EP0610584A1 - Dispositif d'injection de combustible à pré-injection et injection principale de combustibles différents par un injecteur mono-aiguille - Google Patents

Dispositif d'injection de combustible à pré-injection et injection principale de combustibles différents par un injecteur mono-aiguille Download PDF

Info

Publication number
EP0610584A1
EP0610584A1 EP93120307A EP93120307A EP0610584A1 EP 0610584 A1 EP0610584 A1 EP 0610584A1 EP 93120307 A EP93120307 A EP 93120307A EP 93120307 A EP93120307 A EP 93120307A EP 0610584 A1 EP0610584 A1 EP 0610584A1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
valve
pressure
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93120307A
Other languages
German (de)
English (en)
Other versions
EP0610584B1 (fr
Inventor
Helmut Dipl.-Ing. Priesner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus Osterreich AG
Original Assignee
Steyr Nutzfahrzeuge AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Nutzfahrzeuge AG filed Critical Steyr Nutzfahrzeuge AG
Publication of EP0610584A1 publication Critical patent/EP0610584A1/fr
Application granted granted Critical
Publication of EP0610584B1 publication Critical patent/EP0610584B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto

Definitions

  • the invention relates to a fuel injection device for a pre- and main injection of different fuels via a single-needle injection valve, wherein pre-injection fuel is introduced from a low-pressure feed device into the injection valve, there through the spring chamber receiving the valve needle in the closing direction and through a channel into the The valve needle is fed into the interior of the valve needle and upstream from there via throttle bores near the seat thereof, and main injection fuel is then introduced from an injection pump via an injection line or directly and a valve-internal channel into the nozzle antechamber behind the upstream pre-injection fuel.
  • the invention is based on a fuel injection device known from EP 0064146 B1 for a pre-injection and main injection of different fuels, a single-needle injection valve being used and the fuels being supplied as stated above.
  • the single-needle injection valve used here has a relatively complicated and therefore expensive structure. This complexity results from the design of the valve-internal supply paths for the pre-injection fuel and a relief valve built into the supply path for the main injection fuel.
  • the valve needle is hollow and open to the rear.
  • a bolt that connects to the pressure plate of the closing pressure spring, which extends from the front to close to the tip of the nozzle needle, has a longitudinal flattening on the outside, a transverse bore and a longitudinal bore for the passage of pre-injection fuel, and also a seat for the ball of a check valve forms.
  • the latter also has a compression spring acting on the ball, serves to prevent a backflow of fuel during the injection and is installed in the cavity of the valve needle in front of said bolt.
  • Throttle bores branch off from the area of the relevant receiving space, which enable the pre-injection fuel to be discharged into the nozzle antechamber.
  • the relief valve built into the supply channel for main injection fuel is also relatively complicated, it consists of a compression spring and a special relief piston, which is realized by a stepped piston, which has a blind hole at the beginning and transverse holes extending from it, as well as a shoulder, for which a corresponding seat is formed inside the valve.
  • both the injection valves and the injection pump can also be designed to be comparatively simple.
  • the additional structural effort for the external control means is in any case less expensive than a more complicated design of the injection valves and the injection pump.
  • these external control means namely the two solenoid valves in conjunction with the control device controlling their operation, enable the pre-injection fuel to be precisely pre-stored in terms of time and quantity in all operating areas of the internal combustion engines and to replenish the cavity with main injection fuel resulting from the closing of an injection pump-side pressure valve in the subsequent line paths , so that at the beginning of a pump piston-side delivery stroke in the injection valve, a clearly defined stratification of the pre-injection fuel and the main injection fuel is given and, moreover, the line path previously given by the pressure line and the pump outlet space is completely filled with the main injection fuel.
