EP0635141A1 - Procede de fabrication de microsystemes et formation d'un laser a base d'un tel microsysteme - Google Patents

Procede de fabrication de microsystemes et formation d'un laser a base d'un tel microsysteme

Info

Publication number
EP0635141A1
EP0635141A1 EP93908902A EP93908902A EP0635141A1 EP 0635141 A1 EP0635141 A1 EP 0635141A1 EP 93908902 A EP93908902 A EP 93908902A EP 93908902 A EP93908902 A EP 93908902A EP 0635141 A1 EP0635141 A1 EP 0635141A1
Authority
EP
European Patent Office
Prior art keywords
microsystem
laser
wafers
individual
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93908902A
Other languages
German (de)
English (en)
Inventor
Stefan Heinemann
Axel Mehnert
Peter Peuser
Nikolaus Schmitt
Helmut Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Daimler Benz Aerospace AG filed Critical Deutsche Aerospace AG
Publication of EP0635141A1 publication Critical patent/EP0635141A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the invention relates to a method for producing a microsystem and, from this, forming a microsystem laser in accordance with the preamble of claim 1.
  • German patent application P 4140404.1-33 (int. Az. 11197) has disclosed, among other things, a method for contacting wafers, that is to say different bonding methods and so-called optical contacts.
  • the present invention has for its object to show a method in which with the help of known semiconductor structuring Batch processes for producing complex microsystems which, in addition to the horizontal ones, preferably also have vertical structures for forming the microsystems, all wafers being adjusted to one another and in contact with one another, and a parallel and independent control of the microsystems is made possible.
  • FIG. 1 shows a schematic diagram to illustrate the proposed method for producing vertically structured microsystems
  • FIG. 2 shows a schematic diagram of an exemplary embodiment for the formation of a microsyst solid-state laser in an exploded view with a description of the individual system functions
  • FIG. 3 shows a schematic image of the exemplary embodiment according to FIG. 2 with the beam path of the laser system shown in the exploded view
  • FIG. 4 shows a schematic diagram of the exemplary embodiment according to FIG. 2 in real representation with the contacting of the individual wafers which form specific functions.
  • FIG. 1 illustrates the proposed method in a simple and schematic manner.
  • seven wafers 100 to 700 are contacted one above the other and with one another, the individual wafers carrying out specific functions of a specific microsystem.
  • individual wafers can include micromechanical adjustment elements (actuators), optical components (laser-active media, mirrors, imaging systems), sensors (photodiodes, temperature and pressure or displacement sensors etc.), electronic components (diodes, transistors, integrated circuits for controlling the components, for evaluating the sensors and deriving a control signal), cooling systems (controlled microcoolers) or a combination thereof.
  • Preferred catfish carry the wafers 100 to 700 such structures which on the one hand can be easily produced in the substrate used in each case and on the other hand can be structured in similar process methods.
  • the electrical contacts can also be made essentially in the wafer.
  • These different wafers which can consist of the known semiconductor materials, but also of other substrates that can be manufactured in wafers, such as glass, quartz or crystal, are adjusted as a whole according to their structuring - whereby e.g. Optical or mechanical position aids can be helpful - contacted with each other by the usual methods (bonding, optical contacting) and cut along the levels 10, 20, 30 ..., so that ultimately vertical structures 1, 2 etc. preferably result, which che represent complete microsystems with complex functions.
  • FIG. 2 illustrates an exemplary embodiment of a microsystem solid-state laser.
  • this laser consists of a solid-state crystal pumped by laser diodes, the laser diode radiation being focused into a crystal disk via coupling optics 711, 712, the output power of the solid-state laser being regulated and its F frequency adjustable and ultimately stabilized to a reference cavity .
  • the heat load induced by the laser diodes 641, 642 is led out of the system by the micro-channel coolers 701, 702.
  • the wafer 700 contains the microcooler.
  • This wafer itself can in turn consist of a silicon substrate 702, in which cooling channels 701 are etched, which are sealed across the surface by a second flat wafer 703.
  • the flow through such a micro cooler can be regulated, for example, by integrated micro valves.
  • This wafer 700 is followed by the wafer 600, which is manufactured, for example, from a gallium arsenide substrate 631.
  • the pump laser diodes 601, 602 are integrated therein monolithically.
  • Beam deflecting elements 611, 612 are integrated by anisotropic etching and optionally by optical vaporization, which deflect the horizontally emitted laser diode beam into the vertical.
  • Standard diodes 641, 642, which serve as temperature sensors for the laser diode temperature and from which a control signal for cooling can be derived, are structured near the laser diodes 601, 602.
