EP0637685B1 - Verfahren und Einrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses in einer Innenbrennkraftmaschine mit Tankentlüftungssystem - Google Patents

Verfahren und Einrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses in einer Innenbrennkraftmaschine mit Tankentlüftungssystem Download PDF

Info

Publication number
EP0637685B1
EP0637685B1 EP19940401643 EP94401643A EP0637685B1 EP 0637685 B1 EP0637685 B1 EP 0637685B1 EP 19940401643 EP19940401643 EP 19940401643 EP 94401643 A EP94401643 A EP 94401643A EP 0637685 B1 EP0637685 B1 EP 0637685B1
Authority
EP
European Patent Office
Prior art keywords
engine
adaptation
auto
air
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940401643
Other languages
English (en)
French (fr)
Other versions
EP0637685A1 (de
Inventor
Marcel Colomby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP0637685A1 publication Critical patent/EP0637685A1/de
Application granted granted Critical
Publication of EP0637685B1 publication Critical patent/EP0637685B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0042Controlling the combustible mixture as a function of the canister purging, e.g. control of injected fuel to compensate for deviation of air fuel ratio when purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2412One-parameter addressing technique
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control

Definitions

  • the invention relates to a method of self-adaptation of the richness and authorization of the purge of a purge circuit comprising a canister, for an internal combustion engine, of the spark-ignition type, equipped with a supply installation.
  • injection fuel and therefore referred to as an injection engine in the remainder of this description, and preferably, but not exclusively, with a four-stroke engine cycle.
  • the fuel supply installation of such an injection engine comprises an air intake manifold to the engine, on the upstream of which a shutter for controlling the air flow, most often in disc shape, called butterfly, is rotatably mounted in a body.
  • the injection installation comprises at least one injector delivering fuel into the intake manifold.
  • the injector or each injector is supplied with fuel at a pressure given by a regulator, which drifts towards the injector a part of the fuel which it receives from the tank by a pump, and which returns to the tank the quantity of excess fuel by compared to that injected, which is a function of the duration of opening of the injector, called injection duration, and determined by a computer connected to sensors for operating parameters of the engine.
  • the computer generally receives signals representative of the engine water or coolant temperature, the air temperature in the intake manifold, the throttle opening angle, and above all it receives engine rotation signals, supplied for example by a sensor cooperating with a toothed wheel integral with the flywheel, and having a singularity, for example a missing tooth, for detecting dead center top (TDC) of a reference cylinder, allowing the computer to determine the injection phases or times in the different cylinders, the engine speed being calculated from the signal modulated by the movement of the teeth.
  • TDC dead center top
  • the computer can also receive a pressure signal measured directly in the intake manifold, or can calculate this pressure signal from two measurements chosen from the group comprising the throttle opening angle, the air flow and engine speed.
  • This computer which determines the instant and duration of injection of each injector, is generally simultaneously an engine control computer, fulfilling other command and control functions, and determining in particular the instants of ignition of the spark plugs of the engine cylinders.
  • a basic injection duration calculated essentially as a function of the engine speed and of the pressure in the manifold, it is known to provide regulation from the oxygen sensor by correcting this injection duration basic taking into account a richness coefficient KO2, determined, in particular by applying value transitions, as a function of the richness signal of the oxygen sensor in the engine operating zones in closed loop, and fixed equal to a nominal value in the case of open-loop motor operation, for example in low temperature operation (after starting the engine cold), or in deceleration, or at full load, and finally if the engine speed is above a given high threshold.
  • a richness coefficient KO2 determined, in particular by applying value transitions, as a function of the richness signal of the oxygen sensor in the engine operating zones in closed loop, and fixed equal to a nominal value in the case of open-loop motor operation, for example in low temperature operation (after starting the engine cold), or in deceleration, or at full load, and finally if the engine speed is above a given high threshold.
  • the richness coefficient KO2 by the computer makes it possible to increase or reduce the basic injection time, to center the operation of the engine on a richness equal to 1. Furthermore, it is known to express, for a given engine speed, the basic injection duration as a substantially linear function increasing, in the useful operating range of the engine, of the absolute pressure in the intake manifold, representing the engine torque, i.e. the engine load, and neglecting correction coefficients from maps, for example as a function of engine speed, pressure in the manifold or the throttle opening angle, to reflect the inflection of the straight in an S curve, in the areas of low and high pressure in the tubing (see DE-A-3642476).
  • This substantially linear increasing function is represented by a straight line having a pressure offset at the origin, called offset, and a gain (or slope of the straight line) which are each drawn from a map, depending at least on the engine speed.
  • motor vehicles are equipped with a receptacle, called a canister, containing means for absorbing fuel vapors.
  • This canister is connected to the tank by a recovery pipe, is provided with a vent putting the fuel tank in the open air and is connected to the intake circuit, preferably downstream of the butterfly valve, by a suction pipe. on which is mounted an electrically controlled canister purge valve, the flow of which is controlled by the computer.
