EP0640753B1 - Système de refroidissement pour un moteur à combustion interne - Google Patents

Système de refroidissement pour un moteur à combustion interne Download PDF

Info

Publication number
EP0640753B1
EP0640753B1 EP94108811A EP94108811A EP0640753B1 EP 0640753 B1 EP0640753 B1 EP 0640753B1 EP 94108811 A EP94108811 A EP 94108811A EP 94108811 A EP94108811 A EP 94108811A EP 0640753 B1 EP0640753 B1 EP 0640753B1
Authority
EP
European Patent Office
Prior art keywords
temperature
expansion element
heating
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94108811A
Other languages
German (de)
English (en)
Other versions
EP0640753A1 (fr
Inventor
Gerhart Huemer
Norbert Dembinski
Günter Ranzinger
Josef Krowiorz
Jochem Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0640753A1 publication Critical patent/EP0640753A1/fr
Application granted granted Critical
Publication of EP0640753B1 publication Critical patent/EP0640753B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/13Ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/64Number of revolutions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • F01P2025/66Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to a cooling system for an internal combustion engine a motor vehicle with a radiator and a Thermostatic valve with which the temperature of the coolant in a warm-up mode, a mixed mode and one Cooler operation is adjustable, the thermostatic valve contains an expansion element that is used to reduce the Coolant temperature is electrically heated.
  • the thermostatic valve regulates the flow of the coolant between the internal combustion engine and the radiator such that during the warm-up operation that of the internal combustion engine coming coolants essentially bypassing the cooler through a short circuit to Internal combustion engine flows back that during mixed operation the coolant coming from the internal combustion engine partly through the cooler and partly through flows back through the short circuit to the internal combustion engine and that during cooler operation that from Combustion coolant coming essentially flows back through the cooler to the internal combustion engine.
  • the electrical heating of the expansion element serves to enlarge the opening cross-section to the cooler towards one by the temperature of the coolant conditional opening cross section.
  • a cooling system for example from DE 30 18 682 A1.
  • the cooling system is in an expansion element an electric heating resistor of a thermostatic valve arranged, the electrical energy through a stationary held working piston can be fed through.
  • the feed the electrical energy takes place via a control device, the coolant temperature regulated by the thermostatic valve better than a normal thermostatic valve to be able to keep constant.
  • the Actual coolant temperature measured and with a predetermined upper and with a predetermined lower temperature value compared. If the upper temperature value is reached, so the heating resistor with electrical energy supplied so that the thermostatic valve opens further, to increase the cooling capacity and thus reduce the Actual coolant temperature can be reached.
  • the invention has for its object a cooling system of the type mentioned at the outset, as simple as possible, that the operation of the internal combustion engine with respect optimized fuel consumption and emissions can be without in the event of an increased power requirement the performance of the internal combustion engine is reduced is.
  • the expansion element is designed such that the coolant temperature (T K , T Kist ) adjusts to an upper working limit temperature (T AG ) without heating the expansion element in mixed operation, and in that a control unit (18) is provided, which, depending on the detected operating and / or environmental variables (DK, n, v, T S , LAST, T Kist , LL) of the internal combustion engine (10) releases the heating of the expansion element if necessary in order to operate the Relocate cooling system to cooler operation.
  • a control unit (18) is provided, which, depending on the detected operating and / or environmental variables (DK, n, v, T S , LAST, T Kist , LL) of the internal combustion engine (10) releases the heating of the expansion element if necessary in order to operate the Relocate cooling system to cooler operation.
  • the upper working limit temperature is preferably the same the most economical operating temperature of the internal combustion engine and is slightly smaller than the maximum permissible operating temperature of the internal combustion engine.
  • the upper working limit temperature is preferably above 100 ° C, especially at approx. 105 ° C.
  • the maximum allowable Operating temperature is the highest possible temperature with which the internal combustion engine in normal operation for longer Time can be operated without problems. Thereby even if the electrical heating of the Expansion element damage to the internal combustion engine prevented.
  • the maximum permissible is usually Operating temperature between 105 ° C and 120 ° C.
  • expansion element If the expansion element is not heated electrically, there is only one opening cross-section to the radiator depending on the coolant temperature a. This cross-section of the opening regulates the Coolant temperature to the defined upper working limit temperature.
  • Expansion element e.g. by selecting an appropriate one temperature-dependent material and a suitable con. structural design, designed so that at the defined upper working limit of the opening cross section the cooler is not yet maximum, d. H. no pure cooler operation is achieved. So through additional heating of the expansion element another Enlargement of the opening cross-section and thus one Relocation in the direction of the cooler operation possible.
  • the highest possible operating temperature of the internal combustion engine reached is for example due to less friction the power consumption of the internal combustion engine less, whereby lower fuel consumption and exhaust gas composition can improve.
