WO1994024500A1 - Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel - Google Patents

Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel Download PDF

Info

Publication number
WO1994024500A1
WO1994024500A1 PCT/FR1994/000380 FR9400380W WO9424500A1 WO 1994024500 A1 WO1994024500 A1 WO 1994024500A1 FR 9400380 W FR9400380 W FR 9400380W WO 9424500 A1 WO9424500 A1 WO 9424500A1
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
stage
cooling
liquid
gas
Prior art date
Application number
PCT/FR1994/000380
Other languages
English (en)
Inventor
Maurice Grenier
Original Assignee
Gaz De France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz De France filed Critical Gaz De France
Priority to EP94913137A priority Critical patent/EP0644996B1/fr
Priority to US08/347,365 priority patent/US5535594A/en
Priority to CA002136755A priority patent/CA2136755C/fr
Priority to JP52281294A priority patent/JP3559283B2/ja
Priority to AU65404/94A priority patent/AU669628C/en
Priority to DE69415454T priority patent/DE69415454T2/de
Publication of WO1994024500A1 publication Critical patent/WO1994024500A1/fr
Priority to NO944701A priority patent/NO308969B1/no
Priority to US08/644,484 priority patent/US5613373A/en
Priority to HK98113695A priority patent/HK1012700A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0296Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/68Separating water or hydrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/60Integration in an installation using hydrocarbons, e.g. for fuel purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/902Apparatus
    • Y10S62/903Heat exchange structure

