EP0631395B1 - Schaltung zur Verarbeitung von Signalen mit einer Eingangsstufe mit veränderbarer Verstärkung - Google Patents

Schaltung zur Verarbeitung von Signalen mit einer Eingangsstufe mit veränderbarer Verstärkung Download PDF

Info

Publication number
EP0631395B1
EP0631395B1 EP94109610A EP94109610A EP0631395B1 EP 0631395 B1 EP0631395 B1 EP 0631395B1 EP 94109610 A EP94109610 A EP 94109610A EP 94109610 A EP94109610 A EP 94109610A EP 0631395 B1 EP0631395 B1 EP 0631395B1
Authority
EP
European Patent Office
Prior art keywords
signal
circuit
input
processing circuit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94109610A
Other languages
English (en)
French (fr)
Other versions
EP0631395A1 (de
Inventor
Olivier Nys
Enrique Marcelo Blumenkrantz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre Suisse dElectronique et Microtechnique SA CSEM
Original Assignee
Centre Suisse dElectronique et Microtechnique SA CSEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9307950A external-priority patent/FR2708161B1/fr
Priority claimed from FR9403541A external-priority patent/FR2717933B1/fr
Application filed by Centre Suisse dElectronique et Microtechnique SA CSEM filed Critical Centre Suisse dElectronique et Microtechnique SA CSEM
Publication of EP0631395A1 publication Critical patent/EP0631395A1/de
Application granted granted Critical
Publication of EP0631395B1 publication Critical patent/EP0631395B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/001Digital control of analog signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/06Frequency or rate modulation, i.e. PFM or PRM
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/478Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication
    • H03M3/488Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control
    • H03M3/492Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control in feed forward mode, i.e. by determining the range to be selected directly from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/51Automatic control for modifying converter range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/478Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication
    • H03M3/48Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication characterised by the type of range control, e.g. limiting
    • H03M3/486Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication characterised by the type of range control, e.g. limiting by adapting the input gain

