EP0619027A1 - Bauelement zur verwendung bei der übertragung optischer signale - Google Patents

Bauelement zur verwendung bei der übertragung optischer signale

Info

Publication number
EP0619027A1
EP0619027A1 EP92923682A EP92923682A EP0619027A1 EP 0619027 A1 EP0619027 A1 EP 0619027A1 EP 92923682 A EP92923682 A EP 92923682A EP 92923682 A EP92923682 A EP 92923682A EP 0619027 A1 EP0619027 A1 EP 0619027A1
Authority
EP
European Patent Office
Prior art keywords
waveguide
component according
groove
bragg
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP92923682A
Other languages
English (en)
French (fr)
Inventor
Hans Kragl
Jens Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0619027A1 publication Critical patent/EP0619027A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12107Grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29335Evanescent coupling to a resonator cavity, i.e. between a waveguide mode and a resonant mode of the cavity
    • G02B6/29337Cavities of the linear kind, e.g. formed by reflectors at ends of a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29356Interference cavity within a single light guide, e.g. between two fibre gratings

Definitions

  • the invention is based on a component according to the preamble of the main claim.
  • a frequency multiplexing method is used, among other things, for multiple use of a glass fiber, in which light of different wavelengths or frequencies is guided by a glass fiber.
  • Frequency division multiplex systems require a device on the transmitter side that generates and modulates the various carriers, and on the receiver side a device that separates and demodulates the different channels.
  • the implementation of suitable devices as integrated optical components is in itself particularly cost-effective if it can be manufactured in large series.
  • a complex technology for the epitaxial growth of very thick layers of silicon or silicon / germanium alloys is required to produce this known arrangement, since the matrix resonator has a three-dimensional structure.
  • the object of the present invention is to provide a component for use in the transmission of optical signals using the frequency division multiplex method, which can be inexpensively manufactured using the simplest possible technologies.
  • the component according to the invention with the characterizing features of the main claim is suitable both as a transmitter-side frequency-selective modulator and as a frequency-selective receiver and demodulator. Frequency selection and demodulation or modulation are thus possible with a single component.
  • the semiconductor diodes When used as a receiver, the semiconductor diodes are operated as opto-electrical converters, the signals generated by the semiconductor diodes being amplified and processed in a manner known per se.
  • the modulation signals become the semiconductor diodes fed in the pass band, so that the resonance frequency of the Bragg resonator is changed and at the same time the damping in the Bragg resonator is influenced.
  • the optical output signal is controlled by the modulation signal.
  • modulation can take place by changing the refractive index via the electro-optical effect in the region of the resonator if the component is produced from a suitable material.
  • FIG. 3 is a view of a conductive layer in the first embodiment
  • 6 to 8 show parts of a further three exemplary embodiments.
  • the waveguide that is used when the component according to the invention is used Receiver guides the optical signals to be received and, when used as a frequency-selective modulator, guides the optical signals to be transmitted, referred to as the central waveguide to distinguish them from the other waveguides.
  • FIG. 1 there is a central waveguide 2 r on a carrier 1 (substrate), to which a glass fiber 3 can be coupled at least at one end.
  • a carrier 1 substrate
  • a glass fiber 3 can be coupled at least at one end.
  • Several of the components according to the invention can be arranged one behind the other, the light to be received or transmitted successively passing through the central waveguide 2 of several components.
  • Extending essentially parallel to the central waveguide 2 are further waveguides 4, 5, 6, 7, which are evanescently coupled to the central waveguide 2, which is indicated in FIG. 1 by strong double arrows.
  • the further waveguides 4 to 7 are structured by changing the effective refractive index in the longitudinal direction in such a way that they form Bragg resonators.
  • Such a coupling of Bragg resonators has already been proposed in US 4,852,960 as part of a laser system. This coupling can be realized with comparatively low technological effort in the so-called HOPS technology, which was described, for example, by Henry et al. in IEEE Journal of Lightwave Technology, Vol. 7- October 1989, p. 1530 ff. Is described.
  • each Bragg resonator 1 surface diodes 8, 9, 10, 11 are arranged on the carrier, which can be operated in the blocking or forward direction depending on the intended use of the component. These diodes are arranged in the vicinity of the waveguides in such a way that the optical field can couple into the diode at the desired locations (small double arrows) and on the other hand the wave guidance of the other waveguides or Bragg resonators is not prevented by excessive damping.
  • the semiconductor diodes 8 to 11 are optically coupled to the respective Bragg resonator in such a way that the resonators are not excessively damped for achieving a narrow resonance curve, but also that a sufficient light intensity for light detection reaches the pn junction of the semiconductor diode, this results a component that selects and demodulates the received optical signals according to their frequency.
