EP0638769B1 - Fuel injector for liquid and/or gaseous fuels and method for its operation - Google Patents

Fuel injector for liquid and/or gaseous fuels and method for its operation Download PDF

Info

Publication number
EP0638769B1
EP0638769B1 EP94110938A EP94110938A EP0638769B1 EP 0638769 B1 EP0638769 B1 EP 0638769B1 EP 94110938 A EP94110938 A EP 94110938A EP 94110938 A EP94110938 A EP 94110938A EP 0638769 B1 EP0638769 B1 EP 0638769B1
Authority
EP
European Patent Office
Prior art keywords
fuel
air
nozzle
lance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110938A
Other languages
German (de)
French (fr)
Other versions
EP0638769A2 (en
EP0638769A3 (en
Inventor
Adnan Dr. Eroglu
Franz Joos
Peter Novacek
Peter Dr. Senior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0638769A2 publication Critical patent/EP0638769A2/en
Publication of EP0638769A3 publication Critical patent/EP0638769A3/en
Application granted granted Critical
Publication of EP0638769B1 publication Critical patent/EP0638769B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel

Definitions

  • the present invention relates to the field of Combustion technology. It concerns a fuel lance for liquid and / or gaseous fuels for use in a Combustion chamber, as used for example in gas turbines finds.
  • a fuel lance of the type mentioned is known from GB-A-2021 254.
  • the air jet surrounds the fuel jets. While the fuel is through If separate pipe systems are inserted into the lance from the outside, the air Removed combustion chamber. As a result, there is no possibility of the lance outside as well as to cool the internal fuel channels and those from the nozzles protect escaping fuel from early ignition.
  • the task is for a fuel lance for liquid and / or gaseous Fuels for use in the combustion chamber of a premix burner characterizing features of claim 1 solved.
  • the essence of the invention is that for cooling the lance and for distributing the fuel through the air duct air with a temperature up to several 100 ° C, but preferably less than 600 ° C, to the air / fuel nozzle led and there as a sheath flow surrounding the fuel flow in the Combustion chamber is blown. This also ensures safe cooling of the lance at higher temperatures of the combustion air flowing past the lance or combustion gases reached.
  • a first preferred embodiment of the invention Fuel lance is characterized in that the least an air / fuel nozzle and the at least one gas nozzle circular and one behind the other common nozzle axis are arranged, and the diameter the gas nozzle is smaller than the diameter of the Air / fuel nozzle.
  • the gas flow emerging from the gas nozzle will pass through the Air / fuel nozzle surrounded by a jacket-shaped air flow. This ensures on the one hand that for the gaseous fuel gives practically the same injection route as for the liquid fuel. On the other hand supports the air flow largely independent of the amount of gas the gas injection, so that even with small gas flows the aerodynamic conditions in the combustion chamber hardly change.
  • a further preferred embodiment of the invention is thereby characterized that the gas pipe and the liquid fuel pipe in the flow direction before the at least one Air / fuel nozzle ends that the gas nozzle and liquid fuel nozzle arranged at the end of each tube and are oriented parallel to the lance axis, and that for each Air / fuel nozzle and the other nozzles a scoop-shaped Baffle is provided, which from the other Gas or liquid flows emerging through nozzles by approximately 90 ° deflects and introduces into the respective air / fuel nozzle.
  • This will help distribute and mix the liquid fuel an air powered atomizer realized in Anglo-Saxon literature as a "prefilming atomizer" is known (see also A. H. Lefebvre, Airblast Atomization, Prog.Energy Combust. Sci., Vol. 6, pp. 233-261 (1980)).
  • Fuel lance is the air duct around the downstream led around the end of the fuel lance, and in this end at least one, largely parallel to the lance axis oriented auxiliary nozzle provided through which air can flow out of the air duct into the combustion chamber.
  • auxiliary nozzle will fuel-free air in the room behind the The tip of the lance was injected to the critical point Formation of fuel-containing after-runs and / or recirculation zones to prevent.
  • Fig. 1 is a possible arrangement of a side view exemplary fuel lance according to the invention in one by a housing 3 limited combustion chamber 2 of a gas turbine or the like. (Only a partial section is shown the chamber).
  • the fuel lance 1 is in this Example with their lance axis 5 in the central axis of the Combustion chamber 2 is arranged and (as by the three long Arrows is indicated in Fig. 1) of hot combustion air flows around.
  • the fuel lance 1 is therefore the aerodynamic Conditions in the combustion chamber 2 adapted and streamlined designed. It is of an elongated lance coat 11 surrounded and on a laterally outgoing arm 4 on Housing 3 attached.
  • the support arm 4 is also streamlined designed and can in the cross section shown Have wing-like support arm profile 14.
  • the tubes include one in the axial direction internal liquid fuel pipe 7 and a the liquid fuel tube 7 concentrically in one Distance surrounding gas pipe 9.
  • the gas pipe 9 is in turn surrounded at a distance by the lance jacket 11. Due to the concentric and spaced arrangement of pipes and jacket three channels are formed, the inner liquid fuel channel 6, the gas duct 8 and the air duct 10. Die Channels take over depending on the operating mode of the fuel lance 1 different functions, based on three preferred exemplary embodiments illustrated in FIGS. 2 to 4 are to be explained in more detail.
  • Fig. 2 shows for the first embodiment in longitudinal section the lance tip used to explain various Operating cases along the lance axis 5 in two separate Halves has been divided.
  • the top half refers with the drawn currents (marked by arrows) to the operating case with exclusively gaseous fuel, the lower half to the operating case with exclusively liquid fuel.
  • a corresponding two-part Representation is the same for the other reasons Figures 3 and 4 have been chosen.
  • the inner liquid fuel tube ends in the tip of the lance 7, the gas pipe 9 and the lance jacket 11.
  • the gas pipe 9 ends up in a hemispherical pipe head 17 above, which closes the pipe.
  • the Liquid fuel pipe 7 is blunt on the inner surface of the Pipe head 17 welded (or soldered) and in this way completed at the end.
  • the lance jacket 11 encloses the pipe head 17 at a distance in the form of a hemispherical shell, so that the formed between lance jacket 11 and gas pipe 9 Air duct 10 extends into the immediate tip of the lance and encloses the pipe head 17 on the outside.
  • Each nozzle set includes one in Liquid fuel pipe 7 embedded liquid fuel nozzle 18, a gas nozzle 15 embedded in the gas pipe and one in the lance jacket 11 recessed air / fuel nozzle 12.
  • Each of the Nozzles 12, 15 and 18 are preferably circular. Your diameter are graduated with the inner liquid fuel nozzle 18 the smallest and the outer air / fuel nozzle largest diameter.
  • Number and diameter of the Liquid fuel nozzles 18 are based on that in the normal case flow rate of the liquid fuel occurring. It is make sure that the nozzle diameter is not too large the nozzles become small when solid deposits are formed do not clog. Otherwise, the number of jets of fuel injected into the combustion chamber through the nozzles not be too big, so that the aerodynamics are not around the fuel lance 1 is disturbed so far that increasingly form fuel-containing wakes behind the lance.
  • the inner liquid fuel channel 6 not used at all.
  • the flammable Gas flows through the gas channel 8 and the gas nozzle 15 and forms there a radially outward gas jet, the enters the combustion chamber 2 through the air / fuel nozzle 12.
  • cooling air with a Temperature up to several 100 ° C, but preferably less than 600 ° C, which is also sent out of the air / fuel nozzle radially emerges into the combustion chamber and the gas jet initially surrounds it as a jacket-shaped stream.
  • the cooling air has several functions: First, it cools the lance jacket 11 and forms a thermal protective jacket for the fuel channels further inside.
  • a liquid fuel usually an oil-water emulsion
  • the liquid fuel nozzle 18 out and there radially as a liquid jet ejected outside.
  • the gas channel 8 Introduced air that exits through the gas nozzle 15 and in Interaction with that also through the gas nozzle 15 penetrating liquid jet a fine atomization of the Liquid fuel in small droplets ("plain-jet airblast atomization").
  • the atomizing jet is then at the air / fuel nozzle 12 in the same way as described above, surrounded by a cooling air jacket (the also contributes to atomization) and finally into the combustion chamber 2 injected.
  • the auxiliary air in the gas duct 8 provided a further thermal shielding stage. This allows the liquid fuel in the liquid fuel channel 6 be kept at temperatures at which solid deposits be safely avoided.
  • the cooling or Auxiliary air in the lance functions: (i) It cools the lance and protects the inside Fuel channels from too high temperatures. (ii) It cools the fuel jets during injection and delays them thus heating them up, so that before self-ignition a there is sufficient mixing with the combustion air can. (iii) As auxiliary air, it drives the necessary Atomization of a liquid fuel. (iv) supports you when exiting through the air / fuel nozzles 12 as a jacket stream the mixing of the fuel jet in the combustion chamber. (v) It gets that even with low fuel flows jet system emerging from the nozzle sets upright.
  • the special arrangement of the nozzles 12, 15 and 18 achieves that, regardless of whether gaseous or liquid fuel is used, always gives the same aerodynamic configuration, i.e. that Fuel jets are injected into the combustion chamber 2 in the same way become. Because of the stable connection of the pipes 7, 9 with each other and with the lance jacket 11, the uniaxial remains Arrangement of the nozzle sets and thus the aerodynamic Receive configuration even if by different Temperature distributions thermal tensions in the lance available.
  • the air from the air duct 10 can advantageously still perform another function: in the flow direction behind
  • the tip of the lance can change for fluidic reasons basically form fuel-containing wakes that too Flashbacks or thermoacoustic vibrations (Pulsations). Such phenomena are intolerable, because they put a strain on the combustion chamber and, above all, too lead to increased pollutant emissions.
  • For their prevention is preferably a centrally in the Lance axis 5 arranged auxiliary nozzle 13 through which a fuel-free air flow from the air duct 10 in the part of the combustion chamber located behind the tip becomes. At the same time, this measure also ensures that the fuel lance 1 cooled to the foremost tip becomes.
  • FIG. 3 is another preferred embodiment reproduced for a fuel lance according to the invention.
  • 3A corresponds in its form of representation to FIG. 2;
  • Figure 3B is a partial cross section through the lance along line A-A of Fig. 3A, the area with the Liquid fuel nozzles 18 in FIG. 3A about the lance axis 5 is shown rotated.
  • the embodiment shown gives way of the Fig. 2 especially with regard to the arrangement of the Liquid fuel nozzles 18 from:
  • the nozzles 18 are not here longer with the other nozzles 12 and 15 together on a common one Nozzle axis 24 arranged, but from the lance tip moved backwards and at the same time around the Lance axis 5 rotated (Fig.
  • FIG. 3A In the upper part of FIG. 3A, as in FIG. 2, is the operating case represented with gaseous fuel in which the Liquid fuel pipe 7 is empty and is not used.
  • the injection jet is formed here completely analogously to Fig. 2.
  • the liquid fuel occurs as Jet from the liquid fuel nozzle 18 is by in Gas channel 8 led auxiliary air on the inner wall of the gas pipe 9 entrained along to the gas nozzle 15 and together there blown off with the auxiliary air through the guide tube 19, wherein atomization takes place simultaneously ("air assist atomizer").
  • Additional ring plates 20 on both sides of the liquid fuel nozzles 18 improve the flow conditions.
  • FIG. 4A again corresponds to FIG. 2 or FIG. 3A, while in FIG. 4B the special shape of the used baffles and their interaction with the nozzles will be shown.
  • 4 are the Air / fuel nozzles 12 arranged in the same place as in the exemplary embodiments from FIGS. 2 and 3.
  • the Gas pipe 9 and the liquid fuel pipe 7 end in the direction of flow even before the air / fuel nozzles 12.
  • everyone Air / fuel nozzle 12 associated gas nozzle 15 and liquid fuel nozzle 18 are at the end of each tube (9 and 7) and are oriented parallel to the lance axis 5.
  • a blade-shaped guide plate 22 is provided, which the gas exiting from the associated nozzles 15, 18 or liquid flows deflected by about 90 ° and into the respective Air / fuel nozzle 12 initiates.
  • the baffles 22 are cloverleaf around the lance axis 5 arranged around.
  • Each baffle 22 preferably runs in the area of Air / fuel nozzle 12 in a closed sheet metal ring 23 whose diameter is smaller than the diameter of the Air / fuel nozzle 12.
  • the redirected streams from the assigned Nozzles 15, 18 are so when leaving the Air / fuel nozzle 12, in turn, in the form of a jacket from an air stream surround.
  • an additional Guide tube 19 can be fitted to a safe deflection of the To ensure gas flows through the baffles 22.
  • the Baffles 22 are in the area of the nozzles (12, 15, 18) with the Lance jacket 11 firmly connected so that they are relative to Air / fuel nozzle 12 can not move.
  • the connection takes place via a tubular head 21 in the form of a hemispherical shell, the position of the pipe head 17 from FIG. 2 or FIG. 3 occupies and by means of the connecting webs already mentioned 16 is anchored to the lance jacket 11.
  • FIG. 5 Another preferred embodiment of a fuel lance according to the invention is shown in FIG. 5.
  • the gas nozzles 15 are independently in Flow direction placed in front of the other nozzles 12, 18.
  • in the Case of gas operation mixes the gas in front of the air / fuel nozzle 12 in the air duct 10 intensive with the cooling air.
  • the gas-air mixture occurs then through the air / fuel nozzle 12 into the combustion chamber out.
  • the liquid fuel flows from the liquid fuel nozzle accommodated in the tube head 17 18 past the air tube 20 directly into the air / fuel nozzle 12, where it is in the manner already described with the cooling air cooperates from the air duct 10.
  • the invention results in a fuel lance, which in the same aerodynamic configuration are gaseous and can inject liquid fuels, even at high combustion gas temperatures works safely, optimal atomization of liquid fuels allowed and by an extended Mixing process enables very low pollutant emissions.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft eine Brennstofflanze für flüssige und/oder gasförmige Brennstoffe zum Einsatz in einer Brennkammer, wie sie beispielsweise bei Gasturbinen Verwendung findet.The present invention relates to the field of Combustion technology. It concerns a fuel lance for liquid and / or gaseous fuels for use in a Combustion chamber, as used for example in gas turbines finds.

