should be relaxed to atmospheric pressure at the entrance to storage 14, which produces gas from flash.
  • This gas, as well as the gas resulting from the inputs of heat in storage 14, must therefore be taken up and compressed by an auxiliary compressor to be distributed to the "fuel gas" network.
  • Figure 5 shows a arrangement which eliminates this compressor auxiliary, in the event that LNG leaving exchanger 9 contains a few% of nitrogen.
  • the LNG leaving the exchanger 9 is sub-cooled in the coil 36 of the column 13 and again sub-cooled in a heat exchanger auxiliary heat 60.
  • the liquid is then expanded around 1.2 bar in the expansion valve 37 and the turbine 39, then divided into two streams: a stream which is vaporized in a heat exchanger 60 then introduced to a intermediate level in column 13, and a current which is sent in reflux at the head of the latter.
  • the tank liquid from column 13, which is LNG without nitrogen, is then, for each storage, divided into two streams, one of which is sub-cooled in the exchanger 60 while the other passes through a bypass 61 to adjust the degree of subcooling overall, the circulation of the liquid being provided by a pump 62.
  • the overhead vapor of column 5 is generally rich enough in methane to be recovered as "fuel gas", in the sense indicated upper. It is therefore necessary to provide another auxiliary compressor for this purpose. If more cycle compressor 1 is driven by a turbine gas, it is necessary to supply it with gas fuel under a pressure of the order of 20 to 25 bars, which leads to installing a compressor high power auxiliary.
  • the layout of the Figure 6 shows how we can remove the need of such an auxiliary compressor.
  • the portion of natural gas from the device 33 which is treated in the exchanger 12 is cooled only to an intermediate temperature T1, then is introduced into the tank of column 63, via a pipe 65 while the rest of this natural gas is only cooled in the exchanger 9 to a intermediate temperature T2 lower than T1 then introduced at an intermediate level of the same column, via a pipe 66.
  • the cooling of the condenser 64 is assured by expanding part of the liquid around 25 bars of the column tank in an expansion valve 67.
  • the gas resulting from this vaporization has the same composition as the column bottom liquid, that is to say has a low nitrogen content, and therefore constitutes a combustible gas at 25 bars directly usable, via a pipe 68, in the gas turbine 69.
  • the rest of the column tank liquid 63 is, after sub-cooling partly in the cold part of the exchanger 9 and in the coil 36 of column 13, and partly in the cold part exchanger 12, expanded at 37, respectively at 70, and introduced to an intermediate level of the column 13.
  • the overhead vapor of column 63 containing 30 to 35% nitrogen, is cooled and condensed in the part exchanger 9 cold, sub-cooled in that of the exchanger 12, and, after expansion in a valve trigger 71, introduced in reflux at the top of the column 13.
  • the nitrogen enrichment of the washing of column 13 thus obtained has the consequence that the nitrogen vapor from this column is sufficient low in methane, for example contains 10 to 15% of methane, to be vented through the pipeline 38 after heating in 12.
  • a fraction of the natural gas to be treated conveyed by the line 31 can be cooled in the hot part of the exchanger 12 before being sent to the device 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (19)

