EP0630524A1 - Weather-resistant thin layer solar module - Google Patents

Weather-resistant thin layer solar module

Info

Publication number
EP0630524A1
EP0630524A1 EP93905173A EP93905173A EP0630524A1 EP 0630524 A1 EP0630524 A1 EP 0630524A1 EP 93905173 A EP93905173 A EP 93905173A EP 93905173 A EP93905173 A EP 93905173A EP 0630524 A1 EP0630524 A1 EP 0630524A1
Authority
EP
European Patent Office
Prior art keywords
solar module
module according
zinc oxide
aluminum
electrode structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93905173A
Other languages
German (de)
French (fr)
Inventor
Robert Dr. Van Den Berg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Deutschland GmbH
Original Assignee
Siemens Solar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Solar GmbH filed Critical Siemens Solar GmbH
Publication of EP0630524A1 publication Critical patent/EP0630524A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Thin-film solar modules made of amorphous silicon are produced directly on large substrates made of glass or metal.
  • a full-surface contact layer (front contact) made of transparent conductive oxides (TCO) is first deposited on the substrate, and a photoactive layer is generated above it, which is then covered with a further mostly transparent contact layer as the back contact.
  • TCO transparent conductive oxides
  • the thin-film solar module is divided into strip-shaped individual cells connected in series with one another. By suitable structuring of each individual layer immediately after its deposition, layer generation and electrical interconnection form an integrated process.
  • the current-carrying electrodes front and back contact
  • both their optical and their electrical properties determine the efficiency of each individual cell and the overall module.
  • the optical properties of the front contact layer influence the amount of light coupled into the photoactive layer and thus also the photocurrent.
  • the electrical properties are responsible for deriving the generated photocurrent.
  • the specific resistance of the contact material leads to ohmic losses in the solar module.
  • zinc oxide (ZnO) as material for the front contacts on transparent substrates allows the morphology of the contact layers to be set within certain limits, which makes it possible to optimize the coupling of light into the active semiconductor layer and to improve the short-circuit current of the individual cells.
  • zinc oxide layers z for example, are doped with boron. If the same material is also used for the back contact, semitransparent solar modules can be produced and used as a top cell in a tandem module, as roof glazing for automobiles or as building glazing (facade module or window module).
  • ZnO: B boron-doped zinc oxide
  • the contact layers are protected from moisture by hermetic packaging.
  • the back contact for example with a PVB film
  • thin-film solar cells produced for test purposes with rear-side contact structures made of aluminum-doped zinc oxide without a lacquer layer as a rear-side covering have excellent moisture-heat resistance and survive the climate test described in more detail almost unchanged. Even after this long-term exposure to moisture and heat, the solar cells show only an insignificant increase in the sheet resistance and therefore no loss in the maximum achievable output.
  • the invention therefore represents a considerable simplification in construction and leads to great savings in terms of the material and production costs.
  • Zinc oxide as an electrode material for front and rear contacts' has the advantage that its morphology and thus, above all, the optical properties can be adjusted well and optimized for the solar cell or the module. A high transmission and, with a suitable morphology, a high light coupling and an associated high short-circuit current in the module are achieved.
  • the aluminum-doped zinc oxide shows a sheet resistance which is reduced by a factor of 3.
  • the contacts can be produced, for example, by sputtering, which results in an extremely homogeneous distribution of the dopant in the ZnO: Al material. So that are homogeneous
  • Zinc / aluminum mixed targets in a reactive oxygen-containing atmosphere or zinc oxide / aluminum mixed targets in an inert atmosphere can be used as targets.
  • the second alternative is preferred, since it ensures better process control and thus better reproducibility in the production of the contacts.
  • the Substrattempera ⁇ structure is preferably set to a value of about 300 "C, beispiels ⁇ , 350 * C. This leads to the formation of a uni- formly hexagonal crystal structure in the zinc oxide, showing the best stability against environmental influences and also to a plasma treatment unchanged in the properties remains.
  • the thin-film solar module according to the invention is suitable for all photoactive semiconductors which can be deposited over a large area, in particular for amorphous silicon, silicon-germanium alloys, chalcopyrites (I-III-VI 2 semiconductors) or also for multilayer modules such as tandem or stacked cells with the same or single cells made of different materials.
  • the modules can be produced semi-transparently, a clear epoxy lacquer, for example, can be used as the back cover.
  • a clear epoxy lacquer for example
  • the paint layer of the back cover is designed as a 'reflecting layer, to which also a suitable ge selective epoxy-type paint can be used.
  • titanium oxide Ti0 2 can be contained as a color pigment in a resultant white epoxy lacquer.
  • the varnish should have good reflector properties for the red portion of the incident radiation and be matt and not shiny for a diffuse reflection.
  • the figure shows a thin-film solar module according to the invention in a schematic cross section.
  • a 1.5 ⁇ m thick aluminum-doped zinc oxide layer is deposited as a front contact 2 on a glass substrate 1 and then structured with a laser in order to produce narrow electrode strips 2.
  • the active semiconductor layer 3 of amorphous silicon (a-Si: H) with a pin structure is generated over a whole area with a thickness of, for example, 300 nm.
  • the active semiconductor layer is also patterned parallel to the strip-shaped electrodes of the front contact layer 2 with a laser, but offset by at least one trench width from the front contacts.
  • a rear side contact 4 is deposited over the entire area in a thickness of approximately 1.5 ⁇ m and structured, for example, with a laser.
  • the structure line (trench) is offset by a further trench width compared to the structure line of the active semiconductor layer 3.
  • the individual solar cells which are electrically connected in series are provided with external connections and the module is covered by covering it with an approximately 20 to 30 ⁇ m thick epoxy lacquer. layer 5 sealed.
  • the illustrated in the figure ready 'solar module with respect to humidity and temperature exposure to extremely stable and shows accelerated environmental tests no losses in the maximum achievable performance.
  • the solar module according to the invention is therefore ideally suited for use as roof glazing for automobiles, for facade cladding of buildings or as a power module in extreme climatic zones (for example tropics), since it can withstand even extreme weather conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Les modules solaires à couche mince connus comportant des matériaux d'électrodes transparents sont extrêmement sensibles aux effets climatiques et nécessitent une vitrification coûteuse, afin d'éviter une forte augmentation inadmissible de la résistance en série des modules. L'invention propose de ce fait un module solaire à couche mince qui utilise de l'oxyde de zinc dopé d'aluminium comme matériau d'électrodes et permet d'effectuer une vitrification simple et résistante aux effets climatiques avec une simple couche de vernis en revêtement envers.Known thin-film solar modules comprising transparent electrode materials are extremely sensitive to climatic effects and require costly vitrification, in order to avoid a large unacceptable increase in the series resistance of the modules. The invention therefore provides a thin-film solar module which uses zinc oxide doped with aluminum as the electrode material and makes it possible to carry out a simple vitrification which is resistant to climatic effects with a single layer of varnish in back coating.