STAND DER TECHNIKSTATE OF THE ART

Für die Injektion von flüssigen und/oder gasförmigen Brennstoffen in die Brennkammer eines Vormischbrenners werden Brennstofflanzen verwendet, die in die Brennkammer hineinragen und den oder die Brennstoffe in die vorbeiströmende Verbrennungsluft in geeigneter Verteilung einbringen.For the injection of liquid and / or gaseous fuels into the combustion chamber of a premix burner Fuel lances used that protrude into the combustion chamber and the fuel or fuels in the combustion air flowing past bring in a suitable distribution.

Bei der Auslegung derartiger Brennstofflanzen sind verschiedene Forderungen zu erfüllen, die sich teilweise aus den Umgebungsbedingungen und teilweise aus den gestellten Anforderungen ergeben:

  • Die an der Brennstofflanze vorbeiströmende Verbrennungsluft hat eine Temperatur, die weitgehend unabhängig ist von der Strömung des Brennstoffes in der Lanze. Es kann notwendig sein, die Lanze selbst und auch die in ihr geführten Brennstoffe vor einer zu hohen Temperatur der Verbrennungsluft zu schützen.
  • Wenn die Brennkammer mit einem hohen Verhältnis der Brennstoffmengen zwischen Vollast und Teillast betrieben werden soll, muss dafür Sorge getragen werden, dass in jedem Betriebszustand der Brennstoff in geeigneter Verteilung vorliegt und auf dieselbe Weise in den Strom der Verbrennungsluft eingebracht und gemischt werden kann. Da die Aerodynamik des Brenners praktisch unabhängig vom Brennstoff ist, muss zur Erzielung einer optimalen Verbrennung sowohl der gasförmige als auch der flüssige Brennstoff in gleicher Weise in den Strom der Verbrennungsluft injiziert werden können.
  • Damit der Wirkungsgrad des Brenners möglicht gross wird, sollte so wenig wie möglich Träger- bzw. Hilfsluft in der Lanze verwendet werden.
  • Weiterhin ist darauf zu achten, dass sich im Bereich der Brennstofflanze möglichst keine Rezirkulationszonen oder Nachläufe bilden, die mit brennstoffhaltigen Gas gefüllt sind und zu Flammenrückschlägen oder thermoakustischen Schwingungen führen können.
  • Bei der Injektion von Flüssigbrennstoff, d.h. insbesondere Oel, muss vermieden werden, das die fein verteilte Oel-Luft-Mischung frühzeitig zündet.
  • Für die flüssigen Brennstoffe muss auch vermieden werden, dass sich im Inneren der Lanze aufgrund erhöhter Temperaturen und Verdampfen des Brennstoffes störende Ablagerungen bilden, da dies den Betrieb der Lanze auf lange Sicht beeinträchtigen oder ganz unmöglich machen könnte.
When designing such fuel lances, various requirements must be met, some of which result from the ambient conditions and some from the requirements:
  • The combustion air flowing past the fuel lance has a temperature that is largely independent of the flow of fuel in the lance. It may be necessary to protect the lance itself and the fuels it contains from excessive combustion air temperature.
  • If the combustion chamber is to be operated with a high ratio of the fuel quantities between full load and partial load, care must be taken to ensure that the fuel is available in a suitable distribution in every operating state and can be introduced and mixed in the same way into the combustion air stream. Since the aerodynamics of the burner are practically independent of the fuel, it must be possible to inject both the gaseous and the liquid fuel into the stream of combustion air in the same way in order to achieve optimal combustion.
  • So that the efficiency of the burner is as high as possible, as little carrier or auxiliary air as possible should be used in the lance.
  • It is also important to ensure that, as far as possible, no recirculation zones or wake-ups form in the area of the fuel lance that are filled with fuel-containing gas and can lead to flashbacks or thermoacoustic vibrations.
  • When injecting liquid fuel, in particular oil, it must be avoided that the finely divided oil-air mixture ignites early.
  • For the liquid fuels, it must also be avoided that interfering deposits form inside the lance due to increased temperatures and evaporation of the fuel, since this could impair the operation of the lance in the long term or make it completely impossible.

Eine Brennstofflanze der eingangs genannten Art ist bekannt aus der GB-A-2021 254. Dort wird flüssiger und/oder gasförmiger Brennstoff sowie Luft durch einen Satz konzentrisch angeordneter Düsen mit nach aussen wachsendem Durchmesser unter einem Winkel von 45° zur Lanzenachse in die Brennkammer eingedüst. Dabei umgibt der Luftstrahl die Brennstoffstrahlen. Während der Brennstoff durch separate Rohrsysteme von aussen in die Lanze eingeführt wird, wird die Luft dem Brennraum entnommen. Dadurch besteht keine Möglichkeit, die Lanze aussen sowie die innenliegenden Brennstoffkanäle zu kühlen sowie den aus den Düsen austretenden Brennstoff vor Frühzündung zu schützen.A fuel lance of the type mentioned is known from GB-A-2021 254. There is liquid and / or gaseous fuel and air by one Set of concentrically arranged nozzles with an increasing diameter injected into the combustion chamber at an angle of 45 ° to the lance axis. The air jet surrounds the fuel jets. While the fuel is through If separate pipe systems are inserted into the lance from the outside, the air Removed combustion chamber. As a result, there is no possibility of the lance outside as well as to cool the internal fuel channels and those from the nozzles protect escaping fuel from early ignition.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Es ist nun Aufgabe der Erfindung, eine Brennstofflanze sowie ein Verfahren zu deren Betrieb anzugeben, welche die og. Anforderungen erfüllen und eine sichere Injektion von gasförmigem und/oder flüssigem Brennstoff bei gleichzeitig hohem Wirkungsgrad und geringen Schadstoffemissionen gewährleisten.It is an object of the invention to provide a fuel lance and a method to indicate their operation, which the above. Meet requirements and be safe Injection of gaseous and / or liquid fuel at the same time high Ensure efficiency and low pollutant emissions.

Die Aufgabe wird bei einer Brennstofflanze für flüssige und/oder gasförmige Brennstoffe zum Einsatz in der Brennkammer eines Vormischbrenners durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The task is for a fuel lance for liquid and / or gaseous Fuels for use in the combustion chamber of a premix burner characterizing features of claim 1 solved.