  • the adjoining wafer 500 comprises an imaging optics 511, 512 for focusing the pump laser radiation into the laser crystal.
  • the respective lens 511, 512 is formed by shaping the silicon substrate 501 for infrared wavelengths at which silicon is transparent, but can also consist of integrated glass lenses or spheres for other wavelengths or can be embodied as a holographic optical element ⁇ det. In the latter case, glass is preferably used as the substrate 501, in which a phase grating is inscribed by etching processes and which has the imaging properties of a lens system. In certain cases, wafer 500 can also be omitted.
  • the subsequent wafer 400 consists of a laser crystal or laser glass.
  • the polished, laser-active layer 402 doped with ions of the lanthanide group is optically coated on both sides, in such a way that the Layer 403 emits an optical short-pass filter which is highly transmissive for the pump wavelength of the laser diode and highly reflective for the solid-state laser wavelength.
  • Coating 401 is designed as anti-flex coating for the laser wavelength and, if appropriate, reflective for the pumping wavelength.
  • the wafer 300 contains an essentially actively controlled laser mirror 331, 332 for the solid-state laser, which essentially consists of a mirror reflection which is partially reflecting for the laser wavelength and which is vapor-deposited on a silicon substrate 351, for example, and is embodied as a transmission mirror level. Furthermore, a micromechanical actuator 311, 321 and 312, 322 is arranged for the active movement of the mirror 331, 332.
  • this wafer 300 can be composed of two interconnected substrates 351 and 352 to suitably form the actuator elements, with photodiodes 341, 342 and 301, 302 also being embedded in the upper substrate.
  • the first two form sensors for measuring the laser output power, the two latter sensors for active frequency stabilization of the laser.
  • wafers with inter-cavity elements can now be arranged between wafer 400 and wafer 300, such as nonlinear optical crystals for frequency multiplication, phase modulation etc.
  • the further wafer 200 in the exemplary embodiment includes a beam deflection for coupling out a partial beam of low intensity, which is directed onto the photodiodes 341, 342 of the wafer 300 in order to measure the power, and a reference cavity for frequency stabilization of the laser.
  • the beam deflection is formed by a partially reflecting transmission mirror 251, 252 and a highly reflecting mirror layer 261, 262, which is attached to an obliquely etched substrate, so that the partial beam is reflected in the desired direction he follows.
  • beam deflection can also be formed in another way, for example by a holographic grating which reflects a partial beam of low intensity in the first order, or by suitably shaped integrated optics (waveguide structures).
  • each system consists of two mirror layers 211, 201, the latter being actively moved via the actuator elements 231, 221 and the other 211 being rigidly connected to the substrate 241.
  • the transmission frequency of the resonator formed in this way can be modulated by the micromechanical actuators, from which an error signal for controlling the laser mirror 301 of the wafer 300 can be derived.
  • the electronics can also be structured into the substrates, that is to say an intelligent sensor evaluation and control signal generation "on the chip" can be implemented with the actuators and sensors.
  • the wafer 100 which has an open beam deflection, formed from the partially reflecting transmission mirrors 711, 712 and the highly reflective reflecting mirrors 721, 722, which are analogous to the beam deflecting elements of the wafer 200 Decoupling a partial beam of low intensity of the solid-state laser for passage through the reference cavity of the wafer 200 and subsequent detection in the photodiode 301 of the wafer 300 is formed.
  • FIG. 3 again shows the optical beam path in the same structure as the exemplary embodiment described above.
  • the laser diode radiation (drawn with dots) is focused via an imaging element 800 into a solid-state crystal 801 which is vapor-coated on one side to reflect the laser wavelength and thus forms a laser-active resonator, together with a discrete, micromechanically movable laser mirror 802.
  • a first partial beam 803 of the laser is coupled out and directed via deflection elements 251, 261 onto the photodiode 341 for measuring the laser output power.
  • a further partial beam 804 is directed by a tunable reference cavity, the transmission maximum of which is modulated by active mirror movement of one of the two resonator mirrors and from which an error signal for frequency stabilization of the solid-state laser is derived by detection on a second photodiode 301 by active movement of the laser mirror.
  • FIG. 4 shows the structure analogous to the exploded view of FIG. 2.
  • the wafers 100 to 700 are shown in their positioned and contacted positions with respect to one another.
  • the possible interfaces along which the individual microlaser systems can be separated are also shown here. If a separation is dispensed with, a planar arrangement of micro laser systems which can be controlled independently of one another can be formed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