  • the electrical signals obtained can then be taken from the connections 12 to 15.
  • a groove on the integrated-optical structure can be used for fiber reception, into which a glass fiber freed from the sheathing is inserted, optionally in connection with index oil.
  • the fiber groove can be curved so that the coupling to the Bragg resonators is sufficiently strong.
  • the light guided in the glass fiber couples directly to the Bragg resonators and does not need to be introduced into the central waveguide 1 via a joint.
  • the central waveguide is coupled to a laser medium that is as non-reflective as possible with an inhomogeneous laser line. Will light the When the resonance frequency of a Bragg resonator is coupled into the component, it is reflected, whereupon this frequency oscillates in the laser oscillator. Since the resonance frequency in the Bragg resonators can be tuned with the aid of the diodes underneath or in some other way via changes in refractive index, an independent modulation of many laser lines can be achieved in this way.
  • the exemplary embodiment of the invention shown disassembled in FIG. 2 essentially serves as a receiver component in a frequency division multiplex system operating with direct detection.
  • a groove 22 is provided in a body 21 made of low-index polymer, which is referred to below as the component frame. This serves to receive the central waveguide, which will be explained in more detail later with reference to FIG. 3.
  • the component frame has laterally strip-shaped holders 23, 24, between which a semiconductor carrier 25 can be inserted. This carries the semiconductor diodes and is provided with a conductive layer 26, which consists for example of aluminum. Another layer 27 made of polymer or silicon dioxide is located above the conductive layer 26.
  • the groove 22 is widened in the end regions 28, 29 to accommodate one end of a coated glass fiber.
  • further grooves 31 to 36 are formed in the body 21, which are structured as Bragg resonators.
  • the exemplary embodiment shown in FIG. 3 is produced in such a way that a liquid polymer adhesive with a higher refractive index is filled into the groove 22 and into the further grooves as the waveguide and that the substrate plate is then placed on the groove 22 and the further grooves 31 to 36 surrounding surface 29 (Fig. 1) of the component frame is pressed.
  • the layer 30, which is formed by the liquid polymer, which is located next to the groove 22, should have the smallest possible thickness ⁇ if it cannot be completely displaced. This requires the use of a correspondingly high pressure when the substrate 25 is pressed in.
  • FIG. 4 shows a cross section through the exemplary embodiment already described in connection with FIGS. 2 and 3.
  • the conductive layer When applying the conductive layer to the semiconductor carrier (substrate) carrying the pn junctions, it must be taken into account that the electrical arrangement is not disturbed. This can be done by introducing a thin insulating intermediate layer or by skillfully using the conductive layer as a contact.
  • the pn zones can be designed as pin diodes - that is, with an intrinsic intermediate layer.
  • a groove suitable for the introduction of a glass fiber can also be provided, which is shown in FIG. 5.
  • Appropriate shaping of the component frame 51 and, if appropriate, the semiconductor carrier 52 creates a channel with a circular cross section for a glass fiber 53.
  • the groove 54 for the Bragg resonators and the further structure of the semiconductor carrier correspond to the parts shown in FIG. 2. In this exemplary embodiment, however, only one groove 54 is provided for Bragg resonators. 6 shows a component with only one Bragg resonator 62 in the body 61, which is only opposed by an opening 63 of a conductive layer 64. The other parts of the arrangement according to FIG. 6 are the same as those according to FIG. 2.
  • two Bragg resonators 72, 73 are arranged in parallel in the body 71 on one side of the groove 74 which represents the central waveguide.
  • Corresponding cutouts 75, 76 are provided in the conductive layer 77.
  • FIG. 8 shows an example for the coupling of an opto-electrical converter 80 to an end face of a Bragg resonator 82.
  • the structures in each case in an end region 83 of the Bragg resonator are such that complete reflection takes place, while in the end region 84 there is partial permeability.
  • a plate 85 made of low-index polymer can be used in the exemplary embodiment according to FIG. 8, so that the central waveguide formed by the groove 86, the Bragg resonator 82 and the waveguide 87 between the Bragg resonator 82 and the opto-electrical converter 80 are completed at the bottom.
  • the opto-electrical converter 80 can be attached to the body 81, for example by gluing.
  • an original modulated frequency comb which was generated with the aid of a further device, can be coupled into the component according to the invention.
  • the modulation is carried out by detuning the individual Bragg resonators by changing the refractive index in the substrate diodes by changing the forward current.
  • that Component according to the invention can be used instead of a laser mirror in a laser oscillator with enough inhomogeneous laser medium.
  • the frequencies that correspond to the resonance frequencies of the Bragg resonators then oscillate in the oscillator.
  • the modulation is also carried out here by detuning the resonance frequency.
  • a rough adjustment of the resonance frequencies can be done via the temperature - i.e. by heating or possibly also cooling.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Description