Description

Klimastabiles Dünnschichtsolarmodul.Climate-stable thin-film solar module.
Dünnschichtsolarmodule aus amorphem Silizium werden direkt auf großflächigen Substraten aus Glas oder Metall erzeugt. Dazu wird zunächst eine ganzflächige Kontaktschicht (Vorderkontakt) aus transparenten leitfähigen Oxiden (TCO) auf dem Substrat abgeschieden, darüber eine photoaktive Schicht erzeugt, die anschließend mit einer weiteren zumeist transparenten Kontakt¬ schicht als Rückkontakt abgedeckt wird. Zur Bereitstellung einer geeigneten Spannung ist das Dünnschichtsolarmodul in seriell miteinander verschaltete streifenförmige Einzelzellen aufgeteilt. Durch geeignete Strukturierung jeder einzelnen Schicht direkt nach ihrer Abscheidung bilden Schichterzeugung und elektrische Verschaltung einen integrierten Prozeß.Thin-film solar modules made of amorphous silicon are produced directly on large substrates made of glass or metal. For this purpose, a full-surface contact layer (front contact) made of transparent conductive oxides (TCO) is first deposited on the substrate, and a photoactive layer is generated above it, which is then covered with a further mostly transparent contact layer as the back contact. To provide a suitable voltage, the thin-film solar module is divided into strip-shaped individual cells connected in series with one another. By suitable structuring of each individual layer immediately after its deposition, layer generation and electrical interconnection form an integrated process.
Den stromführenden Elektroden (Vorder- und Rückkontakt) kommt eine entscheidende Rolle zu, da sowohl ihre optischen als auch ihre elektrischen Eigenschaften über die Effizienz jeder Ein¬ zelzelle und des Gesamtmoduls entscheiden.The current-carrying electrodes (front and back contact) play a decisive role, since both their optical and their electrical properties determine the efficiency of each individual cell and the overall module.
Die optischen Eigenschaften der Vorderkontaktschicht wie Trans¬ parenz und Lichtstreuung beeinflussen die Menge des in die photoaktive Schicht eingekoppelten Lichtes und somit auch den Photostrom.The optical properties of the front contact layer, such as transparency and light scattering, influence the amount of light coupled into the photoactive layer and thus also the photocurrent.
Die elektrischen Eigenschaften (Kontaktpotential, spezifischer Widerstand) sind für die Ableitung des erzeugten Photostromes verantwortlich. Der spezifische Widerstand des Kontaktmaterials führt zu ohm'schen Verlusten im Solarmodul.The electrical properties (contact potential, specific resistance) are responsible for deriving the generated photocurrent. The specific resistance of the contact material leads to ohmic losses in the solar module.
Die Verwendung von Zinkoxid (ZnO) als Material für die Vorder¬ kontakte auf transparenten Substraten erlaubt es in gewissen Grenzen, die Morphologie der Kontaktschichten einzustellen, wodurch eine Optimierung der Lichteinkopplung in die aktive Halbleiterschicht und eine Verbesserung des Kurzschlußstromes der einzelnen Zellen möglich wird. Zur Erhöhung der Leitfähig- keit werden Zinkoxidschichten z, Beispiel mit Bor dotiert. Wird das gleiche Material auch für den Rückkoπtakt verwendet, können halbtransparente Solarmodule hergestellt werden und als Topzelle in einem Tandemmodul, als Dachverglasung für Automo¬ bile oder als Bauverglasung (Fassadenmodul oder Fenstermodul) verwendet werden.The use of zinc oxide (ZnO) as material for the front contacts on transparent substrates allows the morphology of the contact layers to be set within certain limits, which makes it possible to optimize the coupling of light into the active semiconductor layer and to improve the short-circuit current of the individual cells. To increase the conductivity, zinc oxide layers z, for example, are doped with boron. If the same material is also used for the back contact, semitransparent solar modules can be produced and used as a top cell in a tandem module, as roof glazing for automobiles or as building glazing (facade module or window module).
Ungeschützte Dünnschichtsolarzellen oder -module mit Vorder- und Rückkontakten aus bordotiertem Zinkoxid (ZnO:B) erweisen sich allerdings als nicht klimastabil. Bei längerer und gleich- zeitiger Einwirkung von erhöhter Temperatur und Feuchtigkeit ergeben sich irreversible Erhöhungen des Schichtwiderstandes der Kontaktschichten, insbesondere des außen liegenden Rück¬ kontakts. Damit ändert sich der Serienwiderstand der Solarzel¬ le bzw. des Solarmoduls, was direkt zu Einbußen in der maximal entnehmbaren Leistung des Moduls führt.Unprotected thin-film solar cells or modules with front and back contacts made of boron-doped zinc oxide (ZnO: B), however, do not prove to be climate-stable. In the event of prolonged and simultaneous exposure to elevated temperature and moisture, there are irreversible increases in the sheet resistance of the contact layers, in particular the external rear contact. The series resistance of the solar cell or the solar module thus changes, which leads directly to losses in the maximum power that can be drawn from the module.