  • the purge circuit thus produced allows, when the valve is open, and due to the vacuum prevailing downstream of the butterfly in the pipe, to suck in ambient air through the vent, through the canister, and to purge thus the canister of the fuel that it contains by mixing it with this ambient air so that it is sucked with it in the intake circuit.
  • the electrically operated purge valve is generally a solenoid valve controlled at constant frequency, and the control parameter of which is the opening duty cycle (RCO) which is variable, that is to say the opening time , for a constant period, corresponds to a variable fraction of this period, which corresponds to the length of the slot of the electric control current applied (see US-A-4467769).
  • RCO opening duty cycle
  • the opening cyclic ratio is defined by a map based mainly on the pressure in the intake manifold and engine speed.
  • mapping does not take into account the filling state of the canister, and is therefore deliberately limited to low flow rates to reduce the contribution of the canister.
  • the purge of the canister and the self-adaptation of the offset and gain terms occur simultaneously, at all speeds: we adopt, as the self-adaptation term, an idle offset when the engine is running at idle, and, without idling , an offset except idle at low pressures, where the influence of the offset is preponderant, and a gain at high pressure.
  • the purge state is taken into account by the self-adaptation by calculating a purge offset, when the purge is authorized. Indeed, as the flow rate of the canister depends little on the pressure in a large operating range of the engine, the purging of the canister is felt as an offset and not as a gain.
  • the self-adaptation does not ensure a continuous monitoring of the contribution of the canister, and, in the operating range at high pressure of tubing, it does not suitably modulate the gain.
  • the simultaneous purging and self-adaptation is particularly disadvantageous under certain engine operating conditions, at low loads, where the overabundant supply of fuel vapor from the canister vis-à-vis the engine requirement causes excessive drift.
  • the known embodiment presented above has the drawback that the absence of a difference between the gain under purge and the gain outside purge, and the course of the first order self-adaptation under purge lead to poor first order adaptation.
  • the known method of self-adaptation of richness and authorization of purging does not allow an obvious estimate of the injection time resulting from the application of the purge offset, since the injection time applied can be less than the time minimum below which the flow characteristic of an injector is no longer linear or reproducible.
  • the multiplicative enrichments apply to the purge offset, and the adaptation of the gain under purge is an aberration.
  • the problem underlying the invention is to remedy these drawbacks.
  • only the offset or the gain is adapted respectively during self-adaptation cycles executed only in the first range or respectively the second operating range of the motor.
  • the flow rate of the purge valve is not prohibited in the operating range of the engine which extends between the first and second ranges.
  • the purge is interrupted to allow the adjustment of the offset or gain, a certain number of times, and when this maximum possible number of cycles is carried out. , the purge is then re-authorized. To allow a new self-adaptation, it is necessary to have executed the maximum allowed number of self-adaptation of the other term (gain or offset).
  • the method consists in prohibiting the flow rate of the purge valve, in replacing the self-adaptation in offset with a cyclic self-adaptation in idle offset, which is interrupted as soon as the value the idle shift after a given cycle is sufficiently close to that obtained after the previous cycle, and then authorize the flow of the purge valve.
  • the idle offset self-adaptation can be repeated cyclically until a constant value of the idle offset is obtained.
  • the subject of the invention is also a device, intended for implementing the method specific to the invention, and as presented above, and which is characterized in that the computer comprises at least one programmed microprocessor and / or carried out so as to control the progress of this process.
  • FIG. 1 is schematically shown in 1, an injection engine, four-cylinder four-stroke, and spark ignition, equipped with an indirect fuel injection system of the multipoint type.
  • This installation comprises four injectors 2 each mounted in one respectively of the four branches 3 downstream of an intake manifold 4, and each opening into the cylinder head of the engine 1, at the level of the intake valve of a cylinder corresponding.
  • a throttle valve 5 for controlling the intake air flow is rotatably mounted in a throttle body 6 in the upstream part of the pipe 4, the throttle body 6 having a bypass pipe 7 on the throttle valve 5, and the passage section is regulated by a valve shown diagrammatically at 8 and controlled by a stepping motor 9.
  • the injectors 2 are supplied with fuel under a pressure defined by the regulator 10, itself supplied from the tank 11, closed by a tight plug, by means of the pump 12 on the supply line 13 on which is also fitted the filter 14. The remainder of the quantity of fuel diverted by the regulator 10 to the injectors 2 is returned to the tank 11 by the return line 15.
  • the fuel vapors forming in the tank 11 are collected by a canister 16, containing an absorbent charge of these vapors, for example activated carbon, and connected to the tank by the recovery pipe 17.
  • the canister 16 has a vent 18, by which it puts the reservoir 11 in the open air, and is connected to the intake manifold 4, downstream of the throttle valve 5 by a suction pipe 19 on which is mounted an electrically controlled valve 20, for purging the canister 16.
  • This valve 20 is a solenoid valve normally closed at rest and with opening controlled by RCO variable.
  • the R.C.O. variable of this valve 20 therefore the purge flow of the canister 16 of the fuel vapors it contains, as well as the position of the electric stepper motor 9 are controlled by electrical commands which are transmitted to them from the computer 21 by the conductors 22 and 23.
  • the duration of opening or injection of the injectors 2 is controlled by electrical commands applied by the computer 21 to the injectors 2 by the conductor 24.
  • injection duration variable RCO, stepping motor control
