EP1946026B1 - Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage - Google Patents

Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage Download PDF

Info

Publication number
EP1946026B1
EP1946026B1 EP06820179.7A EP06820179A EP1946026B1 EP 1946026 B1 EP1946026 B1 EP 1946026B1 EP 06820179 A EP06820179 A EP 06820179A EP 1946026 B1 EP1946026 B1 EP 1946026B1
Authority
EP
European Patent Office
Prior art keywords
stream
heat
exchanger
cooling
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06820179.7A
Other languages
English (en)
French (fr)
Other versions
EP1946026A2 (de
Inventor
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS filed Critical Technip France SAS
Publication of EP1946026A2 publication Critical patent/EP1946026A2/de
Application granted granted Critical
Publication of EP1946026B1 publication Critical patent/EP1946026B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0208Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0274Retrofitting or revamping of an existing liquefaction unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/80Retrofitting, revamping or debottlenecking of existing plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/927Natural gas from nitrogen

Definitions

  • An object of the invention is therefore to provide an autonomous process for treating a stream of LNG, which has an improved yield and which can easily be implemented in units of various structures.
  • the subject of the invention is a method according to claim 1.
  • the method according to the invention may comprise one or more of the features of claims 2 to 10.
  • the invention also relates to an installation according to claim 11.
  • the installation according to the invention may comprise one or more of the features of claims 12 to 19.
  • the first subcooling installation 9 is intended for the production, from a stream 11 of liquefied natural gas (LNG) starting at a temperature below -90 ° C, a denitrogenated LNG stream 13.
  • LNG liquefied natural gas
  • the installation 9 also produces a fuel gas stream 16 rich in nitrogen.
  • the starting LNG stream 11 is produced by a natural gas liquefaction unit including a first refrigeration cycle 17.
  • the first cycle 17 comprises, for example, a cycle comprising means for condensing and vaporizing a mixture of hydrocarbons.
  • the installation 9 comprises a first subcooling heat exchanger 19, a second half-open refrigeration cycle 21, independent of the first cycle 17, and a denitrogenation unit 23.
  • the second refrigeration cycle 21 comprises a stage 25 compression apparatus having a plurality of compression stages 27.
  • Each stage 27 comprises a compressor 29 and a refrigerant 31.
  • the second cycle 21 further comprises a second heat exchanger 33, a third heat exchanger 35, an expansion valve 37 and an auxiliary compressor 39 coupled to a main expansion turbine 41.
  • the second cycle 21 also comprises an auxiliary refrigerant 43.
  • the stage compressor comprises four compressors 29.
  • the four compressors 29 are driven by the same source 45 of external energy.
  • the source 45 is for example a gas turbine engine type.
  • the refrigerants 31 and 43 are cooled by water and / or air.
  • the denitrogenation unit 23 comprises an intermediate hydraulic turbine 47 coupled to a current generator 48, a distillation column 49, a heat exchanger 51 at the top of the column and a heat exchanger 53 at the bottom of the column. It further comprises a pump 55 for evacuating the de-nitrogenated LNG 13.
  • the starting LNG stream 11 from the liquefaction unit 15 is at a temperature below -90 ° C, for example at-130 ° C.
  • This stream 11 comprises for example substantially 5% nitrogen, 90% methane and 5% ethane, and its flow rate is 50,000 kmol / h.
  • the LNG stream 11 is introduced into the first heat exchanger 19, where it is subcooled to a temperature of-150 ° C to produce a subcooled LNG stream 57.
  • the stream 57 is then introduced into the hydraulic turbine 47 and dynamically expanded to a low pressure, to form a stream 59 expanded.
  • This stream 59 is essentially liquid, that is to say that it contains less than 2 mol% of gas.