Bei bekannten Solarmodulen aus amorphem Silizium mit Vorder- und Rückkontakten aus Zn0:B werden die Kontaktschichten durch hermetische Verpackung vor Feuchteeinflüssen geschützt. Dazu wird auf den Rückkontakt zum Beispiel mit einer PVB-FolieIn known solar modules made of amorphous silicon with front and back contacts made of Zn0: B, the contact layers are protected from moisture by hermetic packaging. For this purpose, the back contact, for example with a PVB film
(Polyvinylbutyral) eine weitere Glasscheibe auflaminiert. Als äußere Feuchtesperre wird das Glaspaket mit den dazwischenlie¬ genden Solarzellen am Rand mit einem Rahmen aus Polyurethan umspritzt. Für nicht transparente Solarzellen wird direkt auf dem Rückkontakt als zusätzliche Wasserdampfsperre ein Epoxi- lack aufgetragen, der gleichzeitig als Restlichtreflektor dient.(Polyvinyl butyral) another glass pane is laminated on. As an external moisture barrier, the glass package with the solar cells in between is overmolded with a frame made of polyurethane. For non-transparent solar cells, an epoxy varnish is applied directly to the back contact as an additional water vapor barrier, which also serves as a residual light reflector.
Diese für die genannten Solarmodule erforderliche hermetische Versiegelung der dünnen Schichten erfordert einen hohen Mate¬ rial- und Arbeitsaufwand, was zu erheblich erhöhten Herstel¬ lungskosten führt. Doch selbst mit der genannten Versiegelung gelingt es nicht, die empfindlichen Schichten vollständig vor dem Eindringen von Feuchtigkeit zu schützen. Die Module zeigen in beschleunigten Klimatests (1000 Stunden bei 85°C und 85 Prozent Luftfeuchtigkeit, Qualification Test Procedure for Photovqltaic Thin Modules, Spec. Nr. 701, Test B13, JRC, 21020 Ispra (Va)-Italy) zum Teil erhebliche Verluste in der maxima¬ len Leistung, die auf das Eindringen von Wasserdampf in den Modulaufbau zurückzuführen ist.This hermetic sealing of the thin layers, which is required for the solar modules mentioned, requires a high outlay on materials and labor, which leads to considerably increased production costs. But even with the sealing mentioned, it is not possible to completely protect the sensitive layers from the ingress of moisture. The modules show in accelerated climate tests (1000 hours at 85 ° C and 85 percent humidity, Qualification Test Procedure for Photovqltaic Thin Modules, Spec.No. 701, Test B13, JRC, 21020 Ispra (Va) -Italy) sometimes considerable losses in the maxima¬ len performance, which is due to the penetration of water vapor into the module structure.
Aufgabe der vorliegenden Erfindung ist es daher, ein Dünn- schichtsolarmodul anzugeben, welches eine erhöhte Klimastabi¬ lität zeigt und dabei einen verminderten Verpackungsaufwand erfordert.It is therefore an object of the present invention to provide a thin-film solar module which shows increased climatic stability and which requires less packaging.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Solarmodul mit den Merkmalen von Anspruch 1.This object is achieved according to the invention by a solar module with the features of claim 1.
Weitere Ausgestaltungen der Erfindung sowie eine erfindungsge¬ mäße Verwendung der neuen Module sind den Unteransprüchen zu entnehmen.Further refinements of the invention and use of the new modules according to the invention can be found in the subclaims.
Es hat sich gezeigt, daß zu Testzwecken hergestellte Dünn¬ schichtsolarzellen mit rückseitigen Kontaktstrukturen aus alu¬ miniumdotiertem Zinkoxid ohne Lackschicht als Rückseitenab¬ deckung eine ausgezeichnete Feuchte-Wärmebeständigkeit besit- zen und den oben näher bezeichneten Klimatest nahezu unverän¬ dert überstehen. Die Solarzellen zeigen auch nach dieser lang¬ zeitigen Feuchte-Wärmebeaufschlagung eine nur unwesentliche Erhöhung des Schichtwiderstands und somit keinerlei Einbuße in der maximal erreichbaren Leistung.It has been shown that thin-film solar cells produced for test purposes with rear-side contact structures made of aluminum-doped zinc oxide without a lacquer layer as a rear-side covering have excellent moisture-heat resistance and survive the climate test described in more detail almost unchanged. Even after this long-term exposure to moisture and heat, the solar cells show only an insignificant increase in the sheet resistance and therefore no loss in the maximum achievable output.