Definitions

  • the present invention relates to the cooling of fluids, and applies in particular to the liquefaction of natural gas. It relates firstly to a process for cooling a fluid, in particular for liquefying natural gas, of the integral incorporated cascade type, in which a refrigerant mixture composed of constituents of different volatilities is compressed in at least two stages and, after at least each of the intermediate stages of compression, the mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded, brought into heat exchange relationship with the fluid to be cooled and then compressed again .
  • the pressures discussed below are absolute pressures.
  • the refrigerant mixture consists of a certain number of fluids including, among others, nitrogen, hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc.
  • the mixture is compressed, liquefied and then sub-cooled at the high pressure of the cycle which is generally between 20 and 50 bars.
  • This liquefaction can be carried out in one or more stages with separation of the condensed liquid at each stage.
  • the liquid or liquids obtained are, after their sub-cooling, expanded at the low pressure of the cycle, generally between 1.5 and 6 bars, and vaporized in counter-current of the natural gas to be liquefied and of the cycle gas to be cooled.
  • the refrigerant mixture After reheating near room temperature, the refrigerant mixture is again compressed until the high pressure of the cycle.
  • a fluid capable of condensing at room temperature at the high pressure of the cycle that is to say between ambient temperature (generally of the order of + 30 to + 40 ° C in regions producing natural gas) and an intermediate temperature of the order of - 20 to -40 ° C.
  • the object of the invention is to eliminate the separate refrigeration cycle, and therefore to use a single compressor unit, that is to say a refrigeration cycle known as "with integral incorporated cascade", so as to make it possible to obtain both relatively specific process energy and relatively low investment.
  • the invention relates to a cooling process of the aforementioned type, characterized in that the gas from the penultimate is distilled compression stage in a distillation apparatus, the head of which is cooled with a liquid having a temperature significantly below ambient temperature, in order to form on the one hand the condensate of this penultimate stage, and on the other hand a vapor phase which is sent at the last stage of compression.
  • the "ambient temperature” will be defined as the thermodynamic reference temperature corresponding to the temperature of the cooling fluid (notably water) available on the site and used in the cycle, increased by the temperature difference that the it is fixed, by construction, at the outlet of the refrigerating machines (compressors, exchangers ). In practice, this difference is around 3 to 10 ° C, and preferably of the order of 5 to 8 ⁇ C.
  • the cooling temperature of the head of the distillation apparatus (corresponding substantially to the temperature of the "liquid” acting for this purpose) will be between approximately 0 and 20 “C, and generally between 5 and 15 “C, for an” ambient temperature "(or inlet temperature in the exchange line) of the order of 15 to 45 ° C., and generally between 30 and 40 ° C.
  • the head vapor of the distillation apparatus is cooled and partially condensed by heat exchange with at least the said expanded fractions, and the head of the distillation apparatus is cooled with the liquid phase thus obtained;
  • At least part of the condensate from the first compression stage is pumped up to the outlet pressure from the second compression stage, and it is mixed with the gas from this second compression stage;
  • a primary denitrogenation of the natural gas is carried out under its treatment pressure in an auxiliary column, part of the liquefied natural gas which has undergone is expanded to an intermediate pressure this primary denitrogenization, the liquid thus expanded is vaporized by cooling the head of the auxiliary column, which produces a combustible gas under intermediate pressure, this combustible gas is sent to a gas turbine driving the compressor, and the rest of the liquefied natural gas having undergone the primary denitrogenation as well as the overhead vapor of the auxiliary column in a denitrogenation column final under low pressure producing in tanks the nitrogenous liquefied natural gas intended to be stored.
  • the subject of the invention is also an installation for cooling a fluid, in particular for liquefying natural gas, intended for the implementation of such a process.
  • This installation of the type comprising a refrigeration circuit with integral incorporated cascade in which a refrigerant mixture circulates and which comprises a compressor with at least two stages, at least the intermediate stages of which are each provided with a refrigerant and a heat exchange line, is characterized in that it comprises a distillation apparatus supplied by the penultimate stage of the compressor and whose head is connected to the suction of the last stage of the compressor, and means for cooling the head of the apparatus distillation by means of a liquid having a temperature markedly below ambient temperature.
  • the heat exchange line consists of two plate exchangers in series, in particular of the same length, connected to each other by end domes and optionally welded together end to end.
  • FIG. 1 schematically shows a natural gas liquefaction installation according to the invention
  • FIG. 5 shows schematically a variant of the cold part of the installation of Figure 1 or Figure 2;
  • FIG. 6 is a partial schematic view of another alternative installation according to the invention.
  • the natural gas liquefaction installation represented in FIG. 1 essentially comprises: a single cycle compressor 1 with three stages 1A, 1B and 1C, each stage discharging, via a respective pipe 2A, 2B and 2C, into a respective refrigerant 3A , 3B and 3C cooled with sea water, this water typically having a temperature of the order of + 25 to + 35 "C; a pump 4; a distillation column 5 having a few theoretical plates; separator pots 6B, 6C, the top of which communicates respectively with the suction of stages 1B and 1C; a heat exchange line 7 comprising two exchangers in series, namely a "hot” exchanger 8 and a "cold” exchanger 9; an intermediate separator pot 10 ; an auxiliary coolant circuit 11; an auxiliary heat exchanger 12; a denitrogenation column 13; and a liquefied natural gas (LNG) storage 14.
  • LNG lique
  • the outlet of the refrigerant 3A opens into the separator 6, the bottom of which is connected to the suction of the pump 4, while the latter flows back into the pipe 2B.
  • the outlet of the refrigerant 3B communicates with the tank of the column 5, and the bottom of the separator 6C is connected by gravity, via a siphon 15 and an adjustment valve 16, to the head of the column 5.
  • the exchangers 8, 9 are parallelepipedic exchangers with aluminum plates possibly brazed, with counter-current circulation of the fluids in heat exchange relation, and have the same length. They each include the passages necessary to ensure the operation which will be described below.
  • the refrigerant mixture consisting of C1 to C5 hydrocarbons and nitrogen, leaves the top (hot end) of the exchanger 8 in the gaseous state and arrives via a line 17 at the suction of the first stage of compressor 1A .
  • first intermediate pressure PI typically of the order of 8 to 12 bars
  • second intermediate pressure P2 typically of the order of 14 to 20 bars
  • the liquid in the bottom of the column 5 constitutes a first cooling liquid, suitable for ensuring most of the cooling of the hot exchanger 8.
  • this liquid is introduced laterally, via an inlet box 18, into the part upper side of this exchanger, sub-cooled in passages 19 to the cold end of the exchanger, at around -20 to -40 ° C., released laterally via an outlet box 20, expanded at the low pressure of the cycle, which is typically of the order of 2.5 to 3.5 bars, in an expansion valve 21, and reintroduced in two-phase form at the cold end of the same exchanger via a side box 22 and an appropriate distribution device, to be vaporized in the low pressure passages 23 of the exchanger.
  • the overhead vapor of column 5 is cooled and partially condensed in passages 24 of exchanger 8 to an intermediate temperature significantly lower than ambient temperature, for example up to + 5 to + 10 "C, then introduced in the pot 6C.
  • the liquid phase returns to reflux by gravity, via the siphon 15 and the valve 16, at the head of the column 5, while the vapor phase is compressed at the high pressure of the cycle, typically of the order of 40 bars, in 1C, then brought back to + 30 to + 40 , 'C in 3 C.
  • This vapor phase is then cooled from the hot end to the cold end of the exchanger 8 in high pressure passages 25, and separated into two phases in 10.
  • the refrigeration of the exchanger 9 is obtained by means of the high pressure fluid, as follows.
  • the liquid collected at 10 is sub-cooled in the hot part of the exchanger 9, in passages 27, then taken out of the exchanger, expanded at low pressure in an expansion valve 28, reintroduced into the exchanger and vaporized in the hot part of the low pressure passages 29 thereof.
  • the vapor phase from separator 10 is cooled, condensed and sub-cooled from the hot end to the cold end of the exchanger 9, and the liquid thus obtained is expanded at low pressure in an expansion valve 30, and reintroduced at the cold end of the exchanger to be vaporized in the cold part of the low pressure passages 29 and then combined with the expanded fluid at 28.
  • the treated natural gas, arriving at around + 20 ⁇ C, after drying, via a pipe 31, is introduced laterally into the exchanger 8 and cooled to the cold end of the latter in passages 32.
  • natural gas is sent to an apparatus 33 for removing C2 to C5 hydrocarbons, and the remaining mixture, consisting essentially of methane and nitrogen, with a small amount of ethane and propane, is divided into two streams: a first stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the auxiliary exchanger 12 and then expanded to 1.2 bar in an expansion valve 34, and a second stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the exchanger 9 in passages 35, sub-cooled again by about 8 to 10 "C in a coil 36 forming the column reboiler
  • the tank liquid in this column constitutes the nitrogenous LNG produced by the installation and is sent to storage.
  • the exchanger 12 and is sent via a line 38 to the "fuel gas” network to be burned or used in a gas turbine of the installation serving to drive the compressor 1.
  • the hottest part of 1'ttingur 8 can be used for cooling from + 40 to + 20 * 'C about a suitable liquid, in particular pentane, circulated through the passages 40 by a pump 1'ttingur 41 and used to refrigerate another part of the installation, for example raw natural gas intended to be dried before its treatment in the liquefaction installation.
  • This circulation of liquid constitutes the above-mentioned refrigerant circuit 11.
  • suction of the compressor stage 1C at a relatively cold temperature is favorable to the performance thereof.
  • the cutoff at around - 20 to - 40 ° C between the two exchangers also corresponds to heat exchange surfaces of the same order above and below this cutoff, so that two exchangers can be used 8 and 9 of maximum length under conditions of optimal thermal performance, and a single separator pot 10, with the abovementioned cut-off, for the high pressure fluid. It is understood that the control of the temperature and the pressure (+ 5 to + 10 ° C, 14 to 20 bars) of the coolant at the head of the column 5 makes it possible to obtain a single-phase gas both at the outlet of the 3C refrigerant and at the outlet (at 42) from the cold exchanger 9 (- 20 ° C to - 40 "C, 2.5 to 3.5 bars).
  • n exchangers 8 are mounted in parallel, and n exchangers 9 in parallel.
  • the installation shown in FIG. 2 differs from that of FIG. 1 only by the addition, between the compression stages IB and 1C, of another intermediate compression stage 1D, as well as by the method of cooling the liquid. reflux from column 5.
  • the outlet of the refrigerant 3B opens into a separator pot 6D, the vapor phase of which feeds the stage 1D. The discharge of this is cooled by a 3D coolant and then introduced at the base of the column 5.
  • the liquid in the pot 6D constitutes an additional coolant, sub-cooled in additional passages 45 provided in the hot part of the exchanger 8, taken out of it, expanded at low pressure in an expansion valve 46 and reintroduced into the exchanger to be vaporized in the intermediate part of the low pressure passages 23. Furthermore, the overhead vapor from column 5 is sent directly to the suction of the last compression stage 1C, and the high pressure fluid is sent to the base of a dephlegmator 47 cooled by trickling seawater around vertical tubes 48.
  • FIG 3 shows an embodiment of a heat exchanger which can be used as an intermediate refrigerant 3B.
  • This exchanger comprises a calender 50 in which a certain number of vertical tubes 51 open at their two ends extend between an upper plate 52 and a lower plate 53. Between these plates, and outside the tubes, are mounted a certain number of horizontal baffles 54.
  • the cooling water arrives by a lower pipe 55 on the plate 52, circulates upwards in the tubes 51 and is evacuated by an upper pipe 56.
  • the two-phase mixture conveyed by line 2B enters laterally into the grille under the plate 52 and descends along the baffles, then exits via the outlet pipe 57 of the exchanger, located a little above the plate 53.
  • FIG. 4 represents another alternative arrangement of the column of distillation 5.
  • the column overhead vapor is heated by a few degrees Celsius in an auxiliary heat exchanger 58, then sent to the suction of the last compression stage 1C.
  • the high pressure fluid, after cooling and partial condensation in 3C around + 30 to + 40 "C, is separated into two phases in a separator pot 59.
  • the vapor from this pot constitutes the high pressure refrigerant, while the liquid phase , after sub-cooling a few degrees Celsius in the exchanger 58, is expanded in an expansion valve 49 as in FIG. 2 and then introduced under reflux at the top of the column 5. It is understood that this variant can be applied to a installation with either three or four stages of compression, and subcooling 58 is optional.
  • the nitrogen removal column 13 must operate at around 1.15 bar or 1.2 bar, and consequently the nitrogen-free LNG leaving the tank of this column must be expanded to atmospheric pressure at storage inlet 14, which produces flash gas.
  • This gas, as well as the gas resulting from the heat inputs into the storage 14, must therefore be taken up and compressed by an auxiliary compressor to be distributed to the "fuel gas" network.
  • Figure 5 shows an arrangement which makes it possible to omit this auxiliary compressor, in the case where the LNG leaving the exchanger 9 contains a few% of nitrogen.
  • the LNG leaving the exchanger 9 is sub-cooled in the coil 36 of the column 13 and again sub-cooled in an auxiliary heat exchanger 60. The liquid is then expanded to 1.2 bar in the valve.
  • expansion 37 and the turbine 39 then divided into two streams: a stream which is vaporized in an exchanger 60 and then introduced at an intermediate level into the column 13, and a stream which is sent at reflux at the head of the latter.
  • the bottom liquid of column 13, which is LNG without nitrogen, is then, for each storage, divided into two streams, one of which is sub-cooled in the exchanger 60 while the other passes through a bypass 61 to adjust the degree of overall sub-cooling, the circulation of the liquid being ensured by a pump 62.
  • the part of the natural gas coming from the apparatus 33 which is treated in the exchanger 12 n ' is cooled there only to an intermediate temperature TI, then is introduced into the tank of the column 63, via a pipe 65, while the rest of this natural gas is cooled in the exchanger 9 only to a temperature intermediate T2 lower than TI then introduced at an intermediate level of the same column, via a pipe 66.
  • the condenser 64 is cooled by expanding part of the column tank liquid to around 25 bars in an expansion valve 67.
  • the gas resulting from this vaporization has the same composition as the column tank liquid, that is that is to say has a low nitrogen content, and therefore constitutes a combustible gas at 25 bars which can be directly used, via a pipe 68, in the gas turbine 69.
  • the remainder of the bottom liquid of the column 63 is, after sub-cooling partly in the cold part of the exchanger 9 and in the coil 36 of the column 13, and partly in the cold part of the exchanger 12, expanded at 37, respectively at 70, and introduced at an intermediate level of column 13.
  • the overhead vapor of column 63 containing 30 to 35% of nitrogen, is cooled and condensed in the cold part of the exchanger 9 , sub-cooled in that of the exchanger 12, and, after expansion in an expansion valve 71, introduced under reflux at the top of the column 13.
  • the nitrogen enrichment of the column 13 washing liquid thus obtained has the consequence that the nitrogen vapor of this column is sufficient poor in methane, for example contains 10 to 15% of methane, to be put into the atmosphere via line 38 after heating in 12.
  • a fraction of the natural gas to be treated conveyed by the pipe 31 can be cooled in the hot part of the exchanger 12 before being sent to the device 33.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Dans ce procédé du type à cascade incorporée intégrale, le mélange réfrigérant issu de l'avant-dernier étage (1B) du compresseur de cycle (1) est envoyé dans un appareil de distillation (5) dont la vapeur de tête est refroidie (en 24) jusqu'à une température nettement inférieure à la température ambiante, puis séparée en deux phases (en 6C); la phase vapeur alimente le dernier étage (1C) du compresseur, et la phase liquide constitue un fluide frigorigène pour la partie chaude (8) de la ligne d'échange thermique (7).