  • fuel is injected with exactly the amount of fuel that is displaced by the stroke of the pressure valve from the subsequent line paths.
  • the fuel injection device has an injection pump 1 with pump pistons 2 controlled by cams (not shown), each of which has conventional control grooves 3, 4 and oblique control edges 5 and can be rotated by a control device (also not shown) for power control.
  • the pump chambers 7, each of which can be filled with fluid such as oil or diesel fuel from a supply device via a laterally opening control bore 6, are adjoined in each case by a pump outlet chamber 8 and an injection line 11 connected to an internally provided with a single-needle injection valve 9. If the single-needle injection valve 9 is combined with the injection pump 1 to form a pump nozzle element, the injection line 11 is omitted.
  • connection bore 12 between each pump chamber 7 and pump outlet chamber 8 is provided on the rear with a conical extension 13, which serves as a seat for a in the pump outlet chamber 8 low-pressure valve 14 is used, which is acted upon in the closing direction by a pressure spring 15 also installed in the pump outlet chamber 8.
  • the injection pump according to the invention only serves to build up pressure and to advance the amount of main injection fuel coming in for injection, which is successively supplied to the line paths 8, 11, 10 adjoining the pressure valve 14.
  • Each pressure valve 14 acts as a pressure piston during the pump piston stroke, which pushes the fuel column behind it by its stroke movement and at the same time shuts off a filling bore 16 opening laterally into the pump outlet space 8, via which, after the completion of each injection process and return of the pressure valve 14 to its closed position, thereby resulting cavity corresponding to the amount of fuel injected in said conduits 8, 11, 10 can be refilled with main injection fuel from a low-pressure feed device 17, controlled shortly before or after completion of a pre-injection fuel refill via a solenoid valve 19 built into the external feed line 18 .
  • Each single-needle injection valve 9 assigned to a cylinder of the internal combustion engine has a hollow valve needle 20, the cavity 21 of which is closed on the rear side can be filled with pre-injection fuel from the outside via a filling bore 22, specifically via an internal valve consisting of parts 23/1, 23 / 2, 23/3, 23/4, 23/5, 23/6 composing feed channel 23, in which a check valve 24 which is only permeable in the feed direction is installed.
  • the latter serves to prevent a backflow of pre-injection fuel during the injection.
  • the cavity 21 is connected via holes 25 located near the valve needle tip 27 to the nozzle antechamber 26 which extends around the front part of the valve needle 20 and widens at the rear.
  • the valve needle 20 is preferably drilled from its rear coaxially to almost its tip 27.
  • This cavity 21 designed in this way is preferably closed on the rear by a partially immersed spacer bolt 28, which establishes the connection between the valve needle 20 and a pressure plate 29, on which a compression spring 30 acting on the valve needle 20 in the closing direction is supported at the front.
  • This compression spring 30 presses the valve needle 20 in the closed position against a conical valve seat 31, in front of which nozzle bores 32 open into the combustion chamber.
  • annular lifting surface 33 approximately through the middle of its longitudinal extension at the transition between its smaller diameter front and larger diameter rear section, through which the valve needle with correspondingly acting in the nozzle vestibule 26 fuel pressure can be raised in the open position.
  • the filling bore 22 is preferably provided behind the annular lifting surface 33 of the valve needle 20 in the rear half thereof and is designed as a transverse bore which extends from an annular groove 34 provided on the outside of the valve needle 20, which communicates with the supply channel 23 in each valve needle position.