La présente invention concerne un procédé de fabrication de microsystèmes et formation d'un laser à base d'un tel microsystème, de préférence comme élément structurel, par la mise en contact de plaquettes portant divers éléments fonctionnels d'un système, de sorte que ce système comporte d'une part des fonctions aussi hétérogènes que: l'actuation, l'optique, la détection, le refroidissement, la micromécanique et l'électronique, et que d'autre part les plaquettes servant de support de ces fonctions permettent un traitement relativement homogène des fonctions très similaires intégrées dans chaque plaquette, la complexité du système résultant seulement de la disposition verticale de ces fonctions.
EP93908902A 1992-04-09 1993-04-03 Procede de fabrication de microsystemes et formation d'un laser a base d'un tel microsysteme Withdrawn EP0635141A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4211899A DE4211899C2 (de) 1992-04-09 1992-04-09 Mikrosystem-Laseranordnung und Mikrosystem-Laser
DE4211899 1992-04-09
PCT/EP1993/000830 WO1993021551A1 (fr) 1992-04-09 1993-04-03 Procede de fabrication de microsystemes et formation d'un laser a base d'un tel microsysteme

Publications (1)

Publication Number Publication Date
EP0635141A1 true EP0635141A1 (fr) 1995-01-25

Family

ID=6456442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93908902A Withdrawn EP0635141A1 (fr) 1992-04-09 1993-04-03 Procede de fabrication de microsystemes et formation d'un laser a base d'un tel microsysteme

Country Status (5)

Country Link
US (1) US5637885A (fr)
EP (1) EP0635141A1 (fr)
JP (1) JPH07505728A (fr)
DE (1) DE4211899C2 (fr)
WO (1) WO1993021551A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215797A1 (de) * 1992-05-13 1993-11-25 Deutsche Aerospace Lasersystem mit mikromechanisch bewegten Spiegel
DE4229657C2 (de) * 1992-09-04 1996-06-20 Daimler Benz Aerospace Ag Ein- oder zweidimensionale Anordnung von Laser-Phasenmodulatoren
DE59308228D1 (de) * 1993-12-22 1998-04-09 Siemens Ag Sende- und Empfangsmodul für eine bidirektionale optische Nachrichten- und Signalübertragung
DE4425636C2 (de) * 1994-07-20 2001-10-18 Daimlerchrysler Aerospace Ag Einrichtung mit einer optischen Komponente zur Integration in batch-processierte dreidimensionale Mikrosysteme
DE4440935A1 (de) * 1994-11-17 1996-05-23 Ant Nachrichtentech Optische Sende- und Empfangseinrichtung
DE10002329A1 (de) * 2000-01-20 2001-08-02 Infineon Technologies Ag Herstellungsverfahren für eine optische Sende-Baugruppe
US6753199B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Topside active optical device apparatus and method
US6753197B2 (en) 2001-06-29 2004-06-22 Xanoptix, Inc. Opto-electronic device integration
US6724794B2 (en) 2001-06-29 2004-04-20 Xanoptix, Inc. Opto-electronic device integration
US6790691B2 (en) 2001-06-29 2004-09-14 Xanoptix, Inc. Opto-electronic device integration
US6775308B2 (en) 2001-06-29 2004-08-10 Xanoptix, Inc. Multi-wavelength semiconductor laser arrays and applications thereof
US6731665B2 (en) * 2001-06-29 2004-05-04 Xanoptix Inc. Laser arrays for high power fiber amplifier pumps
US6633421B2 (en) 2001-06-29 2003-10-14 Xanoptrix, Inc. Integrated arrays of modulators and lasers on electronics
US7831151B2 (en) 2001-06-29 2010-11-09 John Trezza Redundant optical device array
US20090279575A1 (en) * 2005-12-16 2009-11-12 Koninklijke Philips Electronics, N.V. Carrier substrate for micro device packaging
DE102006017293A1 (de) * 2005-12-30 2007-07-05 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer optisch pumpbaren Halbleitervorrichtung
DE102006017294A1 (de) * 2005-12-30 2007-07-05 Osram Opto Semiconductors Gmbh Optisch pumpbare Halbleitervorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533833A (en) * 1982-08-19 1985-08-06 At&T Bell Laboratories Optically coupled integrated circuit array
JPS61288455A (ja) * 1985-06-17 1986-12-18 Fujitsu Ltd 多層半導体装置の製造方法
EP0253886A1 (fr) * 1986-01-21 1988-01-27 AT&T Corp. Interconnexion pour un ensemble integre a l'echelle d'une tranche
US5115445A (en) * 1988-02-02 1992-05-19 Massachusetts Institute Of Technology Microchip laser array
US4953166A (en) * 1988-02-02 1990-08-28 Massachusetts Institute Of Technology Microchip laser
US4881237A (en) * 1988-08-26 1989-11-14 Massachusetts Institute Of Technology Hybrid two-dimensional surface-emitting laser arrays
DE3834335A1 (de) * 1988-10-08 1990-04-12 Telefunken Systemtechnik Halbleiterschaltung
DE3925201A1 (de) * 1989-07-29 1991-02-07 Messerschmitt Boelkow Blohm Optische bank zur halterung optischer, elektrischer u.a. komponenten
DE3935610A1 (de) * 1989-10-26 1991-05-02 Messerschmitt Boelkow Blohm Monolithisch integrierbares peltier-kuehlelement
DE4041130A1 (de) * 1990-12-21 1992-07-02 Messerschmitt Boelkow Blohm Festkoerper-lasersystem
DE4140404C2 (de) * 1991-12-07 1994-05-26 Deutsche Aerospace Bondverfahren für die Aufbau- und Verbindungstechnik
JP2830591B2 (ja) * 1992-03-12 1998-12-02 日本電気株式会社 半導体光機能素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9321551A1 *