Definitions

  • the present invention very generally relates to processing circuits provided for producing a signal variable output in response to a variable variable captured or received as input.
  • the present invention relates more particularly the processing circuits which are associated with a stage or an input sensor providing a signal with an amplification / attenuation factor variable, and it relates in particular to circuits for signal processing upstream of the input of which is placed a variable gain circuit.
  • each sensitivity range switching cause the appearance of transitory values or states undesirable (hereinafter referred to as transient) in the signal supplied as output.
  • transients linked to a change of range appear systematically as soon as that a given circuit includes components like capacitors or coils which by nature accumulate "memories" of previous states of the circuit.
  • circuits having a memory, circuit dependent on state variables or circuit whose transfer characteristic depends on variables state are disadvantages.
  • the document EP 0 488 545 describes a filter for a chain Doppler which produces a variable output signal in response to an ultrasonic echo input signal.
  • the circuit constituting this filter corresponds to the preamble of claim 1.
  • this filter concerns improving an image to display by deleting unwanted frequency components due to sound signal discontinuity.
  • Analog circuits with memory are very currents.
  • the most common analog filters currents have inductive or capacitive components who keep the memory of previous states.
  • the most accurate analog circuits such as example sigma-delta converters or systems with phase or frequency lock (Lock-in), are based on a compromise between precision on the one hand the realization of their different components and other apart from their reaction time or their bandwidth.
  • Lock-in amplifiers in particular, takes advantage of the known periodicity of a signal to detect it in a bandwidth extremely limited so as to distinguish it from noise ambient.
  • sigma-delta modulators on the other hand, a some tolerance as to the precision of realization is offset by the use of oversampling and Quantified feedback that takes errors into account passed to a certain order.
  • the functional characteristics of a circuit analog processing without memory can be described as any combination (possibly very complex) but fixed with coefficients constants and quantifiers. This characteristic of transfer is then determined, and the signal output from the circuit at a given time is therefore determined entirely by knowing the instantaneous input signal.
  • the value of the output signal does not not only depends on the input signal at a time particular, but also of the input signal to other moments prior to this particular instant.
  • the memories of the circuit influence its transfer characteristics.
  • the combination of coefficients and quantifiers which allows determine the value of the output signal from the value of the input signal at a given time is function of the value of the input signal at instants earlier.
  • a circuit element having a memory will therefore generally characterized, from the point of view functional, by a combination comprising constant coefficients and quantifiers but to which are added, this time, variable elements who keep the memory of the previous moments and are called state variables. Note, in particular, that in the case of analog filters, there will be as many state variables than poles.
  • the memory of an element of circuit is stored in state variables.
  • the elements that store this memory are the capacities and the inductances.
  • the variables state of a circuit will therefore be defined by voltages across capacitors, currents in windings or a combination of both.
  • any capacity placed on the signal path is a form of integrator and that, therefore, we can say that the memory of a circuit element is stored in integrators.
  • a particular example of a circuit having such a memory is, as we said before, a converter sigma-delta.
  • a converter analog / digital 201 of the sigma-delta type of the first order this converter comprising an integrator 202, a comparator 203, a digital / analog converter 204 single bit, a 205 low pass digital filter and a signal combination circuit 6.
  • a / D converter 201 also includes an input terminal 207, a terminal 208 and a data terminal 209.
  • An analog input signal is applied to the input terminal 207 and transmitted to the integrator 202 via the combination circuit 206.
  • the comparator 203 samples the signal from the integrator 202 at a sampling frequency f s which is N times higher than the Nyquist frequency f N (f N is twice the highest frequency of the signal). N is called "oversampling factor".
  • f s the sampling frequency
  • f N the Nyquist frequency
  • N is called "oversampling factor”.
  • rough estimates (at 1 bit) of the analog input signal appear at the output of comparator 3 at the rate of the oversampling rate. These estimates are in the form of a bit stream at data terminal 209 and they are converted to analog form by the D / A converter 204, while being subtracted from the analog input signal by the combination circuit. signals 206.
  • the bit stream coming from the output of comparator 203 contains information composed of the analog input value, in digital form, as well as a digital error signal which is also called "quantization error” or "quantization noise
  • the quantization error or noise r (t) represents the error between the linear model and the initially non-linear transfer.
  • the quantization noise R (s) is transferred by a high-pass filter 1 / (1 + cG (s) ), which achieves maximum attenuation of the error of quantization for frequencies of the base band and also an attenuation which decreases progressively for the frequencies which are beyond the base band.
  • This process is called "noise shaping".
  • the higher frequency errors which are contained in the bit stream are suppressed by the low pass digital filter 205.
  • the dynamic range of the sigma-delta converter 201 can be improved by using instead of the integrator 202 represented in FIG. 1, either a second order or higher order integrator, or a second order or higher order low pass filter, or again a series of two or more two integrators or filters of that type.
  • a multi-range signal converter has at least two input ranges, each of which is defined by a maximum value of the input signal, which the converter can accept.
  • a diagrammatic representation of such a converter is shown in FIG. 2 of the appended drawings in the form of an analog / digital converter 210 comprising a conventional circuit 211 A / D converter, circuits 212 and 213 for combining signals and an inverter circuit 214.
  • An analog signal V in is amplified by a gain G in the circuit 212 of signal combination.
  • the amplified signal G * V in is converted into a digital output signal B by the circuit A / D 211.
  • the output signal B is then amplified by the inverse of the gain G in the signal combination circuit 213.
  • a digital signal B / G representing the analog input signal V in .
  • the different ranges of converter 210 correspond to different values of the gain G which one can choose, each range having the same number of steps quantization, number which is determined by the algorithm of conversion of circuit A / D 211. This is why the magnitude of the quantification step in the different ranges is directly proportional to the value maximum of the input signal. Therefore, the beaches at low resolution allow signal conversion, having high amplitudes, with a pitch of relatively large quantification, while the ranges at high resolution allow signal conversion of lower amplitude but with a quantification step relatively smaller.
  • the accuracy and linearity of the converters direct or binary-weighted are limited basically by the tolerance of adaptation of its weighting components such as its transistors, resistors and capacitors. For this reason, integrated direct A / D converters cannot provide accuracy better than 250 to 1000 ppm, or others terms, a digital resolution of 10 to 12 bits.
  • the indirect converters or interpolation have a relative precision which due to the interpolation which they operate with respect to time, is not not limited by the adaptation tolerances of components. Therefore, we often use sigma-delta converters with 16-bit resolution in applications where resolution and relative accuracy are important factors.
  • sigma-delta converters are circuits that have a memory. That’s why we don’t use not often sigma-delta converters in applications where a converter is required signals with multiple input ranges. More specifically, if in a sigma-delta converter, the input signal range is changed, there are transient i.e. additional noise in the output signal. This noise which is called “noise of switching ", arises from the fact that when the fulfillment of the integration function, the integrator 202 of the sigma-delta converter 201 accumulates the quantization error between the signal input and output signal.
  • the accumulated quantization error would be multiplied by the gain G of the range used at a given time. If then the range of the converter, i.e. the value of G, was changed, the function of the integrator would change, but the load of its capacity would stay the same.
  • the charge accumulated in the integrator just before time t 1 would represent G 1 ( ⁇ t1 e (t). dt), in which and represents the quantization error.
  • the charge accumulated in the integrator would represent G 2 ( ⁇ t1 e (t) .dt).
  • the fact that the charge of the integrator does not vary at time t 1 alters the relationship with the integration process; which results in the appearance of switching noise or in other words transients in the bit stream produced by the integrator.
  • An object of the present invention is therefore to provide a circuit constituting a sigma-delta modulator, the transfer characteristic depends on state variables, which is capable of operating in association with a variable gain circuit without disturbing its signal by transients following each change of said variable gain.
  • the present invention achieves this goal by providing a processing circuit for producing an output signal variable in response to a variable variable captured or received as input, said processing circuit being associated to a stage or to an input sensor providing a signal with a variable amplification / attenuation factor and said processing circuit further having response characteristics which depend in particular on state variables, said circuit comprising means for suppression of the transients normally produced by a modification of said amplification / attenuation factor, said means for removing transients operating by changing the value of said state variables in direct proportion to said modification of the amplification / attenuation factor characterized in that said circuit is a modulator sigma-delta bandpass.
  • the present invention achieves this purpose by providing a processing circuit to produce a variable output signal in response to a quantity variable captured or received as input, said circuit treatment being associated with a stage or a sensor input providing a signal with a factor variable amplification / attenuation and said circuit further exhibiting characteristics of response which depend in particular on variables state, characterized in that it includes means of suppressing transients normally produced by a modification of said factor amplification / attenuation, said means of suppression transients operating by changing the value said state variables in direct proportion to said modification of the amplification / attenuation factor.
  • transient suppression means we can vary the factor amplification / attenuation without causing transient.
  • this factor variable amplification / attenuation it is possible to make circuits whose operating regime is always close to the optimum as well with regards the signal / noise ratio as the energy consumption. And this, whatever the intensity of the magnitude captured or received as input.
  • the invention provides a processing circuit constituting a sigma-delta converter intended for convert a variable input signal to a signal variable output, this converter comprising a circuit combination of signals intended to add the signal of output and the input signal or subtract the signal from output of the input signal so as to produce a signal combined, an integrator intended to integrate the signal combined to produce an integrated signal, the integrator including a storage circuit error intended to memorize a quantity representing the time value of said combined signal, a comparator intended to compare said integrated signal with at least one predetermined level so as to produce said signal output, a feedback circuit for applying to said combination circuit a feedback signal representing said output signal, a circuit for amplifying said input signal by a factor a predetermined amplification / attenuation circuit setting of ranges intended to change said factor amplification / attenuation of a first value at au at least a second value, a circuit for amplifying said output signal by the inverse of said factor amplification / attenuation and a