Description

PROCEDE ET INSTALLATION DE REFROIDISSEMENT D'UN FLUIDE, NOTAMMENT POUR LA LIQUEFACTION DE GAZ NATUREL.
La présente invention est relative au refroidissement des fluides, et s'applique en particulier à la liquéfaction du gaz naturel. Elle concerne en premier lieu un procédé de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel, du type à cascade incorporé intégrale, dans lequel on comprime en au moins deux stades un mélange frigorigène composé de constituants de volatilités différentes et, après au moins chacun des stades intermédiaires de compression, on condense partiellement le mélange, certaines au moins des fractions condensées ainsi que la fraction gazeuse haute pression étant refroidies, détendues, mises en relation d'échange de chaleur avec le fluide à refroidir puis comprimées de nouveau. Les pressions dont il est question ci- dessous sont des pressions absolues.
Il a été proposé depuis longtemps de liquéfier le gaz naturel en utilisant un cycle frigorifique dit "à cascade incorporée" utilisant un mélange de fluides.
Le mélange frigorigène est constitué d'un certain nombre de fluides dont, entre autres, l'azote, des hydrocarbures comme le méthane, l'éthylène, l'éthane, le propane, le butane, le pentane, etc.. Le mélange est comprimé, liquéfié puis sous-refroidi à la haute pression du cycle qui est généralement comprise entre 20 et 50 bars. Cette liquéfaction peut être réalisée en une ou plusieurs étapes avec séparation du liquide condensé à chaque étape. Le ou les liquides obtenus sont, après leur sous-refroidissement, détendus à la basse pression du cycle, généralement comprise entre 1,5 et 6 bars, et vaporisés en contre-courant du gaz naturel à liquéfier et du gaz de cycle à refroidir.
Après réchauffage au voisinage de la température ambiante, le mélange frigorigène est de nouveau comprimé jusqu'à la haute pression du cycle. Pour que le fonctionnement soit possible, il est nécessaire de disposer d'un fluide capable de se condenser à la température ambiante à la haute pression du cycle. Ceci pose une difficulté particulière, provenant du fait que le mélange et les pressions sont généralement optimisés pour la partie froide de l'installation de liquéfaction et conviennent mal à une réfrigération également performante dans la partie chaude, c'est-à-dire comprise entre la température ambiante (généralement de l'ordre de + 30 à + 40°C dans les régions productrices de gaz naturel) et une température intermédiaire de l'ordre de - 20 à -40°C.
De nombreuses installations existantes font ainsi appel, pour la partie chaude, à un cycle de réfrigération séparé, à propane ou à mélange propane- éthane. On obtient ainsi une dépense d'énergie spécifique relativement faible, mais au prix d'un alourdissement important de la complexité et du coût de 1'installation.
L'invention a pour but d'éliminer le cycle de réfrigération séparé, et donc d'utiliser un groupe compresseur unique, c'est-à-dire un cycle frigorifique dit "à cascade incorporé intégrale", de manière à permettre d'obtenir à la fois une énergie spécifique du procédé et un investissement relativement réduits.
A cet effet, l'invention a pour objet un procédé de refroidissement du type précité, caractérisé en ce qu'on distille le gaz issu de l'avant-dernier stade de compression dans un appareil de distillation dont on refroidit la tête avec un liquide ayant une température nettement inférieure à la température ambiante, pour former d'une part le condensât de cet avant-dernier étage, et d'autre part une phase vapeur qui est envoyée au dernier stade de compression.
Par souci de clarté, on définira la "température ambiante" comme la température de référence thermodynamique correspondant à la température du fluide de refroidissement (eau notamment) disponible sur le site et utilisé dans le cycle, augmentée de l'écart de température que l'on se fixe, par construction, à la sortie des appareils réfrigérants de machine (compresseurs, échangeurs...) . En pratique, cet écart est d'environ 3 à 10°C, et de préférence de l'ordre de 5 à 8βC.
On notera également, dès à présent, que la température de refroidissement de la tête de l'appareil de distillation (correspondant sensiblement à la température du "liquide" agissant à cet effet) sera comprise entre environ 0 et 20"C, et généralement entre 5 et 15"C, pour une "température ambiante" (ou température d'entrée dans la ligne d'échange) de l'ordre de 15 à 45'C, et généralement comprise entre 30 et 40°C.
Le procédé peut comprendre par ailleurs une ou plusieurs des caractéristiques suivantes :
- on refroidit et on condense partiellement la vapeur de tête de l'appareil de distillation par échange de chaleur avec au moins lesdites fractions détendues, et on refroifit la tête de l'appareil de distillation avec la phase liquide ainsi obtenue ;
- on refroidit et on condense partiellement au voisinage de la température ambiante le gaz issu du dernier stade de compression, on détend la phase liquide obtenue, et on refroidit la tête de l'appareil de distillation au moyen de cette phase liquide détendue ;
- on opère une déphlegmation du gaz issu du dernier stade de compression pendant son refroidissement ;
- on effectue un échange de chaleur indirect entre le liquide résultant du refroidissement du gaz issu du dernier stade de compression et la vapeur de tête de l'appareil de distillation avant d'envoyer cette vapeur au dernier étage de compression et de détendre ledit liquide ;
- on pompe une partie au moins du condensât du premier stade de compression jusqu'à la pression de sortie du deuxième stade de compression, et on le mélange au gaz issu de ce deuxième stade de compression ;
- lorsque le procédé est destiné à la liquéfaction de gaz naturel contenant de l'azote, on sous-refroidit le gaz naturel liquéfié résultant de la réfrigération puis désazoté, par échange de chaleur avec du gaz naturel liquéfié non désazoté détendu ;
- lorsque le procédé est destiné à la liquéfaction de gaz naturel contenant de l'azote, on effectue une desazotation primaire du gaz naturel sous sa pression de traitement dans une colonne auxiliaire, on détend à une pression intermédiaire une partie du gaz naturel liquéfié ayant subi cette desazotation primaire, on vaporise le liquide ainsi détendu en refroidissant la tête de la colonne auxiliaire, ce qui produit un gaz combustible sous la pression intermédiaire, on envoie ce gaz combustible à une turbine à gaz d'entraînement du compresseur, et on traite le reste du gaz naturel liquéfié ayant subi la desazotation primaire ainsi que la vapeur de tête de la colonne auxiliaire dans une colonne de desazotation finale sous basse pression produisant en cuve le gaz naturel liquéfié désazoté destiné à être stocké.
L'invention a également pour objet une installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel, destinée à la mise en oeuvre d'un tel procédé.
Cette installation, du type comprenant un circuit frigorifique à cascade incorporée intégrale dans lequel circule un mélange frigorigène et qui comporte un compresseur à au moins deux étages dont au moins les étages intermédiaires sont pourvus chacun d'un réfrigérant et une ligne d'échange thermique, est caractérisée en ce qu'elle comprend un appareil de distillation alimenté par l'avant-dernier étage du compresseur et dont la tête est reliée à l'aspiration du dernier étage du compresseur, et des moyens pour refroidir la tête de l'appareil de distillation au moyen d'un liquide ayant une température nettement inférieure à la température ambiante. Dans un mode de réalisation particulier, la ligne d'échange thermique est constituée de deux échangeurs à plaques en série, notamment de même longueur, reliés l'un à l'autre par des dômes d'extrémité et éventuellement soudés ensemble bout à bout.
Des exemples de mise en oeuvre de 1'invention vont maintenant être décrits en regard des dessins annexés, sur lequels :
- la Figure 1 représente schématiquement une installation de liquéfaction de gaz naturel conforme à 1'invention ;
- la Figure 2 représente schématiquement un autre mode de réalisation de l'installation suivant
1'invention ; - la Figure 3 représente plus en détail un élément de l'installation de la Figure 2 ; - la Figure 4 représente schématiquement une partie d'une variante de l'installation de la Figure 1 ;
- la Figure 5 représente schématiquement une variante de la partie froide de l'installation de la Figure 1 ou de la Figure 2 ; et