  • the stream 59 is cooled in the foot heat exchanger 53, then introduced into an expansion valve 61 where it forms a feed stream 64 of the column 49.
  • the stream 64 is introduced at the top of the distillation column 49 at a low distillation pressure.
  • the low distillation pressure is slightly above atmospheric pressure. In this example, this pressure is 1.25 bar, and the temperature of stream 64 is about -165 ° C.
  • a make-up stream 63 of natural gas, substantially of the same composition as the starting LNG stream 11, is cooled in the head exchanger 51 and then expanded in a valve 65 and mixed with the depressurized subcooled LNG stream 59. upstream of the valve 61.
  • a reboiling stream 68 is extracted from the column 49 at an intermediate stage Ni, located in the vicinity of the bottom of this column.
  • the stream 68 is introduced into the exchanger 53, where it is heated by heat exchange with the expanded sub-cooled LNG 59 stream, before being reintroduced into the column 49 under the intermediate level Ni.
  • a liquid foot stream 67 containing less than 1% nitrogen is withdrawn from column 49. This foot stream 67 is pumped by pump 55 to form the denitrogenated LNG stream 13 to be sent to a storage.
  • This stream 69 is heated by heat exchange with the makeup stream 63 in the head exchanger 51 to form a heated stream 71.
  • This stream 71 is introduced into the first stage 27A of the compression apparatus 25.
  • the heated overhead stream 71 is successively compressed in the first stage 27A and in the second stage 27B of the compressor 25 to substantially a low cycle pressure PB, then compressed in the third compression stage 27C before being introduced into the fourth compression stage 27D.
  • the overhead stream 71 is compressed in the compressor 29 followed by cooling to a temperature of about 35 ° C in the associated refrigerant 31.
  • a first portion 16 of the compressed head stream in the fourth compression stage 27D is extracted from the compressor 29D at an intermediate pressure P1 to form the fuel gas stream.
  • the intermediate pressure PI is for example greater than 20 bar, and preferably substantially equal to 30 bar.
  • the low cycle pressure PB is, for example, less than 20 bar.
  • a second portion 73 of the overhead current continues its compression in the compressor 29D to a mean pressure substantially equal to 50 bar to form a flow of refrigerant starting fluid.
  • the current 73 is cooled in the exchanger 31D and then introduced into the auxiliary compressor 39.
  • the flow rate of the starting coolant stream 73 is much greater than the flow rate of the fuel gas stream 16.
  • the ratio between the two flow rates is, in this example, substantially equal to 6.5.
  • This high pressure is between 40 and 100 bar, preferably between 50 and 80 bar and advantageously between 60 and 75 bar.
  • the stream 73 coming from the compressor 39 forms, after passing through the refrigerant 43, a stream of compressed refrigerant 75.
  • the overhead stream 69 contains less than 5% by mass of hydrocarbons VS 2 + , so that the stream 75 is purely gaseous. When the high pressure is greater than about 60 bar, the stream 75 is a supercritical fluid.
  • the stream 75 is then cooled in the second heat exchanger 33 and separated at the outlet of this exchanger 33 into a minority sub-cooling flow stream 77 and a main cooling stream 79.
  • the ratio of these two flows is of the order of 0.5.
  • the subcooling stream 77 is cooled in the third exchanger 35 and then in the first exchanger 19 to form a cooled subcooling stream 81.
  • the stream 81 is expanded to the low cycle pressure PB in the valve 37, from which it exits as a substantially liquid subcooling stream 83, i.e. containing less than 10 % mol of gas.
  • the stream 83 is then introduced into the first exchanger 19, where it vaporizes and cools the stream 81 and the starting LNG stream 11 by heat exchange, to form, at the outlet of the first exchanger 19, a stream 85 of heated cooling.
  • the main gas stream 79 is expanded in the turbine 41 to substantially the low cycle pressure PB and mixed with the heated stream 85 from the first heat exchanger 19 to form a mixing stream 87.