  • the invention also relates to a circuit processing constituting a sigma-delta converter intended to convert a variable input signal into a variable output signal, this converter comprising a signal combining circuit for generating a combined signal resulting from the addition of a signal feedback representing said output signal and said input signal, or subtraction of that signal feedback of said input signal, an integrator intended to integrate said combined signal so as to generate an integrated signal, said integrator comprising an error storage circuit for storing a quantity which represents the time value of said combined signal, a comparator to compare the signal integrated at least at a predetermined level so as to generate said output signal, a feedback circuit intended to provide a feedback signal which represents said output signal to said circuit combination of signals, a circuit to amplify the amplification / attenuation factor output signal so as to generate said feedback signal, and a range setting circuit for changing said amplification / attenuation factor of a first value to at least a second value.
  • Figure 3 is the block diagram of a circuit analog according to the present invention.
  • Figure 3 basically has four blocks that symbolize respectively a circuit for processing a signal 2, a Variable gain first amplification / attenuation stage 4, a block 6 grouping together means for controlling the gain and means for suppressing transients and, ultimately, a second gain / attenuation stage variable 8 to restore the signal to its original level.
  • the block 8 may be implied.
  • the operator determines the scale of measure to consider knowing the position of the range selector.
  • the general operating principle is as follows.
  • the signal to be processed is firstly supplied by a line 10 at the input of the first amplification / attenuation stage 4 which, in response to this signal, outputs at a line 12 a signal whose amplitude is normalized .
  • the amplification / attenuation stage 4 is provided to be controlled by the gain control means.
  • the different values that the gain can take are noted K 0 , K 1 , ..., K n .
  • the gain can take either a set of discrete values (this is called a switchable gain), or vary continuously within a certain interval.
  • the signal amplified by the amplification / attenuation stage is supplied, via line 12, at the entrance to signal processing circuit 2.
  • circuit 2 In response to this signal on its input, circuit 2 provides output on a line 14 a processed signal.
  • Signal processing can be of all known types (filtering, analysis, analog / digital conversion, etc.).
  • a line 16 extending between a node 15 on line 14 and block 6.
  • This line 16 is used to apply the level of the signal supplied at the output of the processing circuit 2 by means of gain control of block 6, so as to allow these last to determine when the gain of stage 4 must be changed.
  • gain control of block 6 so as to allow these last to determine when the gain of stage 4 must be changed.
  • the principle of operation of the gain control means 6 is the following; if at any point the signal level on the line 16 exceeds a certain fraction, for example 90%, of the total dynamics of circuit 2 or if, on the contrary, this level falls below a certain fraction, by example 25%, of the dynamics, the means of control of the gain react by controlling the two stages amplification / attenuation 4 and 8 so as to change gain, so as to bring the signal level down input of processing circuit 2 to a value too as close as possible to the maximum admissible by the latter.
  • a certain fraction for example 90%
  • the means of control of the gain react by controlling the two stages amplification / attenuation 4 and 8 so as to change gain, so as to bring the signal level down input of processing circuit 2 to a value too as close as possible to the maximum admissible by the latter.
  • the two lines 18 and 20 are intended to provide each of the stages 4 and 8 an order signal in response to which each of stages 4 and 8 will change gain.
  • the means of gain control and amplification / attenuation stages are designed to cooperate so that when the first stage gain 4 changes in a given ratio the second stage gain 8 changes in an inverse ratio to the one on the first floor.
  • Such an arrangement is important when for example the signal to be processed is a signal audio that you want to filter.
  • the second amplification / attenuation stage 8 may not be explicitly present as in measuring instruments already mentioned.
  • module 6 of the Figure 3 also includes, according to the present invention, a sequencer which is associated with the gain control means, and which, via line 22, controls the means of suppression of transients according to the present invention.
  • a sequencer which is associated with the gain control means, and which, via line 22, controls the means of suppression of transients according to the present invention.
  • the circuit shown schematically in Figure 4 constitutes a first particular example of a circuit for processing a signal which is usually shown on Figure 3 by the block referenced 2.
  • the diagram of the Figure 4 shows a second order continuous filter bandpass / lowpass using amplifiers transconductance and capacity (OTA-C). This type of filter is known to those skilled in the art. In indeed it is widely used in realizations integrated analog, for signal processing.
  • OTA-C amplifiers transconductance and capacity
  • the circuit of Figure 4 has an input line 12 to receive a signal to filter supplied by the first amplification / attenuation stage (figure 3) and two output lines 14a and 14b intended for use alternatively to provide either a filtered signal in low pass, a signal filtered in band pass.
  • circuit 2 includes two capacitors, of capacity C1 and C2 respectively, referenced 24a and 24b. These capacitors 24a and 24b are each connected between a node of the circuit (referenced 26a and 26b respectively) and the mass. As one can see in the figure, the nodes 26a and 26b are each located at downstream of an amplifier (referenced respectively 28a and 28b). It will be understood from the preamble of the description that, in the circuit shown here, these are the capacitors 26a and 26b which store the memory of the circuit. In consequence, in this example, the state variables which must, in accordance with the present invention, be modified by means of suppressing transients are the respective charges of the two capacitors mentioned above.
  • FIG. 5 represents one of the capacitors 24a or 24b of Figure 4 with the means for removing the transients which, according to the present invention, are associated.
  • the capacitor 24 of capacitance C represents one of the capacitors 24a or 24b
  • the node 26 represents one of the nodes 26a or 26b
  • the transconductance amplifier 28 represents one of the transconductance amplifiers 28a or 28b.
  • the assembly described in FIG. 5 is an assembly of the capacity type switched.
  • the switches can be controlled by control signals conventionally generated by a sequencer (already mentioned in relation to the figure 3) responding itself to the control signals produced by the gain control means (referenced 6 in the figure 3).
  • the control signals, generated by the sequencer are supplied to the various switches by lines not shown.
  • the means of suppressing transients are therefore provided to modify the values of the state variables by any power of 2.
  • We will first describe the sequence of commutations which allow to divide by 2 the voltage between the terminals of the capacitor 24. For divide the voltage between the terminals of capacitor 24 by a power of 2 greater than one, just repeat the process of dividing by 2 as many times as necessary.
  • switches ⁇ 1 and ⁇ 1b are closed then that all other switches are open.
  • the sequencer controlling the means of removal of transients, becomes operative. It generates first a first command signal to open the switches ⁇ 1 eT ⁇ 1b and to close the switch ⁇ 1c and switches S1 and S2.
  • the first result of these switching is to isolate the first capacitor 24 and its content from the rest of the circuit.
  • the closure of the switch ⁇ 1c has the effect of connecting the capacitor 24 between the output and the virtual ground of amplifier 32 so its charge is, in a first time, kept constant.
  • the closing of switches S1 and S2 for the effect of completely discharge the second capacitor 30.
  • the sequencer sends a second signal command to open switches ⁇ 1c, S1 and S2 and close switches S3 and S4 so as to connect the two capacitors 24 and 30 in parallel.
  • half of the load present in the capacitor 24 passes through capacitor 30 to equalize the voltages between the terminals of the two capacitors. This charge transfer has the effect of divide by 2 the value of the state variable stored in the capacitor 24.
  • the sequencer finally sends a third control signal to reset the switches in their initial configuration (all switches open except ⁇ 1 and ⁇ 1b).
  • switches ⁇ 1 and ⁇ 1b are closed and all other switches are open.
  • the sequencer controlling the means of removal of transients becomes effective. It generates first of all a first control signal identical to the first control signal of the division sequence by 2 described above.
  • This control signal has the effect open switches ⁇ 1 and ⁇ 1b and close switch ⁇ 1c.
  • the first result of this switching is to isolate the capacitor 24 and its contents from the rest of the circuit.
  • the closing of the switch ⁇ 1c has the effect of connect capacitor 24 between output and ground of amplifier 32 so that its charge is, initially, kept constant.
  • the sequencer sends a second signal command to close switches S2 and S3.
  • the operational amplifier 32 charges the capacitor 30 until the voltage across its terminals is equal to the voltage between the terminals of the capacitor 24.
  • the capacity of the capacitor 30 being identical to that of capacitor 24, it will contain the same charge as this latest.
  • the sequencer then sends a third signal command to open switches S2 and S3 and close switches S1 and S4. Under these conditions, the charges contained in capacitor 30 cause a modification of the potential at the inverting input amplifier 32 which, in response, provides charges at capacitor 24 until the potential of its inverting input is again that of ground. This last operation results in a doubling of the voltage between the terminals of the capacitor 24.
  • the sequencer finally sends a fourth command signal to return switches to their configuration initial (all switches open except ⁇ 1 and ⁇ 1b).
  • a switching sequence like the one that comes to be laid out can be done in a lot time shorter than the duration of the transient disturbances that we observe in the absence of the means of removing transients according to the invention.
  • the cut produced in the signal by means of removing transients may even be imperceptible.
  • the change of state variables can be performed inside one or of several carrier periods.
  • FIG. 6 therefore represents a second mode of realization of the means for suppressing transients according to the present invention.
  • the transient suppression means are used to change the value of the state variable associated with the capacitor 24b of capacity C2 in FIG. 4.
  • the components shown in Figure 6 which already appear in Figure 4 bear the same reference numbers.
  • the circuit of figure 6 works thanks to a block 35 providing a current whose output is equal to the product of the intensity of the input current by the amplitude of a control signal.
  • This block 35 is adapted on the one hand, to supply a current KI at its output 60 which is equal to K times the current I received on its input 50 and, on the other hand, to ensure that the entry 50 remains at the mass.
  • This block 35 can be produced in the manner presented at ISCAS 1989 by Adel S. Sedra under the title "the current conveyor; history and progress ", and using a mirror variable ratio current.
  • the operating principle of these means of removing transients is simple. They include two identical capacitors, a first of the two (for example the capacitor 24) filling at a given moment the function of capacitor 24b in the circuit of the figure 4.
  • the block 35 then supplies, at the output, a current of which the intensity is equal to the intensity of the current produced by the discharge of the first capacitor multiplied by one given K factor.
  • the current at the output of block 35 is used to charge the second capacitor which at the end of the operation, presents between its terminals a voltage equal to the tension that previously existed between the terminals of the first capacitor multiplied by said given factor.
  • the circuit of FIG. 6 comprises a switch ⁇ 1 which corresponds to switch ⁇ 1 of FIG. 5 and a series of pairs of switches S1a, S1b, S2a, s2b, S3a, S3b, S4a, S4b, S6a, S6b, S7a and S7b.
  • the capacitor 24 is associated with the switches Sa then that the capacitor 24 'is associated with the switches Sb.
  • a resistor 37 is finally mounted at the input of the multiplier 35 to brake the discharge of the capacitor when changing the value of the variable state.
  • switch ⁇ 1 If there is no change in floor gain amplification / attenuation, switch ⁇ 1 is closed. We will assume here that before the gain change, it is the capacitor 24 which was connected to the filter, In these conditions, the switch S1a is closed and the switch S1b is open. In addition, switches S3a, S4a, S6a and S7a are also open while switch S2a is closed. Note also that the switches S2b and S7b are closed to hold the 24 'capacitor fully discharged and that switches S3b, S4b and S6b are open.