  1. Verfahren zum Kühlen eines Fließmittels, insbesondere für die Verflüssigung von Erdgas, vom Typ mit inkorporierter, integraler Kaskade, in welchem:
    a) man in mindestens zwei Abschnitten (1A, 1B; 1A, 1B, 1D) ein Kältemittelgemisch komprimiert, das aus Bestandteilen unterschiedlicher Flüchtigkeiten zusammengesetzt ist,
    b) man nach mindestens jedem Kompressionszwischenabschnitt (1A, 1B, 1A, 1B, 1D) das Gemisch mittels eines Kühlungsfließmittels teilweise kondensiert, das am Platz zur Verfügung steht, insbesondere Wasser, wobei mindestens einige kondensierte Fraktionen sowie die Hochdruckgasfraktion gekühlt (bei 19 oder 25), entspannt (bei 21 und 26 oder bei 21 und 46), in Wärmeaustausch mit dem zu kühlenden Fließmittel (bei 23 oder 32) gebracht und dann erneut komprimiert werden,
    c) man das aus dem vorletzten Kompressionsabschnitt (1B; 1D) stammende Gemisch in einem Destillationsapparat (5) destilliert, dessen Kopf man mit einer Flüssigkeit kühlt, um einerseits das Kondensat dieser vorletzten Stufe und andererseits eine Dampfphase zu bilden, die man zu dem letzten Kompressionsabschnitt (1C) schickt, wo man sie komprimiert, bevor sie als gasförmige Hochdruckfraktion verwendet wird,
    dadurch gekennzeichnet, daß:
    man während des Schrittes b) und bei der vorletzten Kompressionsstufe ein Kühlen dieses Gemisches erzeugt, bevor der Destillationsapparat (5) gespeist wird, und
    man während des Schrittes c) den Kopf des Destillationsapparates (5) mit der Flüssigkeit kühlt, indem diese Flüssigkeit am Kopf dieses Apparates bei einer Temperatur eingeführt wird, die unterhalb der Temperatur des Kühlfließmittels liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man den aus dem Kopf des Destillationsapparates (5) kommenden Dampf durch Wärmeaustausch (bei 24) mit mindestens den entspannten Fraktionen kühlt und teilweise kondensiert, die man in einer Wärmeaustauschlinie (8) zirkulieren läßt, um eine Dampfphase und eine flüssige Phase zu erhalten, und man den Kopf des Destillationsapparates (5) mit der so (bei 6C) erhaltenen flüssigen Phase kühlt, wobei die Dampfphase diejenige Dampfphase bildet, welche zum letzten Kompressionsabschnitt geschickt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Gas, welches aus dem letzten Kompressionsabschnitt (1C) stammt, nahe der Temperatur des Kühlfließmittels (bei 47, Figur 2; bei 3C, Figur 4) kühlt, man die erhaltene flüssige Phase (bei 49) entspannt und den Kopf des Destillationsapparates (5) mit der so entspannten flüssigen Phase abkühlt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man eine Dephlagmation des aus dem letzten Kompressionsabschnitt (1C) stammenden Gases während seiner Abkühlung durchführt.
  5. Verfahren nach einem der Ansprüche 3 bis 4, dadurch gekennzeichnet, daß man (bei 58) einen indirekten Wärmeaustausch zwischen der Flüssigkeit, die sich aus dem Kühlen des aus dem letzten Kompressionsabschnitt (1C) stammenden Gases ergibt und dem Dampf durchführt, der aus dem Kopf des Destillationsapparates (5) austritt, bevor dieser Dampf zum letzten Kompressionsabschnitt (1C) geschickt und die Flüssigkeit (bei 49) entspannt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man (bei 4) mindestens einen Teil des Kondensates des ersten Kompressionsabschnittes (1A) bis auf den Austrittsdruck des zweiten Kompressionsabschnittes (1B) pumpt und ihn (bei 2B) mit dem aus dem zweiten Kompressionsabschnitt stammenden Gas mischt.