  • the latter in turn preferably includes the spring chamber receiving the compression spring 30 (section 23/2), an annular gap (section 23/3) around the pressure plate 29 and the spacer bolt 28, and then sits down with a transverse channel (section 23/4), one Vertical bore (section 23/5), in which the check valve 24 is installed, and continues with an oblique bore (section 23/6), the latter opening laterally at the level of the filling bore 22 into the receiving bore 35 guiding the valve needle 20.
  • the aim should be that the check valve 24 is installed in the valve-internal feed channel 23 as close as possible before the junction point in the receiving bore 35.
  • the valve-internal feed channel 23 can be supplied with pre-injection fuel from a low-pressure feed device 36 via a feed line 37, in which a cyclically controllable solenoid valve 38 is built in for the exact metering in terms of time and quantity.
  • the main injection fuel supply channel 10 opening into the nozzle antechamber 26 is formed internally in the valve only by bore sections communicating with one another without any internals.
  • the two solenoid valves 19, 38 are preferably combined in a common valve block 39 which is installed in the two supply lines 18, 37 running over it.
  • the two solenoid valves 19, 38 can be controlled by an electronic control device 40, which operates on the basis of their supplied angle of rotation signals ⁇ of the crankshaft of the internal combustion engine or a camshaft controlling the gas exchange valves thereof or the pump pistons 2 of the injection pump 1 and in which the opening and closing times of the two solenoid valves 19, 38 are stored as values dependent on the angle of rotation.
  • Each of the two fuels is provided in its own storage tank 41, 42 and is made from it by the associated low-pressure feed device 17 or 36 eligible.
  • Each of the latter consists of a feed pump 17/1 or 36/1 and a pressure relief valve 17/2 or 36/2, which limits their delivery pressure to approximately 2 to 4 bar.
  • diesel fuel can be used as the ignitable pilot injection fuel and a diesel water emulsion or ethanol can be used as the ignition carrier main injection fuel.
  • the pump chambers 7 of the injection pump can also be supplied with the appropriate fuel from the corresponding low-pressure feed device 36.
  • the cavities given in the injection system are first refilled.
  • the two fuels are basically stratified in such a way that pre-injection fuel is present in the vicinity of the nozzle bores 32 in the nozzle vestibule 26 and the main injection fuel is stratified behind it, that is to say at a greater distance.
  • the line paths 8, 11 adjoining the pressure valve 14 and all the channels inside the valve are depressurized. This state occurs when the pressure in the pump chamber 7 collapses at the end of the pump piston stroke and, as a result, the valve needle 20 closes and the pressure valve 14 returns to its closed position.
  • the solenoid valve 38 is first opened from the control device 40, so that pre-injection fuel can be introduced into the injection valve 36 through the low-pressure feed device 36, specifically via the feed channel 23 with its parts 23/1, 23/2, 23/3, 23 / 4, 23/5, 23/6, as a result of which the fuel located in the cavity 21 of the valve needle 20 is discharged into the nozzle antechamber 26 via the throttle bores 25 - while displacing the main injection fuel still located in the nozzle antechamber 26 back into the supply channel 10.
  • the solenoid valve 38 is closed again by the control device 40 and the pre-injection fuel pre-storage is thus ended.
  • the solenoid valve 19 is opened, so that then main injection fuel from the low-pressure feed device 17 via the feed line 18 and the filling bore 16 for filling of the cavity given in the conduction paths 8, 11 and 10 can be conveyed.
  • the main injection fuel in the valve-internal supply channel 10 is subsequently added to the pre-injection fuel which is already upstream of the latter.
  • the solenoid valve 18 is closed again by the control device 40.
  • the opening time for the solenoid valve 18 is so large that all cavities can always be filled. The sequence described also leads to an exact metering if the set amount was smaller than the desired pre-injection fuel amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
EP19930120307 1993-02-09 1993-12-16 Dispositif d'injection de combustible à pré-injection et injection principale de combustibles différents par un injecteur mono-aiguille Expired - Lifetime EP0610584B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT223/93 1993-02-09
AT22393 1993-02-09