Der Kern der Erfindung besteht darin, dass zum Kühlen der Lanze und zum Verteilen des Brennstoffs durch den Luftkanal Luft mit einer Temperatur bis zu mehreren 100°C, jedoch vorzugsweise von weniger als 600°C, zur Luft/Brennstoff-Düse geführt und dort als ein den Brennstoffstrom umgebender Mantelstrom in die Brennkammer geblasen wird. Hierdurch wird eine sichere Kühlung der Lanze auch bei höheren Temperaturen der an der Lanze vorbeistreichenden Verbrennungsluft bzw. Verbrennungsgase erreicht. The essence of the invention is that for cooling the lance and for distributing the fuel through the air duct air with a temperature up to several 100 ° C, but preferably less than 600 ° C, to the air / fuel nozzle led and there as a sheath flow surrounding the fuel flow in the Combustion chamber is blown. This also ensures safe cooling of the lance at higher temperatures of the combustion air flowing past the lance or combustion gases reached.

Eine erste bevorzugte Ausführungsform der erfindungsgemässen Brennstofflanze zeichnet sich dadurch aus, dass die wenigstens eine Luft/Brennstoff-Düse und die wenigstens eine Gasdüse kreisförmig ausgebildet und hintereinander auf einer gemeinsamen Düsenachse angeordnet sind, und der Durchmesser der Gasdüse kleiner ist als der Durchmesser der Luft/Brennstoff-Düse. Der aus der Gasdüse heraustretende Gasstrom wird auf diese Weise beim Durchtritt durch die Luft/Brennstoff-Düse von einem mantelförmigen Luftstrom umgeben. Hierdurch wird einerseits erreicht, dass sich für den gasförmigen Brennstoff praktisch derselbe Injektionsweg ergibt wie für den flüssigen Brennstoff. Andererseits unterstützt der Luftstrom weitgehend unabhängig von der Gasmenge die Gasinjektion, so dass sich auch bei kleinen Gasströmen die aerodynamischen Verhältnisse in der Brennkammer kaum ändern.A first preferred embodiment of the invention Fuel lance is characterized in that the least an air / fuel nozzle and the at least one gas nozzle circular and one behind the other common nozzle axis are arranged, and the diameter the gas nozzle is smaller than the diameter of the Air / fuel nozzle. The gas flow emerging from the gas nozzle will pass through the Air / fuel nozzle surrounded by a jacket-shaped air flow. This ensures on the one hand that for the gaseous fuel gives practically the same injection route as for the liquid fuel. On the other hand supports the air flow largely independent of the amount of gas the gas injection, so that even with small gas flows the aerodynamic conditions in the combustion chamber hardly change.

Besonders einfache und gleichförmige Strömungsverhältnisse innerhalb der Lanze und an den Düsen ergeben sich für die verschiedenen Brennstoffe, wenn gemäss einer zweiten bevorzugten Ausführungsform der Erfindung auch die Flüssigbrennstoffdüse zusammen mit den beiden anderen Düsen auf der gemeinsamen Düsenachse angeordnet ist, und der Durchmesser der Flüssigbrennstoffdüse kleiner ist als der Durchmesser der Gasdüse, und wenn das Flüssigbrennstoffrohr und das Gasrohr im Bereich der Düsen mit dem Lanzenmantel fest verbunden sind. Die feste Verbindung zwischen den inneren Rohren und dem Lanzenmantel sorgt dabei dafür, dass sich die Düsen in ihrer Lage zueinander auch bei thermischen Ausdehnungen praktisch nicht verschieben können.Particularly simple and uniform flow conditions within the lance and at the nozzles result for the different fuels if preferred according to a second Embodiment of the invention also the liquid fuel nozzle along with the other two nozzles on the common Nozzle axis is arranged, and the diameter of the Liquid fuel nozzle is smaller than the diameter of the Gas nozzle, and if the liquid fuel pipe and the gas pipe firmly connected to the lance jacket in the area of the nozzles are. The fixed connection between the inner tubes and the lance jacket ensures that the nozzles are in their position to each other practical even with thermal expansions cannot move.

Eine weitere bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass das Gasrohr und das Flüssigbrennstoffrohr in Strömungsrichtung vor der wenigstens einen Luft/Brennstoff-Düse enden, dass die Gasdüse und Flüssigbrennstoffdüse am Ende des jeweiligen Rohres angeordnet und parallel zur Lanzenachse orientiert sind, und dass für jede Luft/Brennstoff-Düse und die weiteren Düsen ein schaufelförmiges Leitblech vorgesehen ist, welches die aus den weiteren Düsen austretenden Gas- bzw. Flüssigkeitsströme um etwa 90° umlenkt und in die jeweilige Luft/Brennstoff-Düse einleitet. Hierdurch wird für die Verteilung und Mischung des Flüssigbrennstoffs ein luftbetriebener Zerstäuber realisiert, der in der angelsächsischen Literatur als "prefilming atomizer" bekannt ist (siehe dazu auch A. H. Lefebvre, Airblast Atomization, Prog.Energy Combust.Sci., Vol.6, S.233-261 (1980)).A further preferred embodiment of the invention is thereby characterized that the gas pipe and the liquid fuel pipe in the flow direction before the at least one Air / fuel nozzle ends that the gas nozzle and liquid fuel nozzle arranged at the end of each tube and are oriented parallel to the lance axis, and that for each Air / fuel nozzle and the other nozzles a scoop-shaped Baffle is provided, which from the other Gas or liquid flows emerging through nozzles by approximately 90 ° deflects and introduces into the respective air / fuel nozzle. This will help distribute and mix the liquid fuel an air powered atomizer realized in Anglo-Saxon literature as a "prefilming atomizer" is known (see also A. H. Lefebvre, Airblast Atomization, Prog.Energy Combust. Sci., Vol. 6, pp. 233-261 (1980)).

Bei einer weiteren bevorzugten Ausführungsform der erfindungsgemässen Brennstofflanze ist der Luftkanal um das stromabwärts gelegene Ende der Brennstofflanze herumgeführt, und in diesem Ende wenigstens eine, weitgehend parallel zur Lanzenachse orientierte Hilfsdüse vorgesehen, durch welche Luft aus dem Luftkanal in die Brennkammer ausströmen kann. Durch die Hilfsdüse wird brennstoffreie Luft in den Raum hinter der Lanzenspitze injiziert, um an dieser kritischen Stelle die Bildung von brennstoffhaltigen Nachlaufen und/oder Rezirkulationszonen zu verhindern. In a further preferred embodiment of the inventive Fuel lance is the air duct around the downstream led around the end of the fuel lance, and in this end at least one, largely parallel to the lance axis oriented auxiliary nozzle provided through which air can flow out of the air duct into the combustion chamber. By the auxiliary nozzle will fuel-free air in the room behind the The tip of the lance was injected to the critical point Formation of fuel-containing after-runs and / or recirculation zones to prevent.

Weitere Ausführungsformen der erfindungsgemässen Brennstofflanze sowie Ausführungsformen des erfindungsgemässen Betriebsverfahrens ergeben sich aus den abhängigen Ansprüchen.Further embodiments of the fuel lance according to the invention as well as embodiments of the operating method according to the invention result from the dependent claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren näher erläutert werden. Es zeigen

Fig. 1
in der Seitenansicht eine in einer Brennkammer angeordnete Brennstofflanze nach der Erfindung;
Fig. 2
im Längsschnitt die Spitze eines ersten bevorzugten Ausführungsbeispiels einer erfindungsgemässen Brennstofflanze mit den durch Pfeilen angedeuteten Gas- und Flüssigkeitsströmungen, wobei in der oberen Hälfte der Betrieb mit gasförmigem Brennstoff, und in der unteren Hälfte der Betrieb mit flüssigem Brennstoff dargestellt ist;
Fig. 3
im Längsschnitt (Fig. 3A) und teilweisen Querschnitt (Fig. 3B) ein zu Fig. 2 analoges zweites bevorzugtes Ausführungsbeispiel in den zwei Betriebsarten;
Fig. 4
im Längsschnitt (Fig. 4A) und mit separater Darstellung der Leitbleche (Fig. 4B) ein zu Fig. 2 analoges drittes bevorzugtes Ausführungsbeispiel in den zwei Betriebsarten; und
Fig. 5
ein mit Fig. 2 vergleichbares Ausführungsbeispiel, bei welchem die Gasdüsen in Strömungsrichtung vor den anderen Düsen angeordnet sind.
The invention will be explained in more detail below on the basis of exemplary embodiments in connection with the figures. Show it
Fig. 1
in the side view a fuel lance according to the invention arranged in a combustion chamber;
Fig. 2
in longitudinal section the tip of a first preferred embodiment of a fuel lance according to the invention with the gas and liquid flows indicated by arrows, the operation with gaseous fuel being shown in the upper half and the operation with liquid fuel being shown in the lower half;
Fig. 3
in longitudinal section (FIG. 3A) and partial cross section (FIG. 3B) a second preferred exemplary embodiment analogous to FIG. 2 in the two operating modes;
Fig. 4
in longitudinal section (FIG. 4A) and with a separate illustration of the guide plates (FIG. 4B), a third preferred exemplary embodiment analogous to FIG. 2 in the two operating modes; and
Fig. 5
an embodiment comparable to FIG. 2, in which the gas nozzles are arranged in the flow direction in front of the other nozzles.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

In Fig. 1 ist in Seitenansicht eine mögliche Anordnung einer beispielhaften Brennstofflanze nach der Erfindung in einer von einem Gehäuse 3 begrenzten Brennkammer 2 einer Gasturbine oder dgl. dargestellt (gezeigt ist dabei nur ein Teilausschnitt der Kammer). Die Brennstofflanze 1 ist in diesem Beispiel mit ihrer Lanzenachse 5 in der Mittelachse der Brennkammer 2 angeordnet und wird (wie durch die drei langen Pfeile in Fig. 1 angedeutet ist) von heisser Verbrennungsluft umströmt. Die Brennstofflanze 1 ist daher den aerodynamischen Verhältnissen in der Brennkammer 2 angepasst und strömungsgünstig gestaltet. Sie ist von einem länglichen Lanzenmantel 11 umgeben und über einen seitlich abgehenden Tragarm 4 am Gehäuse 3 befestigt. Der Tragarm 4 ist ebenfalls strömungsgünstig gestaltet und kann im eingezeichneten Querschnitt ein flügelähnliches Tragarmprofil 14 aufweisen.In Fig. 1 is a possible arrangement of a side view exemplary fuel lance according to the invention in one by a housing 3 limited combustion chamber 2 of a gas turbine or the like. (Only a partial section is shown the chamber). The fuel lance 1 is in this Example with their lance axis 5 in the central axis of the Combustion chamber 2 is arranged and (as by the three long Arrows is indicated in Fig. 1) of hot combustion air flows around. The fuel lance 1 is therefore the aerodynamic Conditions in the combustion chamber 2 adapted and streamlined designed. It is of an elongated lance coat 11 surrounded and on a laterally outgoing arm 4 on Housing 3 attached. The support arm 4 is also streamlined designed and can in the cross section shown Have wing-like support arm profile 14.