  7. Verfahren nach einem der Ansprüche 1 bis 6 zur Verflüssigung von Stickstoff enthaltendem Erdgas, dadurch gekennzeichnet, daß man (bei 60) das verflüssigte Erdgas, welches sich aus der Kühlung (bei 7, 8) ergibt und dann (bei 13) von Stickstoff befreit wurde, durch Wärmeaustausch mit dem verflüssigten, nicht von Stickstoff befreitem, (bei 37) entspanntem Erdgas unterkühlt.
  8. Verfahren nach einem der Ansprüche 1 bis 7 für die Verflüssigung von Stickstoff enthaltendem Erdgas, dadurch gekennzeichnet, daß man (bei 63) eine primäre Stickstoffentfernung aus dem Erdgas unter seinem Behandlungsdruck in einer Hilfskolonne (63) durchführt, einen Teil des verflüssigten Erdgases bei einem Zwischendruck (bei 67) entspannt, welches dieser primären Stickstoffentfernung unterworfen wurde, die so beim Abkühlen des Kopfes (64) der Hilfskolonne entspannte Flüssigkeit verdampft, was ein brennbares Gas unter dem Zwischendruck erzeugt, man dieses brennbare Gas zu einer Gasturbine (70) zum Antreiben des Kompressors (1) leitet und man den Rest des verflüssigten Erdgases, das der primären Stickstoffentfernung unterworfen wurde, behandelt, sowie den Dampf vom Kopf der Hilfskolonne (63) in einer Kolonne (13) zur endgültigen Stickstoffentfernung unter niedrigem Druck behandelt, wobei in der Küvette das verflüssigte, von Stickstoff befreite Erdgas erzeugt wird, das dazu bestimmt ist, (bei 14) gespeichert zu werden.
  9. Anlage zum Kühlen eines Fließmittels, insbesondere zur Verflüssigung von Erdgas mit:
    einem kälteerzeugenden Kreis mit inkorporierter, integraler Kaskade, in welchem ein Kältemittelgemisch zirkuliert, und der einen Kompressor (1) mit mindestens zwei Stufen (1A bis 1C) aufweist, von denen mindestens die Zwischenstufe(n) (1A, 1B; 1A, 1B, 1D) mit einem Kühler (3A, 3B; 3A, 3B, 3D) versehen ist (sind), der durch ein Kühlfließmittel gekühlt wird, das am Ort zur Verfügung steht, insbesondere Wasser, um das Gemisch teilweise zu kondensieren,
    einem Destillationsapparat (5), der durch die vorletzte Stufe (1B; 1D) des Kompressors gespeist wird und dessen Kopf mit der Ansaugung der letzten Stufe (1C) des Kompressors verbunden ist,
    Mitteln (24, 6C; 47, 48, 49; 58, 59, 3C) zum Kühlen des Kopfes des Destillationsapparates (5) mittels einer Flüssigkeit,
    und einer Wärmeaustauschlinie (7, 8),
    dadurch gekennzeichnet, daß zum Kühlen der Flüssigkeit, die zum Kühlen des Kopfes des Destillationsapparates (5) auf eine Temperatur bestimmt ist, die unterhalb der Temperatur des Kühlfließmittels liegt:
    der Kühler (3B, 3D), mit dem die vorletzte Stufe (1B) des Kompressors versehen ist, zwischen dieser vorletzten Stufe des Kompressors (1B) und dem Destillationsapparat (5) angeordnet ist und
    die Kühlungsmittel des Kopfes des Destillationsapparates (5) aufweisen:
    eine Kühlungsvorrichtung (24, 6C; 47, 48, 49; 58, 59, 3C), die geeignet ist, die Flüssigkeit zu kühlen, welche für die Kühlung des Kopfes des Destillationsapparates (5) bis auf eine Temperatur bestimmt ist, die unterhalb der Temperatur des Kühlfließmittels liegt, und
    Mittel (15) zum Einführen der gekühlten Flüssigkeit am Kopf des Apparates.
  10. Anlage nach Anspruch 9, dadurch gekennzeichnet, daß die Kühlvorrichtung (24, 6C; 47, 48, 49; 58, 59, 3C) Kondensationsmittel (24; 47, 48; 3C) aufweist, die geeignet sind, die Dampfphase, die in dem Destillationsapparat erzeugt wird und aus seinem Kopf austritt, auf die Temperatur, die unterhalb des Kühlfließmittels liegt, zu kühlen, um die Flüssigkeit zu bilden, die zum Kühlen des Kopfes dieses Destillationsapparates bestimmt ist.