Publications (2)

Publication Number Publication Date
EP0610584A1 true EP0610584A1 (fr) 1994-08-17
EP0610584B1 EP0610584B1 (fr) 1996-09-04

Family

ID=3484805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19930120307 Expired - Lifetime EP0610584B1 (fr) 1993-02-09 1993-12-16 Dispositif d'injection de combustible à pré-injection et injection principale de combustibles différents par un injecteur mono-aiguille

Country Status (2)

Country Link
EP (1) EP0610584B1 (fr)
DE (1) DE59303657D1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721660A1 (fr) * 1994-06-28 1995-12-29 Daimler Benz Ag Installation d'injection de carburant pour un moteur à combustion interne.
FR2759738A1 (fr) * 1997-02-20 1998-08-21 Bosch Gmbh Robert Injecteur de carburant pour moteur a combustion interne
US8733326B2 (en) 2011-06-24 2014-05-27 Caterpillar Inc. Dual fuel injector for a common rail system
US8944027B2 (en) 2011-06-21 2015-02-03 Caterpillar Inc. Dual fuel injection compression ignition engine and method of operating same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101137614B1 (ko) * 2010-10-28 2012-04-19 현대중공업 주식회사 내연기관용 연료분사밸브

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012418A1 (de) * 1980-03-29 1981-10-08 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzventil fuer brennkraftmaschinen
EP0104368A1 (fr) * 1982-08-31 1984-04-04 George Stan Baranescu Système d'injection avec charge de combustible stratifiée
EP0282819A2 (fr) * 1987-03-15 1988-09-21 Mitsubishi Jukogyo Kabushiki Kaisha Système d'injection pour un moteur à deux carburants
WO1991003640A1 (fr) * 1989-08-30 1991-03-21 Robert Bosch Gmbh Injecteur pour moteurs diesel
US5056469A (en) * 1990-06-29 1991-10-15 Ail Corporation Fuel injection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3012418A1 (de) * 1980-03-29 1981-10-08 Klöckner-Humboldt-Deutz AG, 5000 Köln Kraftstoffeinspritzventil fuer brennkraftmaschinen
EP0104368A1 (fr) * 1982-08-31 1984-04-04 George Stan Baranescu Système d'injection avec charge de combustible stratifiée
EP0282819A2 (fr) * 1987-03-15 1988-09-21 Mitsubishi Jukogyo Kabushiki Kaisha Système d'injection pour un moteur à deux carburants
WO1991003640A1 (fr) * 1989-08-30 1991-03-21 Robert Bosch Gmbh Injecteur pour moteurs diesel
US5056469A (en) * 1990-06-29 1991-10-15 Ail Corporation Fuel injection system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2721660A1 (fr) * 1994-06-28 1995-12-29 Daimler Benz Ag Installation d'injection de carburant pour un moteur à combustion interne.
GB2291123A (en) * 1994-06-28 1996-01-17 Daimler Benz Ag I.c.engine fuel and water injection system
US5601067A (en) * 1994-06-28 1997-02-11 Daimler-Benz Ag Fuel injection system for an internal combustion engine
GB2291123B (en) * 1994-06-28 1997-09-03 Daimler Benz Ag Fuel injection system for an internal combustion engine
FR2759738A1 (fr) * 1997-02-20 1998-08-21 Bosch Gmbh Robert Injecteur de carburant pour moteur a combustion interne
US8944027B2 (en) 2011-06-21 2015-02-03 Caterpillar Inc. Dual fuel injection compression ignition engine and method of operating same
US8733326B2 (en) 2011-06-24 2014-05-27 Caterpillar Inc. Dual fuel injector for a common rail system

Also Published As

Publication number Publication date
DE59303657D1 (de) 1996-10-10
EP0610584B1 (fr) 1996-09-04

Similar Documents

Publication Publication Date Title
EP0141044B1 (fr) Dispositif d'injection de carburant avec pré-injection et injection principale dans un moteur à combustion interne
EP0745184B1 (fr) Procede permettant de reduire la pression du carburant dans un systeme d'injection de carburant
EP0941400B1 (fr) Soupape de commande de liquides
DE19939422A1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE60125098T2 (de) Kraftstoffeinspritzventil
DE2126787A1 (de) Kraftstoffeinspntzeinrichtung fur Brennkraftmaschinen
DE3629751C2 (de) Voreinspritzvorrichtung für Brennkraftmaschinen
EP0694123A1 (fr) Systeme d'injection
EP0064146B1 (fr) Système d'injection pour injecter deux combustibles par une seule buse d'injection
DE10229415A1 (de) Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren
CH669015A5 (de) Einrichtung zum wahlweisen einspritzen von dieseloel und zuendoel in den brennraum einer mit dieseloel oder mit gas als hauptbrennstoff betriebenen hubkolbenbrennkraftmaschine.
EP0204982B1 (fr) Dispositif d'injection de combustible pour moteurs à combustion interne
EP0610584B1 (fr) Dispositif d'injection de combustible à pré-injection et injection principale de combustibles différents par un injecteur mono-aiguille
DE2509068C2 (fr)
EP1185785B1 (fr) Systeme d'injection
EP0610585B1 (fr) Dispositif d'injection de combustible à pré-injection et injection principale
DE1751080B1 (de) Kraftstoffeinspritzduese fuer Dieselmotoren
DE3236828A1 (de) Brennstoffeinspritzvorrichtung
DE10023960A1 (de) Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
DE3909750C2 (fr)
EP1651858B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
AT512437B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE3009750A1 (de) Brennstoffeinspritzvorrichtung fuer brennkraftmaschinen
AT512439B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP0418800B1 (fr) Dispositif d'injection de combustible pour un moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19950727

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59303657

Country of ref document: DE

Date of ref document: 19961010

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981112

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19981113

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981118

Year of fee payment: 6

Ref country code: DE

Payment date: 19981118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19981123

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991216

EUG Se: european patent has lapsed

Ref document number: 93120307.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051216