  • various sensors of engine operating parameters including an air temperature signal of intake 25, delivered by a temperature probe 26 placed in the air stream, an absolute pressure signal for tubing 27 delivered by a pressure probe 28 in tubing 4, a temperature signal 29 for engine cooling water 1, supplied by a sensor (not shown), and an engine rotation signal 30, making it possible to determine the engine speed, as well as the passages at TDC in the various cylinders for determining the instants of injection.
  • This signal 30 can be supplied by a sensor cooperating with a toothed wheel driven by the flywheel and having a singularity of detection of the transition to TDC of a reference cylinder.
  • the computer 21 also receives a signal 31 of the butterfly opening angle 5 supplied by an appropriate sensor, such as a potentiometer for copying the angular position of the butterfly 5, and mounted on the axis of rotation of the latter, and delivers at 33 a fuel consumption signal. Finally, the computer 21 receives at 32 a richness signal R delivered, in the form of electrical voltage, by an oxygen probe called the ⁇ probe, placed in the engine exhaust gases, of which it indicates the oxygen content. In operation of the engine in closed loop, the richness signal R is used by the computer 21 to center the operation of the engine on a richness equal to 1. For this, the computer 21 first calculates a basic injection duration , with reference to a network of curves stored in the computer 21 and such as that shown in FIG.
  • the computer 21 then increases or reduces the injection duration applied to the injectors 2 to obtain a richness signal R equal to 1. For this, the computer 21 calculates a richness coefficient KO2 by which it multiplies the basic injection time T inj B given by the formula (1).
  • the richness coefficient KO2 is chosen equal to 1. These zones correspond in particular to operation with a faulty ⁇ probe, or with an air temperature below an input threshold in a closed loop, for example in the event of a cold start of the engine, or when the open loop is imposed by the speed or the opening angle of the throttle, for example in deceleration or at full load, or if the engine speed N is higher than a given high threshold, for example 4500 rpm, and, in general, each time the target wealth differs from 1.
  • a given high threshold for example 4500 rpm
  • KO2 is a corrective multiplier coefficient of nominal value equal to 1.
  • FIG. 3 represents three characteristic operating ranges of the engine 1, defined by the engine speed N on the ordinate and by the pressure in the pipe P tub on the abscissa, in which it is possible to carry out the cyclic self-adaptation calculations for an operation engine idle in ranges 1 and 2, and idling in range 3.
  • Tracks 1 and 2 are operating ranges respectively at low and high tubing pressure, each defined between a lower threshold and an upper threshold of P tub, respectively P1 and P2 or P3 and P4, such as P1 ⁇ P2 ⁇ P3 ⁇ P4 , so that tracks 1 and 2 are not adjacent.
  • ranges 1 and 2 are defined between the same lower speed threshold N1, for example of 1200 rpm, and the same higher speed threshold N2, for example of 4000 rpm.
  • Range 1 is that in which the cyclic self-adaptation is only ensured on the offset D without idling, while in range 2, the self-adaptation is only ensured on the gain G.
  • range 1 it authorizes the self-adaptation of D out of idle for at most a maximum number of n1 cycles, for example equal to 2, thanks to a first counter which is initialized to this value when the computer is powered up and decremented by the value of one unit for each cycle performed.
  • the computer 21 authorizes the self-adaptation of G for at most a maximum number of n2 cycles, for example equal to 1, thanks to a second counter which is also initialized at this value when the power is turned on. calculator, and decremented by one at each cycle.
  • the computer 21 resets the two counters respectively to n1 and n2, and again authorizes self-adaptation cycles, if necessary, then prohibiting the purging.
  • the purging of the canister 16 by the purge valve 20 is not prohibited by the computer 21 unless the engine operating point is in range 1, and the first counter is not zero, or the engine operating point is in range 2 and the second counter is not zero.
  • the idling range 3 is limited by an upper threshold of engine speed N which is lower or, at most, equal to the lower threshold N1 of ranges 1 and 2.
  • range 3 can extend from on either side of the lower pressure threshold P1 of range 1, or always be less than P1.
  • This idle range corresponds to a low speed and a throttle angle weak or zero.
  • the self-adaptation is carried out by substituting for the term offset D without idling, an offset in idling DR.
  • the computer 21 prohibits the flow of the purge valve 20, and begins the cyclic self-adaptation of DR, chosen independent of the engine speed, and interrupts this adaptation as soon as the value of DR after a cycle given is equal to that obtained after the previous cycle.
  • the computer 21 then authorizes the flow rate from the purge valve 20.
  • the DR self-adaptation can be authorized for at most a maximum number of n3 cycles, using a third counter initialized at each power-up and then at each entry in idle mode (entry in range 3).
  • the method consists in cyclically repeating the self-adaptation of DR until a constant value is obtained which is taken into account for the calculation of the injection duration.
  • the computer 21 After execution of the n3 cycles in the first case, or obtaining a constant value of DR in the second case, the computer 21 again authorizes the purge.
  • the method of self-adaptation of the richness and authorization of the purging of the canister purge circuit described above thus ensures a dissociation between the self-adaptation and the purge, which overcomes the drawbacks of the methods of the prior art , and allows a good first order adaptation, and in particular a good modulation of the gain in range 2.
  • the computer 21 which is in fact a central computing and control unit, with in particular the circuits of calculation, memories, counters, registers and other regulation and control circuits, necessary and of known structure, comprises at least one microprocessor or microcontroller programmed and / or produced so as to control the progress of this process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Claims (9)