  • a lower coolant temperature level requires quickly to this coolant temperature level being able to switch over depends on the operating and / or environmental variables electrical energy the heatable Expansion element supplied in the sense that increased cooling capacity by opening the thermostatic valve is obtained and thus a reduced Coolant temperature is reached quickly. Too high coolant or engine temperatures with increased performance requirements would result in a reduced degree of filling and thus lead to reduced performance.
  • the controller preferably locks the heating or the supply of electrical Energy to the expansion element when the sensed Actual temperature of the coolant below a predetermined Target temperature is.
  • the specified target temperature is always below the defined upper one Working limit temperature. This ensures that a control of the coolant temperature in the direction of a reduced temperature levels is only made if a minimum temperature has already been reached.
  • control system releases or blocks the heating of the expansion element depending on the vehicle speed.
  • idling can be determined when the motor vehicle is at a standstill, whereupon cooling may become necessary due to the lack of a headwind and thus the heating of the expansion element is released.
  • the controller releases or blocks the heating of the expansion element depending on the speed of the internal combustion engine, the throttle valve opening angle and / or the load state of the internal combustion engine.
  • the control unit (18) can compare the actual load state (LAST) and / or the actual throttle valve opening angle (DK) and / or the actual speed (n) with a predetermined threshold value and release the heating of the expansion element if this threshold value is exceeded.
  • the load state of the internal combustion engine can be determined, for example, by the speed of the internal combustion engine in connection with the opening angle of the throttle valve without height correction or in connection with the air mass in the intake tract with height correction.
  • a target temperature of the coolant as a function of the throttle valve angle and the rotational speed can also be determined in the form of a map.
  • the control gives the heating of the expansion element free if the actual temperature of the intake air or the Ambient temperature above a specified value lies. This ensures that at high outside temperatures for example when driving slowly, when idling one at a standstill or during stop-and-go operation Overheating of the internal combustion engine is prevented.
  • the target temperature of the coolant is indicated by a or several tables, characteristic curves and / or maps depending taken from several company and environmental variables. For example, to create a Coolant temperature map of a variety of operating points, e.g. by the values of the speed of the Internal combustion engine, the throttle valve opening angle and / or the vehicle speed are defined, individual Assigned coolant temperatures. The feed the electrical energy to the expansion element is released, if the target temperature taken from the map below the current actual temperature of the coolant lies. With this training it is possible to Coolant temperature at every operating point or operating state to optimize the internal combustion engine.
  • control unit heats the expansion element only after a given company size or environmental size hysteresis and / or according to a predetermined one Delay time releases when the heating of the Expanding element releasing condition is met.
  • control unit heats the expansion element only after a specified company size or environmental variable hysteresis and / or according to a predetermined Delay time locks when the heating of the expansion element blocking condition is met. For example, at a target temperature above the actual temperature is the supply of electrical energy to the expansion element only after a predetermined temperature hysteresis and / or after a predetermined delay time blocked.
  • a further advantageous embodiment of the invention exists according to the subject matter of claim 6 in that the each predetermined target temperature essentially by one depending on the company and / or environmental parameters permissible maximum temperature of the coolant is determined becomes.
  • the intention of this embodiment according to the invention is that to optimize fuel consumption and the highest possible exhaust gas emissions Operating temperature of the internal combustion engine set which, however, depends on the current load of the internal combustion engine is determined only so high that damage to the internal combustion engine or loss of performance is avoided due to overheating.
  • releasing the feed electrical energy or heating is not mandatory an actual switching on of the energy supply for Consequence.
  • a release can only be one on one certain condition-based switch-on option.
  • Actual switch-on can be, for example, from a logical combination of several by different Operating and environmental parameters caused switch-on options depend.
  • the term blocking can also be used as a blocking option based on an individual condition or as actual switching off can be understood.
  • the cooling system shown in Fig. 1 for an internal combustion engine 10 contains a radiator 11. Between the internal combustion engine 10 and the radiator 11 is a coolant pump 12 attached that a flow of the coolant in generates the direction shown by arrows. From the coolant outlet of the internal combustion engine 10 leads a flow line 13 to the coolant inlet of the radiator 11. From Coolant outlet of the cooler 11 leads to the coolant inlet of the internal combustion engine 10 a return line 14. In the return line 14 is a thermostatic valve 15 with an expansion element, not shown here arranged. One branches off from the supply line 13 Short circuit line 16 to the thermostatic valve 15.
  • the cooling system essentially works in three operating modes.
  • a first mode of operation the so-called warm-up mode especially after the cold start of the internal combustion engine 10
  • the thermostatic valve 15 is set so that coming from the engine 10 Coolant flow over the short-circuit line 16 essentially completely returned to the internal combustion engine 10 becomes.