Durch den Tragarm 4 und die Brennstofflanze 1 selbst verlaufen - wie durch den in Fig. 1 gezeigten aufgebrochen Teil der Lanze deutlich wird - mehrere Rohre, durch welche gasförmiger bzw. flüssiger Brennstoff und Kühl- bzw. Zerstäubungsluft zur stromabwärts gelegenen Lanzenspitze geführt und dort in einer später näher zu beschreibenden Weise durch entsprechende Luft/Brennstoff-Düsen 12 und eine Hilfsdüse 13 in die Brennkammer 2 injiziert wird. Die Rohre umfassen ein in Achsenrichtung verlaufendes, innenliegendes Flüssigbrennstoffrohr 7 und ein das Flüssigbrennstoffrohr 7 konzentrisch in einem Abstand umgebendes Gasrohr 9. Das Gasrohr 9 seinerseits ist in einem Abstand konzentrisch vom Lanzenmantel 11 umgeben. Durch die konzentrische und beabstandete Anordnung von Rohren und Mantel werden drei Kanäle gebildet, der innere Flüssigbrennstoffkanal 6, der Gaskanal 8 und der Luftkanal 10. Die Kanäle übernehmen je nach Betriebsart der Brennstofflanze 1 unterschiedliche Funktionen, die nachfolgend anhand von drei in den Figuren 2 bis 4 dargestellten bevorzugten Ausführungsbeispielen näher erläutert werden sollen.Run through the support arm 4 and the fuel lance 1 itself - As broken up by the part shown in FIG Lance becomes clear - several pipes through which gaseous or liquid fuel and cooling or atomizing air led downstream lance tip and there in a in a manner to be described in more detail later on by appropriate Air / fuel nozzles 12 and an auxiliary nozzle 13 into the combustion chamber 2 is injected. The tubes include one in the axial direction internal liquid fuel pipe 7 and a the liquid fuel tube 7 concentrically in one Distance surrounding gas pipe 9. The gas pipe 9 is in turn surrounded at a distance by the lance jacket 11. Due to the concentric and spaced arrangement of pipes and jacket three channels are formed, the inner liquid fuel channel 6, the gas duct 8 and the air duct 10. Die Channels take over depending on the operating mode of the fuel lance 1 different functions, based on three preferred exemplary embodiments illustrated in FIGS. 2 to 4 are to be explained in more detail.

Fig. 2 zeigt für das erste Ausführungsbeispiel im Längsschnitt die Lanzenspitze, die zur Erläuterung verschiedener Betriebs fälle entlang der Lanzenachse 5 in zwei separate Hälften unterteilt worden ist. Die obere Hälfte bezieht sich mit den eingezeichneten (durch Pfeile markierten) Strömungen auf den Betriebsfall mit ausschliesslich gasförmigem Brennstoff, die untere Hälfte auf den Betriebsfall mit ausschliesslich flüssigem Brennstoff. Eine entsprechende zweigeteilte Darstellung ist aus denselben Gründen auch bei den anderen Figuren 3 und 4 gewählt worden.Fig. 2 shows for the first embodiment in longitudinal section the lance tip used to explain various Operating cases along the lance axis 5 in two separate Halves has been divided. The top half refers with the drawn currents (marked by arrows) to the operating case with exclusively gaseous fuel, the lower half to the operating case with exclusively liquid fuel. A corresponding two-part Representation is the same for the other reasons Figures 3 and 4 have been chosen.

Von links kommend enden in der Lanzenspitze das innere Flüssigbrennstoffrohr 7, das Gasrohr 9 und der Lanzenmantel 11. Das Gasrohr 9 geht am Ende in einen halbkugelförmigen Rohrkopf 17 über, der das Rohr abschliesst. Das Flüssigbrennstoffrohr 7 ist stumpf auf die Innenfläche des Rohrkopfes 17 geschweisst (oder gelötet) und auf diese Weise zum Ende hin abgeschlossen. Der Lanzenmantel 11 umschliesst den Rohrkopf 17 in einem Abstand in Form einer Halbkugelschale, so dass der zwischen Lanzenmantel 11 und Gasrohr 9 gebildete Luftkanal 10 bis in die unmittelbare Lanzenspitze reicht und den Rohrkopf 17 aussen umschliesst. Zwischen dem Rohrkopf 17 und der vorderen Halbkugel schale des Lanzenmantels 11 sind eine Mehrzahl von Verbindungsstegen 16 eingeschweisst oder - gelötet. Auf diese Weise bilden die beiden Rohre 7 und 9 und der Lanzenmantel 11 im Bereich der Lanzenspitze eine stabile, fest verbundene Einheit, die eine durch thermische Ausdehnung verursachte Verschiebung der Rohre untereinander verhindert.Coming from the left, the inner liquid fuel tube ends in the tip of the lance 7, the gas pipe 9 and the lance jacket 11. The gas pipe 9 ends up in a hemispherical pipe head 17 above, which closes the pipe. The Liquid fuel pipe 7 is blunt on the inner surface of the Pipe head 17 welded (or soldered) and in this way completed at the end. The lance jacket 11 encloses the pipe head 17 at a distance in the form of a hemispherical shell, so that the formed between lance jacket 11 and gas pipe 9 Air duct 10 extends into the immediate tip of the lance and encloses the pipe head 17 on the outside. Between the pipe head 17 and the front hemisphere shell of the lance shell 11 are welded a plurality of connecting webs 16 or - soldered. In this way, the two tubes 7 and 9 and the lance jacket 11 in the area of the lance tip has a stable, firmly connected unit which is due to thermal expansion prevents displacement of the pipes among themselves.

Im Bereich der Rohrenden sind mehrere (vorzugsweise 4) Sätze von Düsen vorgesehen, die jeweils entlang einer senkrecht (oder schräg) zur Lanzenachse 5 stehenden Düsenachse 24 angeordnet sind. Die Düsensätze sind entlang dem Umfang der Brennstofflanze 1 nach Anzahl und Winkelabstand so verteilt, dass sie bei einem vorgegebenen Sekundärmuster der Brennkammerströmung eine optimale Vermischung unter Vermeidung von Nachläufen gewährleisten. Jeder Düsensatz umfasst eine im Flüssigbrennstoffrohr 7 eingelassene Flüssigbrennstoffdüse 18, eine im Gasrohr eingelassene Gasdüse 15 und eine im Lanzenmantel 11 eingelassene Luft/Brennstoff-Düse 12. Jede der Düsen 12, 15 und 18 ist vorzugsweise kreisrund. Ihre Durchmesser sind abgestuft, wobei die innere Flüssigbrennstoffdüse 18 den kleinsten und die äussere Luft/Brennstoff-Düse den grössten Durchmesser aufweist. Zahl und Durchmesser der Flüssigbrennstoffdüsen 18 richten sich nach der im Normalfall auftretenden Durchflussmenge des Flüssigbrennstoffs. Es ist dabei darauf zu achten, dass die Düsendurchmesser nicht zu klein werden damit die Düsen bei der Bildung von festen Ablagerungen nicht verstopfen. Im übrigen darf die Anzahl der durch die Düsen in die Brennkammer injizierten Brennstoffstrahlen nicht zu gross sein, damit nicht die Aerodynamik um die Brennstofflanze 1 herum so weit gestört wird, dass sich vermehrt brennstoffhaltige Nachläufe hinter der Lanze bilden.There are several (preferably 4) sets in the area of the pipe ends provided by nozzles, each along a perpendicular (or at an angle) to the lance axis 5 standing nozzle axis 24 are. The nozzle sets are along the perimeter of the Fuel lance 1 distributed according to number and angular distance, that they have a given secondary combustion chamber flow pattern optimal mixing while avoiding Ensure wakes. Each nozzle set includes one in Liquid fuel pipe 7 embedded liquid fuel nozzle 18, a gas nozzle 15 embedded in the gas pipe and one in the lance jacket 11 recessed air / fuel nozzle 12. Each of the Nozzles 12, 15 and 18 are preferably circular. Your diameter are graduated with the inner liquid fuel nozzle 18 the smallest and the outer air / fuel nozzle largest diameter. Number and diameter of the Liquid fuel nozzles 18 are based on that in the normal case flow rate of the liquid fuel occurring. It is make sure that the nozzle diameter is not too large the nozzles become small when solid deposits are formed do not clog. Otherwise, the number of jets of fuel injected into the combustion chamber through the nozzles not be too big, so that the aerodynamics are not around the fuel lance 1 is disturbed so far that increasingly form fuel-containing wakes behind the lance.