  1. Verfahren zum Selbstanpassen des Luft/Kraftstoffverhältnisses und zum Zulassen der Entlüftung eines Entlüftungskreises für einen Einspritzmotor (1), für den der Entlüftungskreis einen Tank (16) umfaßt, der aus einem Behälter (11) herrührende Kraftstoffdämpfe sammelt und mit einem Einlaßstutzen (4) des Motors (1), der mit einem Verschluß oder Klappenventil (5) zur Steuerung des Luftdurchsatzes versehen ist, verbunden ist mittels eines elektrisch gesteuerten Ventils (20) zur Entlüftung des Tanks (16), dessen Luftdurchsatz durch einen Rechner (21) gesteuert ist, der mit Fühlern (26, 28) für Funktionsparameter des Motors (1), von denen er mindestens Drehsignale (30) des Motors und Signale (27, 30, 31) empfängt, die die Kenntnis des Drucks (P tub) in dem Einlaßstutzen (4) gestatten, sowie mit einer Sonde für Sauerstoff in den Abgasen des Motors verbunden ist, wobei der Rechner (21), der eine Einspritzdauer berechnet, die an mindestens eine Einspritzdüse (2) übertragen und ausgehend von einer Basiseinspritzzeit (T inj B) erhalten wird, die für eine gegebene Motordrehzahl (N) ausgedrückt ist als eine im wesentlichen lineare steigende Funktion des Drucks in dem Stutzen (P tub), mit einer Verlagerung (D) am Ursprung und einer Verstärkung (G), die von Kartierungen herausgezogen sind als Funktion von mindestens der Motordrehzahl (N), und unter Berücksichtigung eines Luft-/Kraftstoffverhältniskoeffizienten (KO2) korrigiert wird, der bei geschlossener Schleife bzw. prozeßgekoppelt-geschlossen bestimmt wird als Funktion des Luft-/Kraftstoffverhältnissignals der Sonde (32) für Sauerstoff in den Funktionsbereichen des Motors (1) und bei offener Schleife bzw. prozeßgekoppelt-offen gleich einem Nennwert in den Funktionsbereichen des Motors (1) festgelegt wird, um die Einstellung der Funktionsweise des Motors auf ein Luft/Kraftstoffverhältnis gleich 1 zu gewährleisten, wobei die Verlagerung (D) und die Verstärkung (G) außerdem Gegenstand einer zyklischen Selbstanpassung sind, um zu gewährleisten, daß der Luft/Kraftstoffverhältniskoeffizient (KO2) in der Nähe seines Nennwerts bleibt durch Korrektur jeglicher Abweichung von diesem Luft-/Kraftstoffverhältniskoeffizienten (K02) in mindestens einem ersten Funktionsbereich des Motors bei niedrigem Stutzendruck (P1, P2) durch Änderung mindestens der Verlagerung (D), und in mindestens einem zweiten Funktionsbereich des Motors bei hohem Stutzendruck (P3, P4) durch Änderung mindestens der Verstärkung (G),
    dadurch gekennzeichnet, daß es darin besteht:
    - die Selbstanpassung gleichzeitig mit dem Durchsatz des Entlüftungsventils (20) zu sperren,
    - bei jedem Eintritt in die Phase der Selbstanpassung diese zuzulassen während maximal einer Höchstzahl von nl Zyklen in dem ersten Funktionsbereich und während maximal einer Höchstzahl von n2 Zyklen in dem zweiten Funktionsbereich,
    - nur den Durchsatz des Entlüftungsventils (20) zuzulassen nach der Ausführung der Höchstzahl von jeweils nl oder n2 Selbstanpassungszyklen und
    - nur eine erneute Selbstanpassung in der Verlagerung (D) oder in der Verstärkung (G) zuzulassen nach Ausführung aller Selbstanpassungszyklen, die in der Verstärkung und in der Verlagerung gestattet sind.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß es darin besteht, ausschließlich die Verlagerung (D) bzw. die Verstärkung (G) anzupassen bei Selbstanpassungszyklen, die ausschließlich im ersten bzw. zweiten Funktionsbereich des Motors ausgeführt werden.
  3. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß es darin besteht, Höchstzahlen von nl und n2 Selbstanpassungszyklen gleich 2 bzw. 1 zu wählen.
  4. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß es darin besteht, den Durchsatz des Entlüftungsventils (20) nicht zu sperren, unabhängig von den Selbstanpassungsbedingungen in dem Funktionsbereich (P2-P3) des Motors, der sich zwischen dem ersten und zweiten Bereich erstreckt.