  • the Cooling system in mixed operation, d. H. that of the internal combustion engine 10 coming coolant partially runs through the radiator 11 and partly back via the short-circuit line 16 to the internal combustion engine 10.
  • the cooling system works in cooler mode, d. H. that from Internal combustion engine 10 will essentially coolant completely through the cooler 11 to Internal combustion engine 10 returned.
  • the cooling system can be operated by heating the Expansion element of the thermostatic valve 15 via a electrical line 17 in the direction of cooling operation adjusted or switched completely to cooler operation will. This reduces the temperature level of the Coolant compared to that with an operation without Heating of the expansion element reached the temperature level. Then the heating is done via the electrical line 17 interrupted again, so the cooler now Coolant the expansion element of the thermostatic valve 15 from until it reaches a regulated end position in mixed operation occupies so that the coolant temperature back to a Final temperature is raised.
  • the regulated final temperature in mixed operation according to the invention on the upper Working limit temperature set.
  • the supply of the thermostatic valve 15 with electrical Energy via line 17 is supplied by a control unit 18 causes several signals of company and / or environmental variables receives and evaluates.
  • a temperature sensor 19 arranged, which detects the actual temperature of the coolant and transmitted to the control unit 18.
  • the intake pipe of the internal combustion engine 10 is another Temperature sensor 20 arranged, the temperature the intake air (fresh air) detected and to the Control device 18 passes on.
  • the Control device 18 in a known electronic Motor control 21 integrated, for example to a the "Motronic" trademark from Robert Bosch GmbH distributed electronic engine control.
  • the motor controller 21 provides signals for the detection of Operating and environmental parameters, such as vehicle speed, the ambient temperature, the speed of the Internal combustion engine and / or the throttle valve opening angle, to disposal. Furthermore, the Engine control 21 the load state of the internal combustion engine 10 from the detected signals. The load state is, for example directly or indirectly from the position of Throttle valve, from the speed and / or the air mass in Intake pipe determined. Depending on the control unit 18 obtained signals is, for example, a target temperature of the coolant determined. If this target temperature is lower than the actual temperature of the coolant, the expansion element of the thermostatic valve 15 over the line 17 heated.
  • Operating and environmental parameters such as vehicle speed, the ambient temperature, the speed of the Internal combustion engine and / or the throttle valve opening angle
  • Coolant temperature control shown where the heating is actually switched on of the expansion element ("heat expansion element") via a particularly advantageous logical link several individual conditions related to different Operating and environmental variables of the motor vehicle controlled becomes.
  • control logic is for example in the Control unit 18 is stored, the control unit 18 for example in an already existing control unit integrated or a separate integrated component in the Thermostatic valve itself can be.
  • the operating and environmental variables throttle valve opening angle DK, engine speed n, actual temperature of the coolant T Kist , vehicle speed v and intake air temperature T S which are present, for example, in the form of sensor signals, are processed to control the coolant temperature.
  • status signals which were formed from a combination of the individual sensor signals or the operating and environmental variables can also be processed in the control system.
  • a status signal is the idle signal LL when the vehicle is at a standstill, this signal being formed, for example, from the vehicle speed v and the engine speed n.
  • the sensor signals throttle valve opening angle DK and engine speed n are used to determine the setpoint temperature T Ksoll of the coolant from a characteristic map K at the operating points determined by the throttle valve opening angle DK and the engine speed n.
  • the target temperature of the coolant T Ksoll determined in this way is compared with the actual temperature of the coolant T Kist . If the actual temperature T Kist is greater than the target temperature T Ksoll , the heating of the expansion element is released.
  • a release corresponds to a release option F (circled), not necessarily an actual heating.
  • a hysteresis element VT it is observed in a hysteresis element VT whether the difference ⁇ T between the actual and target temperature changes by more than a predetermined difference ⁇ T H. Only then is the release option F for heating the expansion element maintained. For this purpose, a logic high signal is emitted at the output of the hysteresis element VT. This output signal of the hysteresis element VT is fed to the inputs of the AND gates AND-1 and AND-3.
  • a logic corresponds in general High signal of a release option F.
  • Further release options F for switching on the heating of the expansion element are generated as a function of the intake air temperature T S.
  • the heating of the expansion element depending on the intake air temperature T S should only be released if at least one of the three thresholds TS1, TS2 and TS3 is exceeded.
  • a logic high signal is sent to the AND gate AND-1
  • a logic high signal is sent to the AND gate UND-2
  • a logic high signal is sent to the AND gate UND-2
  • the third threshold TS3 is exceeded a logic signal High signal sent to the AND gate UND-3.
  • the release option F for heating the expansion element can also depend on a vehicle speed threshold VS of the vehicle speed v being exceeded, whereupon a logic high signal is output from the output of a further hysteresis element VV to a second input of the AND gate UND-2.
  • a logic high signal is output from the output of a further hysteresis element VV to a second input of the AND gate UND-2.
  • the hysteresis elements VT and VV can also be time delay elements be or connected with time delay elements will.