So kann bei dem erfindungsgemäßen Solarmodul auf eine aufwen¬ dige Laminierung mit einer Kunststoffolie oder gar einer weite¬ ren Glasscheibe verzichtet werden. Ebenso ist die Versiegelung des Moduls mit einem Rahmen überflüssig. Der insbesondere zum mechanischen Schutz des Rückkontaktes aufgebrachte Lack ist zur Versiegelung ausreichend. Die Erfindung stellt daher ge¬ genüber bekannten Dünnschichtsolarmodulen eine erhebliche Ver¬ einfachung im Aufbau dar und führt zu großen Einsparungen be¬ züglich des Material- und Herstellungsaufwandes. Zinkoxid als Elektrodenmaterial für Vorder- und Rückkontakte 'hat den Vorteil, daß sich dessen Morphologie und damit vor allem die optischen Eigenschaften gut einstellen und auf die Solarzelle bzw. das Modul optimieren lassen. Es wird eine hohe Transmission und bei geeigneter Morphologie eine hohe Lichtein¬ kopplung und ein damit verbundener hoher Kurzschlußstrom im Modul erreicht. Gegenüber dem für Dünnschichtsolarmodule be¬ kannten bordotierten Zinkoxid als Elektrodenmaterial zeigt das aluminiumdotierte Zinkoxid einen um mehr als Faktor 3 ernied¬ rigten Schichtwiderstand.In the case of the solar module according to the invention, there is no need for complex lamination with a plastic film or even a further glass pane. Sealing the module with a frame is also superfluous. The lacquer applied in particular for mechanical protection of the back contact is sufficient for sealing. Compared to known thin-film solar modules, the invention therefore represents a considerable simplification in construction and leads to great savings in terms of the material and production costs. Zinc oxide as an electrode material for front and rear contacts' has the advantage that its morphology and thus, above all, the optical properties can be adjusted well and optimized for the solar cell or the module. A high transmission and, with a suitable morphology, a high light coupling and an associated high short-circuit current in the module are achieved. Compared to the boron-doped zinc oxide known as an electrode material for thin-film solar modules, the aluminum-doped zinc oxide shows a sheet resistance which is reduced by a factor of 3.
Die Herstellung der Kontakte kann zum Beispiel durch Sputtern erfolgen, wobei sich eine äußerst homogene Verteilung des Do- tierstoffs im ZnO:AI-Material ergibt. Damit sind homogeneThe contacts can be produced, for example, by sputtering, which results in an extremely homogeneous distribution of the dopant in the ZnO: Al material. So that are homogeneous
Schichteigenschaften über die gesamte Modulfläche gewährlei¬ stet. Als Targets können Zink/Aluminium-Mischtargets in reak¬ tiver sauerstoffhaltiger Atmosphäre oder Zinkoxid/Aluminium- Mischtargets in inerter Atmosphäre verwendet werden. Bevorzugt ist jedoch die zweite Alternative, da sie eine bessere Verfah¬ renskontrolle und somit eine bessere Reproduzierbarkeit bei der Erzeugung der Kontakte gewährleistet. Die Substrattempera¬ tur wird vorzugsweise auf einen Wert von über 300"C, beispiels¬ weise 350*C eingestellt. Dies führt zum Ausbilden einer ein- heitlich hexagonalen Kristallstruktur im Zinkoxid, die die beste Stabilität gegen Klimaeinflüsse zeigt und auch nach einer Plasmabehandlung unverändert in den Eigenschaften bleibt.Layer properties guaranteed over the entire module area. Zinc / aluminum mixed targets in a reactive oxygen-containing atmosphere or zinc oxide / aluminum mixed targets in an inert atmosphere can be used as targets. However, the second alternative is preferred, since it ensures better process control and thus better reproducibility in the production of the contacts. The Substrattempera¬ structure is preferably set to a value of about 300 "C, beispiels¬, 350 * C. This leads to the formation of a uni- formly hexagonal crystal structure in the zinc oxide, showing the best stability against environmental influences and also to a plasma treatment unchanged in the properties remains.
Das erfindungsgemäße Dünnschichtsolarmodul ist für sämtliche großflächig abscheidbaren photoaktiven Halbleiter geeignet, insbesondere für amorphes Silizium, Silizium-Germanium-Legie¬ rungen, Chalkopyrite (I-III-VI2-Halbleiter) oder auch für mehrschichtige Module wie Tandem- oder Stapelzellen mit aus gleichen oder unterschiedlichen Materialien bestehenden Ein- zelzellen.The thin-film solar module according to the invention is suitable for all photoactive semiconductors which can be deposited over a large area, in particular for amorphous silicon, silicon-germanium alloys, chalcopyrites (I-III-VI 2 semiconductors) or also for multilayer modules such as tandem or stacked cells with the same or single cells made of different materials.