Bauelement zur Verwendung bei der Übertragung optischer Signale
Die Erfindung geht aus von einem Bauelement nach der Gattung des Hauptanspruchs .
Bei optischen Übertragungssyste en wird zur mehrfachen Ausnutzung einer Glasfaser unter anderem ein Frequenzmultiplexverfahren angewendet, bei welchem Licht verschiedener Wellenlänge bzw. Frequenz von einer Glasfaser geleitet wird. Frequenzmultiplexsysteme benötigen auf der Senderseite eine Vorrichtung, welche die verschiedenen Träger erzeugt und moduliert, und auf der Empfängerseite eine Vorrichtung, mit der die verschiedenen Kanäle getrennt und demoduliert werden. Die Verwirklichung geeigneter Vorrichtungen als integriert-optische Bauelemente ist an sich besonders kostengünstig, wenn eine Herstellbarkeit in Großserien möglich ist.
Bei einem solchen bekannten Bauelement (DE 35 06 569 A1 ) wird das mit vielen frequenzmäßig dicht beieinander liegenden Kanälen empfangene Licht über Koppelresonatoren verteilt und dann frequenzselektiv in die sogenannten Nutzresonatoren eingekoppelt, so daß in jedem Nutzresonator nur das Licht eines einzigen Übertragungskanals auftritt. Alle Resonatoren sind bei dieser bekannten Vorrichtung vom Fabry-Perot-Typ. Im räumlichen Bereich eines Nutzresonators befindet sich eine in Sperrichtung gepolte Fotodiode, welche bei geeigneter Wahl des Bandabstandes im Material des Nutzresonators zur Detektion des Kanals dient. Als Material werden Silizium- bzw. Silizium/Germanium-Legierungen vorgeschlagen- welche bei geeigneter Dimensionierung sowohl den Aufbau von Wellenleiterstrukturen als auch von Fotodioden ermöglichen.
Zur Herstellung dieser bekannten Anordnung wird eine komplexe Technologie zum epitaktischen Aufwachsen sehr dicker Schichten aus Silizium- bzw. Silizium/Germanium-Legierungen benötigt, da der Matrixresonator eine räumlich dreidimensionale Struktur hat.
Aufgabe der vorliegenden Erfindung ist es, ein Bauelement zur Verwendung bei der Übertragung optischer Signale nach dem Frequenzmultiplexverfahren anzugeben, welches mit möglichst einfachen Technologien preiswert herstellbar ist.
Das erfindungsgemäße Bauelement mit den kennzeichnenden Merkmalen des Hauptanspruchs eignet sich sowohl als senderseitiger frequenzselektiver Modulator als auch als frequenzselektiver Empfänger und Demodulator. Mit einem einzigen Bauelement ist somit die Frequenzselektion und die Demodulation bzw. Modulation möglich.
Im Falle der Verwendung als Empfänger werden die Halbleiterdioden als opto-elektrische Wandler betrieben, wobei die von den Halbleiterdioden erzeugten Signale in an sich bekannter Weise verstärkt und weiterverarbeitet werden. Bei einem Betrieb des erfindungsgemäßen Bauelements als Modulator werden die ModulationsSignale den Halbleiterdioden im Durchlaßbereich zugeführt, so daß die Resonanzfrequenz des Bragg-Resonators verändert und gleichzeitig die Dämpfung im Bragg-Resonator beeinflußt wird. Dadurch wird das optische Ausgangssignal vom Modulationssignal gesteuert. Außerdem kann eine Modulation durch Veränderung des Brechungsindex über den elektrooptischen Effekt im Bereich des Resonators erfolgen, wenn das Bauelement aus einem dazu geeigneten Material hergestellt wird.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Erfindung möglich.
Ausführungsbeispiele der Erfindung sind in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
Fig. 1 eine schematische Darstellung eines erfindungsgemäßen Bauelements,
Fig. 2 Teile eines ersten Ausführungsbeispiels in mehreren Ansichten,
Fig. 3 eine Ansicht einer Leitschicht bei dem ersten Ausführungsbeispiel,
Fig. 4 einen Schnitt durch das erste Ausführungsbeispiel,
Fig. 5 einen Schnitt durch ein zweites Ausführungsbeispiel,
Fig. 6 bis Fig. 8 Teile von weiteren drei Ausführungsbeispielen.
Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Im folgenden wird derjenige Wellenleiter, der bei der Verwendung des erfindungsgemäßen Bauelements als Empfänger die zu empfangenen optischen Signale und bei der Verwendung als freσuenzselektiver Modulator die zu sendenden optischen Signale leitet, zur Unterscheidung von den weiteren Wellenleitern als zentraler Wellenleiter bezeichnet.
Bei dem in Fig. 1 schematisch dargestellten Bauelement befindet sich auf einem Träger 1 (Substrat) ein zentraler Wellenleiter 2r an den mindestens an einem Ende eine Glasfaser 3 angekoppelt werden kann. Von den erfindungsgemäßen Bauelementen können mehrere hintereinander angeordnet werden, wobei das zu empfangene bzw. zu sendende Licht nacheinander durch die zentralen Wellenleiter 2 mehrerer Bauelemente hindurchtritt.