  • the sequencer controlling the means of removal of transients becomes effective. It begets, on the one hand, a first command signal to open switch ⁇ 1 and decouple capacitor 24 from the rest of the circuit and on the other hand it transmits to block 35 a signal corresponding to the given factor by which the gain at the input of the filter will be multiplied.
  • the sequencer sends a command signal to close the switch S1b and close the switch 1 so as to couple the 24 'capacitor with the circuit.
  • Figure 7 shows another example of application of the present invention.
  • the device represented so schematic in Figure 7 is intended to provide output a variable signal in response to a quantity variable captured as input by a sensor which in the this example is of the capacitive type.
  • the device first comprises a capacitive sensor to two capacitors 110.
  • the output of sensor 110 is connected to the input of a processing circuit and interface 120 which can typically consist of a Sigma-Delta bandpass modulator.
  • the Sigma-Delta modulator 120 provides a density modulated bit stream of pulses. This bit stream is supplied to a module of digital synchronous detection 130 controlled by a signal time base provided on a line 180 by a clock 160.
  • the module 130 provides in response a digital signal which constitutes the output signal of the device.
  • the train of bits produced by the processing circuit 120 is also supplied to a working 140 module basically as a low pass filter to produce a analog output signal from the signal modulated in pulse density.
  • the analog signal produced by the module 140 is still transmitted by a line 170 to the sensor 110 of so as to form a feedback loop for, for example example, maintain the sensor in a state of equilibrium.
  • the capacitive sensor 110 can, in known manner, be of the type comprising two capacitors and in which one movable conductive strip constitutes a movable armature common for the two capacitors. With such arrangement, any movement of the movable blade results by a variation of the respective capacities of the two capacitors. This variation in the capabilities of the two capacitors is typically measured by placing respectively the fixed armatures of the two capacitors to two imposed potentials of the same value but of signs opposites, and by measuring either the charge or the potential on the movable blade. It should be noted that with such a setting the intensity of the measurement signal, or otherwise says the sensitivity of the sensor, is proportional to the modulus of the potential imposed on fixed armatures.
  • the device of FIG. 7 comprises another module 150 which performs the same functions as the means represented by block 6 in FIG. 3.
  • the module or block 150 controls the level at the output of the circuit of treatment 120 using line 154 so that determine when the sensitivity of sensor 110 must be changed.
  • a command line 156 which allows block 150 to command a block 100 which is intended to provide the two potentials reference for fixed armatures of the capacitive sensor 110.
  • the processing circuit 120 includes a memory, caused variations in sensor sensitivity go, as in the case of the device of FIG. 3, cause the appearance of transients.
  • the device of FIG. 7 comprises means of suppressing transients (symbolized by the line 190) which can be done completely analogous to those described above reference to Figure 5 or Figure 6.
  • the signal amplifier 225 input includes four capacitors 229, 230, 231 and 232.
  • One of the armatures of capacitors 229, 230, 231 and 232 is connected respectively to one of the terminals of the switches 233, 234, 235 and 236.
  • the integrator 222 comprises an operational amplifier 237, a capacitor 238 of which is connected between its inverting input and its output.
  • the integrator 222 generates, at its output, an analog voltage which represents the integration with respect to time of the total charge stored by the capacitors 229 to 232 and 257.
  • the other terminals of the switches 233, 234, 235 and 236 are connected set at the inverting input of the operational amplifier 237 via a switch 239.
  • Two terminals 240 and 241 are connected to the input signal amplifier 225 via two switches 242 and 243 of so that an analog voltage V in present at these terminals can be applied to one or more of the capacitors 229, 230, 231 and 232.
  • the capacitors 229, 230, 231 and 232 have the same value C in .
  • the range setting circuit 226 includes a switch control circuit 244 and the switches 233, 234, 235 and 236.
  • a data bus 245 transmits a signal which represents the desired gain G of the input signal of the sigma converter. delta 220, to circuit 244 for controlling switches.
  • This circuit has four outputs 244a, 244b, 244c and 244d to respectively control the operation of switches 233, 234, 235 and 236.
  • the operation of switches 233, 234, 235 and 236 is controlled respectively according to the gain signal received from the bus 245, so that the input voltage V in present between terminals 240 and 241 can be applied to one of the capacitors 229, 230, 231 and 232 or to a combination of these capacitors connected in parallel.
  • the charge Q in stored between the armatures of the combination of capacitors connected in parallel can thus be equal to C in * V in , 2C in * V in , 3C in * V in or 4C in * V in , as a function of l amplification of the input signal.
  • the compensation circuit 228 of noise includes a control circuit 250 switches and gain detection for detecting a change in the value of the gain signal from the bus 245 and to control the respective operation of the contactors 246, 247, 248 and 249 through its outputs 250a, 250b, 250c and 250d, so that the capacitors 238 and 245 are connected, either in parallel, either in series between the amplifier operational 237 and ground.
  • the comparator 223 compares the voltage level at the output of the operational amplifier 237 with a predetermined reference voltage, which is in the case shown, the ground potential. If the output voltage of the operational amplifier is greater than zero volts, the comparator produces a bit of value +1 at its output, while when this voltage is less than zero volts it produces a bit of value -1. In the data bit stream, carrying the reference Y, which is thus produced by the comparator 223, the density of the bits of high logic level relative to that of the bits of low logic level, represents the voltage V in analog input applied between terminals 240 and 241.
  • the feedback circuit 224 comprises a bit detector and a circuit 251 for controlling switches, two terminals 252 and 253, switches 239, 254, 255 and 256, a capacitor 257 having a value C ref and a source of voltage V ref (not shown).
  • the control circuit 251 has outputs 251a and 251b to allow the control of the switches 254 and 255, respectively.
  • the switches 254 and 255 allow the capacitor 257 to be changed with a charge Qref equal to C ref * V ref , or to discharge this capacitor.
  • the load Q ref is integrated in the positive direction or in the negative direction. The difference between the charges Q in ⁇ Q ref is thus stored between the armatures of the capacitor 238 and correspondingly integrated by the operational amplifier 237.
  • the output signal amplifier 227 includes a logic circuit for multiplying the digital information contained in the bit stream Y generated at the comparator output 223 by the inverse of the gain G from bus 245.
  • the digital word, which carries the reference X, which results from this calculation is provided to the logic circuit 227 output.
  • the stability of the sigma-delta converter 220 is guaranteed as long as the charge Q in associated with the input signal is less than the absolute value of the charge Q ref injected by feedback.
  • the input signal V in can thus be sampled with a gain of 1, 2, 3 or 4 by controlling the switches 233, 234, 235 and 236 so as to choose the corresponding number of capacitors 229, 230, 231 or 232.
  • the multiplication of the input signal by a predetermined gain is achieved by programming the gain of the input branch of the sigma-delta converter.
  • the consumption of the sigma-delta loop is, as a first approximation, independent of the gain chosen.
  • the consumption of the converter 220 is directly linked to the charge Q ref injected by feedback which is independent of the gain chosen.
  • the excursion of the integrator is independent of the gain chosen and it can therefore be chosen at an optimal value for all the ranges of the input signal of the converter 220.
  • the multiplication of the input signal by a desired gain can be achieved in another way, by example by a programmable current mirror or by other circuits in which the active elements are different from capacitors 229, 230, 231 and 232.
  • the gain chosen can be greater or less than 1 and take values other than positive integers (1, 2, 3 and 4) of FIG. 8.
  • positive integers as gain values simplifies the operation of the division performed by logic circuit 227.
  • the values of the chosen gain correspond to powers of two (that is to say the gain can take values such as 4, 2, 1, 1/2, 1/4, ...) so that the digital word of the division produced by the logic circuit 227 involves a simple shift of the bits in the word.
  • the integrator 222 accumulates the difference between the analog input signal and the digital output signal converted to analog form. For example, when the range of the input signal is adjusted with a gain of 1, the voltage V in is applied only to one of the capacitors 229, 230, 231 or 232.
  • the voltage V amp should be equal to ⁇ t1 2 (Vin * Cin - X * Vref * Cref).
  • the charge stored by the capacitor 238 remains at this instant always equal to ⁇ t1 (V in * C in - X * V ref * C ref ), so that there is no longer a correct relationship between the function of the integrator and the charge on its capacitor.
  • the circuit 250 for controlling the switches momentarily closes the switches 247 and 248 which charges the capacitor 245 has the same value as the capacitor 238. Then the switches 247 and 248 are open, then the switches 246 and 249 are closed. Thus, the capacitor 245 is discharged and its charge is transferred to the armatures of the capacitor 238.
  • the charge stored by the integrator 222 becomes the equivalent of ⁇ t1 2 (V in * C in - X * V ref * C ref ) and the error accumulated in this integrator is doubled to compensate for the multiplication by two of the gain chosen.
  • the switch control circuit 250 first discharges the capacitor 245 by momentarily closing the switches 248 and 249. Then the switches 246 and 247 are closed, which connects the capacitor 245 in parallel with the capacitor 238. If a value equal to that of the capacitor 238 is chosen for the capacitor 245, the charge stored between the plates of the capacitor 238 is reduced by half. The capacitor 245 is then disconnected from the integrator 222. The charge stored by the integrator 222 then becomes ⁇ t1 (V in * C in - X * V ref * C ref ) and the error which is accumulated there is reduced by half to compensate for the halving of the chosen gain.
  • the sigma-delta converter in Figure 8 is a particular example of how the noise of switching which results from a change in the range of the input signal, can be compensated by multiplication of the error accumulated in the integrator by an R ratio of the newly chosen gain compared to the chosen gain previously. This operation can be implemented more easily if the relation R between the various gains successive is constant, because in this case, just multiply and divide the error accumulated by the relation R.
  • the value of R can conveniently be equal to 2.
  • the use of capacitors 238 and 245 in Figure 8 is an example practice of such an achievement.
  • the sigma-delta converter described by doing reference to figure 8 converts an input voltage analog to a digital output word but it's clear that, according to the present invention, the use of this converter is not limited to this application.
  • the invention can be applied in the case where we measure a capacity which is converted into a signal variable output.
  • the capacitors 229, 230, 231 and 232 can be replaced by a source of voltage having four predetermined values which are applied to the limits of the capacity to be measured according to a selected gain of the input signal.
  • the input signal applied to the sigma-delta converter of the present invention can be an analog current directly sent to the integrator 222, in which case the amplifier input signal includes current amplifier adjustable or a network of resistors.
  • the amplifier input signal includes current amplifier adjustable or a network of resistors.
  • FIG. 9 shows a converter 270 digital / analog oversampling including a sigma-delta 271 multi-range converter for convert a numerical quantity with n bits into a quantity digital to m bits.
  • the converter 270 includes a digital filter 272, an elementary converter digital / analog 273 and an analog low pass filter 274.
  • An input signal X is constituted by an n-bit digital word which is applied to the interpolation filter 272.
  • the signal X is first interpolated and then sampled at a frequency f s in the interpolation filter 272, f s being significantly greater than the Nyquist frequency f N of the input signal X.
  • the sigma-delta converter 271 is used as a digital noise shaper, operating at a clock frequency f s , which "approximate" the signal X1 of the interpolation filter so as to obtain a signal X2 which consists of a digital word with m bits, n> m.