Bei dem in der oberen Hälfte von Fig. 2 dargestellten Betriebsfall mit reiner Gasinjektion wird der innere Flüssigbrennstoffkanal 6 überhaupt nicht verwendet. Das brennbare Gas strömt durch den Gaskanal 8 und die Gasdüse 15 und bildet dort einen radial nach aussen gerichteten Gasstrahl, der durch die Luft/Brennstoff-Düse 12 in die Brennkammer 2 tritt. Gleichzeitig wird durch den Luftkanal 10 Kühlluft mit einer Temperatur bis zu mehreren 100°C, jedoch vorzugsweise weniger als 600°C, geschickt, die ebenfalls aus der Luft/Brennstoff-Düse radial in die Brennkammer austritt und den Gasstrahl zunächst als mantelförmiger Strom umgibt. Die Kühlluft hat dabei mehrere Funktionen: Zum einen kühlt sie den Lanzenmantel 11 und bildet einen thermischen Schutzmantel für die weiter innenliegenden Brennstoffkanäle. Zum anderen erzeugt sie an der Luft/Brennstoff-Düse 12 einen stabilen, gleichbleibenden Luftstrahl, unabhängig davon, wieviel Gas durch die Lanze eingespeist wird ,so dass selbst bei geringen Durchflussmengen von gasförmigem Brennstoff die Konfiguration der Injektionsstrahlen weitgehend unverändert bleibt. Schliesslich ermöglicht und unterstützt der Mantel relativ kühler Luft eine für eine effiziente Verbrennung notwendige, ausreichend lange Durchmischung des gasförmigen Brennstoffes mit der Verbrennungsluft in der Brennkanmer 2, weil eine frühzeitige Selbstzündung des Gemisches sicher vermieden wird.In the operating case shown in the upper half of FIG. 2 with pure gas injection, the inner liquid fuel channel 6 not used at all. The flammable Gas flows through the gas channel 8 and the gas nozzle 15 and forms there a radially outward gas jet, the enters the combustion chamber 2 through the air / fuel nozzle 12. At the same time through the air duct 10 cooling air with a Temperature up to several 100 ° C, but preferably less than 600 ° C, which is also sent out of the air / fuel nozzle radially emerges into the combustion chamber and the gas jet initially surrounds it as a jacket-shaped stream. The cooling air has several functions: First, it cools the lance jacket 11 and forms a thermal protective jacket for the fuel channels further inside. Secondly, generated they on the air / fuel nozzle 12 a stable, constant Air jet, no matter how much gas through the lance is fed so that even at low Flow rates of gaseous fuel configuration the injection jets remain largely unchanged. Finally, the coat allows and supports relatively cool air is necessary for efficient combustion, sufficiently long mixing of the gaseous fuel with the combustion air in the combustion chamber 2 because one early ignition of the mixture safely avoided becomes.

Bei dem in Fig. 2 in der unteren Hälfte dargestellten Betriebsfall mit reiner Flüssigbrennstoffinjektion wird durch den inneren Flüssigbrennstoffkanal 6 ein flüssiger Brennstoff, meist eine Oel-Wasser-Emulsion, zur Flüssigbrennstoffdüse 18 geführt und dort als Flüssigkeitsstrahl radial nach aussen ausgestossen. Durch den Gaskanal 8 wird in diesem Fall Luft herangeführt, die durch die Gasdüse 15 austritt und in Wechselwirkung mit dem gleichfalls durch die Gasdüse 15 durchtretenden Flüssigkeitsstrahl eine feine Zerstäubung des Flüssigbrennstoffs in lauter kleine Tröpfchen bewirkt ("plain-jet airblast atomization"). Der Zerstäubungsstrahl wird dann an der Luft/Brennstoff-Düse 12 in gleicher Weise wie oben beschrieben von einem Kühlluftmantel umgeben (der auch zur Zerstäubung beiträgt) und endgültig in die Brennkammer 2 injiziert. Zusätzlich zu der Kühlung durch die im Luftkanal 10 strömende Luft wird durch die Hilfsluft im Gaskanal 8 eine weitere thermische Abschirmstufe zur Verfügung gestellt. Hierdurch kann der Flüssigbrennstoff im Flüssigbrennstoffkanal 6 auf Temperaturen gehalten werden, bei denen feste Ablagerungen sicher vermieden werden.In the operating case shown in Fig. 2 in the lower half with pure liquid fuel injection is through the inner liquid fuel channel 6 is a liquid fuel, usually an oil-water emulsion, to the liquid fuel nozzle 18 out and there radially as a liquid jet ejected outside. Through the gas channel 8 in this case Introduced air that exits through the gas nozzle 15 and in Interaction with that also through the gas nozzle 15 penetrating liquid jet a fine atomization of the Liquid fuel in small droplets ("plain-jet airblast atomization"). The atomizing jet is then at the air / fuel nozzle 12 in the same way as described above, surrounded by a cooling air jacket (the also contributes to atomization) and finally into the combustion chamber 2 injected. In addition to cooling through the air duct 10 flowing air is through the auxiliary air in the gas duct 8 provided a further thermal shielding stage. This allows the liquid fuel in the liquid fuel channel 6 be kept at temperatures at which solid deposits be safely avoided.

Wie aus den obigen Darlegungen hervorgeht, hat die Kühl- bzw. Hilfsluft in der erfindungsgemässen Lanze gleichzeitig mehrere Funktionen: (i) Sie kühlt die Lanze und schützt die innenliegenden Brennstoffkanäle vor zu hohen Temperaturen. (ii) Sie kühlt bei der Injektion die Brennstoffstrahlen und verzögert damit deren Erhitzung, so dass vor der Selbstzündung eine ausreichende Durchmischung mit der Verbrennungsluft stattfinden kann. (iii) Sie treibt als Hilfsluft die notwendige Zerstäubung eines Flüssigbrennstoffes. (iv) Sie unterstützt beim Austritt durch die Luft/Brennstoff-Düsen 12 als Mantelstrom die Vermischung des Brennstoffstrahles in der Brennkammer. (v) Sie erhält auch bei geringen Brennstoffströmen das aus den Düsensätzen austretende Strahlsystem aufrecht.As can be seen from the above explanations, the cooling or Auxiliary air in the lance according to the invention several at the same time Functions: (i) It cools the lance and protects the inside Fuel channels from too high temperatures. (ii) It cools the fuel jets during injection and delays them thus heating them up, so that before self-ignition a there is sufficient mixing with the combustion air can. (iii) As auxiliary air, it drives the necessary Atomization of a liquid fuel. (iv) supports you when exiting through the air / fuel nozzles 12 as a jacket stream the mixing of the fuel jet in the combustion chamber. (v) It gets that even with low fuel flows jet system emerging from the nozzle sets upright.

Beim all diesen Vorgängen wird durch die spezielle Anordnung der Düsen 12, 15 und 18 erreicht, dass sich, unabhängig davon, ob gasförmiger oder flüssiger Brennstoff verwendet wird, stets dieselbe aerodynamische Konfiguration ergibt, d.h., die Brennstoffstrahlen in gleicher Weise in die Brennkammer 2 injiziert werden. Wegen der stabilen Verbindung der Rohre 7, 9 untereinander und mit dem Lanzenmantel 11 bleibt die einachsige Anordnung der Düsensätze und damit die aerodynamische Konfiguration auch dann erhalten, wenn durch unterschiedliche Temperaturverteilungen thermische Spannungen in der Lanze vorhanden sind.In all of these processes, the special arrangement of the nozzles 12, 15 and 18 achieves that, regardless of whether gaseous or liquid fuel is used, always gives the same aerodynamic configuration, i.e. that Fuel jets are injected into the combustion chamber 2 in the same way become. Because of the stable connection of the pipes 7, 9 with each other and with the lance jacket 11, the uniaxial remains Arrangement of the nozzle sets and thus the aerodynamic Receive configuration even if by different Temperature distributions thermal tensions in the lance available.

Die Luft aus dem Luftkanal 10 kann vorteilhafterweise noch eine weitere Funktion übernehmen: In Strömungsrichtung hinter der Lanzenspitze können sich aus strömungstechnischen Gründen grundsätzlich brennstoffhaltige Nachläufe bilden, die zu Flammenrückschlägen oder thermoakustischen Schwingungen (Pulsationen) führen. Derartige Erscheinungen sind nicht tolerierbar, weil sie die Brennkammer belasten und vor allem zu erhöhten Schadstoffemissionen führen. Zu ihrer Verhinderung wird an der Lanzenspitze vorzugsweise eine zentral in der Lanzenachse 5 angeordnete Hilfsdüse 13 vorgesehen, durch die ein brennstoffreier Luftstrom aus dem Luftkanal 10 in den hinter der Spitze liegenden Teil der Brennkammer injiziert wird. Zugleich wird mit dieser Massnahme auch erreicht, dass die Brennstofflanze 1 bis in die vorderste Spitze gekühlt wird. The air from the air duct 10 can advantageously still perform another function: in the flow direction behind The tip of the lance can change for fluidic reasons basically form fuel-containing wakes that too Flashbacks or thermoacoustic vibrations (Pulsations). Such phenomena are intolerable, because they put a strain on the combustion chamber and, above all, too lead to increased pollutant emissions. For their prevention is preferably a centrally in the Lance axis 5 arranged auxiliary nozzle 13 through which a fuel-free air flow from the air duct 10 in the part of the combustion chamber located behind the tip becomes. At the same time, this measure also ensures that the fuel lance 1 cooled to the foremost tip becomes.

In Fig. 3 ist ein weiteres bevorzugtes Ausführungsbeispiel für eine Brennstofflanze nach der Erfindung wiedergegeben. Fig. 3A entspricht dabei in seiner Darstellungsform der Fig. 2; Fig. 3B ist ein teilweiser Querschnitt durch die Lanze entlang der Linie A-A aus Fig. 3A, wobei der Bereich mit den Flüssigbrennstoffdüsen 18 in Fig. 3A um die Lanzenachse 5 verdreht dargestellt ist. Die gezeigte Ausführungsform weicht von der aus Fig. 2 vor allem hinsichtlich der Anordnung der Flüssigbrennstoffdüsen 18 ab: Die Düsen 18 sind hier nicht länger mit den anderen Düsen 12 und 15 zusammen auf einer gemeinsamen Düsenachse 24 angeordnet, sondern von der Lanzenspitze weg nach hinten verschoben und gleichzeitig um die Lanzenachse 5 gedreht (Fig. 3B), so dass ein aus Ihnen heraustretender Strahl auch nicht länger direkt durch die beiden anderen Düsen 15, 12 nach aussen tritt. Da eine starre Lage der Flüssigbrennstoffdüsen 18 zu den anderen Luft/Brennstoff-Düsen 12, 15 in diesem Fall nicht mehr nötig ist, kann das Flüssigbrennstoffrohr 7 bereits vor dem Rohrkopf 17 enden und braucht nicht am Rohrkopf 17 befestigt zu werden.3 is another preferred embodiment reproduced for a fuel lance according to the invention. 3A corresponds in its form of representation to FIG. 2; Figure 3B is a partial cross section through the lance along line A-A of Fig. 3A, the area with the Liquid fuel nozzles 18 in FIG. 3A about the lance axis 5 is shown rotated. The embodiment shown gives way of the Fig. 2 especially with regard to the arrangement of the Liquid fuel nozzles 18 from: The nozzles 18 are not here longer with the other nozzles 12 and 15 together on a common one Nozzle axis 24 arranged, but from the lance tip moved backwards and at the same time around the Lance axis 5 rotated (Fig. 3B), so that one emerging from you No longer shine directly through the two other nozzles 15, 12 to the outside. Because a rigid position of the liquid fuel nozzles 18 to the other air / fuel nozzles 12, 15 is no longer necessary in this case, it can Liquid fuel pipe 7 ends before the pipe head 17 and does not need to be attached to the pipe head 17.