  • the outputs of the AND gates UND-1 to AND-3 are three Inputs of an OR gate OR connected. If on the Output line of at least one AND gate a logic High signal is also present at the output of the OR gate a release option F in the form of a logical high signal generated.
  • a time delay element ⁇ t on Output of the OR gate can be provided through the one Release option F at the output of the OR gate only then actual heating of the expansion element leads, if this release option F is present for a predetermined time ⁇ t, in order to keep a constant and to prevent the heating from being switched off.
  • the vehicle speed threshold VS is preferably a vehicle speed v at which the internal combustion engine is subjected to high thermal loads.
  • the thresholds TS1 to TS3 of the intake air temperature T S are coordinated, for example, depending on the country version of the vehicle or the type of combustion engine or cooler.
  • the threshold TS3 will, for example, be lower than the thresholds TS1 and TS2, since in connection with the idling of the engine, in which no additional cooling occurs due to the wind, more cooling is required than, for example, at high vehicle speeds. Therefore, for example, the threshold TS2, which is designed in conjunction with the vehicle speed threshold VS, will be higher than the thresholds TS1 and TS3, since additional cooling occurs due to the wind at higher vehicle speeds.
  • vehicle and intake air temperature thresholds will be empirically determined in trials. It is important, for example, in very cold ambient or intake air temperatures (for example in “northern countries”) to control the cooler operation as a function of the intake or ambient temperature in order to counter thermal shock of the internal combustion engine. At. very hot ambient or intake air temperatures (eg in "tropical countries”) can regulate the coolant temperature depending on the intake or ambient temperature, a weakness in hot idling or Stop-and-go operations can be avoided.
  • the invention also at one to one Release option F leading fulfillment of only one of the in Fig. 2 conditions actually heating can be switched on. That is, for example the points marked with circled F in FIG. 2 each one directly with the switch-on device the heating of the expansion element can be connected.
  • FIG. 3 shows a diagram of the course of the coolant temperature T K over time t at part load and full load, as can be achieved by means of the cooling system according to the invention.
  • the expansion element of the thermostatic valve 15 is designed, for example, by the composition of the expansion material to an upper working limit temperature T AG , which here is a coolant temperature of approximately 105 ° C. in the regulated mixed operation. This temperature is shown with an upper line.
  • T AG which here is a coolant temperature of approximately 105 ° C. in the regulated mixed operation. This temperature is shown with an upper line.
  • a temperature level of 105 ° C in the partial load range is expedient in order to reduce fuel consumption by reducing friction or the like and at the same time to improve the exhaust gas composition.
  • the coolant temperature should always be as hot as possible to optimize consumption, but should be cool to improve the filling in the case of performance requirements in the full-load range.
  • the coolant temperature T K is brought to the temperature level of 105 ° C with a higher temperature gradient dT / dt than is possible with other cooling systems in warm-up mode and then in mixed mode during part-load operation.
  • the expansion element of the thermostatic valve 15 is heated exclusively by the coolant temperature T K.
  • the expansion element is designed so that at 105 ° C here the possible adjustment path of the valve or the maximum possible opening cross section has not yet been set.
  • the expansion element can be heated so strongly, for example, that a maximum opening cross-section to the cooler is set in order to cool down as quickly as possible, thereby completely switching to cooler operation.
  • a temperature level of approx. 70 ° C is reached after a short cooling time. If the operation of the internal combustion engine 10 goes from full load at point E back to partial load, the supply of electrical energy to the expansion element is interrupted.
  • the now cooler coolant which flows around the expansion element, cools the expansion material and causes the thermostatic valve to be adjusted again by the expansion element solely as a function of the coolant temperature T K.
  • the thermostatic valve then regulates the coolant temperature T K and thus the temperature of the internal combustion engine 10 to the temperature level of 105 ° C.
  • Cooling the coolant temperature T K in full-load operation to, for example, a temperature level of approximately 70 ° C. has the advantage that the internal combustion engine 10 can then provide the full power. It is thus avoided that, due to an excessively high temperature, a lower degree of filling during combustion is obtained, which leads to a reduction in performance.
  • the regulated lowering of the coolant temperature T K by heating the expansion element can also be regulated depending on various other operating and / or environmental variables of the motor vehicle.
  • Full load can be recognized, for example, by variables such as the vehicle speed, the engine speed or the throttle valve angle. For example, it is also sensible to lower the coolant temperature T K by heating the expansion element at very low vehicle speeds or when the vehicle is idling and at a standstill as well as at high outside temperatures, when driving uphill or in trailer operation.
  • the load state LAST can in turn be determined, for example, as a function of the throttle valve opening angle and the speed or the air mass in the intake pipe.
  • the one determined by two company sizes Setpoint temperature of the coolant assigned to the operating point can be calculated or empirically determined by experiment will. It is also possible to set a target temperature of the Coolant depending on several maps determine the different farm and / or environmental sizes process the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (6)