Im wesentlichen parallel zum zentralen Wellenleiter 2 erstrecken sich weitere Wellenleiter 4, 5, 6. 7, welche an den zentralen Wellenleiter 2 evaneszent angekoppelt sind, was in Fig. 1 durch starke Doppelpfeile angedeutet ist. Die weiteren Wellenleiter 4 bis 7 sind durch Veränderung des effektiven BrechungsIndexes in Längsrichtung derart strukturiert, daß sie Bragg-Resonatoren bilden. Eine derartige Ankopplung von Bragg-Resonatoren wurde bereits in US 4,852,960 als Bestandteil eines Lasersystems vorgeschlagen. Diese Ankopplung läßt sich mit vergleichsweise niedrigem technologischen Aufwand in der sogenannten HOPS-Technologie realisieren, die beispielsweise von Henry et al. in IEEE Journal of Lightwave Technology, Vol. 7- October 1989, p. 1530 ff. beschrieben ist. Damit läßt sich eine für eine Trennung mehrerer Frequenzmultiplexkanäle ausreichend schmale Frequenzselektion erzielen. Eine weitere Technologie zur Herstellung des erfindungsgemäßen Bauelements wird später im Zusammenhang mit den Figuren 2 bis 7 näher erläutert. Unterhalb oder seitlich eines jeden Bragg-Resonators sind auf dem Träger 1 Oberflächendioden 8, 9, 10, 11 angeordnet, welche je nach Zweckbestimmung des Bauelements in Sperr¬ oder Durchlaßrichtung betrieben werden können. Diese Dioden sind derart in der Nähe der Wellenleiter angeordnet, daß das optische Feld einerseits an den gewünschten Stellen in die Diode einkoppeln kann (kleine Doppelpfeile) und andererseits die Wellenführung der weiteren Wellenleiter bzw. Bragg-Resonatoren nicht durch zu hohe Dämpfung verhindert wird.. Werden die Halbleiterdioden 8 bis 11 optisch an den jeweiligen Bragg-Resonator derart angekoppelt, daß die Resonatoren dadurch für die Erzielung einer schmalen Resonanzkurve nicht zu stark gedämpft werden, aber auch eine zur Lichtdetektion ausreichende Lichtintensität in den pn-Übergang der Halbleiterdiode gelangt, so entsteht ein Bauelement, das die empfangenen optischen Signale nach ihrer Frequenz selektiert und demoduliert. Die erhaltenen elektrischen Signale sind dann an den Anschlüssen 12 bis 15 entnehmbar.
Anstelle des integriert-optischen zentralen Wellenleiters 2 kann eine sich auf der integriert-optischen Struktur befindliche Nut zur Faseraufnahme verwendet werden, in die eine von der Umhüllung befreite Glasfaser gegebenenfalls in -Verbindung mit Indexöl eingelegt wird. Die Fasernut kann unter Umständen gekrümmt sein, damit die Ankopplung an die Bragg-Resonatoren ausreichend stark ist. Bei dieser Ausführungsform koppelt das in der Glasfaser geführte Licht direkt an die Bragg-Resonatoren und braucht nicht über eine- Stoßstelle in den zentralen Wellenleiter 1 eingeführt zu werden.
In einer weiteren nicht in der Zeichnung dargestellten Ausführungsform wird der zentrale Wellenleiter an ein möglichst entspiegeltes Lasermedium mit möglicht inhomogener Laserlinie auf Stoß angekoppelt. Wird Licht der Resonanzfrequenz eines Bragg-Resonators in das Bauteil eingekoppelt, wird es reflektiert, worauf diese Frequenz im Laseroszillator anschwingt. Da die Resonanzfrequenz in den Bragg-Resonatoren mit Hilfe der darunterliegenden Dioden oder auf andere Weise über Brechungsindexveränderungen abstimmbar ist, kann derart eine jeweils unabhängige Modulation vieler Laserlinien erzielt werden.
Das in Fig. 2 zerlegt dargestellte Ausführungsbeispiel der Erfindung dient im wesentlichen als Empfängerbauelement in einem mit direkter Detektion arbeitenden Frequenzmultiplexsystem. In einem Körper 21 aus niederbrechendem Polymer, der im folgenden Bauelementrahmen genannt wird, ist eine Nut 22 vorgesehen. Diese dient zur Aufnahme des zentralen Wellenleiters, was später anhand von Fig. 3 genauer erläutert wird. Der Bauelementrahmen weist seitlich leistenformige Halterungen 23, 24 auf, zwischen die ein Halbleiterträger 25 eingeführt werden kann. Dieser trägt die Halbleiterdioden und ist mit einer Leitschicht 26 versehen, die beispielsweise aus Aluminium besteht. Oberhalb der Leitschicht 26 befindet sich eine weitere Schicht 27 aus Polymer bzw. Siliziumdioxid. Die Nut 22 ist in den Ξndbereichen 28, 29 zur Aufnahme eines Endes je einer umhüllten Glasfaser aufgeweitet. Parallel zur Nut 22 sind im Körper 21 weitere Nuten 31 bis 36 ausgebildet, die als Bragg-Resonatoren strukturiert sind.