- la Figure 6 est une vue partielle schématique d'une autre variante d'installation suivant 1'invention. L'installation de liquéfaction de gaz naturel représentée à la Figure 1 comprend essentiellement : un compresseur de cycle unique 1 à trois étages 1A, 1B et 1C, chaque étage refoulant, via une conduite respective 2A, 2B et 2C, dans un réfrigérant respectif 3A, 3B et 3C refroifi à l'eau de mer, cette eau ayant typiquement une température de l'ordre de + 25 à + 35"C ; une pompe 4 ; une colonne de distillation 5 ayant quelques plateaux théoriques ; des pots séparateurs 6B, 6C dont le sommet communique respectivement avec l'aspiration des étages 1B et 1C ; une ligne d'échange thermique 7 comprenant deux échangeurs en série, à savoir un échangeur "chaud" 8 et un échangeur "froid" 9 ; un pot séparateur intermédiaire 10 ; un circuit auxiliaire 11 de liquide de refroidissement ; un échangeur de chaleur auxiliaire 12 ; une colonne de desazotation 13 ; et un stockage de gaz naturel liquéfié (GNL) 14.
La sortie du réfrigérant 3A débouche dans le séparateur 6, dont le fond est relié à l'aspiration de la pompe 4, tandis que celle-ci refoule dans la conduite 2B. La sortie du réfrigérant 3B communique avec la cuve de la colonne 5, et le fond du séparateur 6C est relié par gravité, via un siphon 15 et une vanne de réglage 16, à la tête de la colonne 5. Les échangeurs 8, 9 sont des échangeurs parallélépipédiques à plaques d'aluminium possiblement brasées, à circulation à contre-courant des fluides mis en relation d'échange thermique, et ont la même longueur. Ils comportent chacun les passages nécessaires pour assurer le fonctionnement qui sera décrit ci-dessous.
Le mélange frigorigène, constitué d'hydrocarbures en Cl à C5 et d'azote, sort du sommet (bout chaud) de l'échangeur 8 à l'état gazeux et parvient via une conduite 17 à 1'aspiration du premier étage de compresseur 1A.
Il est ainsi comprimé à une première pression intermédiaire PI, typiquement de l'ordre de 8 à 12 bars, puis est refroidi vers + 30 à + 40βC en 3A et séparé en deux phases dans le pot 6B. La phase vapeur est comprimée à une deuxième pression intermédiaire P2, typiquement de l'ordre de 14 à 20 bars, en IB, tandis que la phase liquide est amenée par la pompe 4 à la même pression P2 et injectée dans la conduite 2B. Le mélange des deux phases est refroidi et partiellement condensé en 3B, puis distillé en 5.
Le liquide de cuve de la colonne 5 constitue un premier liquide réfrigérant, adapté pour assurer l'essentiel de la réfrigération de l'échangeur chaud 8. Pour cela, ce liquide est introduit latéralement, via une boîte d'entrée 18, dans la partie supérieure de cet échangeur, sous-refroidi dans des passages 19 jusqu'au bout froid de l'échangeur, vers - 20 à - 40°C, sorti latéralement via une boîte de sortie 20, détendu à la basse pression du cycle, qui est typiquement de l'ordre de 2,5 à 3,5 bars, dans une vanne de détente 21, et réintroduit sous forme diphasique au bout froid du même échangeur via une boîte latérale 22 et un dispositif de distribution approprié, pour être vaporisé dans les passages basse pression 23 de 1'échangeur. La vapeur de tête de la colonne 5 est refroidie et partiellement condensée dans des passages 24 de l'échangeur 8 jusqu'à une température intermédiaire nettement inférieure à la température ambiante, par exemple jusqu'à + 5 à + 10"C, puis introduite dans le pot 6C. La phase liquide retourne en reflux par gravité, via le siphon 15 et la vanne 16, en tête de la colonne 5, tandis que la phase vapeur est comprimée à la haute pression du cycle, typiquement de l'ordre de 40 bars, en 1C, puis est ramenée vers + 30 à + 40,'C en 3C. Cette phase vapeur est ensuite refroidie du bout chaud au bout froid de l'échangeur 8 dans des passages haute pression 25, et séparée en deux phases en 10. Pour compléter la réfrigération de
1'échangeur 8, on peut, comme représenté en trait interrompu, sous-refroidir jusqu'à une température intermédiaire une partie du liquide recueilli en 6B, puis le sortir latéralement de l'échangeur, le détendre à la basse pression dans une vanne de détente 26, et le réintroduire latéralement dans l'échangeur pour le vaporiser dans la partie intermédiaire des passages basse pression 23.
La réfrigération de l'échangeur 9 est obtenue au moyen du fluide haute pression, de la manière suivante.
Le liquide recueilli en 10 est sous- refroidi dans la partie chaude de l'échangeur 9, dans des passages 27, puis sorti de l'échangeur, détendu à la basse pression dans une vanne de détente 28, réintroduit dans 1'échangeur et vaporisé dans la partie chaude des passages basse pression 29 de celui-ci. La phase vapeur issue du séparateur 10 est refroidie, condensée et sous-refroidie du bout chaud au bout froid de l'échangeur 9, et le liquide ainsi obtenu est détendu à la basse pression dans une vanne de détente 30, et réintroduit au bout froid de l'échangeur pour être vaporisé dans la partie froide des passages basse pression 29 puis réuni au fluide détendu en 28.
Le gaz naturel traité, arrivant vers + 20βC, après dessiccation, via une conduite 31, est introduit latéralement dans 1'échangeur 8 et refroidi jusqu'au bout froid de celui-ci dans des passages 32.
A cette température, le gaz naturel est envoyé à un appareil 33 d'élimination d'hydrocarbures en C2 à C5, et le mélange restant, constitué essentiellement de méthane et d'azote, avec une petite quantité d'éthane et de propane, est divisé en deux courants : un premier courant, refroidi, liquéfié et sous-refroidi du bout chaud au bout froid de l'échangeur auxiliaire 12 puis détendu vers 1,2 bar dans une vanne de détente 34, et un deuxième courant, refroidi, liquéfié et sous-refroidi du bout chaud au bout froid de l'échangeur 9 dans des passages 35, sous- refroidi de nouveau d'environ 8 à 10"C dans un serpentin 36 formant rebouilleur de cuve de la colonne
13, et détendu vers 1,2 bar dans une vanne de détente 37. Les deux courants détendus sont réunis puis introduits en reflux en tête de la colonne 13, qui assure ainsi la desazotation du gaz naturel. Le liquide de cuve de cette colonne constitue le GNL désazoté produit par 1'installation et est envoyé au stockage
14, tandis que la vapeur de tête est réchauffée jusqu'à - 20 à - 40βC du bout froid au bout chaud de
1'échangeur 12 et est envoyée via une conduite 38 au réseau "fuel gas" pour être brûlée ou utilisée dans une turbine à gaz de l'installation servant à entraîner le compresseur 1.
Il est à noter qu'une coupure supplémentaire sur le gaz naturel peut être effectuée dans l'échangeur 9 à une température permettant de récupérer des quantités additionnelles d'hydrocarbures en C2 et C3 dans l'appareil 33.
Comme on l'a représenté, compte-tenu des débits très importants généralement mis en oeuvre dans une telle installation, il peut être souhaitable de détendre une partie des liquides froids dans des turbines à liquide ou "expanders" 39 pour produire du froid ainsi qu'une partie du courant électrique nécessaire. De plus, la partie la plus chaude de 1'échangeur 8 peut être utilisée pour refroidir de + 40 à + 20*'C environ un liquide approprié, notamment du pentane, mis en circulation dans des passages 40 de 1'échangeur par une pompe 41 et servant à réfrigérer une autre partie de l'installation, par exemple le gaz naturel brut destiné à être desséché avant son traitement dans l'installation de liquéfaction. Cette circulation de liquide constitue le circuit réfrigérant 11 précité.
L'agencement décrit ci-dessus permet à la fois d'accélérer la condensation du mélange issu du deuxième étage de compression IB, grâce à l'injection de liquide dans la conduite 2B au moyen de la pompe 4, de simplifier l'échangeur 8 si la totalité du liquide du pot 6B est pompé, et d'obtenir un mélange haute pression suffisamment débarrassé des produits lourds, plus précisément, dans l'exemple considéré, de la presque totalité des hydrocarbures en C5 et de la majorité des hydrocarbures en C4, pour être totalement vaporisé au bout chaud des passages 29 de l'échangeur froid 9. Ceci présente l'avantage important que ces passages peuvent déboucher dans un dôme supérieur 42 de 1'échangeur 9 communiquant directement avec un dôme inférieur 43 de l'échangeur 8, sans qu'aucune redistribution diphasique soit nécessaire à la coupure entre les deux échangeurs. On peut alors simplifier encore 1•installation en soudant bout à bout les deux échangeurs 8 et 9.
On peut également remarquer que l'aspiration de l'étage de compresseur 1C à une température relativement froide est favorable aux performances de celui-ci.