  1. Système de refroidissement pour un moteur à combustion interne d'un véhicule à moteur avec un radiateur et une vanne thermostatique, avec laquelle on peut régler la température de l'agent de refroidissement dans un mode de fonctionnement en échauffement, un mode de fonctionnement en mélange et un mode de fonctionnement en refroidissement, la vanne thermostatique contenant un élément en une matière dilatable, que l'on peut chauffer électriquement pour réduire la température de l'agent de refroidissement, la température de l'agent de refroidissement (TK, Tkist) s'établissant, grâce à la conception de l'élément en une matière dilatable, sans chauffer l'élément en une matière dilatable en mode de fonctionnement de mélange à une température finale, et une unité de commande (18)étant prévue, unité qui libère le chauffage de l'élément en une matière dilatable en fonction des paramètres détectés de fonctionnement et/ou de l'environnement (DK, n, v, TS, LAST, Tkist, LL) du moteur à combustion interne (10), pour déplacer le mode de fonctionnement du système de refroidissement vers le mode de fonctionnement en refroidissement,
    caractérisé en ce que
    la température finale réglée sans chauffage de l'élément en une matière dilatable, représente la température limite supérieure de travail (TAG)et est prédéfinie dans le mode de fonctionnement à charge partielle et
    dans le mode de fonctionnement à pleine charge on prédéfinit pour libérer le chauffage de l'élément en une matière dilatable une température de consigne (TKsoll), qui est plus petite que la température limite supérieure de travail (TAG).
  2. Système de refroidissement pour un moteur à combustion interne d'un véhicule à moteur avec un radiateur et une vanne thermostatique, avec laquelle on peut régler la température de l'agent de refroidissement dans un mode de fonctionnement en échauffement, un mode de fonctionnement en mélange et un mode de fonctionnement en refroidissement, la vanne thermostatique contenant un élément en une matière dilatable, que l'on peut chauffer électriquement pour réduire la température de l'agent de refroidissement, la température de l'agent de refroidissement (TK, Tkist) s'établissant, grâce à la conception de l'élément en une matière dilatable, sans chauffer l'élément en une matière dilatable en mode de fonctionnement de mélange à une température finale, et une unité de commande (18)étant prévue, unité qui libère le chauffage de l'élément en une matière dilatable en fonction des paramètres détectés de fonctionnement et/ou de l'environnement ( DK, n, v, TS, LAST, Tkist, LL) du moteur à combustion interne (10), pour déplacer le mode de fonctionnement du système de refroidissement vers le mode de fonctionnement en refroidissement,
    caractérisé en ce que
    la température finale réglée sans chauffage de l'élément en une matière dilatable, représente la température limite supérieure de travail (TAG) et est prédéfinie dans le mode de fonctionnement à charge partielle et
    l'unité de commande (18) détecte en tant que paramètre de fonctionnement la température réelle (TK, Tkist) de l'agent de refroidissement, compare cette température réelle à une température de consigne (TKsoll) déterminée par au moins l'angle d'ouverture (DK) du clapet d'étranglement et par la vitesse de rotation (n) du moteur, et libère le chauffage de l'élément en une matière dilatable quand la température réelle (Tkist) est supérieure à la température de seuil (TKsoll) et/ou
    l'unité de commande (18) détecte en tant que paramètre de fonctionnement la vitesse (v) du véhicule et la compare avec un seuil de vitesse (VS) prédéfini du véhicule et libère le chauffage de l'élément en une matière dilatable lors du dépassement du seuil de la vitesse du véhicule (VS) et/ou
    l'unité de commande (18) détecte la température réelle (TS) de l'air d'admission ou de l'air environnant, compare cette température réelle (TS) à une valeur de seuil prédéfinie (TS1; TS2; TS3) et lors du dépassement de cette valeur de seuil libère le chauffage de l'élément en une matière dilatable.
  3. Système de refroidissement selon la revendication 1, ou 2,
    caractérisé en ce que
    l'unité de commande (18) détecte en tant que paramètres de fonctionnement la vitesse de rotation (n) du moteur à combustion interne, l'angle d'ouverture (DK) du clapet d'étranglement, la vitesse (v) du véhicule et/ou l'état de la charge (LAST) du moteur à combustion interne (10) et détermine en fonction d'au moins deux de ces paramètres de fonctionnement la température de consigne (TKsoll) de l'agent de refroidissement sous la forme d'un champ caractéristique (K).
  4. Système de refroidissement selon l'une des revendications 1 à 3,
    caractérisé en ce que
    l'unité de commande (18), lorsque l'une des conditions de libération du chauffage est remplie, libère avec temporisation le chauffage de l'élément en une matière dilatable en fonction d'une hystérésis de paramètres de fonctionnement ou de paramètres de l'environnement (δvH, δTH) et/ou en fonction d'une fenêtre de temps prédéfinie (δt).
  5. Système de refroidissement selon l'une des revendications 1 à 4,
    caractérisé en ce que
    l'unité de commande (18), lorsque l'une des conditions de blocage du chauffage est remplie, bloque avec temporisation le chauffage de l'élément en une matière dilatable en fonction d'une hystérésis de paramètres de fonctionnement ou de paramètres de l'environnement (δvH, δTH) et/ou en fonction d'une fenêtre de temps prédéfinie (δt).
  6. Système de refroidissement selon l'une des revendications 1 à 5,
    caractérisé en ce que
    l'unité de commande (18) détermine de façon continue une température actuelle maximale autorisée de l'agent de refroidissement, en fonction des paramètres de fonctionnement et/ou de l'environnement (DK, n, v, TS, LAST, TKist, LL), température par laquelle est respectivement sensiblement déterminée la température de consigne (TKsoll) de l'agent de refroidissement.
EP94108811A 1993-07-19 1994-06-08 Système de refroidissement pour un moteur à combustion interne Expired - Lifetime EP0640753B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4324178 1993-07-19
DE4324178A DE4324178A1 (de) 1993-07-19 1993-07-19 Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält

Publications (2)

Publication Number Publication Date
EP0640753A1 EP0640753A1 (fr) 1995-03-01
EP0640753B1 true EP0640753B1 (fr) 1998-08-12

Family

ID=6493179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94108811A Expired - Lifetime EP0640753B1 (fr) 1993-07-19 1994-06-08 Système de refroidissement pour un moteur à combustion interne

Country Status (4)

Country Link
US (1) US5529025A (fr)
EP (1) EP0640753B1 (fr)
JP (1) JP2662187B2 (fr)
DE (2) DE4324178A1 (fr)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4401620A1 (de) * 1994-01-20 1995-07-27 Bayerische Motoren Werke Ag Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält
DE4422272A1 (de) * 1994-06-24 1996-01-04 Bayerische Motoren Werke Ag Kühlvorrichtung für einen flüssigkeitsgekühlten Verbrennungsmotor eines Kraftfahrzeuges
DE19504893B4 (de) * 1995-02-14 2004-12-30 Bayerische Motoren Werke Ag Kühlmitteltemperatur-Regelsystem für die Kühlanlage eines Verbrennungsmotors
US5657722A (en) * 1996-01-30 1997-08-19 Thomas J. Hollis System for maintaining engine oil at a desired temperature
DE19512783A1 (de) * 1995-04-05 1996-10-10 Bayerische Motoren Werke Ag Vorrichtung zur Beeinflussung der Getriebeöltemperatur in Kraftfahrzeugen
DE19519378B4 (de) 1995-05-26 2011-06-30 Bayerische Motoren Werke Aktiengesellschaft, 80809 Kühlanlage mit elektrisch regelbarem Stellglied
DE19519377A1 (de) * 1995-05-26 1996-11-28 Bayerische Motoren Werke Ag Kühlanlage mit elektrisch regelbarem Stellglied
IT1291190B1 (it) * 1997-03-13 1998-12-29 Gate Spa Sistema di raffreddamento per un motore a combustione interna, particolarmente per autoveicoli
DE19719792B4 (de) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Verfahren und Vorrichtung zur Regulierung der Temperatur eines Mediums
DE69835855T2 (de) * 1997-07-02 2007-04-19 Nippon Thermostat Co. Ltd., Kiyose Vorrichtung und Verfahren zur Kühlungsregelung für eine Brennkraftmaschine
DE19728814A1 (de) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges
DE19803884A1 (de) * 1998-01-31 1999-08-05 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte Brennkraftmaschine mit einem Kühlkreislauf mit zumindest einer Pumpe
DE19803885B4 (de) * 1998-01-31 2013-02-07 Bayerische Motoren Werke Aktiengesellschaft Kühlkreisanordnung für eine flüssigkeitsgekühlte Brennkraftmaschine
US6560527B1 (en) 1999-10-18 2003-05-06 Ford Global Technologies, Inc. Speed control method
US7398762B2 (en) 2001-12-18 2008-07-15 Ford Global Technologies, Llc Vehicle control system
US6712041B1 (en) 1999-10-18 2004-03-30 Ford Global Technologies, Inc. Engine method
DE19948249A1 (de) 1999-10-07 2001-04-26 Bayerische Motoren Werke Ag Kühlsystem für eine Brennkraftmaschine in Kraftfahrzeugen
US7249588B2 (en) 1999-10-18 2007-07-31 Ford Global Technologies, Llc Speed control method
US7299786B2 (en) 2004-02-05 2007-11-27 Ford Global Technologies Llc Vehicle control system
FR2804722B1 (fr) 2000-02-03 2002-03-08 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2804720B1 (fr) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
FR2804719B1 (fr) * 2000-02-03 2002-06-21 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
DE10012197B4 (de) * 2000-03-13 2012-02-02 Behr Thermot-Tronik Gmbh Thermomanagement für ein Kraftfahrzeug mit einem Kühlmittelkreislauf und einer Klimaanlage
FR2806444B1 (fr) * 2000-03-17 2002-06-07 Peugeot Citroen Automobiles Sa Dispositif de refroidissement d'un moteur de vehicule automobile
DE10016405A1 (de) * 2000-04-01 2001-10-11 Bosch Gmbh Robert Kühlkreislauf
US6595165B2 (en) 2000-11-06 2003-07-22 Joseph Fishman Electronically controlled thermostat
CA2325168A1 (fr) 2000-11-06 2002-05-06 Joseph Fishman Thermostat a controle electronique
US6634322B2 (en) 2001-04-12 2003-10-21 Cold Fire, Llc Heat exchanger tempering valve
JP2003003846A (ja) * 2001-06-21 2003-01-08 Aisan Ind Co Ltd エンジン冷却装置
JP3912104B2 (ja) * 2001-12-25 2007-05-09 三菱自動車工業株式会社 エンジンの冷却装置
DE50309078D1 (de) * 2002-04-15 2008-03-13 Bosch Gmbh Robert Verfahren zur steuerung und/oder regelung eines kühlsystems eines kraftfahrzeugs
DE10224063A1 (de) * 2002-05-31 2003-12-11 Daimler Chrysler Ag Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge
DE10336599B4 (de) * 2003-08-08 2016-08-04 Daimler Ag Verfahren zur Ansteuerung eines Thermostaten in einem Kühlkreislauf eines Verbrennungsmotors
ATE454544T1 (de) * 2004-02-01 2010-01-15 Behr Gmbh & Co Kg Anordnung zur kühlung von abgas und ladeluft
DE102004008170B4 (de) * 2004-02-19 2015-04-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung des Kühlkreislaufs einer Brennkraftmaschine