  5. Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, daß es darin besteht, am Einlaß des Motors in einem Funktionsbereich im Leerlauf den Durchsatz des Entlüftungsventils (20) zu sperren, die Selbstanpassung in der Verlagerung (D) durch eine zyklische Selbstanpassung in der Leerlaufverlagerung (DR) zu ersetzen, die unterbrochen wird, sobald der Wert der Leerlaufverlagerung (DR) nach einem gegebenen Zyklus ausreichend in der Nähe des Werts sich befindet, der nach dem vorangehenden Zyklus erhalten wurde, und anschließend den Durchsatz des Entlüftungsventils (20) zuzulassen.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, daß es darin besteht, bei jedem Eintritt in die Selbstanpassungsphase in der Leerlaufverlagerung (DR) diese während maximal einer Höchstanzahl von n3 Zyklen zuzulassen.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, daß es darin besteht, zyklisch die Selbstanpassung in der Leerlaufverlagerung (DR) bis zum Erhalt eines konstanten Werts der Leerlaufverlagerung zu wiederholen.
  8. Verfahren nach einem der Ansprüche 5 bis 7,
    dadurch gekennzeichnet, daß es darin besteht, den Funktionsbereich im Leerlauf auf eine obere Schwelle der Motordrehzal zu begrenzen, die kleiner oder gleich einer niedrigen Motordrehzahl (N1) ist für den ersten und zweiten Funktionsbereich entsprechend der Selbstanpassung in der Verlagerung (D) bzw. in der Verstärkung (G).
  9. Vorrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses und zur Zulassung der Entlüftung eines Entlüftungskreises (16, 17, 19, 20) mit einem Tank (16) für einen Einspritzmotor (1), aufweisend einen Rechner (21), der mit Fühlern (26, 28) für Funktionsparameter des Motors (1) sowie mit einer Sonde für Sauerstoff in den Abgasen des Motors (1) verbunden ist, und der ein elektrisch gesteuertes Ventil (20) steuert, das den Tank (16) mit einem Einlaßstutzen (4) verbindet, der mit einem Verschluß (5) zur Steuerung des Luftdurchsatzes versehen ist, wobei der Rechner (21) eine Einspritzdauer berechnet, die auf mindestens eine Einspritzdüse (2) des Motors (1) angewendet wird und ausgehend von einer Basiseinspritzzeit (T inj B) erhalten wird, die als eine Funktion des Drucks im Stutzen (4) ausgedrückt ist mit einer Verlagerung (D) am Ursprung und einer Verstärkung (G), die von Speicherkartierungen im Rechner (21) herausgezogen sind, und mithilfe eines Luft/Kraftstoffverhältniskoeffizienten (K02) korrigiert wird, der durch den Rechner (21) bestimmt wird als Funktion des Luft-/Kraftstoffverhältnissignals (R) der Sauerstoffsonde in prozeßgekoppelt-geschlossener Funktionsweise bzw. Funktionsweise bei geschlossener Schleife und einem Nennwert in prozeßgekoppelt-offener Funktionsweise bzw. Funktionsweise bei offener Schleife entspricht, um die Einstellung der Funktionsweise des Motors (1) auf ein Luft-/Kraftstoffverhältnis gleich 1 zu gewährleisten, wobei der Rechner (21) eine zyklische Selbstanpassung der Verlagerung (D) und der Verstärkung (G) ausführt, um zu gewährleisten, daß KO2 in der Nähe seines Nennwerts bleibt durch Korrektur jeglicher Abweichung von KO2, dadurch gekennzeichnet, daß der Rechner (21) mindestens einen Mikroprozessor aufweist, der so programmiert und/oder ausgeführt ist, daß der Ablauf des Verfahrens nach einem der Ansprüche 1 bis 8 gesteuert ist.
EP19940401643 1993-07-20 1994-07-18 Verfahren und Einrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses in einer Innenbrennkraftmaschine mit Tankentlüftungssystem Expired - Lifetime EP0637685B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9308883 1993-07-20
FR9308883A FR2708047B1 (fr) 1993-07-20 1993-07-20 Procédé et dispositif d'autoadaptation de richesse et d'autorisation de purge d'un circuit de purge à canister de moteur à injection.