  • the noise generated by the approximation is thus rejected towards frequencies higher than the sampling frequency f s .
  • the word "approximate" X2 is converted into an analog signal V1 by the elementary digital / analog converter 273 before passing through the low-pass filter 274 which eliminates the approximation noise rejected towards the higher frequencies.
  • the digital / analog converter 270 with oversampling also includes a bus 275 intended to apply the gain G chosen to the sigma-delta converter 271 and to the elementary D / A converter 273
  • the signal X1 is multiplied by the gain G so that the signal X2 is better suited to the input range of the elementary D / A converter 273.
  • the signal X2 has been converted in analog form, it is divided by G so that the filtered output signal V out represents the digital input signal X.
  • a sigma-delta converter (digital noise shaper) 280 has been represented comprising an integrator 281, a truncator 282 and a subtraction circuit 283.
  • the integrator 281 comprises a digital register 284 and an addition circuit 285.
  • a digital signal X in with n bits is applied to the converter 280.
  • a digital signal Y out with m bits which will be described briefly below, n> m, is subtracted from the signal X in and the resulting signal X diff with n bits is applied to the integrator 281.
  • the integration is carried out according to an algorithm which adds the output of the register 284 generated during a previous clock cycle to the signal X diff and temporarily stores the sum resulting in the register during the current clock cycle.
  • the n bit signal X in from the integrator 281 is truncated to form an output signal Y out comprising the m most significant bits of the signal X int .
  • the signal Y out also provides a feedback signal which is subtracted from the input signal X in by the subtraction circuit 283.
  • a comparison of the sigma-delta converter of FIG. 1 with the digital noise shaper of FIG. 10 shows that the analog input signal is replaced by a n-bit digital signal, that the integrator 202 is replaced by the integrator 281 purely digital and the comparator 203 is replaced by the truncator 282.
  • the output of the D / A converter 204 is replaced by the signal Y out which does not need a physical circuit to be generated due to the division of the bus X int in two parts by the truncator 282.
  • the circuit 206 for combining signals is replaced by the subtraction circuit 283.
  • the digital noise shaper 280 of Figure 10 is a functional equivalent of the sigma-delta converter 201 of Figure 1.
  • the digital noise shaper 280 interpolates and oversamples the signal X in at n bits of so as to produce an output signal Y out which provides an estimate at m bits of the input signal X in .
  • the quantization error resulting from the sampling process is rejected towards the higher frequencies by the integrator which is used to carry out the sigma-delta conversion.
  • FIG. 10 shows a digital noise shaper 290 in which this simplification has been implemented.
  • the digital noise shaper 290 includes the digital register 284, the truncator 282 and the addition circuit 285 of FIG. 10, however that in this embodiment of the invention, the most significant bits Y lsb are accumulated up to that they produce an overshoot of the Y msb signal and are thus transferred to the output of the Y out clipper.
  • the converter 290 thus stores the error of conversion between its input signal and its signal exit.
  • a variation in gain input signal alters the relationship between the function of the integrator and the numeric value stored in the accumulator, which can be avoided by multiplying the conversion error by the ratio of the new gain to old gain.
  • FIG. 12 shows an embodiment of the sigma-delta converter 271 with multiple ranges of FIG. 9.
  • the latter comprises the converter 290 of FIG. 11 and two multiplication circuits 291 and 292.
  • the multiplication circuit 291 multiplies the signal d input X in by the gain signal G (k) chosen from the bus 275.
  • the value of the gain G (k) can be changed according to the choice of the range of the input signal from the converter 271.
  • the error between the input signal X in and the output signal Y out is accumulated in the digital accumulator 284 with a gain which depends on the range chosen, the change in the range of the input signal introduces switching noise into the stored conversion error.
  • the multiplication circuit 292 is connected in the feedback circuit between the truncator 282 and the addition circuit 285, in order to multiply the signal Y lsb by the ratio of the new gain G (k) to the old gain G (k-1).
  • the position of the bits in each of the digital words X in and Y lsb can be offset by an appropriate number of locations. This can preferably be done using shift registers, the gain signals G (k) and G (k) / G (k-1) determining the number of positions by which the bits are to be shifted.
  • Figure 13 generally shows a sigma-delta converter A / D 100 including integrator 222, comparator 223 and an amplifier 227 of the output signal of the sigma-delta 220 converter.
  • the sigma-delta 300 converter includes a signal combination circuit 301, an amplifier 302 of the feedback signal, a range setting circuit 303 and a feedback circuit 304.
  • the feedback amplifier 302 comprises four capacitors 305, 306, 307 and 308.
  • the armatures of these capacitors are respectively connected to the switch terminals 309, 310, 311 and 312.
  • the other terminals of these switches are connected together to the non-inverting input of an operational amplifier 237 via the switch 256.
  • the voltage V ref present at terminals 252 and 253 is applied to one or more of the capacitors 305, 306, 307 and 308.
  • these capacitors Preferably , these capacitors have the same value C ref .
  • the range adjustment circuit 303 comprises a circuit for controlling switches 313 as well as switches 309, 310, 311 and 312.
  • the circuit 313 has four outputs 313a, 313b, 313c and 313d for controlling the operation of the switches 309 respectively. 310, 311 and 312.
  • the operation of the switches is selectively controlled as a function of the gain signal from the bus 245 so that any combination of the capacitors 305, 306, 307 and 308 can be connected so as to receive the voltage V ref .
  • the charge stored between the armatures of the capacitors connected in parallel can thus be equal to C ref * V ref , 2C ref * V ref , 3C ref * V ref or 4C ref * V ref , depending on the gain that is present on the bus. 245.
  • the input signal V in present between terminals 240 and 241 is applied to the terminals of a capacitor 314 whose value is C in , by means of switches 242 and 243.
  • a charge Q in equal to V in * C in is thus produced between the armatures of the capacitor C in .
  • This load is applied to the inverting input of the operational amplifier 237 via the switch 239.
  • the feedback circuit 304 includes a control circuit 315, terminals 252 and 253, the contactors 239, 254, 255 and 256 and the voltage source V ref .
  • the control circuit 315 detects the digital word at the output of the amplifier 227 of the output signal, this word resulting from the multiplication of the digital information in the bit stream coming from the comparator 223 by the inverse of the gain on the bus 245.
  • the control circuit 315 has outputs 315a and 315b to allow control of the operation of the switches 254 and 255, respectively.
  • the load G * Q ref is integrated either positively or negatively depending on the value +1 or -1 of the bit produced at the output of comparator 223, by controlling the operation of switches 254 and 255.
  • the difference between the charges Q in ⁇ G * Q ref is stored between the armatures of the capacitor 238 and is thus integrated by the operational amplifier 237.
  • the sigma-delta converter 300 is stable as long as the charge Q in is less than the absolute value of the reaction charge Q ref .
  • the range of the input signal for the input signal V in can thus be chosen according to the number N of capacitors 305, 306, 307 and 308 connected in parallel.
  • the capacitor 238 of the integrator 222 accumulates the difference between the analog input signal and the digital output signal reconverted into analog form.
  • the switching noise is introduced at the moment when the range of the input signal is modified due to the alteration of the relation between the gain of the input signal V in and the quantization error stored by the capacitor 238. This noise is avoided by multiplying the quantization error by the ratio of the new gain to the old gain.
  • the integrator 222 accumulates the quantization error independently of the gain chosen.
  • the output V amp of the operational amplifier 222 is equal to A ( ⁇ t1 e (t) .dt), where A represents the fixed gain of the input signal V in . Any alteration of the relationship between the gain of the input signal and the error accumulated in the integrator of the sigma-delta converter and consequently any switching noise which could result therefrom is thus avoided.
  • the sigma-delta converter 300 of FIG. 13 can also be produced in the form of a digital noise shaper intended to convert a digital signal of n bits into a digital signal of m bits.
  • FIG. 14 shows, in general, such a sigma-delta converter 320 comprising the digital accumulator 284 and the addition circuit 285 of FIG. 12 and, moreover, a programmable truncator 321.
  • the number of bits in the signal Y lsb and consequently of the complementary signal Y msb is modified by the truncator 321 in response to the value of the selected gain G which is applied to it; which allows the converter 321 reaction circuit to be programmed.
  • the sensitivity of the converter 321 can be increased by reducing the number of the least significant bits accumulated and consequently by producing a faster exceeding these bits in the most significant bit of signal X1.
  • the accumulator always accumulates the difference between the input signal X in and the output signal Y out regardless of the range chosen for the converter 320, the digital value stored in the accumulator 284 need not be update, when the chosen range is modified.
  • FIG. 15 Another application of the sigma-delta converter the present invention is shown in Figure 15 which generally represents a converter digital / analog 330 oversampling mounted in closed loop.
  • Converter 330 has a circuit direct with a basic 331 D / A converter and a integrator 332, as well as a feedback circuit which includes a 333 analog / digital converter.
  • low-low filter 334 eliminates high frequency noise from the voltage at the output of the integrator 332.
  • converter accuracy sigma-delta 330 is essentially determined by the feedback circuit.
  • the sigma-delta converter 330 can thus be achieved through the use of a precise A / D 333 converter and one more converter elementary D / A 331.
  • the sigma-delta converter of this invention in the form described for example with respect to Figures 8 and 13, is thus ideally suited for be used as an A / D converter 333. It is preferable, to give the sigma-delta converter the present invention the best signal-to-noise ratio, optimize the chosen gain. If the chosen gain is too much high, the converter will saturate when either the signal input, or the feedback signal exceeds one certain amplitude. This results in a "truncation" of the signal and a distortion of the output signal. Else hand, if the gain chosen is too low, the operation of the converter leads to low resolution and the signal-to-noise ratio is reduced.
  • FIG. 16 schematically represents the sigma-delta converter 220 of FIG. 8 and a gain control circuit 340, the latter being able to be used also in the other embodiments of the invention.
  • This circuit 340 measures the amplitude of the signal V in but can also measure its energy. As a function of this amplitude measured, the control circuit 340 increases or decreases the value of the gain G on the bus 245 so that it can be used by the sigma-delta converter 220 for adjusting the range of the input signal .
  • the control circuit 340 will not be described in detail, because it can be easily carried out by specialists; it can for example comprise a mixed analog / digital circuit comprising threshold detectors, comparators, Schmitt "triggers", low pass filters and / or low resolution A / D converters by means of which this circuit checks the level of the input signal and consequently adjusts the sensitivity of the converter 220 by sending a signal representing the range chosen to the range selection circuit of the converter 220.
  • Figure 17 shows another arrangement in which the sigma-delta converter 220 of figure 8 is controlled by a gain control circuit 350 which measures the signal level at the output of converter 220. As the circuit used is then practically only digital, the gain control circuit 220 thus avoids the use of additional analog circuits from the gain control circuit 340 of FIG. 16.
  • the field of application of the present invention is not limited circuits with a variable gain input stage but that it generally extends to all devices in which the amplitude of a quantity captured at input may vary in a predictable manner and the variation of which has a effect comparable to a change in gain.
  • the invention remains applicable when the signal amplitude undergoes changes, predictable or detectable, similar to a change in gain due to a disturbance, change of the characteristics of the circuits of treatment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Picture Signal Circuits (AREA)