La coupure vers - 20 à - 40°C environ entre les deux échangeurs correspond par ailleurs à des surfaces d'échange thermique du même ordre au-dessus et au-dessous de cette coupure, de sorte que l'on peut utiliser deux échangeurs 8 et 9 de longueur maximale dans des conditions de performances thermiques optimales, et un unique pot séparateur 10, à la coupure précitée, pour le fluide haute pression. On comprend que le contrôle de la température et de la pression (+ 5 à + 10°C, 14 à 20 bars) du liquide de refroidissement de la tête de la colonne 5 permet d'obtenir un gaz monophasique à la fois en sortie du réfrigérant 3C et en sortie (en 42) de l'échangeur froid 9 (- 20°C à - 40"C, 2,5 à 3,5 bars) .
Il est à noter qu'en pratique, on monte n échangeurs 8 en parallèle, et n échangeurs 9 en parallèle. L'installation représentée à la Figure 2 ne diffère de celle de la Figure 1 que par l'ajout, entre les étages de compression IB et 1C, d'un autre étage de compression intermédiaire 1D, ainsi que par le mode de refroidissement du liquide de reflux de la colonne 5. Ainsi, la sortie du réfrigérant 3B débouche dans un pot séparateur 6D, dont la phase vapeur alimente l'étage 1D. Le refoulement de celui-ci est refroidi par un réfrigérant 3D puis introduit à la base de la colonne 5. Le liquide du pot 6D constitue un liquide réfrigérant additionnel, sous-refroidi dans des passages additionnels 45 prévus dans la partie chaude de l'échangeur 8, sorti de celui-ci, détendu à la basse pression dans une vanne de détente 46 et réintroduit dans l'échangeur pour être vaporisé dans la partie intermédiaire des passages basse pression 23. Par ailleurs, la vapeur de tête de la colonne 5 est directement envoyée à l'aspiration du dernier étage de compression 1C, et le fluide haute pression est envoyé à la base d'un déphlegmateur 47 refroidi par ruissellement d'eau de mer autour de tubes verticaux 48. La majorité des produits lourds sont recueillis à la base du déphlegmateur, détendus dans une vanne de détente 49 et introduits en reflux en tête de la colonne 5, et la vapeur de tête du déphlegmateur forme comme précédemment le fluide frigorigène haute pression, qui est refroidi jusqu'au bout froid de l'échangeur 8 puis, après séparation de phases en 10, jusqu'au bout froid de l'échangeur 9.
La Figure 3 représente un mode de réalisation d'un échangeur de chaleur pouvant être utilisé en tant que réfrigérant intermédiaire 3B. Cet échangeur comprend une calandre 50 dans laquelle un certain nombre de tubes verticaux 51 ouverts à leurs deux extrémités s'étendent entre un plateau supérieur 52 et un plateau inférieur 53. Entre ces plateaux, et à l'extérieur des tubes, sont montées un certain nombre de chicanes horizontales 54. L'eau de refroidissement arrive par une canalisation inférieure 55 sur le plateau 52, circule vers le haut dans les tubes 51 et est évacuée par une canalisation supérieure 56. Le mélange diphasique véhiculé par la conduite 2B pénètre latéralement dans la calandre sous le plateau 52 et descend le long des chicanes, puis sort par la conduite de sortie 57 de l'échangeur, située un peu au-dessus du plateau 53. Un tel agencement permet de bien homogénéiser le mélange diphasique pendant son refroidissement, et d'obtenir à un degré élevé l'avantage d'accélération de la condensation dans le deuxième étage du compresseur 1 qu'apporte la boucle comportant la pompe 4. La Figure 4 représente une autre variante d'agencement de la colonne de distillation 5. Dans cette variante, la vapeur de tête de la colonne est rechauffée de quelques degrés Celsius dans un échangeur de chaleur auxiliaire 58, puis envoyée à l'aspiration du dernier étage de compression 1C. Le fluide haute pression, après refroidissement et condensation partielle en 3C vers + 30 à + 40"C, est séparé en deux phases dans un pot séparateur 59. La vapeur issue de ce pot constitue le fluide frigorigène haute pression, tandis que la phase liquide, après sous-refroidissement de quelques degrés Celsius dans 1*échangeur 58, est détendue dans une vanne de détente 49 comme à la Figure 2 puis introduite en reflux en tête de la colonne 5. On comprend que cette variante peut s'appliquer à une installation soit à trois soit à quatre étages de compression. De plus, le sous- refroidissement 58 est optionnel.
Quel que soit le mode de réalisation considéré, la colonne de desazotation 13 doit fonctionner vers 1,15 bar ou 1,2 bar, et par conséquent le GNL désazoté sortant de la cuve de cette colonne doit être détendu à la pression atmosphérique à l'entrée du stockage 14, ce qui produit du gaz de flash. Ce gaz, ainsi que le gaz résultant des entrées de chaleur dans le stockage 14, doit donc être repris et comprimé par un compresseur auxiliaire pour être distribué au réseau "fuel gas". La Figure 5 montre un agencement qui permet de supprimer ce compresseur auxiliaire, dans le cas où le GNL sortant de 1'échangeur 9 contient quelques % d'azote. Pour cela, le GNL sortant de 1*échangeur 9 est sous-refroidi dans le serpentin 36 de la colonne 13 et de nouveau sous-refroidi dans un échangeur de chaleur auxiliaire 60. Le liquide est ensuite détendu vers 1,2 bar dans la vanne de détente 37 et la turbine 39, puis divisé en deux courants : un courant qui est vaporisé dans un échangeur 60 puis introduit à un niveau intermédiaire dans la colonne 13, et un courant qui est envoyé en reflux en tête de cette dernière. Le liquide de cuve de la colonne 13, qui est du GNL sans azote, est alors, pour chaque stockage, divisé en deux courants dont l'un est sous-refroidi dans 1*échangeur 60 tandis que l'autre passe dans une dérivation 61 pour régler le degré de sous- refroidissement global, la circulation du liquide étant assurée par une pompe 62.
De cette manière, c'est du liquide sous- refroidi d'environ 2°C qui est envoyé vers les stockages 14, ce qui supprime pratiquement tout flash à l'entrée de ces stockages et toute évaporâtion due aux entrées de chaleur au cours du temps. Comme on le comprend, c'est la différence des compositions du GNL avant et après desazotation qui permet d'obtenir un tel sous-refroidissement dans 1*échangeur 60. De même, la vapeur de tête de la colonne 5 est généralement suffisamment riche en méthane pour être récupérée en tant que "fuel gas", au sens indiqué plus haut. Il est donc nécessaire de prévoir un autre compresseur auxiliaire dans ce but. Si de plus le compresseur de cycle 1 est entraîné par une turbine à gaz, il est nécessaire d'alimenter celle-ci par du gaz combustible sous une pression de l'ordre de 20 à 25 bars, ce qui conduit à installer un compresseur auxiliaire de puissance importante. L'agencement de la Figure 6 montre comment on peut supprimer la nécessité d'un tel compresseur auxiliaire. Sur cette Figure 6, on utilise une colonne additionnelle 63 de desazotation primaire sous pression du gaz naturel, munie d'un condenseur de tête 64. La partie du gaz naturel provenant de l'appareil 33 qui est traitée dans l'échangeur 12 n'y est refroidie que jusqu'à une température intermédiaire TI, puis est introduite en cuve de la colonne 63, via une conduite 65, tandis que le reste de ce gaz naturel n'est refroidi dans l'échangeur 9 que jusqu'à une température intermédiaire T2 inférieure à TI puis introduit à un niveau intermédiaire de la même colonne, via une conduite 66.
Le refroidissement du condenseur 64 est assuré en détendant vers 25 bars une partie du liquide de cuve de la colonne dans une vanne de détente 67. Le gaz résultant de cette vaporisation a la même composition que le liquide de cuve de la colonne, c'est-à-dire possède une faible teneur en azote, et constitue donc un gaz combustible sous 25 bars directement utilisable, via une conduite 68, dans la turbine à gaz 69.
Le reste du liquide de cuve de la colonne 63 est, après sous-refroidissement pour partie dans la partie froide de l'échangeur 9 et dans le serpentin 36 de la colonne 13, et pour partie dans la partie froide de 1*échangeur 12, détendu en 37, respectivement en 70, et introduit à un niveau intermédiaire de la colonne 13. La vapeur de tête de la colonne 63, contenant 30 à 35 % d'azote, est refroidie et condensée dans la partie froide de l'échangeur 9, sous-refroidie dans celle de 1'échangeur 12, et, après détente dans une vanne de détente 71, introduite en reflux au sommet de la colonne 13.
L'enrichissement en azote du liquide de lavage de la colonne 13 ainsi obtenu a pour conséquence que la vapeur d'azote de cette colonne est suffisamment pauvre en méthane, par exemple contient 10 à 15 % de méthane, pour être mise à l'atmosphère via la conduite 38 après réchauffement en 12.
Au total, on obtient donc deux gaz residuaires, dont l'un est riche en méthane et sous 25 bars, et alimente la turbine à gaz, et dont l'autre, sous basse pression, est pauvre en méthane et n'est pas récupéré.
Comme représenté à la Figure 6, une fraction du gaz naturel à traiter véhiculé par la conduite 31 peut être refroidie dans la partie chaude de l'échangeur 12 avant d'être envoyée à l'appareil 33.