  • the mixing stream 87 is then introduced successively into the third heat exchanger 35, then into the second heat exchanger 33, where it cools by heat exchange relation, respectively the heat flow. -cooling 77 and the compressed coolant stream 75.
  • the heated mixing stream 89 from the exchanger 33 is then introduced into the compression apparatus 25 at the inlet of the third compression stage 27C, substantially at the low pressure PB.
  • curve 91 of efficiency of cycle 21 in the process according to the invention is represented as a function of the temperature value of the LNG stream 11. As illustrated in this Figure, the yields are greater than 44%, which constitutes a significant gain over the methods of the state of the art involving a so-called inverted semi-open Brayton cycle.
  • the method and plant 9 of the present invention are used either in new liquefaction units or to improve the performance of existing LNG production units. In the latter case, at equal power consumption, the production of nitrogenized LNG can be increased from 5% to 20%.
  • the method and plant 9 according to the invention can also be used to subcool and de-nitrogen LNG produced in natural gas liquids extraction (NGL) processes.
  • NNL natural gas liquids extraction
  • the installation 99 shown on the Figure 3 differs from the first installation 9 in that the expansion valve 37 located downstream of the first exchanger is replaced by a dynamic expansion turbine 101 coupled to a current generator 103.
  • the method of treating the LNG stream in this installation is also identical to the method implemented in the installation 9, to the numerical values.
  • a stream of ethane 92 is mixed with the heated mixture stream 89 before it is introduced into the third compression stage 27C.
  • the third installation according to the invention 104 is represented on the Figure 4 .
  • This installation 104 differs from the second installation 99 in that it also comprises a third refrigeration cycle 105 closed, independent of the first and second cycles 17 and 21.
  • the third cycle 105 comprises a secondary compressor 107, first and second secondary refrigerants 109A and 109B, an expansion valve 111 and a separator tank 113.
  • This cycle is carried out using a secondary refrigerant fluid stream 115 made of propane.
  • the gaseous stream 115 at low pressure is introduced into the compressor 107, then cooled and condensed at the high pressure in the coolers 109A and 109B to form a stream 117 of partially liquid propane.
  • This stream 117 is cooled in the exchanger 33, then introduced into the expansion valve 111, where it is expanded and forms a two-phase stream of expanded propane 119.
  • the stream 119 is introduced into the separator tank 113 to form a liquid fraction 121 extracted from the base of the balloon 113.
  • the fraction 121 is introduced into the exchanger 33, where it is vaporized by heat exchange with the stream 117 and with the stream 75 compressed refrigerant, before being introduced into the balloon 113.
  • the gaseous fraction from the head of the flask 113 forms the gaseous propane stream 115.
  • the efficiency of the cycle 21 is then increased by 4% on average with respect to the efficiency of the process implemented in the first installation 9.
  • the fourth installation 25 according to the invention 125 differs from that shown on the Figure 4 in that the third refrigerant cycle 105 is devoid of a separator tank 113.
  • the stream 119 coming from the valve 111 is thus directly introduced into the second exchanger 33 and completely vaporized in this exchanger.
  • the refrigerant 115 is composed of a mixture of ethane and propane.
  • the ethane content in the fluid 115 is substantially equal to the propane content.
  • the average efficiency of the second refrigeration cycle is then increased by about 0.5% with respect to the efficiency of the process implemented in the third installation 104 when the temperature is below - 130 ° C.
  • the overall efficiency of the installation of the Figure 5 slightly above 50%, compared with around 47.5% for Figure 1 , 47.6% for that of Figure 3 and 49.6% for that of Figure 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Claims (19)