Also Published As

Publication number Publication date
DE4211899A1 (de) 1993-10-21
JPH07505728A (ja) 1995-06-22
WO1993021551A1 (fr) 1993-10-28
US5637885A (en) 1997-06-10
DE4211899C2 (de) 1998-07-16

Similar Documents

Publication Publication Date Title
DE4211899C2 (de) Mikrosystem-Laseranordnung und Mikrosystem-Laser
DE60301553T2 (de) Optischer schaltkreis mit optischen planaren hohlkern-lichtwellenleitern
EP0735397B1 (fr) Dispositif micro-optique pour transformer des faisceaux d'un arrangement de diodes laser et procédé de fabrication d'un tel dispositif
EP0873534B1 (fr) Bloc de composants d'emission optoelectroniques
DE3611852C2 (fr)
DE69906704T2 (de) Integriertes optisches gerät zur erzeugung von getrennten strahlen auf einem detektor, und zugehörige verfahren
DE69733670T2 (de) Optischer demultiplexer mit einem beugungsgitter
EP0713112A1 (fr) Dispositif optique récepteur émetteur avec un laser émettant au niveau de la surface
EP0660467A1 (fr) Elément optoélectronique et sa méthode de fabrication
DE10220378A1 (de) Laserlichtquellenvorrichtung
DE102005015148A1 (de) Laservorrichtung
EP3196598B1 (fr) Dispositif optique de mesure de position
DE69625838T2 (de) Ausrichten von optischen Fasern
DE69738279T2 (de) Vertikale Positionierung eines optoelektronischen Bauelements auf einem Träger in Bezug auf einen, auf diesem Träger integrierten optischer Leiter
EP0607524B1 (fr) Dispositif de couplage des fins des guides d'ondes lumineuses avec des éléments d'émission ou de réception
DE69724536T2 (de) Integrierte optische Vorrichtung, die aus mindestens einem optischen Filter und einem Spiegel besteht, sowie ein Verfahren zu ihrer Herstellung
DE4211898C2 (fr)
DE102006042195A1 (de) Etalon und optoelektronische Halbleitervorrichtung
DE10324044B4 (de) Dilatometer mit einer Interferometeranordnung und Verwendung des Dilatometers mit der Interferometeranordnung
EP0744798A1 (fr) Dispositif pour le couplage d'un laser
EP1476776B1 (fr) Systeme optique de guidage de faisceau et/ou de conversion de frequence et procede de fabrication associe
DE102006060826A1 (de) Einheitliches optisches Element mit Wellenlängenauswahl
DE112022003127T5 (de) Optoelektronisches halbleiterbauelement und brille
DE10160508A1 (de) Anordnung zur Detektion von optischen Signalen mindestens eines optischen Kanals eines planaren optischen Schaltkreises und/oder zur Einkopplung optischer Signale in mindestens einen optischen Kanal eines planaren optischen Schaltkreises
WO2020245259A1 (fr) Dispositif optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER-BENZ AEROSPACE AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19960521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970730