Claims

REVENDICATIONS
1. Procédé de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel, du type à cascade incorporée intégrale, dans lequel on comprime en au moins deux stades un mélange frigorigène composé de constituants de volatilités différentes et, après au moins chacun des stades intermédiaires de compression, on condense partiellement le mélange, certaines au moins des fractions condensées ainsi que la fraction gazeuse haute pression étant refroidies, détendues, mises en relation d'échange de chaleur avec le fluide à refroidir puis comprimées de nouveau, caractérisé en ce qu'on distille le gaz issu de l'avant-dernier stade de compression (IB ; 1D) dans un appareil de distillation (5) dont on refroidit la tête avec un liquide ayant une température nettement inférieure à la température ambiante, pour former d'une part le condensât de cet avant-dernier étage, et d'autre part une phase vapeur qui est envoyée au dernier stade de compression (1C) .
2. Procédé suivant la revendication 1, caractérisé en ce qu'on refroidit et on condense partiellement la vapeur de tête de l'appareil de distillation (5) par échange de chaleur (en 24) avec au moins lesdites fractions détendues, pour obtenir une phase vapeur et une phase liquide, et on refroidit la tête de l'appareil de distillation (5) avec la phase liquide ainsi obtenue (en 6C) , la phase vapeur constituant ladite phase vapeur qui est envoyée au dernier stade de compression.
3. Procédé suivant la revendication 1, caractérisé en ce qu'on refroidit et on condense partiellement au voisinage de la température ambiante (en 47, Figure 2 : 3C, Figure 4) le gaz issu du dernier stade de compression (1C) , on détend (en 49) la phase liquide obtenue, et on refroidit la tête de l'appareil de distillation (5) au moyen de cette phase liquide détendue.
4. Procédé suivant la revendication 3, caractérisé en ce qu'on opère une déphlegmation du gaz issu du dernier stade de compression (1C) pendant son refroidissement.
5. Procédé suivant la revendication 3 ou 4, caractérisé en ce qu'on effectue (en 58) un échange de chaleur indirect entre le liquide résultant du refroidissement du gaz issu du dernier stade de compression (1C) et la vapeur de tête de l'appareil de distillation (5) avant d'envoyer cette vapeur au dernier étage de compression (1C) et de détendre ledit liquide (en 49) .
6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on pompe (en 4) une partie au moins du condensât du premier stade de compression (1A) jusqu'à la pression de sortie du deuxième stade de compression (IB) , et on le mélange (en 2B) au gaz issu de ce deuxième stade de compression.
7. Procédé suivant l'une quelconque des revendications 1 à 6, pour la liquéfaction de gaz naturel contenant de l'azote, caractérisé en ce qu'on sous-refroidit (en 60) le gaz naturel liquéfié résultant de la réfrigération (en 7, 8) puis désazoté (en 13) , par échange de chaleur avec du gaz naturel liquéfié non désazoté détendu (en 37) .
8. Procédé suivant l'une quelconque des revendications 1 à 7, pour la liquéfaction de gaz naturel contenant de l'azote, caractérisé en ce qu'on effectue (en 63) une desazotation primaire du gaz naturel sous sa pression de traitement dans une colonne auxiliaire (63) , on détend à une pression intermédiaire (en 67) une partie du gaz naturel liquéfié ayant subi cette desazotation primaire, on vaporise le liquide ainsi détendu en refroidissant la tête (64) de la colonne auxiliaire, ce qui produit un gaz combustible sous la pression intermédiaire, on envoie ce gaz combustible à une turbine à gaz (70) d'entraînement du compresseur (1) , et on traite le reste du gaz naturel liquéfié ayant subi la desazotation primaire ainsi que la vapeur de tête de la colonne auxiliaire (63) dans une colonne (13) de desazotation finale sous basse pression produisant en cuve le gaz naturel liquéfié désazoté destiné à être stocké (en 14) .
9. Installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel, du type comprenant un circuit frigorifique à cascade incorporée intégrale dans lequel circule un mélange frigorigène et qui comporte un compresseur (1) à au moins deux étages (1A à 1C) dont au moins les étages intermédiaires (1A, IB ; 1A, IB, 1D) sont pourvus chacun d'un réfrigérant (3A, 3B ; 3A, 3B, 3D) , et une ligne d'échange thermique (7, 8), caractérisée en ce qu'elle comprend un appareil (5) de distillation alimenté par l'avant-dernier étage (IB ; 1D) du compresseur et dont la tête est reliée à l'aspiration du dernier étage (1C) du compresseur, et des moyens (24, 6C ; 47, 49 ; 58 à 60) pour refroidir la tête de l'appareil de distillation (5) au moyen d'un liquide ayant une température nettement inférieure à la température ambiante.
10. Installation suivant la revendication 9, caractérisée en ce que lesdits moyens (24, 6C) de refroidissement de la tête de l'appareil de distillation comprennent des passages de refroidissement (24) de la partie chaude (8) de la ligne d'échange thermique (7) , et un pot séparateur (6C) dont le fond est relié au sommet de l'appareil de distillation (5) et le sommet, à l'aspiration du dernier étage de compression (1C) .
11. Installation suivant la revendication 9, caractérisée en ce que lesdits moyens (47, 49) comprennent un dispositif (3C ; 47) de refroidissement aux environs de la température ambiante du gaz issu du dernier étage (1C) du compresseur (1) , et une vanne (49) de détente du liquide issu de ce dispositif de refroidissement, la sortie de cette vanne étant reliée au sommet de l'appareil de distillation (5).
12. Installation suivant la revendication 11, caractérisée en ce que le dispositif de refroidissement (47) est un déphlegmateur.
13. Installation suivant la revendication 11 ou 12, caractérisée en ce qu'il est prévu un échangeur de chaleur auxiliaire (58) pour mettre en relation d'échange thermique indirect le liquide issu du dispositif de refroidissement (47) et la vapeur de tête de l'appareil de distillation (5).
14. Installation suivant l'une quelconque des revendications 9 à 13, caractérisée en ce qu'un pot séparateur (6B) est interposé entre le réfrigérant (3A) du premier étage (1A) du compresseur (1) et le deuxième étage (IB) de ce compresseur, et en ce qu'il est prévu une pompe (4) dont l'aspiration est reliée au fond de ce pot séparateur et dont le refoulement est relié au refoulement du deuxième étage du compresseur.
15. Installation suivant l'une quelconque des revendications 9 à 14, pour la liquéfaction de gaz naturel contenant de l'azote, caractérisée en ce qu'elle comprend une colonne de desazotation (13) et un échangeur de sous-refroidissement (60) adapté pour sous-refroidir le gaz naturel liquéfié désazoté issu de la cuve de cette colonne par échange de chaleur avec le gaz naturel non désazoté détendu (en 37) .
16. Installation suivant l'une quelconque des revendications 9 à 15, pour la liquéfaction de gaz naturel contenant de l'azote, caractérisée en ce qu'elle comprend une colonne de desazotation (63) alimentée par du gaz naturel sous sa pression de traitement et comportant un condenseur de tête (64) alimenté par du liquide de cuve de cette colonne détendu (en 67) à une pression intermédiaire, une turbine à gaz (69) alimentée par le gaz résultant de la vaporisation de ce liquide de cuve détendu, et une colonne (13) de desazotation finale sous basse pression produisant en cuve le gaz naturel liquéfié désazoté destiné à être stocké (en 14) .
17. Installation suivant l'une quelconque des revendications 9 à 16, caractérisée en ce que la ligne d'échange thermique (7) est constituée de deux échangeurs à plaques (8, 9) en série, notamment de même longueur, reliés l'un à l'autre par des dômes d'extrémité (42, 43) et éventuellement soudés ensemble bout à bout.
PCT/FR1994/000380 1993-04-09 1994-04-05 Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel WO1994024500A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP94913137A EP0644996B1 (fr) 1993-04-09 1994-04-05 Procede et installation de refroidissement d'un gaz, notamment pour la liquefaction de gaz naturel
US08/347,365 US5535594A (en) 1993-04-09 1994-04-05 Process and apparatus for cooling a fluid especially for liquifying natural gas
CA002136755A CA2136755C (fr) 1993-04-09 1994-04-05 Procede et installation pour refroidir un fluide, notamment pour liquefier le gaz naturel
JP52281294A JP3559283B2 (ja) 1993-04-09 1994-04-05 流体を冷却する,とくに天然ガスを液化する方法及び装置
AU65404/94A AU669628C (en) 1993-04-09 1994-04-05 Fluid cooling process and plant, especially for natural gas liquefaction
DE69415454T DE69415454T2 (de) 1993-04-09 1994-04-05 Verfahren und anlage zur kühlung eines fluids, insbesondere für die verflüssigung von erdgas
NO944701A NO308969B1 (no) 1993-04-09 1994-12-06 FremgangsmÕte og installasjon for avkjøling av et fluid, spesielt for kondensering av narurgass
US08/644,484 US5613373A (en) 1993-04-09 1996-05-10 Process and apparatus for cooling a fluid especially for liquifying natural gas
HK98113695A HK1012700A1 (en) 1993-04-09 1998-12-16 Gas cooling process and plant especially for natural gas liquefaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/04276 1993-04-09
FR9304276A FR2703762B1 (fr) 1993-04-09 1993-04-09 Procédé et installation de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel.