  11. Anlage nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, daß die Kühlvorrichtung Wärmeaustauschdurchgänge (24) aufweist, welche den warmen Teil (8) der Wärmeaustauschlinie (7) durchqueren, und ein Scheidegefäß (6C), dessen Boden mit dem Scheitel des Destillationsapparates (5) und dem Ansaugescheitel der letzten Kompressionsstufe (1C) verbunden ist.
  12. Anlage nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, daß die Kühlvorrichtung (47, 49) Mittel (3C; 47) zum Kühlen des aus der letzten Stufe (1C) des Kompressors (1) stammenden Gases nahe ungefähr der Temperatur des Kühlfließmittels und ein Druckminderventil (49) für die aus diesen Kühlmitteln stammende Flüssigkeit aufweist, wobei der Ausgang dieses Ventils mit dem Scheitel des Destillationsapparates (5) verbunden ist.
  13. Anlage nach Anspruch 12, dadurch gekennzeichnet, daß die Kühlungsmittel (47) für das Gases einen Dephlegmator aufweisen.
  14. Anlage nach einem der Ansprüche 12 bis 13, dadurch gekennzeichnet, daß ein Hilfswärmeaustauscher (58) vorgesehen ist, um die aus den Kühlmitteln (47) des Gases stammende Flüssigkeit und den aus dem Kopf des Destillationsapparates (5) austretenden Dampf in indirekten Wärmeaustausch zu bringen.
  15. Anlage nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß ein Scheidegefäß (6B) zwischen dem Kühler (3A) der ersten Stufe (1A) des Kompressors (1) und der zweiten Stufe (1B) dieses Kompressors zwischengeschaltet ist und daß eine Pumpe (4) vorgesehen ist, deren Ansaugung mit dem Boden dieses Scheidegefäßes (6B) verbunden ist und deren Förderung mit der Förderung der zweiten Stufe des Kompressors verbunden ist.
  16. Anlage nach einem der Ansprüche 9 bis 15 für die Verflüssigung von Stickstoff enthaltendem Erdgas, dadurch gekennzeichnet, daß sie eine Kolonne (13) zum Entfernen von Stickstoff und einen Unterkühlungsaustauscher (60) aufweist, der geeignet ist, das verflüssigte, von Stickstoff befreite Erdgas, das aus der Küvette dieser Kolonne stammt, durch Wärmeaustausch mit dem (bei 37) entspannten, nicht von Stickstoff befreiten Erdgas zu unterkühlen.
  17. Anlage nach einem der Ansprüche 9 bis 15 für die Verflüssigung von Stickstoff enthaltendem Erdgas, dadurch gekennzeichnet, daß sie eine Kolonne (63) zum Entfernen von Stickstoff aufweist, die mit Erdgas unter seinem Bearbeitungsdruck gespeist wird und einen Kopfkondensator (64) aufweist, der mit der (bei 67) auf einen Zwischendruck entspannten Küvettenflüssigkeit dieser Kolonne gespeist wird, eine Gasturbine (69), die mit dem sich aus der Verdampfung dieser entspannten Küvettenflüssigkeit ergebenden Gas gespeist wird, und eine Kolonne (13) zum endgültigen Entfernen von Stickstoff unter niedrigem Druck aufweist, wobei in einer Küvette das von Stickstoff befreite, verflüssigte Erdgas erzeugt wird, das für die Speicherung (bei 14) bestimmt ist.
  18. Anlage nach einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, daß die Wärmeaustauschlinie (7) aus zwei Austauschern mit Platten (8, 9) in Serie besteht, die miteinander Ende an Ende durch Enddome (42, 43) verbunden sind.
  19. Anlage nach einem der Ansprüche 9 bis 17, dadurch gekennzeichnet, daß die Wärmeaustauschlinie (7) zwei Austauscher mit Platten (8, 9) in Serie aufweist, die Ende an Ende geschweißt sind.
EP94913137A 1993-04-09 1994-04-05 Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas Expired - Lifetime EP0644996B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9304276A FR2703762B1 (fr) 1993-04-09 1993-04-09 Procédé et installation de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel.
FR9304276 1993-04-09
PCT/FR1994/000380 WO1994024500A1 (fr) 1993-04-09 1994-04-05 Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel

Publications (2)

Publication Number Publication Date
EP0644996A1 EP0644996A1 (de) 1995-03-29
EP0644996B1 true EP0644996B1 (de) 1998-12-23

Family

ID=9445963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913137A Expired - Lifetime EP0644996B1 (de) 1993-04-09 1994-04-05 Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas

Country Status (13)

Country Link
US (2) US5535594A (de)
EP (1) EP0644996B1 (de)
JP (1) JP3559283B2 (de)
AT (1) ATE175019T1 (de)
CA (1) CA2136755C (de)
DE (1) DE69415454T2 (de)
DZ (1) DZ1768A1 (de)
ES (1) ES2125448T3 (de)
FR (1) FR2703762B1 (de)
HK (1) HK1012700A1 (de)
NO (1) NO308969B1 (de)
RU (1) RU2121637C1 (de)
WO (1) WO1994024500A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69523437T2 (de) * 1994-12-09 2002-06-20 Kobe Steel Ltd Anlage und Verfahren zur Gasverflüssigung
MY118329A (en) * 1995-04-18 2004-10-30 Shell Int Research Cooling a fluid stream
US5657643A (en) * 1996-02-28 1997-08-19 The Pritchard Corporation Closed loop single mixed refrigerant process
FR2751059B1 (fr) * 1996-07-12 1998-09-25 Gaz De France Procede et installation perfectionnes de refroidissement, en particulier pour la liquefaction de gaz naturel
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
DE19722490C1 (de) * 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
GB9712304D0 (en) * 1997-06-12 1997-08-13 Costain Oil Gas & Process Limi Refrigeration cycle using a mixed refrigerant
US6044902A (en) * 1997-08-20 2000-04-04 Praxair Technology, Inc. Heat exchange unit for a cryogenic air separation system
TW421704B (en) 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
MY117548A (en) 1998-12-18 2004-07-31 Exxon Production Research Co Dual multi-component refrigeration cycles for liquefaction of natural gas
US7310971B2 (en) * 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
FR2807826B1 (fr) 2000-04-13 2002-06-14 Air Liquide Echangeur vaporisateur-condenseur du type a bain
US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
US6637237B1 (en) * 2002-04-11 2003-10-28 Abb Lummus Global Inc. Olefin plant refrigeration system
US6705113B2 (en) 2002-04-11 2004-03-16 Abb Lummus Global Inc. Olefin plant refrigeration system
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7287294B2 (en) * 2003-10-24 2007-10-30 Harry Miller Co., Inc. Method of making an expandable shoe
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
WO2006099573A1 (en) 2005-03-16 2006-09-21 Fuelcor Llc Systems, methods, and compositions for production of synthetic hydrocarbon compounds
EP1715267A1 (de) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Zweistufige Abscheidung von Stickstoff aus verflüssigtem Erdgas
US7415840B2 (en) * 2005-11-18 2008-08-26 Conocophillips Company Optimized LNG system with liquid expander
CN101443616B (zh) * 2006-05-15 2012-06-20 国际壳牌研究有限公司 液化烃物流的方法和设备
JP5147845B2 (ja) * 2006-09-22 2013-02-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素流の液化方法
WO2008043806A2 (en) * 2006-10-11 2008-04-17 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
US20090071190A1 (en) * 2007-03-26 2009-03-19 Richard Potthoff Closed cycle mixed refrigerant systems