Claims (30)

  1. Verarbeitungsschaltkreis (2, 120), um ein variables Ausgangssignal in Antwort auf eine variable, am Eingang erfaßte oder empfangene Größe zu erzeugen, wobei der Verarbeitungsschaltkreis mit einer Eingangsstufe oder einem Eingangssensor (4, 110), ein Signal mit einem variablen Verstärkungs-/Dämpfungsfaktor erzeugend, verbunden ist und wobei der Verarbeitungsschaltkreis zudem eine Antwortcharakteristik aufweist, die von Zustandsvariablen abhängt, wobei der Schaltkreis Mittel zur Unterdrückung von üblicherweise bei einer Änderung des Verstärkungs-/Dämpfungsfaktors erzeugten Schwankungen umfaßt, wobei die Mittel zur Unterdrückung der Schwankungen durch zur Änderung des Verstärkungs-/Dämpfungsfaktors direkt proportionale Änderung des Wertes der Zustandsvariablen funktionieren, dadurch gekennzeichnet, daß der Schaltkreis ein Sigma-Delta-Bandpaßmodulator ist.
  2. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß der Sigma-Delta-Modulator dazu bestimmt ist, ein variables Eingangssignal in das Ausgangssignal umzuwandeln, und umfaßt:
    einen Schaltkreis zur Kombination von Signalen (221), dazu bestimmt, das Ausgangssignal zu dem Eingangssignal zu addieren oder eines dieser Signale vom anderen zu subtrahieren, so daß ein kombiniertes Signal erzeugt wird,
    einen Integrator (222), dazu bestimmt, das kombinierte Signal zu integrieren, so daß ein integriertes Signal erzeugt wird, wobei der Integrator einen Schaltkreis zur Speicherung von Fehlern (238), dazu bestimmt, eine den Zeitwert des kombinierten Signals repräsentierende Größe zu speichern, umfaßt,
    einen Komparator (223), dazu bestimmt, das integrierte Signal mit mindestens einem vordefinierten Pegel so zu vergleichen, daß das Ausgangssignal erzeugt wird,
    einen Rückkopplungsschaltkreis (224), dazu bestimmt, ein das Ausgangssignal repräsentierendes Rückkopplungssignal an den Schaltkreis zur Kombination von Signalen anzulegen,
    einen Bereichsregelschaltkreis (226), dazu bestimmt, den Verstärkungs-/Dämpfungsfaktor um einen ersten Wert und auf mindestens einen zweiten Wert zu ändern,
    einen Schaltkreis (227), dazu bestimmt, das Ausgangssignal um den Kehrwert des Verstärkungs-/Dämpfungsfaktors zu verstärken, und
    einen Rauschkompensationsschaltkreis (228), dazu bestimmt, die gespeicherte Größe mit dem Verhältnis des zweiten Wertes zu dem ersten Wert zu multiplizieren, wenn der Verstärkungs-/Dämpfungsfaktor von einem ersten Wert auf den zweiten Wert verändert wird.
  3. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zur Unterdrückung der Schwankungen ein Schaltungselement von umschaltbaren, durch einen Reihenschalter gesteuerten Kapazitäten umfassen.
  4. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zur Unterdrückung der Schwankungen einen Multiplikator umfassen, welcher vorgesehen ist, um einen Strom mit der Intensität eines dem Faktor, mit welchem man den Verstärkungsfaktor der Eingangsstufe ändert, entsprechenden Signals zu multiplizieren.
  5. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zur Unterdrückung der Schwankungen vorgesehen sind, um die Zustandsvariablen in vorbestimmten Proportionen zu ändern.
  6. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß die Mittel zur Unterdrückung der Schwankungen vorgesehen sind, um die Zustandsvariablen um irgendeinen Faktor zu ändern.
  7. Verarbeitungsschaltkreis nach Anspruch 2, dadurch gekennzeichnet, daß der Integrator (222) einen Verstärker (237) umfaßt, welcher einen invertierenden Eingang, einen nicht-invertierenden Eingang und einen Ausgang aufweist, wobei der Schaltkreis zur Speicherung von Fehlern (238) einen mit dem invertierenden Eingang und dem Ausgang des Verstärkers verbundenen Speicherkondensator umfaßt, wobei der Speicherkondensator (238) eine zu dem Zeitwert des kombinierten Signals proportionale Ladung speichert.
  8. Verarbeitungsschaltkreis nach Anspruch 7, dadurch gekennzeichnet, daß der Rauschkompensationsschaltkreis (228) einen Schaltkreis umfaßt, um den Wert des Speicherkondensators und folglich die Größe der akkumulierten Ladung mit dem Verhältnis zu multiplizieren.
  9. Verarbeitungsschaltkreis nach Anspruch 8, dadurch gekennzeichnet, daß der Rauschkompensationsschaltkreis (228) mindestens einen zusätzlichen Kondensator (245) umfaßt, welcher entweder mit dem Speicherkondensator (238) in Serie oder mit diesem parallel verbunden sein kann.
  10. Verarbeitungsschaltkreis nach Anspruch 9, dadurch gekennzeichnet, daß der Speicherkondensator (238) und der zusätzliche Kondensator (245) den gleichen Wert haben.
  11. Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß das Eingangssignal eine analoge Spannung umfaßt, der Schaltkreis (225) zum Verstärken des Eingangssignals einen an den Integrator (222) zum Umwandeln der analogen Spannung in eine das verstärkte Eingangssignal repräsentierende Ladung angeschlossenen Eingangskondensator (229, 230, 231, 232) umfaßt, wobei der Bereichsregelschaltkreis (226) Mittel (233, 234, 235, 236) umfaßt, um den Wert des Eingangskondensators zu ändern.
  12. Verarbeitungsschaltkreis nach Anspruch 11, dadurch gekennzeichnet, daß der Schaltkreis zum Verstärken (225) des Eingangssignals mehrere kapazitive Elemente (229, 230, 231, 232) umfaßt, wobei der Bereichsregelschaltkreis (226) Schalter (229, 230, 231, 232) umfaßt, die es ermöglichen, alle Kombinationen der kapazitiven Elemente gegebenenfalls parallel in den Schaltkreis einzufügen.
  13. Verarbeitungsschaltkreis nach Anspruch 12, dadurch gekennzeichnet, daß die kapazitiven Elemente (229, 230, 231, 232) den gleichen Wert haben.
  14. Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß das Eingangssignal einen Kondensator einer meßbaren Kapazität umfaßt, welcher an den Integrator (222) angeschlossen werden kann, wobei der Schaltkreis zum Verstärken des Eingangssignals eine vorbestimmte Eingangsspannung, welche an den Kondensator mit meßbarer Kapazität angelegt wird, um diese in eine diese meßbare Kapazität repräsentierende Ladung umzuwandeln, empfängt, wobei der Bereichsregelschaltkreis (226) Mittel umfaßt, um den Wert der Eingangsspannung zu ändern.
  15. Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, daß das Eingangssignal ein analoger Strom ist, welcher vom Integrator (222) abgegeben wird, wobei der Schaltkreis zum Verstärken (225) des Eingangssignals einen Analogstromverstärker umfaßt, wobei der Bereichsregelschaltkreis (226) Mittel umfaßt, um die Verstärkung des Verstärkers zu ändern.
  16. Verarbeitungsschaltkreis nach Anspruch 2, dadurch gekennzeichnet, daß das Eingangssignal eine variable numerische Größe ist, wobei der Integrator (281) umfaßt
    einen numerischen Akkumulator (284), um einen den Zeitwert des berechneten Signals repräsentierenden numerischen Wert mit n Bits zu speichern, wobei der numerische Akkumulator (84) einen Eingang und einen Ausgang umfaßt, und
    einen Schaltkreis (285), um den vom Ausgang des Akkumulators (284) stammenden numerischen Wert und das berechnete Signal zu addieren.
  17. Verarbeitungsschaltkreis nach Anspruch 16, dadurch gekennzeichnet, daß der Rauschkompensationsschaltkreis