Publications (1)

Publication Number Publication Date
WO1994024500A1 true WO1994024500A1 (fr) 1994-10-27

Family

ID=9445963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/000380 WO1994024500A1 (fr) 1993-04-09 1994-04-05 Procede et installation de refroidissement d'un fluide, notamment pour la liquefaction de gaz naturel

Country Status (13)

Country Link
US (2) US5535594A (fr)
EP (1) EP0644996B1 (fr)
JP (1) JP3559283B2 (fr)
AT (1) ATE175019T1 (fr)
CA (1) CA2136755C (fr)
DE (1) DE69415454T2 (fr)
DZ (1) DZ1768A1 (fr)
ES (1) ES2125448T3 (fr)
FR (1) FR2703762B1 (fr)
HK (1) HK1012700A1 (fr)
NO (1) NO308969B1 (fr)
RU (1) RU2121637C1 (fr)
WO (1) WO1994024500A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723125A3 (fr) * 1994-12-09 1997-04-16 Kobe Steel Ltd Procédé de liquéfaction de gaz et échangeur de chaleur utilisé
EP0818661A1 (fr) * 1996-07-12 1998-01-14 Gaz De France (Service National) Procédé et installation perfectionnés de refroidissement, en particulier pour la liquéfaction de gaz naturel
WO2000029797A1 (fr) * 1998-11-18 2000-05-25 Shell Internationale Research Maatschappij B.V. Installation de liquefaction de gaz naturel
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY118329A (en) * 1995-04-18 2004-10-30 Shell Int Research Cooling a fluid stream
US5657643A (en) * 1996-02-28 1997-08-19 The Pritchard Corporation Closed loop single mixed refrigerant process
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
DE19722490C1 (de) 1997-05-28 1998-07-02 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
GB9712304D0 (en) * 1997-06-12 1997-08-13 Costain Oil Gas & Process Limi Refrigeration cycle using a mixed refrigerant
US6044902A (en) * 1997-08-20 2000-04-04 Praxair Technology, Inc. Heat exchange unit for a cryogenic air separation system
MY117548A (en) 1998-12-18 2004-07-31 Exxon Production Research Co Dual multi-component refrigeration cycles for liquefaction of natural gas
US7310971B2 (en) * 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
FR2807826B1 (fr) 2000-04-13 2002-06-14 Air Liquide Echangeur vaporisateur-condenseur du type a bain
US6564578B1 (en) 2002-01-18 2003-05-20 Bp Corporation North America Inc. Self-refrigerated LNG process
US6705113B2 (en) 2002-04-11 2004-03-16 Abb Lummus Global Inc. Olefin plant refrigeration system
US6637237B1 (en) * 2002-04-11 2003-10-28 Abb Lummus Global Inc. Olefin plant refrigeration system
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7287294B2 (en) * 2003-10-24 2007-10-30 Harry Miller Co., Inc. Method of making an expandable shoe
US7266976B2 (en) * 2004-10-25 2007-09-11 Conocophillips Company Vertical heat exchanger configuration for LNG facility
CN101160375B (zh) 2005-03-16 2012-11-28 弗尔科有限责任公司 用于生产合成烃化合物的系统、方法及组合物
EP1715267A1 (fr) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Elimination en deux étapes de l'azote présent dans du gaz naturel liquéfié
US7415840B2 (en) * 2005-11-18 2008-08-26 Conocophillips Company Optimized LNG system with liquid expander
CN101443616B (zh) * 2006-05-15 2012-06-20 国际壳牌研究有限公司 液化烃物流的方法和设备
JP5147845B2 (ja) * 2006-09-22 2013-02-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素流の液化方法
JP5530180B2 (ja) * 2006-10-11 2014-06-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭化水素流を冷却する方法及び装置
US20090071190A1 (en) * 2007-03-26 2009-03-19 Richard Potthoff Closed cycle mixed refrigerant systems
WO2009010558A2 (fr) * 2007-07-19 2009-01-22 Shell Internationale Research Maatschappij B.V. Procédé et dispositif pour récupérer et fractionner un flux d'alimentation d'hydrocarbures mélangés
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
WO2009101127A2 (fr) 2008-02-14 2009-08-20 Shell Internationale Research Maatschappij B.V. Procédé et appareil pour refroidir un courant d'hydrocarbures
US20100175425A1 (en) * 2009-01-14 2010-07-15 Walther Susan T Methods and apparatus for liquefaction of natural gas and products therefrom
DE102010011052A1 (de) * 2010-03-11 2011-09-15 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoff-reichen Fraktion
EP2369279A1 (fr) 2010-03-12 2011-09-28 Ph-th Consulting AG Procédé de refroidissement ou de liquéfaction d'un flux riche en hydrocarbures et installation d'exécution de celui-ci
KR101341798B1 (ko) * 2012-08-10 2013-12-17 한국과학기술원 천연가스 액화시스템
RU2525285C1 (ru) * 2013-07-09 2014-08-10 Андрей Владиславович Курочкин Устройство для охлаждения и сепарации компрессата
CN104048478B (zh) * 2014-06-23 2016-03-30 浙江大川空分设备有限公司 高提取率和低能耗污氮气提纯氮气的设备及其提取方法
CA2855383C (fr) * 2014-06-27 2015-06-23 Rtj Technologies Inc. Procede et disposition pour produire du methane liquefie a partir de diverses sources de gaz
US9759480B2 (en) 2014-10-10 2017-09-12 Air Products And Chemicals, Inc. Refrigerant recovery in natural gas liquefaction processes
US9816752B2 (en) 2015-07-22 2017-11-14 Butts Properties, Ltd. System and method for separating wide variations in methane and nitrogen
CA2903679C (fr) 2015-09-11 2016-08-16 Charles Tremblay Procede et systeme de controle du debit massique de methane pour la production de methane liquefie
FR3045797A1 (fr) * 2015-12-17 2017-06-23 Engie Procede de liquefaction du gaz naturel a l'aide d'un cycle a melange refrigerant avec colonne a distiller du refrigerant munie d'un rebouilleur
FR3045798A1 (fr) 2015-12-17 2017-06-23 Engie Procede hybride de liquefaction d'un gaz combustible et installation pour sa mise en œuvre
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
GB201718485D0 (en) 2017-11-08 2017-12-20 Triple Red Ltd Water purification device
MX2022002972A (es) 2019-10-08 2022-04-06 Air Prod & Chem Sistema de intercambio de calor y metodo de montaje.
US11378333B2 (en) 2019-12-13 2022-07-05 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands
US11650009B2 (en) 2019-12-13 2023-05-16 Bcck Holding Company System and method for separating methane and nitrogen with reduced horsepower demands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747359A (en) * 1969-08-01 1973-07-24 Linde Ag Gas liquefaction by a fractionally condensed refrigerant
EP0117793A1 (fr) * 1983-02-08 1984-09-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel
EP0500355A1 (fr) * 1991-02-21 1992-08-26 Ugland Engineering A/S Transport de gaz à pétrole non-traité