GB2463202B (en) * 2007-07-19 2011-01-12 Shell Int Research Method and apparatus for producing a liquefied hydrocarbon stream and one or more fractionated streams from an initial feed stream
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
EP2245403A2 (de) 2008-02-14 2010-11-03 Shell Internationale Research Maatschappij B.V. Verfahren und vorrichtung zum kühlen eines kohlenwasserstoffstroms
US20100175425A1 (en) * 2009-01-14 2010-07-15 Walther Susan T Methods and apparatus for liquefaction of natural gas and products therefrom
DE102010011052A1 (de) * 2010-03-11 2011-09-15 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2369279A1 (de) 2010-03-12 2011-09-28 Ph-th Consulting AG Verfahren zur Kühlung oder Verflüssigung eines an Kohlenwasserstoffen reichen Stromes und Anlage zur Durchführung desselben
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
KR101341798B1 (ko) * 2012-08-10 2013-12-17 한국과학기술원 천연가스 액화시스템
RU2525285C1 (ru) * 2013-07-09 2014-08-10 Андрей Владиславович Курочкин Устройство для охлаждения и сепарации компрессата
CN104048478B (zh) * 2014-06-23 2016-03-30 浙江大川空分设备有限公司 高提取率和低能耗污氮气提纯氮气的设备及其提取方法
CA2855383C (en) * 2014-06-27 2015-06-23 Rtj Technologies Inc. Method and arrangement for producing liquefied methane gas (lmg) from various gas sources
US9759480B2 (en) 2014-10-10 2017-09-12 Air Products And Chemicals, Inc. Refrigerant recovery in natural gas liquefaction processes
US9816752B2 (en) 2015-07-22 2017-11-14 Butts Properties, Ltd. System and method for separating wide variations in methane and nitrogen
CA2903679C (en) 2015-09-11 2016-08-16 Charles Tremblay Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg)
FR3045798A1 (fr) 2015-12-17 2017-06-23 Engie Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
FR3045797A1 (fr) * 2015-12-17 2017-06-23 Engie Procede de liquefaction du gaz naturel a l'aide d'un cycle a melange refrigerant avec colonne a distiller du refrigerant munie d'un rebouilleur
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
GB201718485D0 (en) 2017-11-08 2017-12-20 Triple Red Ltd Water purification device
MX2022002972A (es) 2019-10-08 2022-04-06 Air Prod & Chem Sistema de intercambio de calor y metodo de montaje.
US11650009B2 (en) 2019-12-13 2023-05-16 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands
US11378333B2 (en) 2019-12-13 2022-07-05 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939114B2 (de) * 1969-08-01 1979-01-25 Linde Ag, 6200 Wiesbaden Verflüssigungsverfahren für Gase und Gasgemische, insbesondere für Erdgas
FR2292203A1 (fr) * 1974-11-21 1976-06-18 Technip Cie Procede et installation pour la liquefaction d'un gaz a bas point d'ebullition
FR2471567B1 (fr) * 1979-12-12 1986-11-28 Technip Cie Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
FR2471566B1 (fr) * 1979-12-12 1986-09-05 Technip Cie Procede et systeme de liquefaction d'un gaz a bas point d'ebullition
FR2540612A1 (fr) * 1983-02-08 1984-08-10 Air Liquide Procede et installation de refroidissement d'un fluide, notamment de liquefaction de gaz naturel
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system
GB9103622D0 (en) * 1991-02-21 1991-04-10 Ugland Eng Unprocessed petroleum gas transport