  1. Verfahren zur Behandlung eines LNG-Stromes (11), erhalten durch Kühlung mittels eines ersten Kühlkreislaufs (17), wobei das Verfahren von der Art ist, die die folgenden Schritte umfasst:
    (a) man führt den LNG-Strom (11), der auf eine Temperatur von unter -100°C gebracht wurde, in einen ersten Wärmetauscher (19) ein;
    (b) man unterkühlt den LNG-Strom (11) in dem ersten Wärmetauscher durch Wärmeaustausch mit einer Kühlflüssigkeit (83), um einen unterkühlten LNG-Strom (57) zu bilden; und
    (c) man setzt die Kühlflüssigkeit (83) einem halboffenen zweiten Kühlkreislauf (21) aus, der vom ersten Kreislauf (15) unabhängig ist,
    (d) man entspannt dynamisch den unterkühlten LNG-Strom (57) in einer Zwischenturbine (47), indem dieser Strom im Wesentlichen im flüssigen Zustand gehalten wird;
    (e) man kühlt und entspannt den aus der Zwischenturbine austretenden Strom (59), dann führt man ihn in eine Destillationssäule (49) ein;
    (f) man gewinnt einen entstickten LNG-Strom (67) am Fuße der Säule (49) und einen Gasstrom (69) am Kopf der Säule (49); und
    (g) man komprimiert den Kopfgasstrom (69) in einem Stufenkompressor (25) und man entnimmt, bei einer mittleren Druckstufe (29D) des Kompressors, einen ersten Teil (16) des Kopfgasstroms (69), der auf einen mittleren Druck PI gebracht worden ist, um ein Brenngasstrom zu bilden;
    wobei der zweite Kühlkreislauf (21) die folgenden Schritte umfasst:
    (i) man bildet einen Ausgangsstrom an Kühlflüssigkeit (73) aus einem zweiten Teil des Kopfgases (69), das mit dem mittleren Druck PI komprimiert wurde;
    (ii) man komprimiert den Ausgangsstrom an Kühlflüssigkeit (73) bis zu einem hohen Druck PH, der höher als der mittlere Druck PI ist, um einen komprimierten Kühlflüssigkeitsstrom (75) zu bilden;
    (iii) man kühlt den komprimierten Kühlflüssigkeitsstrom (75) in einem zweiten Wärmetauscher (33);
    (iv) man trennt den komprimierten Kühlflüssigkeitsstrom (75), der aus dem zweiten Wärmetauscher (33) austritt, in einen Hauptkühlstrom (79) und einen LNG-Unterkühlungsstrom (77);
    (v) man kühlt den Unterkühlungsstrom (77) in einem dritten Wärmetauscher (35), dann in dem ersten Wärmetauscher (19);
    (vi) man entspannt den aus dem ersten Wärmetauscher (19) austretenden Unterkühlungsstrom (81) bis auf einen niedrigen Druck PB, der weniger als der mittlere Druck PI beträgt, um einen im Wesentlichen flüssigen Strom (83) zur Unterkühlung des LNG zu bilden;
    (vii) man verdampft den im Wesentlichen flüssigen Unterkühlungsstrom (83) in dem ersten Wärmetauscher (19), um einen aufgewärmten Unterkühlungsstrom (85) zu bilden;
    (viii) man entspannt den Hauptkühlstrom (79) deutlich bis auf den niedrigen Druck PB in einer Hauptturbine (41), und man mischt den aus der Hauptturbine (41) austretenden Kühlstrom mit dem aufgewärmten Unterkühlungsstrom (85), um einen gemischten Strom (87) zu bilden;
    (ix) man wärmt den gemischten Strom (87) nacheinander in dem dritten Wärmetauscher (35), dann in dem zweiten Wärmetauscher (33) auf, um einen aufgewärmten gemischten Strom (89) zu bilden; und
    (x) man führt den aufgewärmten gemischten Strom (89) in den Kompressor (25) bei einer niedrigen Druckstufe (29C), die sich vor der mittleren Druckstufe (29D) befindet, ein.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der hohe Druck PH ungefähr zwischen 40 und 100 bar liegt, vorzugsweise ungefähr zwischen 50 und 80 bar und insbesondere ungefähr zwischen 60 und 75 bar.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der niedrige Druck PB weniger als ungefähr 20 bar beträgt.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Schritt (vi) der aus dem ersten Wärmetauscher (19) austretende Unterkühlungsstrom (81) in einer Flüssigkeitsexpansionsturbine (101) dynamisch entspannt wird.