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2292203A1 (fr) * 1974-11-21 1976-06-18 Technip Cie Procede et installation pour la liquefaction d'un gaz a bas point d'ebullition
FR2471566B1 (fr) * 1979-12-12 1986-09-05 Technip Cie Procede et systeme de liquefaction d'un gaz a bas point d'ebullition
FR2471567B1 (fr) * 1979-12-12 1986-11-28 Technip Cie Procede et systeme de refrigeration d'un fluide a refroidir a basse temperature
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3747359A (en) * 1969-08-01 1973-07-24 Linde Ag Gas liquefaction by a fractionally condensed refrigerant
EP0117793A1 (fr) * 1983-02-08 1984-09-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel
EP0500355A1 (fr) * 1991-02-21 1992-08-26 Ugland Engineering A/S Transport de gaz à pétrole non-traité

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723125A3 (fr) * 1994-12-09 1997-04-16 Kobe Steel Ltd Procédé de liquéfaction de gaz et échangeur de chaleur utilisé
US5813250A (en) * 1994-12-09 1998-09-29 Kabushiki Kaisha Kobe Seiko Sho Gas liquefying method and heat exchanger used in gas liquefying method
EP0818661A1 (fr) * 1996-07-12 1998-01-14 Gaz De France (Service National) Procédé et installation perfectionnés de refroidissement, en particulier pour la liquéfaction de gaz naturel
FR2751059A1 (fr) * 1996-07-12 1998-01-16 Gaz De France Procede et installation perfectionnes de refroidissement, en particulier pour la liquefaction de gaz naturel
US5943881A (en) * 1996-07-12 1999-08-31 Gaz De France (G.D.F.) Service National Cooling process and installation, in particular for the liquefaction of natural gas
US6389844B1 (en) 1998-11-18 2002-05-21 Shell Oil Company Plant for liquefying natural gas
WO2000029797A1 (fr) * 1998-11-18 2000-05-25 Shell Internationale Research Maatschappij B.V. Installation de liquefaction de gaz naturel
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10502483B2 (en) 2010-03-17 2019-12-10 Chart Energy & Chemicals, Inc. Integrated pre-cooled mixed refrigerant system and method
US10480851B2 (en) 2013-03-15 2019-11-19 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
NO944701L (no) 1994-12-06
EP0644996B1 (fr) 1998-12-23
NO944701D0 (no) 1994-12-06
EP0644996A1 (fr) 1995-03-29
CA2136755C (fr) 2005-06-14
ATE175019T1 (de) 1999-01-15
DZ1768A1 (fr) 2002-02-17
JPH07507864A (ja) 1995-08-31
JP3559283B2 (ja) 2004-08-25
DE69415454T2 (de) 1999-05-06
HK1012700A1 (en) 1999-08-06
CA2136755A1 (fr) 1994-10-27
US5613373A (en) 1997-03-25
AU669628B2 (en) 1996-06-13
FR2703762B1 (fr) 1995-05-24
NO308969B1 (no) 2000-11-20
AU6540494A (en) 1994-11-08
US5535594A (en) 1996-07-16
FR2703762A1 (fr) 1994-10-14
ES2125448T3 (es) 1999-03-01
DE69415454D1 (de) 1999-02-04
RU2121637C1 (ru) 1998-11-10
RU94046343A (ru) 1996-11-10

Similar Documents

Publication Publication Date Title
EP0644996B1 (fr) Procede et installation de refroidissement d'un gaz, notamment pour la liquefaction de gaz naturel
EP1639062B1 (fr) Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.
EP0687353B1 (fr) Procede et appareil de liquefaction d'un gaz naturel
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP0504029B1 (fr) Procédé de production d'oxygène gazeux sous pression
EP0768502B1 (fr) Procédé et dispositif de liquéfaction et de traitement d'un gaz naturel
EP0818661B1 (fr) Procédé et installation perfectionnés de refroidissement, en particulier pour la liquéfaction de gaz naturel
FR2772896A1 (fr) Procede de liquefaction d'un gaz notamment un gaz naturel ou air comportant une purge a moyenne pression et son application
EP1118827B1 (fr) Procédé de liquéfaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
JP2006504928A (ja) 天然ガス液化用モータ駆動コンプレッサシステム
NO341516B1 (no) Fremgangsmåte og apparat for kondensering av naturgass
EP1352203A1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
FR2571129A1 (fr) Procede et installation de fractionnement cryogenique de charges gazeuses
EP0117793B1 (fr) Procédé et installation de refroidissement d'un fluide, notamment de liquéfaction de gaz naturel
EP0605262B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
FR2764972A1 (fr) Procede de liquefaction d'un gaz naturel a deux etages interconnectes
FR2829401A1 (fr) Procede et installation de fractionnement de gaz de la pyrolyse d'hydrocarbures
FR2743140A1 (fr) Procede et dispositif de liquefaction en deux etapes d'un melange gazeux tel qu'un gaz naturel
WO2005073651A1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
CA2154984A1 (fr) Procede et installation de production d'oxygene gazeux sous pression a debit variable
WO1985003072A1 (fr) Procede et installation de recuperation des hydrocarbures les plus lourds d'un melange gazeux
FR2723183A1 (fr) Procede et installation de liquefaction d'hydrogene
FR2479846A1 (fr) Procede de refrigeration, pour la recuperation ou le fractionnement d'un melange compose principalement de butane et propane, contenu dans un gaz brut, par utilisation d'un cycle mecanique exterieur
EP0641982B1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
EP2417411B1 (fr) Procede et systeme frigorifique pour la recuperation de la froideur du methane par des fluides frigorigenes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA GB JP NO RU TT US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2136755

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994913137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08347365

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994913137

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994913137

Country of ref document: EP