DE102004034066B4 (de) * 2004-07-15 2012-10-31 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Steuerung der Kühlung einer Brennkraftmaschine für Kraftfahrzeuge
US7260468B2 (en) * 2005-07-29 2007-08-21 Caterpillar Inc Control strategy for an internal combustion engine
DE102005045499B4 (de) * 2005-09-23 2011-06-30 Audi Ag, 85057 Kühlmittelkreislauf für einen Verbrennungsmotor und Verfahren zur Regelung eines Kühlmittelstroms durch einen Kühlmittelkreislauf
FR2896272B1 (fr) * 2006-01-19 2012-08-17 Renault Sas Procede et dispositif de controle de la premiere ouverture d'un thermostat regulant la temperature d'un moteur a combustion interne.
FR2901311A1 (fr) * 2006-05-16 2007-11-23 Renault Sas Procede et systeme de commande de la temperature dans un moteur
DE102006051851A1 (de) * 2006-11-03 2008-05-08 Dr.Ing.H.C. F. Porsche Ag Vorrichtung zur Regelung eines Kühlsystems einer Brennkraftmaschine
DE102007060670B4 (de) * 2007-12-17 2009-11-19 Mtu Friedrichshafen Gmbh Verfahren zur Regelung einer Brennkraftmaschine
DE102009012572B4 (de) * 2009-03-11 2014-01-02 Audi Ag Verfahren und Vorrichtung zur Steuerung eines Kühlmittelkreislaufs in einem Kraftfahrzeug
DE102011004327A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Schienenfahrzeugs
DE202011110107U1 (de) * 2011-11-17 2013-02-19 W.E.T. Automotive Systems Ag Temperier-Einrichtung
US9719407B2 (en) * 2012-08-03 2017-08-01 Ford Global Technologies, Llc Method for regulating engine temperature
JP2014101876A (ja) * 2012-11-20 2014-06-05 Hyundai Motor Company Co Ltd サーモスタットを備えたエンジンシステム
SE538356C2 (sv) * 2013-10-23 2016-05-24 Scania Cv Ab Metod och apparat för sänkning av motortemperatur i sambandmed att körpass avslutas
CN103867283B (zh) * 2014-04-02 2016-04-13 广西玉柴机器股份有限公司 柴油机智能热管理系统
JP6361323B2 (ja) * 2014-06-30 2018-07-25 日産自動車株式会社 車両用内燃機関の制御装置及び制御方法
US20160033214A1 (en) * 2014-08-04 2016-02-04 Kia Motors Corporation Universal controlling method and system for flow rate of cooling water and active air flap
GB2536249B (en) 2015-03-10 2017-11-08 Jaguar Land Rover Ltd Controller for a motor vehicle cooling system and method
DE102017200876A1 (de) * 2016-11-14 2018-05-17 Mahle International Gmbh Elektrische Kühlmittelpumpe
JP6557271B2 (ja) * 2017-03-24 2019-08-07 トヨタ自動車株式会社 内燃機関の冷却装置
CN108979835B (zh) * 2018-09-05 2024-02-13 福建林丰科技有限公司 一种柴油机水冷装置及水冷方法
FR3088960B1 (fr) * 2018-11-23 2023-12-29 Psa Automobiles Sa Procede de limitation d’une temperature de fluide de refroidissement d’un moteur thermique
CN113202677A (zh) * 2021-04-25 2021-08-03 东风富士汤姆森调温器有限公司 一种内燃机热管理的电控温控阀控制方法
CN114483283B (zh) * 2022-01-21 2024-01-12 重庆长安汽车股份有限公司 基于tmm的整车水温控制方法、系统及车辆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2456838A1 (fr) * 1979-05-18 1980-12-12 Sev Marchal Vanne a action thermostatique destinee a un circuit de refroidissement de moteur a combustion interne
JPS58124017A (ja) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd エンジンの冷却系制御装置
DE3341898A1 (de) * 1983-11-19 1985-05-30 Gustav Wahler Gmbh U. Co, 7300 Esslingen Temperaturregeleinrichtung fuer umlaufkuehlungen, insbesondere fuer brennkraftmaschinen von kraftfahrzeugen
DE3347002C1 (de) * 1983-12-24 1985-05-15 Bayerische Motoren Werke AG, 8000 München Temperaturregler-Einsatz fuer den Kuehlkreis fluessigkeitsgekuehlter Brennkraftmaschinen
US4616599A (en) * 1984-02-09 1986-10-14 Mazda Motor Corporation Cooling arrangement for water-cooled internal combustion engine
JPS62247112A (ja) * 1986-03-28 1987-10-28 Aisin Seiki Co Ltd 内燃機関の冷却系制御装置
US4666081A (en) * 1986-04-28 1987-05-19 Canadian Fram Limited Programmable thermostat and system therefor
JPS63183216A (ja) * 1987-01-23 1988-07-28 Nippon Denso Co Ltd 内燃機関の冷却液温度制御装置
DE3705232C2 (de) * 1987-02-19 1996-01-18 Wahler Gmbh & Co Gustav Verfahren und Einrichtung zur Temperaturregelung des Kühlmittels von Brennkraftmaschinen
US4744335A (en) * 1987-08-03 1988-05-17 Chrysler Motors Corporation Servo type cooling system control
DE3738412A1 (de) * 1987-11-12 1989-05-24 Bosch Gmbh Robert Vorrichtung und verfahren zur motorkuehlung
JPH0768897B2 (ja) * 1988-04-04 1995-07-26 マツダ株式会社 エンジンの冷却装置
DE4106081A1 (de) * 1991-01-08 1992-07-09 Behr Thomson Dehnstoffregler Thermostatventil zur regelung der temperatur der kuehlfluessigkeit einer brennkraftmaschine, insbesondere eines kraftfahrzeugmotors
DE4109498B4 (de) * 1991-03-22 2006-09-14 Robert Bosch Gmbh Vorrichtung und Verfahren zur Regelung der Temperatur einer Brennkraftmaschine
DE9115114U1 (de) * 1991-12-05 1992-02-20 Gustav Wahler Gmbh U. Co, 7300 Esslingen Temperaturregeleinrichtung für das Kühlmittel von Brennkraftmaschinen

Also Published As

Publication number Publication date
JPH0771251A (ja) 1995-03-14
DE59406657D1 (de) 1998-09-17
JP2662187B2 (ja) 1997-10-08
EP0640753A1 (fr) 1995-03-01
US5529025A (en) 1996-06-25
DE4324178A1 (de) 1995-01-26

Similar Documents

Publication Publication Date Title
EP0640753B1 (fr) Système de refroidissement pour un moteur à combustion interne
EP1509687B1 (fr) Procede de regulation thermique de moteur a combustion interne pour vehicules
DE4448011B4 (de) Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält
DE3601532C2 (fr)
DE112016003821B4 (de) Kühlvorrichtung und steuerungsmethode für einen verbrennungsmotor
DE3810174C2 (de) Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
EP0736703B1 (fr) Dispositif pour influer la température d'huile dans des transmissions véhiculaires
DE10155339A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
DE112016001062B4 (de) Kühlvorrichtung eines Verbrennungsmotors für ein Fahrzeug und ein Verfahren zu deren Steuerung
DE112017003025T5 (de) Kühlvorrichtung für einen Verbrennungsmotor eines Fahrzeugs und deren Steuerungsverfahren
DE10234608A1 (de) Verfahren zum Betrieb eines Kühl- und Heizkreislaufs eines Kraftfahrzeugs
EP0664383B1 (fr) Système de refroidissement pour un moteur à combustion interne
EP1524418A1 (fr) Procédé de commande d'un ventilateur avec plusieurs charactéristiques et progamme de commande pour la commande de puissance de ventilateur
WO2006066713A1 (fr) Systeme et procede pour reguler la temperature d'une huile moteur dans un moteur a combustion interne d'un vehicule automobile
DE102017108914A1 (de) Fahrzeug
DE102017109005A1 (de) Verbrennungsmotor
DE10336599B4 (de) Verfahren zur Ansteuerung eines Thermostaten in einem Kühlkreislauf eines Verbrennungsmotors
DE3430397C2 (de) Brennkraftmaschine mit Verdampfungskühlung
DE112018002922T5 (de) Kühlvorrichtung und kühlverfahren für einen verbrennungsmotor
EP1308610B1 (fr) Procédé et dispositif pour commander un système de refroidissement d'un moteur à combustion interne
EP1528232A1 (fr) Système de refroidissement pour un moteur à combustion interne d'un véhicule automobile
EP0931208A1 (fr) Procede de controle de regulation du circuit de refroidissement d'un vehicule au moyen d'une pompe hydraulique thermoregulee
EP1523612B1 (fr) Procede et dispositif de reglage de la temperature d'un fluide de refroidissement d'un moteur a combustion interne
DE19641559A1 (de) Antriebseinheit mit thermisch geregelter Wasserpumpe
EP2360041B1 (fr) Agencement de circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960507

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980814

REF Corresponds to:

Ref document number: 59406657

Country of ref document: DE

Date of ref document: 19980917

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130716

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59406657

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59406657

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140611