Die Module können semi-transparent erzeugt werden, wobei als Rückseitenabdeckung zum Beispiel ein klarer Epoxilack verwen¬ det werden kann. Im Sinne einer höheren Lichtabsorption im Modul ist die Lackschicht der Rückseitenabdeckung jedoch als 'Reflexionsschicht ausgelegt, wozu ebenfalls ein geeignet ge¬ wählter Epoxilack dienen kann.The modules can be produced semi-transparently, a clear epoxy lacquer, for example, can be used as the back cover. In the sense of a higher light absorption in the Module, the paint layer of the back cover, however, is designed as a 'reflecting layer, to which also a suitable ge selective epoxy-type paint can be used.
Für diese Zwecke kann zum Beispiel Titanoxid Ti02 als Farb¬ pigment in einem infolgedessen weißen Epoxilack enthalten sein. Der Lack sollte gute Reflektoreigenschaften für den roten Anteil der einfallenden Strahlung besitzen und für eine diffuse Reflexion matt und nicht glänzend sein.For these purposes, for example, titanium oxide Ti0 2 can be contained as a color pigment in a resultant white epoxy lacquer. The varnish should have good reflector properties for the red portion of the incident radiation and be matt and not shiny for a diffuse reflection.
Im folgenden wird die Erfindung anhand eines Ausführungsbei¬ spiels und der dazugehörigen Figur näher erläutert.The invention is explained in more detail below with the aid of an exemplary embodiment and the associated figure.
Die Figur zeigt ein erfindungsgemäßen Dunnschichtsolarmodul im schematischen Querschnitt.The figure shows a thin-film solar module according to the invention in a schematic cross section.
Auf einem Glassubstrat 1 wird ganzflächig eine 1,5 um dicke aluminiumdotierte Zinkoxidschicht als Vorderkontakt 2 abgeschie- den und anschließend mit einem Laser strukturiert, um schmale Elektrodenstreifen 2 zu erzeugen.A 1.5 μm thick aluminum-doped zinc oxide layer is deposited as a front contact 2 on a glass substrate 1 and then structured with a laser in order to produce narrow electrode strips 2.
In einem PECVD-Verfahren wird darüber ganzflächig die aktive Halbleiterschicht 3 aus amorphem Silizium (a-Si:H) mit pin- Struktur in einer Dicke von zum Beispiel 300 nm erzeugt. Eben¬ falls mit einem Laser wird die aktive Halbleiterschicht pa¬ rallel zu den streifenförmigen Elektroden der Vorderkontakt¬ schicht 2 strukturiert, jedoch um zumindest eine Grabenbreite gegenüber den Vorderkontakten versetzt.In a PECVD process, the active semiconductor layer 3 of amorphous silicon (a-Si: H) with a pin structure is generated over a whole area with a thickness of, for example, 300 nm. The active semiconductor layer is also patterned parallel to the strip-shaped electrodes of the front contact layer 2 with a laser, but offset by at least one trench width from the front contacts.
In gleicher Weise wie die Vorderkontakte 2 wird ein Rücksei¬ tenkontakt 4 ganzflächig in ca. 1,5 μm Dicke abgeschieden und zum Beispiel mit einem Laser strukturiert. Die Strukturlinie (Graben) ist um eine weitere Grabenbreite gegenüber der Struk- turlinie der aktiven Halbleiterschicht 3 versetzt.In the same way as the front contacts 2, a rear side contact 4 is deposited over the entire area in a thickness of approximately 1.5 μm and structured, for example, with a laser. The structure line (trench) is offset by a further trench width compared to the structure line of the active semiconductor layer 3.
Schließlich werden die elektrisch in Serie verschalteten Ein¬ zelsolarzellen mit Außenanschlüssen versehen und das Modul durch Abdecken mit einer ca. 20 bis 30 μm dicken Epoxilack- schicht 5 versiegelt. Das in der Figur dargestellte fertige 'Solarmodul ist bezüglich Feuchte und Temperatureinwirkung äußerst stabil und zeigt in beschleunigten Klimatests keine Verluste in der maximal erreichbaren Leistung.Finally, the individual solar cells which are electrically connected in series are provided with external connections and the module is covered by covering it with an approximately 20 to 30 μm thick epoxy lacquer. layer 5 sealed. The illustrated in the figure ready 'solar module with respect to humidity and temperature exposure to extremely stable and shows accelerated environmental tests no losses in the maximum achievable performance.
Das erfindungsgemäße Solarmodul ist daher bestens zur Verwen¬ dung als Dachverglasung von Automobilen, zur Fassadenverklei¬ dung von Bauwerken oder als Leistungsmodul in extremen kli a- tischen Zonen (zum Beispiel Tropen) geeignet, da es selbst extremen Witterungsverhältnissen standhält. The solar module according to the invention is therefore ideally suited for use as roof glazing for automobiles, for facade cladding of buildings or as a power module in extreme climatic zones (for example tropics), since it can withstand even extreme weather conditions.