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Schritt (ii) der Ausgangsstrom an Kühlflüssigkeit (73) in einem mit der Hauptturbine (41) gekoppelten Zusatzkompressor (39) mindestens teilweise komprimiert wird.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Schritt (i) ein Strom (92) von C2-Kohlenwasserstoffen in den Kompressor (25) eingeführt wird, um einen Teil des Ausgangsstroms an Kühlflüssigkeit (73) zu bilden.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass bei dem Schritt (iii) der komprimierte Kühlflüssigkeitsstrom (75) in Wärmeaustauschbeziehung gesetzt wird mit einer sekundären Kühlflüssigkeit (117), die in dem zweiten Wärmetauscher (33) fließt, wobei die sekundäre Kühlflüssigkeit (117) einem dritten Kühlkreislauf (105) ausgesetzt wird, in welchem man sie am Ausgang des zweiten Wärmetauschers (33) komprimiert, sie kühlt und sie mindestens teilweise kondensiert, sie dann entspannt, bevor sie in dem zweiten Wärmetauscher (33) verdampft wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die sekundäre Kühlflüssigkeit (117) Propan und eventuell Ethan enthält.
  9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass vor der Entspannung des Schrittes (e) der aus der Zwischenturbine (47) austretende Strom gemischt wird mit einem unterstützenden Strom (63) aus Erdgas, der durch Wärmeaustausch mit dem Kopfgasstrom (69) in einem vierten Wärmetauscher (51) gekühlt worden ist.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der C 2 + Gehalt
    Figure imgb0003
    des Kopfgases (69) dergestalt ist, dass der durch den zweiten Wärmetauscher (33) gekühlte Strom rein gasförmig ist.
  11. Anlage (9; 99; 104; 125) zur Behandlung eines LNG-Stroms (11), erhalten durch Kühlung mittels eines ersten Kühlkreislaufs (17), wobei die Anlage (9; 99; 104; 125) von der Art ist, die umfasst:
    - Mittel zur Unterkühlung des LNG-Stroms (11), umfassend einen ersten Wärmetauscher (19), um den LNG-Strom in Wärmeaustauschbeziehung mit einer Kühlflüssigkeit (83) zu setzen; und
    - einen halboffenen zweiten Kühlkreislauf (21), der von dem ersten Kreislauf (15) unabhängig ist,
    - eine Zwischenturbine (47) zur dynamischen Entspannung des unterkühlten LNG-Stroms (57) aus dem ersten Wärmetauscher (19);
    - Mittel (53, 61) zur Kühlung und zur Entspannung des aus der Zwischenturbine (47) austretenden Stroms (59),
    - eine Destillationssäule (49), die mit den Mitteln (53, 61) zur Kühlung und zur Entspannung verbunden ist;
    - Mittel zur Gewinnung eines entstickten LNG-Stroms (67) am Fuße der Säule (49), und Mittel zur Gewinnung eines Gasstroms (69) am Kopf der Säule (49);
    - einen Stufenkompressor (25), der mit den Mitteln zur Gewinnung des Kopfgasstroms (69) der Säule (49) verbunden ist; und
    - Mittel zur Extraktion eines ersten Teils (16) des Kopfgasstroms (69), die angesteckt sind an eine mittlere Druckstufe (29D) des Kompressors (25), um einen Brenngasstrom zu bilden;
    Wobei der zweite Kühlkreislauf (21) umfasst
    - Mittel zur Bildung eines Ausgangsstroms an Kühlflüssigkeit (73) aus einem ersten Teil des bei mittlerem Druck komprimierten Kopfgases (69);
    - Mittel zur Kompression (39) des Ausgangsstroms an Kühlflüssigkeit (73) bis zu einem hohen Druck PH, der höher als der mittlere Druck PI ist, um einen komprimierten Kühlflüssigkeitsstrom (75) zu bilden;
    - einen zweiten Wärmetauscher (33), um den komprimierten Kühlflüssigkeitsstrom (75) zu kühlen;
    - Mittel zur Trennung des komprimierten Kühlflüssigkeitsstromes (75), der aus dem zweiten Wärmetauscher (33) austritt, in einen Hauptkühlstrom (79) und einen Unterkühlungsstrom des LNG (77);
    - einen dritten Wärmetauscher (35) zur Kühlung des Unterkühlungsstroms (77);
    - Mittel zur Einführung des aus dem dritten Wärmetauscher (35) austretenden Unterkühlungsstroms (77) in den ersten Wärmetauscher (19);