Die Herstellung des in Fig. 3 dargestellten Aus ührungsbeispiels erfolgt derart, daß als Wellenleiter ein flüssiger Polymerkleber mit höherem Brechungsindex in die Nut 22 und in die weiteren Nuten gefüllt wird und daß anschließend das Substratplättchen auf die die Nut 22 und die weiteren Nuten 31 bis 36 umgebende Oberfläche 29 (Fig. 1) des Bauelementrahmens gepreßt wird. Die Schicht 30, die vom flüssigen Polymer, das sich neben der Nut 22 befindet, gebildet wird, sollte eine möglichst geringe Dicke δ aufweisen, wenn es sich nicht vollständig verdrängen läßt. Dazu ist die Anwendung eines entsprechend hohen Drucks beim Einpressen des Substrats 25 erforderlich.
Die auf dem Halbleiterträger 25 befindliche Leitschicht 26 ist als Draufsicht in Fig. 3 dargestellt. Jeder der Durchbrüche 41 bis 46 befindet sich unterhalb eines der in den Nuten 31 bis 36 befindlichen Bragg-Resonatoren. Unterhalb eines jeden Durchbruchs 41 bis 46 ist an der Oberfläche des Substrats 25 eine Halbleiterdiode vorgesehen. Fig. 4 stellt einen Querschnitt durch das bereits im Zusammenhang mit den Figuren 2 und 3 beschriebene Ausführungsbeispiel dar.
Bei der Aufbringung der Leitschicht auf den die pn-Übergänge tragenden Halbleiterträger (Substrat) ist zu berücksichtigen, daß die elektrische Anordnung nicht gestört wird. Dieses kann durch Einführung einer dünnen isolierenden Zwischenschicht oder durch geschickte Anwendung der Leitschicht als Kontakt geschehen.
Um die Absorptionszone des Lichtes in den pn-Übergängen zu vergrößern, können die pn-Zonen als pin-Dioden ausgebildet werden - also mit intrinsischer Zwischenschicht.
Auch bei der Realisierung des erfindungsgemäßen Bauelements mit Hilfe des Bauelementrahmens kann eine für die Einführung einer Glasfaser geeignete Nut vorgesehen sein, was in Fig. 5 dargestellt ist. Durch entsprechende Formgebung des Bauelementrahmens 51 und gegebenenfalls des Halbleiterträgers 52 entsteht ein Kanal mit kreisförmigem Querschnitt für eine Glasfaser 53. Die Nut 54 für die Bragg-Resonatoren, sowie der weitere Aufbau des Halbleiterträgers entsprechen den in Fig. 2 dargestellten Teilen. Es ist bei diesem Ausführungsbeispiel allerdings-nur eine Nut 54 für Bragg-Resonatoren vorgesehen. Fig. 6 stellt ein Bauelement mit nur einem Bragg-Resonator 62 im Körper 61 dar, dem nur eine Öffnung 63 einer Leitschicht 64 gegenübersteht. Die anderen Teile der Anordnung nach Fig. 6 gleichen derjenigen nach Fig. 2.
Bei einem weiteren Ausführungsbeispiel gemäß Fig. 7 sind im Körper 71 zwei Bragg-Resonatoren 72, 73 parallel auf einer Seite der den zentralen Wellenleiter darstellenden Nut 74 angeordnet. Entsprechende Aussparungen 75, 76 sind in der Leitschicht 77 vorgesehen.
Fig. 8 stellt ein Beispiel für die Ankopplung eines opto-elektrischen Wandlers 80 an eine Stirnseite eines Bragg-Resonators 82 dar. Dabei sind die Strukturen in jeweils einem Endbereich 83 des Bragg-Resonators derart, daß eine vollständige Reflektion erfolgt, während im Endbereich 84 eine Teildurchlässigkeit besteht. Anstelle des Halbleiterträgers bei den anderen Ausführungsformen kann bei dem Ausführungsbeispiel nach Fig. 8 eine Platte 85 aus niederbrechendem Polymer verwendet werden, so daß der durch die Nut 86 gebildete zentrale Wellenleiter, der Bragg-Resonator 82 und der Wellenleiter 87 zwischen dem Bragg-Resonator 82 und dem opto-elektrischen Wandler 80 nach unten abgeschlossen sind. Der opto-elektrische Wandler 80 kann beispielsweise durch Kleben am Körper 81 befestigt werden.
Für die Verwendung des Bauelements in der Sendeeinrichtung sind mehrere Möglichkeiten vorhanden. Zum einen kann ein ur-modulierter Frequenzkamm, der mit Hilfe einer weiteren Einrichtung erzeugt wurde, in das erfindungsgemäße Bauelement eingekoppelt werden. Die Modulation erfolgt durch Verstimmung der einzelnen Bragg-Resonatoren über Veränderung des BrechungsIndexes in den Substratdioden mittels Veränderung des Durchlaßstromes. Weiterhin kann das erfindungsgemäße Bauelement anstelle eines Laserspiegels in einem Laseroszillator mit genügend inhomogenem Lasermedium verwendet werden. Es schwingen dann im Oszillator die Frequenzen an, die den Resonanzfrequenzen der Bragg-Resonatoren entsprechen. Die Modulation erfolgt auch hier über eine Verstimmung der Resonanzfrequenz. Eine GrobabStimmung der Resonanzfrequenzen kann über die Temperatur erfolgen - also durch Erwärmen oder möglicherweise auch Abkühlen.