Claims

Patentansprüche Claims
1. Dunnschichtsolarmodul mit einem transparenten Substrat (1), zumindest einer aktiven Halbleiterschicht (3) mit Diodenstruk¬ tur, wobei die Halbleiterschicht in streifenförmige Einzelso¬ larzellen strukturiert ist; mit Elektrodenstrukturen (2, 4) aus aluminiumdotiertem Zinkoxid (Zn0:Al) als Vorder- und Rück¬ kontakte sowie zur integrierten Verschaltung des SolarmodulSj und mit einer Lackschicht als Rückseitenabdeckung.1. thin-film solar module with a transparent substrate (1), at least one active semiconductor layer (3) with a diode structure, the semiconductor layer being structured in strip-shaped individual solar cells; With electrode structures (2, 4) made of aluminum-doped zinc oxide (Zn0: Al) as front and rear contacts as well as for the integrated connection of the solar module J and with a lacquer layer as a back cover.
2. Solarmodul nach Anspruch 1, dessen Elektrodenstrukturen (2, 4) aus aluminiumdotiertem Zinkoxid mit hexagonaler Struktur bestehen.2. Solar module according to claim 1, whose electrode structures (2, 4) consist of aluminum-doped zinc oxide with a hexagonal structure.
3. Solarmodul nach Anspruch 1 oder 2, dessen zumindest eine aktive Halbleiterschicht (3) aus amorphem Silizium (a-Si:H) besteht.3. Solar module according to claim 1 or 2, whose at least one active semiconductor layer (3) consists of amorphous silicon (a-Si: H).
4. Solarmodul nach einem der Ansprüche 1 bis 3 mit einer Rück¬ seitenabdeckung (5) aus Epoxilack.4. Solar module according to one of claims 1 to 3 with a rear side cover (5) made of epoxy paint.
5. Solarmodul nach einem der Ansprüche 1 bis 4 mit mehreren übereinanderliegenden aktiven Halbleiterschichten (Stapel o- dul).5. Solar module according to one of claims 1 to 4 with a plurality of superposed active semiconductor layers (stack o- module).
6. Solarmodul nach einem der Ansprüche 1 bis 5, dessen Elektro¬ denstrukturen aus einem aluminiumdotierten Zinkoxid bestehen, welches durch Sputtern erzeugt ist.6. Solar module according to one of claims 1 to 5, the electrode structures of which consist of an aluminum-doped zinc oxide which is produced by sputtering.
7. Solarmodul nach einem der Ansprüche 1 bis 6, bei dem die Aluminiumkonzentration in den Elektrodenstrukturen 0,5 bis 6 Atom-Prozent beträgt.7. Solar module according to one of claims 1 to 6, wherein the aluminum concentration in the electrode structures is 0.5 to 6 atomic percent.
8. Solarmodul nach einem der Ansprüche 1 bis 7, dessen Elektro¬ denstrukturen von einem Zinkoxid/Aluminium-Mischtarget gesput- tert sind.8. Solar module according to one of claims 1 to 7, the electrode structures of which are sputtered from a zinc oxide / aluminum mixed target.
9. Solarmodul nach einem der Ansprüche 1 bis 8 mit einem trans- parenten Lack als Rückseitenabdeckung (5).9. Solar module according to one of claims 1 to 8 with a trans Parent paint as a back cover (5).
10. Verwendung eines Solarmoduls als Dachverglasung für ein Kraftfahrzeug.10. Use of a solar module as roof glazing for a motor vehicle.
11. Verwendung eines Solarmoduls nach einem der Ansprüche 1 bis 9 als Element zur Fassadenverkleidung. 11. Use of a solar module according to one of claims 1 to 9 as an element for facade cladding.
EP93905173A 1992-03-19 1993-03-09 Weather-resistant thin layer solar module Withdrawn EP0630524A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4208950 1992-03-19
DE4208950 1992-03-19
PCT/DE1993/000217 WO1993019491A1 (en) 1992-03-19 1993-03-09 Weather-resistant thin layer solar module

Publications (1)

Publication Number Publication Date
EP0630524A1 true EP0630524A1 (en) 1994-12-28

Family

ID=6454528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905173A Withdrawn EP0630524A1 (en) 1992-03-19 1993-03-09 Weather-resistant thin layer solar module