Publications (2)

Publication Number Publication Date
EP0637685A1 EP0637685A1 (de) 1995-02-08
EP0637685B1 true EP0637685B1 (de) 1997-01-08

Family

ID=9449404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940401643 Expired - Lifetime EP0637685B1 (de) 1993-07-20 1994-07-18 Verfahren und Einrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses in einer Innenbrennkraftmaschine mit Tankentlüftungssystem

Country Status (4)

Country Link
EP (1) EP0637685B1 (de)
DE (1) DE69401400T2 (de)
ES (1) ES2095727T3 (de)
FR (1) FR2708047B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775315B1 (fr) 1998-02-25 2000-05-05 Magneti Marelli France Procede et dispositif d'autoadaptation rapide de richesse pour moteur a injection avec sonde d'oxygene dans les gaz d'echappement
DE102004057210B4 (de) * 2004-11-26 2011-12-22 Continental Automotive Gmbh Verfahren zur Regelung einer Tankentlüftung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165644A (en) * 1981-04-07 1982-10-12 Nippon Denso Co Ltd Control method of air-fuel ratio
FR2567962B1 (fr) * 1984-07-23 1989-05-26 Renault Procede adaptatif de regulation de l'injection d'un moteur a injection
DE3639946C2 (de) * 1986-11-22 1997-01-09 Bosch Gmbh Robert Verfahren und Einrichtung zur Kompensation des Tankentlüftungsfehlers bei einem adaptiv lernenden Kraftstoffzufuhrsystem
DE3642476A1 (de) * 1986-12-12 1988-06-23 Bosch Gmbh Robert Verfahren und einrichtung zur einbeziehung von additiv und multiplikativ wirkenden korrekturgroessen bei einem kraftstoff kontinuierlich zufuehrenden system