Claims

Ansprüche
1. Bauelement zur Verwendung bei der Übertragung optischer Signale nach dem Frequenzmultiplexverfahren, gekennzeichnet durch
- einen Wellenleiter (2), dem die zu empfangenen Signale zuführbar sind,
- mindestens einen weiteren Wellenleiter (4, 5, 6, 7), der etwa parallel zum Wellenleiter (2) verläuft, mit dem Wellenleiter evaneszent gekoppelt ist und durch eine Strukturierung in Längsrichtung als Bragg-Resonator ausgebildet ist, und
- mindestens eine Halbleiterdiode (8, 9, 10, 11), die mit dem Bragg-Resonator optisch gekoppelt ist.
2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß der Wellenleiter (2) auf einem Träger (1) angeordnet ist und daß zu beiden Seiten des Wellenleiters weitere als Bragg-Resonatoren ausgebildete Wellenleiter (4, 5, 6, 7) angeordnet sind.
3. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Halbleiterdioden (8, 9, 10, 11) an den Längsseiten der weiteren Wellenleiter (4, 5, 6, 7) vorgesehen sind.
4. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Halbleiterdioden jeweils an einem Stirnende der weiteren Wellenleiter angekoppelt sind.
5. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Halbleiterdioden als evaneszent gekoppelte Dioden ausgebildet sind.
6. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß der Wellenleiter von einer die optischen Signale führenden Glasfaser gebildet ist, die in einen im Bauelement vorgesehenen Kanal eingelegt ist.
7. Bauelement nach Anspruch 6, dadurch gekennzeichnet, daß der Kanal gekrümmt ist.
8. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß ein Körper (21, 51, 61, 71) aus niederbrechendem Werkstoff, vorzugsweise Polymer, mit einer Nut (22, 74) zur Aufnahme des Wellenleiters und mindestens mit einer weiteren Nut (31 bis 36, 54, 62, 72, 73), die mit der den Wellenleiter enthaltenden Nut (22, 74) mindestens teilweise parallel verläuft, versehen ist, daß die die Nuten (22, 74, 31 bis 36, 54, 62, 72, 73) einschließende Oberfläche mit einer Substratplatte (25, 52) verbunden ist, welche mindestens die Halbleiterdioden trägt, daß die weiteren Nuten (31 bis 36, 54, 62, 72, 73) als Bragg-Resonator strukturiert sind, daß auf der dem Körper zugewandten Oberfläche der Substratplatte (25, 52) eine Metallschicht (26, 64, 77) angeordnet ist, die im Bereich der weiteren Nuten (31 bis 36, 54, 62, 72, 73) mindestens teilweise unterbrochen ist und daß mindestens eine Halbleiterdiode im Bereich der Unterbrechungen (41 bis 46, 63, 75, 76) der Metallschicht (26, 64, 77) in der Substratplatte (25, 52) ausgebildet ist.
9. Bauelement nach Anspruch 8, dadurch gekennzeichnet, daß der Körper (21, 51, 61, 71) aus niederbrechendem Werkstoff an mindestens zwei Seiten der die Nuten (22, 74, 31 bis 36, 54, 62, 72, 73) einschließenden Oberfläche leistenformige Halterungen (23, 24) für die Substratplatte (25, 52) auf eist.
10. Bauelement nach Anspruch 8, dadurch gekennzeichnet, daß die Nut (22, 74) und die weiteren Nuten (31 bis 36, 54, 62, 72, 73) einen rechteckigen Querschnitt aufweisen.
11. Bauelement nach Anspruch 9, dadurch gekennzeichnet, daß die in der Nut (22, 74) und in den weiteren Nuten (31 bis 36, 54, 62, 72, 73) befindlichen Wellenleiter aus höherbrechendem Polymer bestehen.
12. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß ein Körper (81) aus niederbrechendem Werkstoff, vorzuσsweise Polymer, mit einer Nut (86) zur Aufnahme des Wellenleiters und mindestens mit einer weiteren Nut (82), die mit der den Wellenleiter enthaltenden Nut (86) mindestens teilweise parallel verläuft, versehen ist, daß die die Nuten (82, 86) einschließende Oberfläche mit einer Platte (85) aus niederbrechendem Werkstoff verbunden ist, daß die weitere Nut (82) als Bragg-Resonator strukturiert ist und daß die weitere Nut (82) über den Bragg-R.esonator hinaus bis an eine Kante des Körpers 81 verlängert ist und daß am Ende der verlängerten weiteren Nut (87) ein opto-elektrischer Wandler (80) angeordnet is -
13. Bauelement nach Anspruch 12, dadurch gekennzeichnet, daß der Körper (81) aus niederbrechendem Werkstoff an mindestens zwei Seiten der die Nuten (82, 86) einschließenden Oberfläche leistenformige Halterungen für die Platte (85) aus niederbrechendem Werkstoff aufweist.
1 . Bauelement nach Anspruch 12, dadurch gekennzeichnet, daß die Nut (86) und die weitere Nut (82, 87) einen rechteckigen Querschnitt aufweisen.
15. Bauelement nach Anspruch 13, dadurch gekennzeichnet, daß die in der Nut (86) und in der weiteren Nut (82, 87) befindlichen Wellenleiter aus höherbrechendem Polymer bestehen.
16. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß in Längsrichtung des Wellenleiters gesehen mehrere Bragg-Resonatoren (4, 6; 5, 7; 31, 32, 33; 34, 35, 36) hintereinander angeordnet sind.
17. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß in Längsrichtung des Wellenleiters gesehen mehrere Bragg-Resonatoren (72, 73) nebeneinander angeordnet sind.
18. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß zu beiden Seiten des Wellenleiters (2, 22) Bragg-Resonatoren (4, 5; 6, 7; 31, 34; 32, 35; 33, 36) angeordnet sind.
EP92923682A 1991-12-24 1992-11-27 Bauelement zur verwendung bei der übertragung optischer signale Ceased EP0619027A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4142922A DE4142922A1 (de) 1991-12-24 1991-12-24 Bauelement zur verwendung bei der uebertragung optischer signale
DE4142922 1991-12-24
PCT/DE1992/000990 WO1993013440A1 (de) 1991-12-24 1992-11-27 Bauelement zur verwendung bei der übertragung optischer signale