Country Status (3)

Country Link
US (1) US5512107A (en)
EP (1) EP0630524A1 (en)
WO (1) WO1993019491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896371A1 (en) 1997-08-05 1999-02-10 Siemens Solar GmbH Weather-resistant thin layer device

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337694A1 (en) * 1993-11-04 1995-05-11 Siemens Solar Gmbh Solar module with improved use of light
DE4340402C2 (en) * 1993-11-26 1996-01-11 Siemens Solar Gmbh Method for contacting thin-film solar modules
DE19611410C1 (en) * 1996-03-22 1997-08-07 Siemens Ag Climate-stable electrical thin film structure
US6468828B1 (en) * 1998-07-14 2002-10-22 Sky Solar L.L.C. Method of manufacturing lightweight, high efficiency photovoltaic module
DE10065530A1 (en) * 2000-12-28 2002-07-04 Bosch Gmbh Robert Device for power generation and shading in motor vehicles
DE10206717B4 (en) 2002-02-18 2014-03-13 Webasto Ag Glass lid with splinter protection film
JP5122435B2 (en) * 2005-04-11 2013-01-16 エーリコン・ソーラー・アーゲー・トリューバッハ Solar cell module and sealing method thereof
US20090277491A1 (en) * 2005-10-14 2009-11-12 Sharp Kabushiki Kaisha Solar Cell, Interconnector-Equipped Solar Cell, Solar Cell String And Solar Cell Module
US20090159116A1 (en) * 2005-10-14 2009-06-25 Yoshinobu Umetani Interconnector, solar cell string using the interconnector and method of manufacturing thereof, and a solar cell module using the solar cell string
JP4986462B2 (en) * 2006-01-27 2012-07-25 シャープ株式会社 SOLAR CELL STRING, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE USING THE SOLAR CELL STRING
US8440907B2 (en) * 2006-04-14 2013-05-14 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
US9105776B2 (en) * 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) * 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US20080053516A1 (en) 2006-08-30 2008-03-06 Richard Allen Hayes Solar cell modules comprising poly(allyl amine) and poly (vinyl amine)-primed polyester films
US8197928B2 (en) 2006-12-29 2012-06-12 E. I. Du Pont De Nemours And Company Intrusion resistant safety glazings and solar cell modules
US20080300918A1 (en) * 2007-05-29 2008-12-04 Commercenet Consortium, Inc. System and method for facilitating hospital scheduling and support
US8071179B2 (en) * 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) * 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8759671B2 (en) * 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8614396B2 (en) * 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US20090087939A1 (en) * 2007-09-28 2009-04-02 Stion Corporation Column structure thin film material using metal oxide bearing semiconductor material for solar cell devices
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US8440903B1 (en) 2008-02-21 2013-05-14 Stion Corporation Method and structure for forming module using a powder coating and thermal treatment process
US8075723B1 (en) 2008-03-03 2011-12-13 Stion Corporation Laser separation method for manufacture of unit cells for thin film photovoltaic materials
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
EP2257431A1 (en) * 2008-03-26 2010-12-08 E. I. du Pont de Nemours and Company High performance anti-spall laminate article
US20090250100A1 (en) * 2008-04-04 2009-10-08 E.I. Du Pont De Nemours And Company Solar cell modules comprising high melt flow poly(vinyl butyral) encapsulants
US20090288701A1 (en) * 2008-05-23 2009-11-26 E.I.Du Pont De Nemours And Company Solar cell laminates having colored multi-layer encapsulant sheets
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US8445776B2 (en) 2008-06-02 2013-05-21 E I Du Pont De Nemours And Company Solar cell module having a low haze encapsulant layer
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US9087943B2 (en) * 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8207008B1 (en) 2008-08-01 2012-06-26 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic
US7855089B2 (en) * 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) * 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US7910399B1 (en) * 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US7947524B2 (en) * 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8383450B2 (en) * 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8741689B2 (en) * 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US20100101647A1 (en) * 2008-10-24 2010-04-29 E.I. Du Pont De Nemours And Company Non-autoclave lamination process for manufacturing solar cell modules
CN102333786B (en) 2008-10-31 2014-12-17 纳幕尔杜邦公司 Solar cells modules comprising low haze encapsulants
US8344243B2 (en) * 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8080727B2 (en) 2008-11-24 2011-12-20 E. I. Du Pont De Nemours And Company Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers
US8084129B2 (en) * 2008-11-24 2011-12-27 E. I. Du Pont De Nemours And Company Laminated articles comprising a sheet of a blend of ethylene copolymers
FR2939239B1 (en) * 2008-12-03 2010-12-31 Ecole Polytech PHOTOVOLTAIC MODULE COMPRISING A TRANSPARENT CONDUCTIVE ELECTRODE OF VARIABLE THICKNESS AND METHODS OF MANUFACTURING SUCH A MODULE
US20100154867A1 (en) 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Mechanically reliable solar cell modules
WO2010077425A1 (en) * 2008-12-31 2010-07-08 E. I. Du Pont De Nemours And Company Solar cell modules comprising encapsulant sheets with low haze and high moisture resistance
JP2012516061A (en) * 2009-01-22 2012-07-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (vinyl butyral) encapsulant containing a chelating agent for solar cell modules
WO2010127844A2 (en) * 2009-05-07 2010-11-11 Inventux Technologies Ag Solar cell and method for the production thereof
USD662040S1 (en) 2009-06-12 2012-06-19 Stion Corporation Pin striped thin film solar module for garden lamp
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
TW201109350A (en) * 2009-07-31 2011-03-16 Du Pont Cross-linkable encapsulants for photovoltaic cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8609980B2 (en) 2010-07-30 2013-12-17 E I Du Pont De Nemours And Company Cross-linkable ionomeric encapsulants for photovoltaic cells
US9293618B2 (en) 2010-08-06 2016-03-22 Mitsubishi Electric Corporation Thin-film solar battery and manufacturing method thereof
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8134067B1 (en) 2011-01-21 2012-03-13 Chin-Yao Tsai Thin film photovoltaic device
DE202011003896U1 (en) * 2011-03-02 2012-06-12 Glaswerke Arnold Gmbh & Co. Kg Glass pane arrangement with building-integrated photovoltaic module
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
EP2934882B1 (en) 2012-12-19 2018-08-01 E. I. du Pont de Nemours and Company Safety laminates comprising a cross-linked acid copolymer composition
WO2015171575A1 (en) 2014-05-09 2015-11-12 E. I. Du Pont De Nemours And Company Encapsulant composition comprising a copolymer of ethylene, vinyl acetate and a third comonomer
JP7447007B2 (en) 2018-03-08 2024-03-11 ダウ グローバル テクノロジーズ エルエルシー Photovoltaic module and encapsulant composition with improved voltage-induced output drop resistance
US10490682B2 (en) 2018-03-14 2019-11-26 National Mechanical Group Corp. Frame-less encapsulated photo-voltaic solar panel supporting solar cell modules encapsulated within multiple layers of optically-transparent epoxy-resin materials