    - Mittel (37; 101) zur Entspannung des aus dem ersten Wärmetauscher (19) austretenden Unterkühlungsstroms (81) bis auf einen niedrigen Druck PB, der weniger als der mittlere Druck PI beträgt, um einen im Wesentlichen flüssigen Strom (83) zur Unterkühlung des LNG zu bilden;
    - Mittel zum Fließen des im Wesentlichen flüssigen Unterkühlungsstroms (83) in den ersten Wärmetauscher, um einen aufgewärmten Unterkühlungsstrom (85) zu bilden;
    - eine Hauptturbine (41) zur Entspannung des Hauptkühlstroms (79) deutlich bis auf den niedrigen Druck PB;
    - Mittel zur Mischung des aus der Hauptturbine (41) austretenden Kühlstroms mit dem aufgewärmten Unterkühlungsstrom (85), um einen gemischten Strom (87) zu bilden;
    - Mittel zum Fließen des gemischten Stroms (87) nacheinander in dem dritten Wärmetauscher (35), dann in dem zweiten Wärmetauscher (33), um einen aufgewärmten gemischten Strom (89) zu bilden;
    - Mittel zur Einführung des aufgewärmten gemischten Stroms (89) in den Kompressor (25) auf einer niedrigen Druckstufe (29C), die sich vor der mittleren Druckstufe (29D) befindet.
  12. Anlage (9; 99; 104; 125) nach Anspruch 11, dadurch gekennzeichnet, dass der hohe Druck PH ungefähr zwischen 40 und 100 bar liegt, vorzugsweise ungefähr zwischen 50 und 80 bar und insbesondere ungefähr zwischen 60 und 75 bar.
  13. Anlage (9; 99; 104; 125) nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass der niedrige Druck PB weniger als ungefähr 20 bar beträgt.
  14. Anlage (99; 104; 125) nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die Mittel (37; 101) zur Entspannung des aus dem ersten Wärmetauscher (19) austretenden Unterkühlungsstroms (81) eine Flüssigkeitsexpansionsturbine (101) umfassen.
  15. Anlage (9; 99; 104; 125) nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Mittel (39) zur Kompression des Ausgangsstroms an Kühlflüssigkeit (73) einen Zusatzkompressor (39) umfassen, der mit der Hauptturbine (41) gekoppelt ist.
  16. Anlage (99) nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der zweite Kühlkreislauf (21) Mittel zur Einführung eines Stroms (92) von C2-Kohlenwasserstoffen in den Kompressor (25) umfasst, um einen Teil des Ausgangsstroms an Kühlflüssigkeit (73) zu bilden.
  17. Anlage (104; 125) nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass der zweite Wärmetauscher (33) Mittel zum Fließen einer sekundären Kühlflüssigkeit (117) umfasst, wobei die Anlage (104; 125) einen dritten Kühlkreislauf (105) umfasst, der sekundäre Mittel (107) zur Kompression der sekundären Kühlflüssigkeit (115), die aus dem dritten Wärmetauscher (35) austritt, sekundäre Mittel (109; 111) zur Kühlung und zur Entspannung der sekundären Kühlflüssigkeit (117), die aus den sekundären Mitteln zur Kompression (107) austritt, und Mittel zur Einführung der sekundären Kühlflüssigkeit (119), die aus den sekundären Mitteln zur Entspannung (111) austritt, in den zweiten Wärmetauscher (33) beinhaltet.
  18. Anlage (104; 125) nach Anspruch 17, dadurch gekennzeichnet, dass die sekundäre Kühlflüssigkeit (117) Propan und eventuell Ethan enthält.
  19. Anlage (9; 99; 104; 125) nach einem der Ansprüche 11 bis 18, dadurch gekennzeichnet, dass sie Mittel zum Mischen des unterkühlten LNG-Stroms (59) mit einem unterstützenden Strom (63) aus Erdgas umfasst, und einen vierten Wärmetauscher (51), um den unterstützenden Strom (63) mit dem Kopfgasstrom (69) in Wärmeaustauschbeziehung zu setzen.
EP06820179.7A 2005-10-10 2006-10-10 Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage Active EP1946026B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0510329A FR2891900B1 (fr) 2005-10-10 2005-10-10 Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee.
PCT/FR2006/002273 WO2007042662A2 (fr) 2005-10-10 2006-10-10 Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee

Publications (2)

Publication Number Publication Date
EP1946026A2 EP1946026A2 (de) 2008-07-23
EP1946026B1 true EP1946026B1 (de) 2018-01-17

Family

ID=36608772

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06820179.7A Active EP1946026B1 (de) 2005-10-10 2006-10-10 Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage

Country Status (12)

Country Link
US (1) US7628035B2 (de)
EP (1) EP1946026B1 (de)
JP (1) JP4854743B2 (de)
KR (1) KR101291220B1 (de)
CN (1) CN101313188B (de)
CA (1) CA2625577C (de)
EA (1) EA011605B1 (de)
ES (1) ES2665743T3 (de)
FR (1) FR2891900B1 (de)
MY (1) MY152657A (de)
NZ (1) NZ567356A (de)
WO (1) WO2007042662A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936864B1 (fr) * 2008-10-07 2010-11-26 Technip France Procede de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en helium et d'un courant d'hydrocarbures deazote et installation associee.
DE102008056196A1 (de) * 2008-11-06 2010-05-12 Linde Ag Verfahren zum Abtrennen von Stickstoff
CN101508925B (zh) * 2009-03-13 2012-10-10 北京永记鑫经贸有限公司 一种天然气液化工艺
FR2944523B1 (fr) * 2009-04-21 2011-08-26 Technip France Procede de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee
US10132561B2 (en) * 2009-08-13 2018-11-20 Air Products And Chemicals, Inc. Refrigerant composition control
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
EP2597406A1 (de) * 2011-11-25 2013-05-29 Shell Internationale Research Maatschappij B.V. Verfahren und Vorrichtung zum Entfernen von Stickstoff aus einer kryogenen Kohlenwasserstoffzusammensetzung
US9097208B2 (en) 2012-12-14 2015-08-04 Electro-Motive Diesel, Inc. Cryogenic pump system for converting fuel
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
EP2972028B1 (de) 2013-03-15 2020-01-22 Chart Energy & Chemicals, Inc. Gemischtes kühlsystem und verfahren
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US20150276307A1 (en) * 2014-03-26 2015-10-01 Dresser-Rand Company System and method for the production of liquefied natural gas
CA2855383C (en) * 2014-06-27 2015-06-23 Rtj Technologies Inc. Method and arrangement for producing liquefied methane gas (lmg) from various gas sources
AR105277A1 (es) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc Sistema y método de refrigeración mixta
FR3038964B1 (fr) 2015-07-13 2017-08-18 Technip France Procede de detente et de stockage d'un courant de gaz naturel liquefie issu d'une installation de liquefaction de gaz naturel, et installation associee
CA2903679C (en) 2015-09-11 2016-08-16 Charles Tremblay Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg)
JP6909229B2 (ja) * 2016-03-31 2021-07-28 デウ シップビルディング アンド マリン エンジニアリング カンパニー リミテッド 船舶

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3323315A (en) * 1964-07-15 1967-06-06 Conch Int Methane Ltd Gas liquefaction employing an evaporating and gas expansion refrigerant cycles
US3531943A (en) * 1965-10-23 1970-10-06 Aerojet General Co Cryogenic process for separation of a natural gas with a high nitrogen content
JPS5121642B2 (de) * 1972-12-27 1976-07-03
US4012212A (en) * 1975-07-07 1977-03-15 The Lummus Company Process and apparatus for liquefying natural gas
US4225329A (en) * 1979-02-12 1980-09-30 Phillips Petroleum Company Natural gas liquefaction with nitrogen rejection stabilization
US4592767A (en) * 1985-05-29 1986-06-03 Union Carbide Corporation Process for separating methane and nitrogen
US4662919A (en) * 1986-02-20 1987-05-05 Air Products And Chemicals, Inc. Nitrogen rejection fractionation system for variable nitrogen content natural gas
US4727723A (en) * 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
FR2682964B1 (fr) * 1991-10-23 1994-08-05 Elf Aquitaine Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane.
FR2725503B1 (fr) * 1994-10-05 1996-12-27 Inst Francais Du Petrole Procede et installation de liquefaction du gaz naturel
US6308531B1 (en) 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
FR2818365B1 (fr) 2000-12-18 2003-02-07 Technip Cie Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci
FR2826969B1 (fr) * 2001-07-04 2006-12-15 Technip Cie Procede de liquefaction et de deazotation de gaz naturel, installation de mise en oeuvre, et gaz obtenus par cette separation
GB0116977D0 (en) * 2001-07-11 2001-09-05 Boc Group Plc Nitrogen rejection method and apparatus
US6640586B1 (en) * 2002-11-01 2003-11-04 Conocophillips Company Motor driven compressor system for natural gas liquefaction
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7127914B2 (en) * 2003-09-17 2006-10-31 Air Products And Chemicals, Inc. Hybrid gas liquefaction cycle with multiple expanders