    einen Schaltkreis (292), um den im Akkumulator gespeicherten numerischen Wert zu ändern, umfaßt.
  18. Verarbeitungsschaltkreis nach Anspruch 17, dadurch gekennzeichnet, daß der Komparator einen Teiler (282) umfaßt, welcher dazu bestimmt ist, den numerischen Wert in seine m höchstwertigen Bits (Ymsb) und seine (n-m) niedrigstwertigen Bits (Ylsb) aufzuteilen, wobei das Ausgangssignal (Yout) die m höchstwertigen Bits umfaßt.
  19. Verarbeitungsschaltkreis nach Anspruch 18, dadurch gekennzeichnet, daß die (n-m) niedrigstwertigen Bits dem kombinierten Signal so zugefügt werden, daß das Eingangssignal des Akkumulators erzeugt wird, wobei der Ausgang des Akkumulators direkt an den Teiler angelegt ist, wobei der Rauschkompensationsschaltkreis die (n-m) niedrigstwertigen Bits mit dem Verhältnis multipliziert.
  20. Verarbeitungsschaltkreis nach Anspruch 19, dadurch gekennzeichnet, daß das Verhältnis eine Potenz von 2 ist, und der Rauschkompensationsschaltkreis Mittel umfaßt, um die (n-m) niedrigstwertigen Bits im numerischen Wert gegen die Positionen der höchstwertigen Bits zu verschieben.
  21. Verarbeitungsschaltkreis nach Anspruch 1, dadurch gekennzeichnet, daß der Sigma-Delta-Umwandlungsmodulator dazu bestimmt ist, ein variables Eingangssignal in ein variables Ausgangssignal umzuwandeln, und umfaßt
    einen Schaltkreis zum Kombinieren von Signalen (301), dazu bestimmt, ein das Ausgangssignal repräsentierendes Rückkopplungssignal und das Eingangssignal zu addieren oder dieses Rückkopplungssignal von letzterem zu subtrahieren, so daß ein kombiniertes Signal erzeugt wird,
    einen Integrator (222), dazu bestimmt, das kombinierte Signal so zu integrieren, daß ein integriertes Signal erzeugt wird, wobei der Integrator einen Schaltkreis zum Speichern von Fehlern (238) umfaßt, welcher eine den Zeitwert des kombinierten Signals repräsentierende Größe speichert,
    einen Komparator (222), dazu bestimmt, das integrierte Signal mit mindestens einem vorbestimmten Pegel so zu vergleichen, daß das Ausgangssignal erzeugt wird,
    einen Schaltkreis (302), um das Ausgangssignal mit dem Verstärkungs-/Dämpfungsfaktor so zu verstärken, daß das Rückkopplungssignal erzeugt wird, und
    einen Bereichsregelschaltkreis (303), dazu bestimmt, den Verstärkungs-/Dämpfungsfaktor von einem ersten Wert auf einen zweiten Wert zu ändern.
  22. Verarbeitungsschaltkreis nach Anspruch 21, dadurch gekennzeichnet, daß der Schaltkreis zum Verstärken (302) des Ausgangssignals einen Rückkopplungskondensator (305, 306, 307, 308) umfaßt, welcher an den Integrator angeschlossen ist, um das Ausgangssignal in eine dementsprechende Ladung umzuwandeln, wobei der Bereichsregelschaltkreis Mittel (309, 310, 311, 312) umfaßt, um den Wert des Rückkopplungskondensators zu ändern.
  23. Verarbeitungsschaltkreis nach Anspruch 22, dadurch gekennzeichnet, daß der Schaltkreis (302) zum Verstärken des Ausgangssignals mehrere kapazitive Elemente (305, 306, 307, 308) umfaßt, wobei der Bereichsregelschaltkreis (303) Mittel zur Unterbrechung (309, 310, 311, 312) umfaßt, um es zu ermöglichen, die kapazitiven Elemente gegebenenfalls parallel in den Schaltkreis einzufügen.
  24. Verarbeitungsschaltkreis nach Anspruch 23, dadurch gekennzeichnet, daß die kapazitiven Elemente (305, 306, 307, 308) den gleichen Wert haben.
  25. Sigma-Delta-Umwandler nach Anspruch 21, dadurch gekennzeichnet, daß das Eingangssignal eine variable numerische Größe ist, wobei der Integrator (281) einen numerischen Akkumulator (284) umfaßt, dazu bestimmt, einen den Zeitwert des kombinierten Signals repräsentierenden numerischen Wert mit n Bits zu speichern, wobei der numerische Akkumulator (284) einen Eingang und einen Ausgang umfaßt, wobei der Komparator einen Teiler (321) umfaßt, dazu bestimmt, den numerischen Wert in seine m höchstwertigen Bits und seine (n-m) niedrigstwertigen Bits aufzuteilen.
  26. Verarbeitungsschaltkreis nach Anspruch 25, dadurch gekennzeichnet, daß eine Anzahl der (n-m) niedrigstwertigen Bits zu dem kombinierten Signal addiert werden, so daß das Eingangssignal des Akkumulators erzeugt wird, wobei der Ausgang des Akkumulators direkt am Teiler (321) anliegt und der Schaltkreis zur Bereichsauswahl die Anzahl der Bits, welche zu dem Differenzsignal hinzugefügt werden, ändert.
  27. Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 26, dadurch gekennzeichnet, daß er zudem einen ersten Schaltkreis zur Verstärkungskontrolle (340) umfaßt, um das Eingangssignal zu messen und um ein dem Verstärkungs-/Dämpfungsfaktor entsprechendes Verstärkungssignal (G) zu erzeugen, der dazu bestimmt ist, durch den Bereichsregelschaltkreis (226) benutzt zu werden.
  28. Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 27, dadurch gekennzeichnet, daß er zudem einen zweiten Schaltkreis zur Verstärkungskontrolle (350) umfaßt, um das Ausgangssignal zu messen und um ein dem Verstärkungs-/Dämpfungsfaktor entsprechendes Verstärkungssignal (G) zu erzeugen, das dazu bestimmt ist, durch den Bereichsregelschaltkreis (226) benutzt zu werden.
  29. Übersampelnder Digital/Analog-Wandler (270), umfassend einen Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 28, dadurch gekennzeichnet, daß er zudem umfaßt
    ein Interpolationsfilter (272), dazu bestimmt, Momentwerte eines numerisches Eingangssignals so zu erfassen, daß ein Momentwertsignal mit n Bits erzeugt wird,
    einen einfachen Digital/Analog-Wandler (273), dazu bestimmt, ein analoges Signal zu erzeugen, welches das numerische Eingangssignal repräsentiert, wobei der Sigma-Delta-Konverter (271) dazu bestimmt ist, die n Bits des Momentwertsignals zu empfangen und ein das Momentwertsignal repräsentierendes Signal mit m Bits und entsprechendem Rauschen an den einfachen Digital/Analog-Wandler anzulegen.
  30. Übersampelnder Digital/Analog-Wandler (330), umfassend einen Verarbeitungsschaltkreis nach einem der Ansprüche 2 bis 29, dadurch gekennzeichnet, daß er zudem umfaßt
    einen Eingangsschaltkreis, umfassend einen Digital/Analog-Wandler (331), dazu bestimmt, ein numerisches Differenzsignal in ein analoges Differenzsignal umzuwandeln, und einen Integrator (332), dazu bestimmt, das analoge Differenzsignal so zu integrieren, daß ein analoges Ausgangssignal erzeugt wird,
    einen Rückkopplungsschaltkreis, umfassend einen Sigma-Delta-Analog/Digital-Wandler (333), dazu bestimmt, das analoge Ausgangssignal in ein digitales Rückkopplungssignal umzuwandeln, und einen Schaltkreis zur Kombination von Signalen, dazu bestimmt, ein analoges Eingangssignal mit dem Rückkopplungssignal so zu kombinieren, daß das kombinierte Signal erzeugt wird.
EP94109610A 1993-06-28 1994-06-22 Schaltung zur Verarbeitung von Signalen mit einer Eingangsstufe mit veränderbarer Verstärkung Expired - Lifetime EP0631395B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9307950A FR2708161B1 (fr) 1993-06-28 1993-06-28 Convertisseur sigma-delta à plusieurs plages.
FR9307950 1993-06-28
FR9403541 1994-03-25
FR9403541A FR2717933B1 (fr) 1994-03-25 1994-03-25 Circuit de traitement de signaux comportant un étage d'entrée à gain variable.