Eine weitere Abweichung im Bezug auf das Beispiel aus Fig. 2 ergibt sich dadurch, dass in die Gasdüsen 15 jeweils ein Leitrohr 19 eingepasst ist, welches von der Gasdüse 15 aus durch den Luftkanal 10 hindurch in die zugeordnete Luft/Brennstoff-Düse 12 hineinreicht. Hierdurch wird die bereits oben beschriebene Mantelstrombildung begünstigt, so dass ein durch das Leitrohr 19 strömender Gasstrom beim Austritt aus der Luft/Brennstoff-Düse 12 relativ geschützt in die Brennkammer 2 gelangt.Another deviation in relation to the example from FIG. 2 results from the fact that in each of the gas nozzles 15 Guide tube 19 is fitted, which from the gas nozzle 15 through the air duct 10 into the associated Air / fuel nozzle 12 extends into it. This will already Favored sheath current formation described above, so that a gas stream flowing through the guide tube 19 at the outlet from the air / fuel nozzle 12 relatively protected in the combustion chamber 2 arrives.

Im oberen Teilbild der Fig. 3A ist - wie in Fig. 2 - der Betriebsfall mit gasförmigem Brennstoff dargestellt, in dem das Flüssigbrennstoffrohr 7 leer ist und nicht benutzt wird. Die Bildung des Injektionsstrahles erfolgt hier vollkommen analog zu Fig. 2. Im unteren Teilbild ist der Betriebsfall mit Flüssigbrennstoff wiedergegeben: der Flüssigbrennstoff tritt als Strahl aus der Flüssigbrennstoffdüse 18 aus, wird durch im Gaskanal 8 herangeführte Hilfsluft an der Innenwand des Gasrohres 9 entlang zur Gasdüse 15 mitgerissen und dort zusammen mit der Hilfsluft durch das Leitrohr 19 abgeblasen, wobei gleichzeitig eine Zerstäubung stattfindet ("air assist atomizer"). Zusätzliche Ringbleche 20 auf beiden Seiten der Flüssigbrennstoffdüsen 18 verbessern dabei die Strömungsverhältnisse.In the upper part of FIG. 3A, as in FIG. 2, is the operating case represented with gaseous fuel in which the Liquid fuel pipe 7 is empty and is not used. The The injection jet is formed here completely analogously to Fig. 2. In the lower part of the picture is the operating case with liquid fuel reproduced: the liquid fuel occurs as Jet from the liquid fuel nozzle 18 is by in Gas channel 8 led auxiliary air on the inner wall of the gas pipe 9 entrained along to the gas nozzle 15 and together there blown off with the auxiliary air through the guide tube 19, wherein atomization takes place simultaneously ("air assist atomizer"). Additional ring plates 20 on both sides of the liquid fuel nozzles 18 improve the flow conditions.

Ein weiteres bevorzugtes Ausführungsbeispiel einer Brennstofflanze nach der Erfindung ist in Fig. 4 dargestellt. Fig. 4A entspricht wieder Fig. 2 bzw. Fig. 3A, während in Fig. 4B aus einer Sicht in Strömungsrichtung die besondere Form der verwendeten Leitbleche und ihr Zusammenwirken mit den Düsen gezeigt wird. Beim Ausführungsbeispiel der Fig. 4 sind die Luft/Brennstoff-Düsen 12 an derselben Stelle angeordnet wie bei den Ausführungsbeispielen aus den Figuren 2 und 3. Deutlich anders dagegen ist die Anordnung der anderen Düsen: Das Gasrohr 9 und das Flüssigbrennstoffrohr 7 enden in Strömungsrichtung bereits vor den Luft/Brennstoff-Düsen 12. Die jeder Luft/Brennstoff-Düse 12 zugeordnete Gasdüse 15 und Flüssigbrennstoffdüse 18 befinden sich am Ende des jeweiligen Rohres (9 bzw. 7) und sind parallel zur Lanzenachse 5 orientiert. Für jede Luft/Brennstoff-Düse 12 und die zugeordneten Düsen 15, 18 ist ein schaufelförmiges Leitblech 22 vorgesehen, welches die aus den zugeordneten Düsen 15, 18 austretenden Gas- bzw. Flüssigkeitsströme um etwa 90° umlenkt und in die jeweilige Luft/Brennstoff-Düse 12 einleitet. Wie man aus Fig. 4B erkennt, sind die Leitbleche 22 kleeblattartig um die Lanzenachse 5 herum angeordnet.Another preferred embodiment of a fuel lance according to the invention is shown in Fig. 4. Fig. 4A again corresponds to FIG. 2 or FIG. 3A, while in FIG. 4B the special shape of the used baffles and their interaction with the nozzles will be shown. 4 are the Air / fuel nozzles 12 arranged in the same place as in the exemplary embodiments from FIGS. 2 and 3. Clearly the arrangement of the other nozzles is different: The Gas pipe 9 and the liquid fuel pipe 7 end in the direction of flow even before the air / fuel nozzles 12. Everyone Air / fuel nozzle 12 associated gas nozzle 15 and liquid fuel nozzle 18 are at the end of each tube (9 and 7) and are oriented parallel to the lance axis 5. For each air / fuel nozzle 12 and the associated nozzles 15, 18, a blade-shaped guide plate 22 is provided, which the gas exiting from the associated nozzles 15, 18 or liquid flows deflected by about 90 ° and into the respective Air / fuel nozzle 12 initiates. As seen from Fig. 4B recognizes, the baffles 22 are cloverleaf around the lance axis 5 arranged around.

Jedes Leitblech 22 läuft vorzugsweise im Bereich der Luft/Brennstoff-Düse 12 in einem geschlossenen Blechring 23 aus, dessen Durchmesser kleiner ist als der Durchmesser der Luft/Brennstoff-Düse 12. Die umgelenkten Ströme aus den zugeordneten Düsen 15, 18 sind so beim Austreten aus der Luft/Brennstoff-Düse 12 wiederum mantelförmig von einem Luftstrom umgeben. In die Gasdüsen 15 kann jeweils zusätzlich ein Leitrohr 19 eingepasst sein, um eine sichere Umlenkung der Gasströme durch die Leitbleche 22 zu gewährleisten. Die Leitbleche 22 sind im Bereich der Düsen (12, 15, 18) mit dem Lanzenmantel 11 fest verbunden, so dass sie sich relativ zur Luft/Brennstoff-Düse 12 nicht verschieben können. Die Verbindung erfolgt über einen Rohrkopf 21 in Form einer Halbkugelschale, der die Stelle des Rohrkopfes 17 aus Fig. 2 bzw. Fig. 3 einnimmt und mittels der bereits erwähnten Verbindungsstege 16 am Lanzenmantel 11 verankert ist.Each baffle 22 preferably runs in the area of Air / fuel nozzle 12 in a closed sheet metal ring 23 whose diameter is smaller than the diameter of the Air / fuel nozzle 12. The redirected streams from the assigned Nozzles 15, 18 are so when leaving the Air / fuel nozzle 12, in turn, in the form of a jacket from an air stream surround. In each of the gas nozzles 15 an additional Guide tube 19 can be fitted to a safe deflection of the To ensure gas flows through the baffles 22. The Baffles 22 are in the area of the nozzles (12, 15, 18) with the Lance jacket 11 firmly connected so that they are relative to Air / fuel nozzle 12 can not move. The connection takes place via a tubular head 21 in the form of a hemispherical shell, the position of the pipe head 17 from FIG. 2 or FIG. 3 occupies and by means of the connecting webs already mentioned 16 is anchored to the lance jacket 11.

Im oberen Teilbild der Fig. 4 ist wiederum der reine Gasbetrieb dargestellt, bei dem das Flüssigbrennstoffrohr 7 nicht verwendet wird. Der Gasstrom tritt hier aus dem Gaskanal 8 durch das Leitrohr 19 aus, wird von dem Leitblech 22 umgelenkt, durch den Blechring 23 gebündelt und durch die Luft/Brennstoff-Düse 12 mit einem Luftstrom ummantelt in die Brennkammer ausgestossen. Beim Flüssigbrennstoffbetrieb im unteren Teilbild wird in diesem Fall der Gaskanal 8 nicht benutzt: Der aus der Flüssigbrennstoffdüse 18 austretende Strahl wird ohne Hilfsluft als Flüssigkeitsfilm an der Innenwand des Leitbleches 22 zur Luft/Brennstoff-Düse 12 geleitet und dort durch Abriss feinster Tröpfchen an der Aussenkante des Blechrings zerstäubt ("prefilmer atomizer").In the upper part of FIG. 4 is again pure gas operation shown, in which the liquid fuel tube 7 is not is used. The gas flow exits the gas channel 8 here through the guide tube 19, is deflected by the guide plate 22, bundled by the sheet metal ring 23 and by the Air / fuel nozzle 12 coated with an air stream in the Combustion chamber ejected. When operating liquid fuel in In this case, gas duct 8 is not used in the lower drawing: The one emerging from the liquid fuel nozzle 18 The jet is used as a liquid film on the inner wall without auxiliary air of the baffle 22 passed to the air / fuel nozzle 12 and there by tearing off the finest droplets on the outer edge of the sheet metal ring atomized ("prefilmer atomizer").