Also Published As

Publication number Publication date
EA011605B1 (ru) 2009-04-28
EA200801047A1 (ru) 2008-08-29
JP4854743B2 (ja) 2012-01-18
WO2007042662A3 (fr) 2007-06-28
NZ567356A (en) 2011-04-29
KR101291220B1 (ko) 2013-07-31
WO2007042662A2 (fr) 2007-04-19
ES2665743T3 (es) 2018-04-27
FR2891900A1 (fr) 2007-04-13
US7628035B2 (en) 2009-12-08
CA2625577A1 (fr) 2007-04-19
CN101313188A (zh) 2008-11-26
US20070095099A1 (en) 2007-05-03
MY152657A (en) 2014-10-31
FR2891900B1 (fr) 2008-01-04
EP1946026A2 (de) 2008-07-23
JP2009512831A (ja) 2009-03-26
CA2625577C (fr) 2014-08-19
CN101313188B (zh) 2011-05-04
KR20080063470A (ko) 2008-07-04

Similar Documents

Publication Publication Date Title
EP1946026B1 (de) Verfahren zur behandlung eines durch kühlen unter verwendung eines ersten kühlzyklus erhaltenen verflüssigten erdgasstroms und verwandte anlage
EP1639062B1 (de) Verfahren und vorrichtung zur gleichzeitigen produktion eines erdgases zur verflüssigung und einer flüssigen fraktion aus erdgas
CA2604263C (fr) Procede de sous-refroidissement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration, et installation associee
EP1352203B1 (de) Verfahren zur kühlung von verflüssigtem gas und anlage dafür
RU2298743C2 (ru) Система и способ для сжижения природного газа при высоком давлении
EP2344821B1 (de) Verfahren zur erzeugung von flüssigen und gasförmigen stickstoffströmen, heliumreicher, gasförmiger strom und stickstoffabgereicherter kohlenwasserstoffstrom und zugehörige anlage
EP0644996B1 (de) Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas
RU2337130C2 (ru) Отвод азота из конденсированного природного газа
EP1454104B1 (de) Verfahren und vorrichutng zur zerlegung eines methan enthaltenden gasgemisches durch rektifikation
KR101238172B1 (ko) 액화 천연 가스의 처리
KR20010082235A (ko) 증류를 사용한 다중-성분 압축 공급 스트림의 분리방법
WO2008087318A2 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et éventuellement d'azote par distillation cryogénique
FR2803851A1 (fr) Procede de liquefaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
WO2003023303A1 (fr) Procede de liquefaction comportant au moins un refrigerant en melange qui utilise a la fois de l'ethane et de l'ethylene
FR2974167A1 (fr) Procede et appareil de liquefaction d'un gaz
EP0612967B1 (de) Verfahren zur Herstellung von Sauerstoff und/oder Stickstoff unter Druck
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
FR2864213A1 (fr) Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air
FR3081047A1 (fr) Procede d’extraction d'azote d'un courant de gaz naturel
FR3075940A1 (fr) Procede de liquefaction d'un courant de gaz naturel contenant de l'azote
WO2013114020A2 (fr) Procédé et appareil de condensation ou de pseudocondensation d'un gaz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080403

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100820

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170816

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20171207

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006054585

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 964710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2665743

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180427

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180117

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 964710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180517

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006054585

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

26N No opposition filed

Effective date: 20181018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006054585

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20061010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200929

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201012

Year of fee payment: 15

Ref country code: ES

Payment date: 20201103

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211010

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211011

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 18