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
DZ1768A1 (fr) 2002-02-17
RU2121637C1 (ru) 1998-11-10
CA2136755C (en) 2005-06-14
JP3559283B2 (ja) 2004-08-25
AU6540494A (en) 1994-11-08
JPH07507864A (ja) 1995-08-31
US5535594A (en) 1996-07-16
EP0644996A1 (de) 1995-03-29
NO944701L (no) 1994-12-06
FR2703762A1 (fr) 1994-10-14
NO944701D0 (no) 1994-12-06
RU94046343A (ru) 1996-11-10
DE69415454T2 (de) 1999-05-06
HK1012700A1 (en) 1999-08-06
WO1994024500A1 (fr) 1994-10-27
FR2703762B1 (fr) 1995-05-24
AU669628B2 (en) 1996-06-13
ES2125448T3 (es) 1999-03-01
US5613373A (en) 1997-03-25
NO308969B1 (no) 2000-11-20
CA2136755A1 (en) 1994-10-27
DE69415454D1 (de) 1999-02-04
ATE175019T1 (de) 1999-01-15

Similar Documents

Publication Publication Date Title
EP0644996B1 (de) Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas
EP1639062B1 (de) Verfahren und vorrichtung zur gleichzeitigen produktion eines erdgases zur verflüssigung und einer flüssigen fraktion aus erdgas
EP1352203B1 (de) Verfahren zur kühlung von verflüssigtem gas und anlage dafür
CA2255167C (fr) Procede de liquefaction d'un gaz, notamment un gaz naturel ou air, comportant une purge a moyenne pression et son application
EP0687353B1 (de) Verfahren und vorrichtung zur verflüssigung von erdgas
EP0818661B1 (de) Verbessertes Verfahren und Anlage für die Kühlung und Verflüssigung von Erdgas
EP0572590B1 (de) Stickstoffentfernungsverfahren aus einem hauptsächlich methan enthaltenden kohlenwasserstoffeinsatzgemisch mit mindestens 2 mol % stickstoff
EP2344821B1 (de) Verfahren zur erzeugung von flüssigen und gasförmigen stickstoffströmen, heliumreicher, gasförmiger strom und stickstoffabgereicherter kohlenwasserstoffstrom und zugehörige anlage
EP1454104B1 (de) Verfahren und vorrichutng zur zerlegung eines methan enthaltenden gasgemisches durch rektifikation
EP0768502B1 (de) Verfahren und Vorrichtung zur Verflüssigung und Behandlung von Erdgas
EP1118827B1 (de) Verfahren zur partiellen Verflüssigung einer kohlenwasserstoffreichen Fraktion wie Erdgas
EP1946026B1 (de) Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage
FR2571129A1 (fr) Procede et installation de fractionnement cryogenique de charges gazeuses
FR2675890A1 (fr) Procede de transfert de refrigeration du gaz naturel liquefie a une unite de separation d'air cryogenique utilisant le courant d'azote haute pression.
EP2205920B1 (de) Verfahren zur verflüssigung von erdgas mit hochdruckfraktionierung
FR2681859A1 (fr) Procede de liquefaction de gaz naturel.
EP0117793B1 (de) Kühlverfahren für ein Fluid und Anlage dafür, insbesondere zur Verflüssigung von Erdgas
FR2764972A1 (fr) Procede de liquefaction d'un gaz naturel a deux etages interconnectes
FR2829401A1 (fr) Procede et installation de fractionnement de gaz de la pyrolyse d'hydrocarbures
EP1711765A1 (de) Kryogenes destillationsverfahren und anlage zur lufttrennung
FR2479846A1 (fr) Procede de refrigeration, pour la recuperation ou le fractionnement d'un melange compose principalement de butane et propane, contenu dans un gaz brut, par utilisation d'un cycle mecanique exterieur
FR2714720A1 (fr) Procédé et appareil de liquéfaction d'un gaz naturel.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19960321

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981223

REF Corresponds to:

Ref document number: 175019

Country of ref document: AT

Date of ref document: 19990115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69415454

Country of ref document: DE

Date of ref document: 19990204

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125448

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. CORRADINI & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: GDF SUEZ

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: GDF SUEZ

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69415454

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFTSGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69415454

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

Effective date: 20111028

Ref country code: DE

Ref legal event code: R081

Ref document number: 69415454

Country of ref document: DE

Owner name: GDF SUEZ S.A., FR

Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR

Effective date: 20111028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120317

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130326

Year of fee payment: 20

Ref country code: LU

Payment date: 20130326

Year of fee payment: 20

Ref country code: IE

Payment date: 20130328

Year of fee payment: 20

Ref country code: GB

Payment date: 20130326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20130326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130322

Year of fee payment: 20

Ref country code: BE

Payment date: 20130322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130322

Year of fee payment: 20

Ref country code: PT

Payment date: 20130401

Year of fee payment: 20

Ref country code: FR

Payment date: 20130603

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69415454

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20140405

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140405

BE20 Be: patent expired

Owner name: S.A.*GDF SUEZ

Effective date: 20140405

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140404

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 980403040

Country of ref document: GR

Effective date: 20140406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140404

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140415

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140408

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140406