Publications (1)

Publication Number Publication Date
EP0619027A1 true EP0619027A1 (de) 1994-10-12

Family

ID=6448096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92923682A Ceased EP0619027A1 (de) 1991-12-24 1992-11-27 Bauelement zur verwendung bei der übertragung optischer signale

Country Status (5)

Country Link
US (1) US5471551A (de)
EP (1) EP0619027A1 (de)
JP (1) JPH07502607A (de)
DE (1) DE4142922A1 (de)
WO (1) WO1993013440A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475780A (en) * 1993-06-17 1995-12-12 At&T Corp. Optical waveguiding component comprising a band-pass filter
DE19530644C1 (de) * 1995-08-21 1996-12-19 Ams Optotech Vertrieb Gmbh Optischer Kanalmultiplexer und/oder -demultiplexer
DE19630706A1 (de) * 1996-07-30 1998-02-05 Deutsche Telekom Ag Optischer Verzweiger
US5915051A (en) * 1997-01-21 1999-06-22 Massascusetts Institute Of Technology Wavelength-selective optical add/drop switch
US7106917B2 (en) 1998-11-13 2006-09-12 Xponent Photonics Inc Resonant optical modulators
CA2398833A1 (en) * 2000-01-20 2001-07-26 Princeton Lightwave Inc. High power distributed feedback ridge waveguide laser
WO2001061395A1 (en) 2000-02-17 2001-08-23 Cquint Communications Corporation Resonant optical filters
US6532326B1 (en) * 2000-09-21 2003-03-11 Ut-Battelle, Llc Transverse-longitudinal integrated resonator
DE102016203007A1 (de) * 2016-02-25 2017-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Siegel und Verfahren zur Versiegelung
KR20180090107A (ko) * 2017-02-02 2018-08-10 삼성전자주식회사 분광기 및 그 분광기가 적용된 성분 측정 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3484345D1 (de) * 1983-07-08 1991-05-02 American Telephone & Telegraph Optische uebertragungssysteme mit multiplexierung durch wellenlaengenabspaltung.
US4729111A (en) * 1984-08-08 1988-03-01 Wayne State University Optical threshold logic elements and circuits for digital computation
DE3506569A1 (de) * 1985-02-25 1986-08-28 Manfred Prof. Dr. 7900 Ulm Börner Integrierte resonatormatrix zum wellenlaengenselektiven trennen bzw. zusammenfuegen von kanaelen im frequenzbereich der optischen nachrichtentechnik
US4750801A (en) * 1985-09-30 1988-06-14 American Telephone And Telegraph Company, At&T Bell Laboratories Optical waveguide resonator filters
US4849986A (en) * 1986-08-22 1989-07-18 Siemens Aktiengesellschaft Optical resonator matrix
US4852960A (en) * 1987-03-11 1989-08-01 American Telephone And Telegraph Company, At&T Bell Laboratories Narrow-linewidth resonant optical device, transmitter, system, and method
GB8721604D0 (en) * 1987-09-14 1987-10-21 British Telecomm Optical filters
US5054873A (en) * 1989-12-04 1991-10-08 Northrop Corporation High density integrated optical multiplexer/demultiplexer
US5016967A (en) * 1989-12-26 1991-05-21 United Technologies Corporation Multi-core optical waveguide Bragg grating light redirecting arrangement
US5233187A (en) * 1991-01-22 1993-08-03 Canon Kabushiki Kaisha Multi-wavelength light detecting and/or emitting apparatuses having serially arranged grating directional couplers
US5106211A (en) * 1991-02-14 1992-04-21 Hoechst Celanese Corp. Formation of polymer channel waveguides by excimer laser ablation and method of making same