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316049A (en) * 1979-08-28 1982-02-16 Rca Corporation High voltage series connected tandem junction solar battery
US4663495A (en) * 1985-06-04 1987-05-05 Atlantic Richfield Company Transparent photovoltaic module
US4816324A (en) * 1986-05-14 1989-03-28 Atlantic Richfield Company Flexible photovoltaic device
JP2620884B2 (en) * 1989-06-30 1997-06-18 太陽誘電株式会社 Amorphous semiconductor photovoltaic device
JPH0494174A (en) * 1990-08-10 1992-03-26 Fuji Electric Co Ltd Compound thin film solar cell and its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9319491A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0896371A1 (en) 1997-08-05 1999-02-10 Siemens Solar GmbH Weather-resistant thin layer device
DE19733913B4 (en) * 1997-08-05 2004-07-15 Siemens Solar Gmbh Climate-stable thin-film component

Also Published As

Publication number Publication date
WO1993019491A1 (en) 1993-09-30
US5512107A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
EP0630524A1 (en) Weather-resistant thin layer solar module
DE69210350T2 (en) Solar cell module with improved weather-resistant properties
DE19958878B4 (en) Thin film solar cell
DE69532430T2 (en) A manufacturing method of a back reflector layer for a photovoltaic component
DE69429245T2 (en) SUN CELL MODULE WITH A SURFACE COATING MATERIAL FROM THREE-LAYER STRUCTURE
DE69434904T2 (en) A photoelectric conversion device and photoelectric conversion module each having a protective element of fluorine-containing polymer resin
DE69731799T2 (en) solar cell module
DE69824786T2 (en) Solar cell module and method for its production
DE60034840T3 (en) Photovoltaic module
DE3650653T2 (en) Translucent photovoltaic module
DE69532904T2 (en) MANUFACTURING METHOD OF SOLAR CELL MODULES
EP2442977B1 (en) Laminated glazing and its use
DE69628108T2 (en) Solar cell module with a material covering a surface side, which has means to form a recognition pattern
DE69527715T2 (en) Solar cell module and manufacturing process
EP2855146A1 (en) Sunroof comprising an integrated photovoltaic module
EP2758993B1 (en) Thin film solar module having series connection and method for the series connection of thin film solar cells
EP2855180A1 (en) Roof panel having an integrated photovoltaic module
DE102006062092B4 (en) In terms of efficiency and reliability optimized solar modules
DE112010002272T5 (en) Method for producing a semiconductor device
DE69308074T2 (en) Amorphous semiconductor solar module with improved passivation
DE202009018249U1 (en) Composite system for photovoltaic modules
DE4337694A1 (en) Solar module with improved use of light
EP1272371A1 (en) Electric energy production and sun protection device for motor vehicles
EP2319813A1 (en) Structured glass pane and a photovoltaic module with such a glass pane
DE102009056128A1 (en) Backsheet system for thin film solar modules, thin film solar module, and method of forming a backsheet system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19980604

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19981015