Also Published As

Publication number Publication date
FR2708047B1 (fr) 1995-09-22
DE69401400T2 (de) 1997-05-07
DE69401400D1 (de) 1997-02-20
FR2708047A1 (fr) 1995-01-27
EP0637685A1 (de) 1995-02-08
ES2095727T3 (es) 1997-02-16

Similar Documents

Publication Publication Date Title
EP1769153B1 (de) System zur steuerung der arbeitsweise eines mit einem oxidationskatalysator verbundenem dieselmotors in einem kraftfahrzeug
FR2922598A1 (fr) Procede pour determiner l'inflammabilite du carburant de qualite inconnue.
FR2763650A1 (fr) Systeme de controle d'un capteur de pression d'un systeme d'alimentation en carburant d'un moteur a combustion interne, notamment d'un vehicule automobile
FR2877695A1 (fr) Procede de gestion d'un moteur a combustion interne et dispositif pour sa mise en oeuvre
EP1058781B1 (de) Verfahren und einrichtung zum schnellen selbstanpassen des luft/kraftstoffverhältnisses in einer brennkraftmaschine
FR2750454A1 (fr) Procede pour determiner le signal de charge d'un moteur a combustion interne avec reinjection externe des gaz d'echappement
EP0686762A1 (de) Verfahren und Vorrichtung zur Bestimmung von spezifischen Parametern von Einspritzventilen eines Verbrennungsmotors insbesondere für Dieselmotoren mit Voreinspritzung
FR2787512A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
EP0637685B1 (de) Verfahren und Einrichtung zum Selbstanpassen des Luft/Kraftstoffverhältnisses in einer Innenbrennkraftmaschine mit Tankentlüftungssystem
FR2707348A1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne.
FR2847944A1 (fr) Procede de regulation d'un melange air/carburant alimentant un moteur a combustion interne
EP1862659A1 (de) Verfahren und Vorrichtung zur Korrektur des Durchsatzes der Voreinspritzung von Treibstoff in einen Dieseldirekteinspritzmotor des Common-Rail-Typs und Motor, der eine solche Vorrichtung umfasst
EP0774059A1 (de) Verfahren zur guten betriebssteuerung der luftunterstüzung eines kraftstoffeinspritzventils von brennkraftmaschinen und die entsprechende vorrichtung
EP0636778B1 (de) Verfahren und Vorrichtung zum korrigieren der Kraftstoffeinspritzungsdauer in Abhängigkeit des Durchflusses einer Tankentlüftungsanlage für einen Einspritzmotor
EP1787020B1 (de) System zur dieselmotorlaufsteuerung für ein kraftfahrzeug
FR2864162A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR3101673A1 (fr) Procédé de réglage de la richesse d’un moteur à combustion interne à allumage commandé
FR2871195A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
FR2740176A1 (fr) Systeme et procede de double boucle de commande pour moteur a combustion interne
EP1597468B1 (de) Verfahren zur bestimmung der verstärkung eines kraftstoffeinspritzventils
FR2708046A1 (fr) Procédé et dispositif de correction de la durée d'injection en fonction du débit de purge d'un circuit de purge à canister, pour moteur à injection.
FR2708049A1 (fr) Procédé et dispositif d'estimation de la teneur en combustible d'un circuit de purge à canister, pour moteur à injection.
FR2857055A1 (fr) Procede de gestion d'un moteur a combustion interne
EP0884466A1 (de) Verfahren und Vorrichtung zum Korrigieren des Luft/Kraftstoff-Verhältnisses in einer Brennkraftmaschine
FR2466618A1 (fr) Systeme de controle de combustible pour moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT SE

17P Request for examination filed

Effective date: 19950114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960307

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095727

Country of ref document: ES

Kind code of ref document: T3

REF Corresponds to:

Ref document number: 69401400

Country of ref document: DE

Date of ref document: 19970220

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070711

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070717

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070710

Year of fee payment: 14

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080719

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090727

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080719

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091001