Ein anderes bevorzugtes Ausführungsbeispiel einer Brennstofflanze nach der Erfindung ist in der Fig. 5 dargestellt. In diesem Beispiel sind nur die Flüssigbrennstoffdüsen 18 und die entsprechenden Luft/Brennstoff-Düsen 12 in einer Düsenachse 24 angeordnet. Die Gasdüsen 15 sind unabhängig davon in Strömungsrichtung vor den anderen Düsen 12, 18 plaziert. Im Falle des Gasbetriebs (obere Hälfte der Figur) vermischt sich das Gas bereits vor der Luft/Brennstoff-Düse 12 im Luftkanal 10 intensiv mit der Kühlluft. Die Gas-Luft-Mischung tritt dann durch die Luft/Brennstoff-Düse 12 in die Brennkammer aus. Ein vor der Gasdüse 15 beginnendes und an der Gasdüse vorbeilaufendes Luftrohr 20 führt dabei brennstoffreie Kühlluft in den Kopfbereich der Lanze, wo sie zur Verhinderung von Nachlaufen durch die Hilfsdüse 13 in die Brennkammer injiziert wird. Im Falle des Flüssigbrennstoffbetriebs (unteres Teilbild von Fig. 5) strömt der Flüssigbrennstoff aus der im Rohrkopf 17 untergebrachten Flüssigbrennstoffdüse 18 am Luftrohr 20 vorbei direkt in die Luft/Brennstoff-Düse 12, wo er in der bereits beschriebenen Weise mit der Kühlluft aus dem Luftkanal 10 zusammenwirkt.Another preferred embodiment of a fuel lance according to the invention is shown in FIG. 5. In this example, only the liquid fuel nozzles 18 and the corresponding air / fuel nozzles 12 in a nozzle axis 24 arranged. The gas nozzles 15 are independently in Flow direction placed in front of the other nozzles 12, 18. in the Case of gas operation (upper half of the figure) mixes the gas in front of the air / fuel nozzle 12 in the air duct 10 intensive with the cooling air. The gas-air mixture occurs then through the air / fuel nozzle 12 into the combustion chamber out. A beginning in front of the gas nozzle 15 and at the gas nozzle passing air pipe 20 leads fuel-free Cooling air in the head area of the lance, where it is used to prevent of after-running through the auxiliary nozzle 13 into the combustion chamber is injected. In the case of liquid fuel operation (lower part of Fig. 5) the liquid fuel flows from the liquid fuel nozzle accommodated in the tube head 17 18 past the air tube 20 directly into the air / fuel nozzle 12, where it is in the manner already described with the cooling air cooperates from the air duct 10.

Insgesamt ergibt sich mit der Erfindung eine Brennstofflanze, die in derselben aerodynamischen Konfiguration gasförmige und flüssige Brennstoffe injizieren kann, auch bei hohen Brenngastemperaturen sicher arbeitet, eine optimale Zerstäubung von Flüssigbrennstoffen erlaubt und durch einen verlängerten Mischvorgang sehr niedrige Schadstoffemissionen ermöglicht.Overall, the invention results in a fuel lance, which in the same aerodynamic configuration are gaseous and can inject liquid fuels, even at high combustion gas temperatures works safely, optimal atomization of liquid fuels allowed and by an extended Mixing process enables very low pollutant emissions.

BEZEICHNUNGSLISTELIST OF DESIGNATIONS

11
BrennstofflanzeFuel lance
22nd
BrennkammerCombustion chamber
33rd
Gehäusecasing
44th
TragarmBeam
55
LanzenachseLance axis
66
FlüssigbrennstoffkanalLiquid fuel channel
77
FlüssigbrennstoffrohrLiquid fuel pipe
88th
GaskanalGas channel
99
GasrohrGas pipe
1010th
LuftkanalAir duct
1111
LanzenmantelLance coat
1212th
Luft/Brennstoff-DüseAir / fuel nozzle
1313
HilfsdüseAuxiliary nozzle
1414
TragarmprofilSupport arm profile
1515
GasdüseGas nozzle
1616
VerbindungsstegConnecting bridge
17,2117.21
RohrkopfPipe head
1818th
Flüssigbrennstoffdüse Liquid fuel nozzle
1919th
LeitrohrGuide tube
2020th
LuftrohrAir tube
2222
LeitblechBaffle
2323
BlechringSheet metal ring
2424th
DüsenachseNozzle axis

Claims (17)

  1. Fuel lance for liquid and/or gaseous fuels for use in a combustion chamber (2), which fuel lance comprises
    (a) a liquid fuel pipe (7) extending along a lance center line (5) and surrounding a liquid fuel passage (6) for carrying a liquid fuel;
    (b) a gas pipe (9) surrounding the liquid fuel pipe (7) and forming a gas passage between itself and the liquid fuel pipe (7) for carrying a gaseous fuel;
    (c) a lance outer shell (11) surrounding the gas pipe (9) and forming an air passage (10) between itself and the gas pipe (9) for carrying cooling air and atomizer air;
    (d) at least one air/fuel nozzle (12) which is provided in the side of the lance outer shell (11) at the downstream end of the fuel lance (1) and through which air can flow out of the air passage (10) into the combustion chamber (2) surrounding the fuel lance (1); whereby
    (e) arranged in the gas pipe (9), there is at least one gas nozzle (15) through which gas can flow out of the gas passage (8) through the air passage (10) and, with the air, through the at least one air/fuel nozzle (12) into the combustion chamber (2); and whereby
    (f) arranged in the liquid fuel pipe (7), there is at least one liquid fuel nozzle (18) through which liquid fuel can flow out of the liquid fuel passage (6) through the air passage (10) and, with the air, through the at least one air/fuel nozzle (12) into the combustion chamber (2).
       characterized in that
    (g) air with a temperature of up to several hundred degrees centigrade, but preferably less than 600°C, is carried through the air passage (10) to the air/fuel nozzle (12) in order to cool the lance and distribute the fuel and is there blown into the combustion chamber (2) as a flow jacketing the fuel flow.
  2. Fuel lance according to Claim 1, characterized in that the at least one air/fuel nozzle (12) and the at least one gas nozzle (15) are of circular configuration and are arranged one behind the other on a common nozzle center line (24), and the diameter of the gas nozzle (15) is smaller than the diameter of the air/fuel nozzle (12).
  3. Fuel lance according to Claim 2, characterized in that, fitted into the gas nozzle (15), there is a guide pipe (19) which extends from the gas nozzle (15) through the air passage (10) into the air/fuel nozzle (12) in such a way that a flow of gas through the guide pipe (19) is jacketed by an airflow on emergence from the air/fuel nozzle (12).
  4. Fuel lance according to either of Claims 2 and 3, characterized in that the liquid fuel nozzle (18), together with the two other nozzles (12, 15), is also arranged on the common nozzle center line (24), and the diameter of the liquid fuel nozzle (18) is smaller than the diameter of the gas nozzle (15).
  5. Fuel lance according to Claim 4, characterized in that the liquid fuel pipe (7) and the gas pipe (9) are firmly connected to the lance outer shell (11) in the region of the nozzles (12,15,18).
  6. Fuel lance according to either of Claims 2 and 3, characterized in that the liquid fuel nozzle (18) is displaced to the side relative to the gas nozzle (15) out of the nozzle center line (24), and the gas pipe (9) is firmly connected to the lance outer shell (11) in the region of the nozzles (12,15,18).
  7. Fuel lance according to either of Claims 5 and 6, characterized in that, at the downstream end of the fuel lance (1), the gas pipe (9) merges into a rounded, closed pipe end (17) which is surrounded by the air passage (10) and the lance outer shell (11) and is fastened on the lance outer shell (11) by means of a plurality of connecting webs (16) which cross the air passage (10).
  8. Fuel lance according to Claim 1, characterized in that the gas pipe (9) and the liquid fuel pipe (7) end, in the flow direction, before the at least one air/fuel nozzle (12), in that the gas nozzle (15) and the liquid fuel nozzle (18) are arranged at the end of the respective pipe (9 or 7) and are directed parallel to the lance center line (5) and in that a vane-shaped guide plate (22) is provided for each air/fuel nozzle (12) and the further nozzles (15,18), which guide plate deflects the gas and liquid flows emerging from the further nozzles (15,18) by approximately 90° and guides them into the respective air/fuel nozzle (12).
  9. Fuel lance according to Claim 8, characterized in that, in the region of the air/fuel nozzle (12), the guide plate ends in a closed sheet-metal ring (23) whose diameter is smaller than the diameter of the air/fuel nozzle (12) in such a way that the deflected flows from the further nozzles (15,18) are jacketed by an airflow on emergence from the air/fuel nozzle (12).
  10. Fuel lance according to either of Claims 8 and 9, characterized in that a guide pipe (19) is additionally fitted into the gas nozzle (15) and in that the guide plate (22) is firmly connected to the lance outer shell (11) in the region of the nozzles (12,15,18).
  11. Fuel lance according to one of Claims 1 to 10, characterized in that a plurality of nozzles, preferably four, as determined by the flow surrounding the fuel lance (1), is distributed over the periphery of the fuel lance (1).
  12. Fuel lance according to one of Claims 1 to 11, characterized in that the air passage (10) is led around the downstream end of the fuel lance (1), and at least one auxiliary nozzle (13) directed substantially parallel to the lance center line (5) is provided in this end, and air can flow out of the air passage (10) through this auxiliary nozzle (13) into the combustion chamber (2).
  13. Fuel lance according to one of Claims 1 to 12, characterized in that the fuel lance (1) is fastened on a casing (3) surrounding the combustion chamber (2) by means of a side support arm (4) with a streamlined support arm profile (14) and in that the pipes (7,9) are led out of the combustion chamber (2) within the support arm (4).
  14. Fuel lance according to Claim 1, characterized in that, in the flow direction, the at least one gas nozzle (15) is arranged before the other nozzles (12,18).
  15. Fuel lance according to Claim 14, characterized in that at least one auxiliary nozzle (13) which is directed substantially parallel to the lance center line (5) is provided at the downstream end of the fuel lance (1) and air can flow out of the air passage (10) through this auxiliary nozzle (13) into the combustion chamber (2) and in that air pipes (20) are provided by means of which fuel-free cooling air can be guided past the gas nozzle (15) to the auxiliary nozzle (13).
  16. Method of operating a fuel lance according to one of Claims 1 to 13, characterized in that the gas is carried through the gas passage (8) and the gas nozzle (15) to the air/fuel nozzle (12) and is there mixed with the airflow while the liquid fuel passage (6) remains unused.
  17. Method of operating a fuel lance according to Claim 1, characterized in that liquid fuel in the form of an emulsion is carried through the liquid fuel passage (6) and the liquid fuel nozzle (18) to the air/fuel nozzle (12) and is there mixed with the airflow and in that air is additionally carried through the gas passage (8) to the air/fuel nozzle (12) in order to provide better distribution and additional cooling of the liquid fuel.
EP94110938A 1993-08-10 1994-07-14 Fuel injector for liquid and/or gaseous fuels and method for its operation Expired - Lifetime EP0638769B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326802 1993-08-10
DE4326802A DE4326802A1 (en) 1993-08-10 1993-08-10 Fuel lance for liquid and / or gaseous fuels and process for their operation

Publications (3)

Publication Number Publication Date
EP0638769A2 EP0638769A2 (en) 1995-02-15
EP0638769A3 EP0638769A3 (en) 1995-08-16
EP0638769B1 true EP0638769B1 (en) 1999-05-26

Family

ID=6494844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110938A Expired - Lifetime EP0638769B1 (en) 1993-08-10 1994-07-14 Fuel injector for liquid and/or gaseous fuels and method for its operation

Country Status (4)

Country Link
US (1) US5487659A (en)
EP (1) EP0638769B1 (en)
JP (1) JP3672597B2 (en)
DE (2) DE4326802A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535370B4 (en) * 1995-09-25 2006-05-11 Alstom Process for low-emission premix combustion in gas turbine combustion chambers
DE19545309A1 (en) * 1995-12-05 1997-06-12 Asea Brown Boveri Premix burner
GB2307980B (en) * 1995-12-06 2000-07-05 Europ Gas Turbines Ltd A fuel injector arrangement; a method of operating a fuel injector arrangement
US5857419A (en) * 1996-06-20 1999-01-12 Selas Corporation Of America Converging burner tip
DE19730617A1 (en) * 1997-07-17 1999-01-21 Abb Research Ltd Pressure atomizer nozzle
US6178752B1 (en) * 1998-03-24 2001-01-30 United Technologies Corporation Durability flame stabilizing fuel injector with impingement and transpiration cooled tip
DE19905996A1 (en) 1999-02-15 2000-08-17 Abb Alstom Power Ch Ag Fuel lance for injecting liquid and / or gaseous fuels into a combustion chamber
DE19905995A1 (en) 1999-02-15 2000-08-17 Asea Brown Boveri Injection lance or nozzle for liquid and gaseous fuel in combustion chamber is part of secondary or tertiary burner around which flows hot gas jet in main flow direction
DE19948673B4 (en) * 1999-10-08 2009-02-26 Alstom Method for producing hot gases in a combustion device and combustion device for carrying out the method
DE10049203A1 (en) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Process for introducing fuel into a premix burner
DK3078909T3 (en) 2002-10-10 2022-08-15 Lpp Comb Llc Method for vaporizing liquid fuels for combustion
DE102004027702A1 (en) * 2004-06-07 2006-01-05 Alstom Technology Ltd Injector for liquid fuel and stepped premix burner with this injector
DE102004041272B4 (en) * 2004-08-23 2017-07-13 General Electric Technology Gmbh Hybrid burner lance
ZA200704800B (en) 2004-12-08 2008-10-29 Lpp Comb Llc Method and apparatus for conditioning liquid hydrocarbon fuels
US8387390B2 (en) 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
EP2002185B8 (en) * 2006-03-31 2016-09-14 General Electric Technology GmbH Fuel lance for a gas turbine plant and a method of operating a fuel lance
US8529646B2 (en) 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
JP2008185254A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Reverse-flow injection mechanism having coaxial fuel-air passage
US8151716B2 (en) * 2007-09-13 2012-04-10 General Electric Company Feed injector cooling apparatus and method of assembly
EP2072899B1 (en) * 2007-12-19 2016-03-30 Alstom Technology Ltd Fuel injection method
EP2116769A1 (en) 2008-05-09 2009-11-11 ALSTOM Technology Ltd Fuel lance for a burner
EP2116768B1 (en) 2008-05-09 2016-07-27 Alstom Technology Ltd Burner
EP2116767B1 (en) 2008-05-09 2015-11-18 Alstom Technology Ltd Burner with lance
EP2196733A1 (en) * 2008-12-12 2010-06-16 Siemens Aktiengesellschaft Burner lance
EP2199674B1 (en) * 2008-12-19 2012-11-21 Alstom Technology Ltd Burner of a gas turbine having a special lance configuration
EP2211110B1 (en) * 2009-01-23 2019-05-01 Ansaldo Energia Switzerland AG Burner for a gas turbine
US8281594B2 (en) * 2009-09-08 2012-10-09 Siemens Energy, Inc. Fuel injector for use in a gas turbine engine
WO2011054771A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Premixed burner for a gas turbine combustor
WO2011054760A1 (en) * 2009-11-07 2011-05-12 Alstom Technology Ltd A cooling scheme for an increased gas turbine efficiency
EP2496880B1 (en) 2009-11-07 2018-12-05 Ansaldo Energia Switzerland AG Reheat burner injection system
WO2011054757A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system with fuel lances
WO2011054766A2 (en) 2009-11-07 2011-05-12 Alstom Technology Ltd Reheat burner injection system
ES2611106T3 (en) * 2010-05-20 2017-05-04 General Electric Technology Gmbh Lance of a gas turbine burner
EP2400216B1 (en) * 2010-06-23 2014-12-24 Alstom Technology Ltd Lance of a Reheat Burner
US8850822B2 (en) 2011-01-24 2014-10-07 General Electric Company System for pre-mixing in a fuel nozzle
DE202011101763U1 (en) 2011-06-14 2011-09-30 Alstom Technology Ltd. Gas turbine with fuel lance and distribution system for the injection of liquid and / or gaseous fuels
US9243803B2 (en) 2011-10-06 2016-01-26 General Electric Company System for cooling a multi-tube fuel nozzle
US9261279B2 (en) 2012-05-25 2016-02-16 General Electric Company Liquid cartridge with passively fueled premixed air blast circuit for gas operation
EP2789915A1 (en) * 2013-04-10 2014-10-15 Alstom Technology Ltd Method for operating a combustion chamber and combustion chamber
US10288291B2 (en) * 2014-08-15 2019-05-14 General Electric Company Air-shielded fuel injection assembly to facilitate reduced NOx emissions in a combustor system
DE102014220689A1 (en) * 2014-10-13 2016-04-14 Siemens Aktiengesellschaft Fuel nozzle body
DE102015222661A1 (en) * 2015-11-17 2017-05-18 Siemens Aktiengesellschaft Flow sleeve for fuel injection with time delay
DE102017200106A1 (en) * 2017-01-05 2018-07-05 Siemens Aktiengesellschaft Burner tip with an air duct system and a fuel channel system for a burner and method for its production
US10641493B2 (en) 2017-06-19 2020-05-05 General Electric Company Aerodynamic fastening of turbomachine fuel injectors
US11813548B2 (en) 2018-04-12 2023-11-14 Resource West, Inc. Evaporator for ambient water bodies, and related system and method
GB2588136A (en) * 2019-10-09 2021-04-21 Rolls Royce Plc Fuel spray nozzle for a gas turbine engine
KR102180187B1 (en) * 2019-10-29 2020-11-18 한국수력원자력 주식회사 Steam discharging nozzle and steam discharging system having the same
BR112023023627A2 (en) * 2021-05-12 2024-01-30 Nuovo Pignone Tecnologie Srl FUEL INJECTOR AND FUEL NOZZLE FOR A GAS TURBINE AND GAS TURBINE ENGINE INCLUDING THE NOZZLE
DE102022207492A1 (en) * 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Nozzle device for adding at least one gaseous fuel and one liquid fuel, set, supply system and gas turbine arrangement

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1512132A (en) * 1923-04-13 1924-10-21 Severance Mfg Company S Gas and oil burner
US3215188A (en) * 1963-06-21 1965-11-02 Canada Steel Co Burner
FR2038651A5 (en) * 1969-03-28 1971-01-08 Stein Surface
DE2255306C3 (en) * 1972-11-11 1975-06-12 Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Aerodynamic flame holder for air-breathing jet engines
DE2641605C2 (en) * 1975-12-24 1986-06-19 General Electric Co., Schenectady, N.Y. Device for supplying air and fuel
DE2710618C2 (en) * 1977-03-11 1982-11-11 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Fuel injector for gas turbine engines
GB2021254B (en) * 1978-04-18 1982-10-27 Lucas Industries Ltd Fuel injector
JPS58190614A (en) * 1982-04-30 1983-11-07 Mitsubishi Heavy Ind Ltd Fuel injection atomizer
EP0393484B1 (en) * 1989-04-20 1992-11-04 Asea Brown Boveri Ag Combustion chamber arrangement

Also Published As

Publication number Publication date
JPH0777316A (en) 1995-03-20
DE4326802A1 (en) 1995-02-16
DE59408303D1 (en) 1999-07-01
JP3672597B2 (en) 2005-07-20
EP0638769A2 (en) 1995-02-15
US5487659A (en) 1996-01-30
EP0638769A3 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
EP0638769B1 (en) Fuel injector for liquid and/or gaseous fuels and method for its operation
EP0433790B1 (en) Burner
EP1802915B1 (en) Gas turbine burner
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
DE2417147C2 (en) Combustion chamber arrangement for gas turbines
DE102006011326B4 (en) circular burner
DE4426351A1 (en) Combustion chamber
EP0902233A1 (en) Combined pressurised atomising nozzle
DE3815382A1 (en) COMBUSTION DEVICE
DE2300217C3 (en) Injection device for injecting liquid fuel into blast furnaces
EP0718561A2 (en) Combustor
EP0433789A1 (en) Method for a premix burning of a liquid fuel
DE2808051A1 (en) COMBUSTION CHAMBER FOR A GAS TURBINE OR DGL.
CH679692A5 (en)
EP0718550A1 (en) Injection nozzle
EP0908671A1 (en) Combustion process for gaseous, liquid fuels and fuels having medium or low calorific value in a burner
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0602396B1 (en) Method of operating a heat generator
DE19507088B4 (en) premix
DE19535370B4 (en) Process for low-emission premix combustion in gas turbine combustion chambers
DE4422535A1 (en) Process for operating a furnace
DE3132948A1 (en) &#34;METHOD FOR VAPORIZING AND COMBUSTIONING LIQUID FUELS AND BURNER THEREFOR&#34;
EP0703413B1 (en) Gas turbine combustion chamber
EP0789193B1 (en) Method and apparatus for suppressing flame and pressure vibrations in a furnace
DE19704802A1 (en) Device and method for burning fuel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960125

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

17Q First examination report despatched

Effective date: 19970613

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59408303

Country of ref document: DE

Date of ref document: 19990701

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990826

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59408303

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59408303

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130624

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130731

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130712

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59408303

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140713