FR2674642B1 (fr) * 1991-03-25 1993-12-03 Gaz De France Fibre optique a reseau de bragg interne variable et ses applications.
US5355237A (en) * 1993-03-17 1994-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
US5343544A (en) * 1993-07-02 1994-08-30 Minnesota Mining And Manufacturing Company Integrated optical fiber coupler and method of making same
US5351324A (en) * 1993-09-10 1994-09-27 The Regents Of The University Of California, Office Of Technology Transfer Fiber optic security seal including plural Bragg gratings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9313440A1 *

Also Published As

Publication number Publication date
US5471551A (en) 1995-11-28
JPH07502607A (ja) 1995-03-16
WO1993013440A1 (de) 1993-07-08
DE4142922A1 (de) 1993-07-01

Similar Documents

Publication Publication Date Title
EP0284910B1 (de) Integriert-optische Anordnung für die bidirektionale optische Nachrichten- oder Signalübertragung
DE69737348T2 (de) Optisches Querverbindungssystem
EP0187198B1 (de) Verfahren zur Herstellung einer integriert - optischen Anordnung
EP0187979B1 (de) Monolithisch integrierter WDM-Demultiplexmodul und ein Verfahren zur Herstellung eines solchen Moduls
EP0383138A2 (de) Vorrichtung für den optischen Direktempfang mehrerer Wellenlängen
DE4435928A1 (de) Optische Sende- und Empfangsbaugruppe und optisches Kommunikationssystem, welches diese verwendet
DE4415176A1 (de) Vorrichtung und Verfahren zur Dispersionskompensation in einem faseroptischen Übertragungssystem
WO1986004999A1 (en) Integrated resonator matrix for selective wavelength separation or joining of channels in the frequency range of optical communications technology
EP0713113A1 (de) Optische Sende- und Empfangseinrichtung
EP0925520A1 (de) Anordnung zum aneinanderkoppeln von wellenleitern
DE69933642T2 (de) Lichtmodulator vom wellenleitertyp
EP0619027A1 (de) Bauelement zur verwendung bei der übertragung optischer signale
DE3228586A1 (de) Abstimmbarer halbleiterlaser
DE10136727C2 (de) Photonische Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE60308244T2 (de) Verfahren und Vorrichtung zur Erzeugung eines optischen Pulszugs mit unterdrücktem Träger und Gitter-Vorrichtung
DE10201126A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE10312500A1 (de) Anordnung zum Multiplexen und/oder Demultiplexen optischer Signale einer Mehrzahl von Wellenlängen
EP0531768B1 (de) Verfahren zum Betreiben eines Halbleiterbauelements als optisches Filter
EP0053742A1 (de) Signalübertragungsverfahren, ein Halbleiter-Bauelement sowie ein elektro-optisches Bauelement zur Durchführung des Verfahrens
EP0477604B1 (de) Steuerbarer integriert optischer Richtkoppler
EP3420390A1 (de) Schaltkreisanordnung und verfahren zum herstellen einer schaltkreisanordnung
EP0890129A1 (de) Optischer modulator
EP0948752B1 (de) Optoelektronischer modul
EP0257531A2 (de) Optische Resonatormatrix
EP0238082A2 (de) Integrierte optische Halbleiteranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 19960212

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19961018