Publications (2)

Publication Number Publication Date
EP0631395A1 EP0631395A1 (de) 1994-12-28
EP0631395B1 true EP0631395B1 (de) 1999-03-24

Family

ID=26230447

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94109610A Expired - Lifetime EP0631395B1 (de) 1993-06-28 1994-06-22 Schaltung zur Verarbeitung von Signalen mit einer Eingangsstufe mit veränderbarer Verstärkung

Country Status (6)

Country Link
US (1) US5541600A (de)
EP (1) EP0631395B1 (de)
JP (1) JP3530587B2 (de)
AT (1) ATE178171T1 (de)
CA (1) CA2126525C (de)
DE (1) DE69417296T2 (de)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483238A (en) * 1993-12-16 1996-01-09 At&T Ipm Corp. Data converter with gain scaling including dither
US5731767A (en) * 1994-02-04 1998-03-24 Sony Corporation Information encoding method and apparatus, information decoding method and apparatus, information recording medium, and information transmission method
US5768473A (en) * 1995-01-30 1998-06-16 Noise Cancellation Technologies, Inc. Adaptive speech filter
JPH08223049A (ja) * 1995-02-14 1996-08-30 Sony Corp 信号符号化方法及び装置、信号復号化方法及び装置、情報記録媒体並びに情報伝送方法
JP3307138B2 (ja) * 1995-02-27 2002-07-24 ソニー株式会社 信号符号化方法及び装置、並びに信号復号化方法及び装置
US5960390A (en) * 1995-10-05 1999-09-28 Sony Corporation Coding method for using multi channel audio signals
US5731769A (en) * 1995-12-04 1998-03-24 Motorola, Inc. Multi-rate digital filter apparatus and method for sigma-delta conversion processes
US5825320A (en) * 1996-03-19 1998-10-20 Sony Corporation Gain control method for audio encoding device
US5821889A (en) * 1996-11-06 1998-10-13 Sabine, Inc. Automatic clip level adjustment for digital processing
US5859605A (en) * 1997-01-24 1999-01-12 Hughes Electronics Corporation Digital waveform generator and method for synthesizing periodic analog waveforms using table readout of simulated Δ- Σ analog-to-digital conversion data
US5905398A (en) * 1997-04-08 1999-05-18 Burr-Brown Corporation Capacitor array having user-adjustable, manufacturer-trimmable capacitance and method
US5916179A (en) * 1997-04-18 1999-06-29 Sharrock; Nigel System and method for reducing iatrogenic damage to nerves
US6097251A (en) * 1998-05-29 2000-08-01 Telefonaktiebolaget Lm Ericsson Pre-recorded sigma delta values for power amplifier control
US6005500A (en) * 1997-06-06 1999-12-21 Rosemount, Inc. Transmitter with improved analog to digital converter
US5892472A (en) * 1997-06-30 1999-04-06 Harris Corporation Processor controlled analog-to-digital converter circuit
JP3449254B2 (ja) * 1997-11-14 2003-09-22 ヤマハ株式会社 D/a変換装置
US6160859A (en) * 1998-10-19 2000-12-12 Motorola, Inc. Integrated multi-mode bandpass sigma-delta receiver subsystem with interference mitigation and method of using the same
US6204787B1 (en) 1999-03-31 2001-03-20 Cirrus Logic, Inc. Circuits and methods for gain ranging in an analog modulator and systems using the same
DE10021824C2 (de) * 1999-05-07 2002-01-31 Yamaha Corp D/A-Wandlervorrichtung und D/A-Wandlerverfahren
IT1313390B1 (it) * 1999-07-16 2002-07-23 St Microelectronics Srl Metodo di ottimizzazione dei parametri di un filtro passabasso di pre-equalizzazione per canale di lettura.
FR2797725B1 (fr) * 1999-08-16 2001-11-09 St Microelectronics Sa Procede et dispositif de conversion d'un signal analogique en un signal numerique avec controle automatique de gain
US6310567B1 (en) * 1999-09-07 2001-10-30 Linear Technology Corporation Programmable configuration, level and output voltage range circuits and methods for signal processors
US6492924B2 (en) 1999-09-07 2002-12-10 Linear Technology Corporation Circuits, systems, and methods for signal processors that buffer a signal dependent current
US6590517B1 (en) 1999-10-22 2003-07-08 Eric J. Swanson Analog to digital conversion circuitry including backup conversion circuitry
US6310518B1 (en) 1999-10-22 2001-10-30 Eric J. Swanson Programmable gain preamplifier
US6369740B1 (en) 1999-10-22 2002-04-09 Eric J. Swanson Programmable gain preamplifier coupled to an analog to digital converter
US6414619B1 (en) 1999-10-22 2002-07-02 Eric J. Swanson Autoranging analog to digital conversion circuitry
US6657570B1 (en) * 2000-06-22 2003-12-02 Adc Telecommunications, Inc. Automatic level control for input to analog to digital converter
WO2004017589A1 (en) * 2000-10-02 2004-02-26 The Trustees Of Columbia University In The City Of New York Circuit and method for dynamically modifiable signal processor
CN1582534B (zh) * 2001-02-08 2010-05-12 模拟设备股份有限公司 可变全刻度的多比特σ-δ模数变换器
US6452521B1 (en) * 2001-03-14 2002-09-17 Rosemount Inc. Mapping a delta-sigma converter range to a sensor range
DE10118157A1 (de) * 2001-04-11 2002-10-24 Infineon Technologies Ag Rückgekoppelter A/D- bzw. D/A-Wandler mit reduziertem Stromverbrauch
DE10219216B4 (de) * 2002-04-29 2005-04-07 Eads Astrium Gmbh Verfahren und Endgerät zur Verarbeitung eines Navigationssignals in einem Satelliten-Navigationssystem
KR100610478B1 (ko) * 2004-05-06 2006-08-08 매그나칩 반도체 유한회사 이미지센서 및 그의 디지털 이득 보상 방법
KR100615535B1 (ko) * 2004-07-26 2006-08-25 삼성전자주식회사 Agc를 이용한 무선 수신장치 및 수신방법
US7268715B2 (en) * 2004-10-29 2007-09-11 Freescale Semiconductor, Inc. Gain control in a signal path with sigma-delta analog-to-digital conversion
US7245148B2 (en) * 2005-09-27 2007-07-17 Micrel, Inc. Power saving method in an integrated circuit programming and control circuit
US7126513B1 (en) * 2005-09-27 2006-10-24 Micrel, Incorporated Analog control of a digital decision process
US9425747B2 (en) * 2008-03-03 2016-08-23 Qualcomm Incorporated System and method of reducing power consumption for audio playback
US8487639B1 (en) 2008-11-21 2013-07-16 Cypress Semiconductor Corporation Receive demodulator for capacitive sensing
US8866500B2 (en) 2009-03-26 2014-10-21 Cypress Semiconductor Corporation Multi-functional capacitance sensing circuit with a current conveyor
US8717211B2 (en) 2010-11-30 2014-05-06 Qualcomm Incorporated Adaptive gain adjustment system
US9268441B2 (en) 2011-04-05 2016-02-23 Parade Technologies, Ltd. Active integrator for a capacitive sense array
US9778074B2 (en) * 2013-03-14 2017-10-03 Rosemount Inc. Process measurement system with variable amplitude sensor excitation
US9548722B2 (en) * 2014-10-22 2017-01-17 Analog Devices Global Apparatus and methods for reducing glitches in digital step attenuators
GB2532015B (en) * 2014-11-04 2018-12-26 Cirrus Logic Int Semiconductor Ltd Improved analogue-to-digital convertor
US10778206B2 (en) 2018-03-20 2020-09-15 Analog Devices Global Unlimited Company Biasing of radio frequency switches for fast switching
US11017184B2 (en) 2018-10-26 2021-05-25 Sendyne Corporation Runtime-calibratable analog computing system and methods of use
JPWO2020241102A1 (de) * 2019-05-29 2020-12-03
US11152917B1 (en) 2020-05-28 2021-10-19 Analog Devices International Unlimited Company Multi-level buffers for biasing of radio frequency switches
JPWO2022202772A1 (de) * 2021-03-24 2022-09-29
US11863227B2 (en) 2021-10-25 2024-01-02 Analog Devices International Unlimited Company Radio frequency switches with fast switching speed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488545A2 (de) * 1990-11-30 1992-06-03 Matsushita Electric Industrial Co., Ltd. Ultraschall-Dopler-Blutfussmessgerät

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921012A (en) * 1974-11-11 1975-11-18 Mdh Ind Inc Wide-range current-to-frequency converter
US4075701A (en) * 1975-02-12 1978-02-21 Messerschmitt-Bolkow-Blohm Gesellschaft Mit Beschrankter Haftung Method and circuit arrangement for adapting the measuring range of a measuring device operating with delta modulation in a navigation system
US4185246A (en) * 1978-02-27 1980-01-22 Schlumberger Technology Corporation Circuit for reducing transients by precharging capacitors
US4851841A (en) * 1987-10-02 1989-07-25 Crystal Semiconductor Corporation Gain scaling of oversampled analog-to-digital converters
US4926175A (en) * 1988-04-20 1990-05-15 Nec Corporation Analog-digital converting circuit having high resolution and low power consumption
JPH02170723A (ja) * 1988-12-23 1990-07-02 Yamaha Corp A/d変換回路
DE3901399A1 (de) * 1989-01-19 1990-08-02 Messerschmitt Boelkow Blohm Anordnung zur umsetzung analoger signale in digitale
US5134401A (en) * 1991-03-12 1992-07-28 Analog Device, Inc. Delta sigma modulator having programmable gain/attenuation
US5187482A (en) * 1992-03-02 1993-02-16 General Electric Company Delta sigma analog-to-digital converter with increased dynamic range

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488545A2 (de) * 1990-11-30 1992-06-03 Matsushita Electric Industrial Co., Ltd. Ultraschall-Dopler-Blutfussmessgerät

Also Published As

Publication number Publication date
DE69417296T2 (de) 1999-11-04
CA2126525A1 (en) 1994-12-29
ATE178171T1 (de) 1999-04-15
JPH07146314A (ja) 1995-06-06
DE69417296D1 (de) 1999-04-29
CA2126525C (en) 2004-05-04
EP0631395A1 (de) 1994-12-28
US5541600A (en) 1996-07-30
JP3530587B2 (ja) 2004-05-24

Similar Documents

Publication Publication Date Title
EP0631395B1 (de) Schaltung zur Verarbeitung von Signalen mit einer Eingangsstufe mit veränderbarer Verstärkung
FR2725328A1 (fr) Procede d'etalonnage d'un convertisseur analogique-numerique et systeme de convertisseur analogique-numerique avec correction numerique de la linearite
FR2725329A1 (fr) Procede d'etalonnage d'un convertisseur numerique-analogique et systeme de convertisseur numerique-analogique avec correction numerique de la linearite
FR2553893A1 (fr) Procede et dispositif de detection d'une transition de la composante continue d'un signal periodique, notamment pour joncteur telephonique
EP0735694B1 (de) Kostengünstige integrierbare Vorrichtung zur Verarbeitung elektrischer Signale nach der ARINC-429-Norm
FR2505580A1 (fr) Filtre pour eliminer des excursions et aberrations indesirables et momentanees de la sortie de pompes de charge
EP1290783B1 (de) Modulator unter verwendung digitaler synthese
JP2575642B2 (ja) アナログ−デジタル コンバ−タ
WO2000039538A1 (fr) Dispositif et procede de mesure ultrasonore de debit de fluide comportant un convertisseur analogique numerique sigma-delta passe bande
FR2689261A1 (fr) Dispositif de commande destiné à asservir un objet à une position donnée.
FR2716052A1 (fr) Dispositif d'ajustement d'une fréquence de coupure d'un filtre, et filtre comportant un tel dispositif.
FR2507413A1 (fr) Convertisseur analogique-numerique ayant un circuit d'auto-polarisation
EP0078581A1 (de) Differentialpulscode-Modulationssystem mit adaptiver Prädiktion
EP3259847A1 (de) Hochlinearer sigma-delta-wandler
EP3276833A1 (de) Sigma-delta-wandler mit hoher linearität
EP0834990A1 (de) Programmierbarer digitaler Phasenschieber und Analog-Digital-Umsetzer damit
EP2342828B1 (de) Verfahren zur verbesserung der auflösung und korrektur von verzerrungen in einem sigma-delta-modulator und das verfahren implementierender sigma-delta-modulator
FR2584250A1 (fr) Dispositif de traitement de signaux numeriques travaillant avec des trains de bits continus
EP1077530B1 (de) Verfahren und Anordnung zur Wandlung eines Analogsignals in einem Digitalsignal mit automatischer Verstärkungsregelung
FR2795889A1 (fr) Procede et systeme de compensation de la non-linearite d'un convertisseur analogique-numerique sigma-delta
FR2485304A1 (fr) Dispositif de traitement audiofrequence de ligne d'abonne
FR2708161A1 (fr) Convertisseur sigma-delta à plusieurs plages.
EP0084474A2 (de) Hochpassfilter erster Ordnung und Anwendung in der Telefonie
FR2717933A1 (fr) Circuit de traitement de signaux comportant un étage d'entrée à gain variable.
EP0326466A1 (de) Frequenzregel-Einrichtung für einen Oszillator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19950508

17Q First examination report despatched

Effective date: 19971008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CSEM CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990324

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990324

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19990324

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990324

REF Corresponds to:

Ref document number: 178171

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990413

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69417296

Country of ref document: DE

Date of ref document: 19990429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19990527

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990531

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 19990602

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990616

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990624

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990624

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990701

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990628

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991019

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: CENTRE SUISSE D'ELECTRONIQUE ET DE MICROTECHNIQUE

Effective date: 20000630

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070816

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070727

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070730

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080622

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130704

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL