EP0609443B1 - Colored toner for developing electrostatic image - Google Patents

Colored toner for developing electrostatic image Download PDF

Info

Publication number
EP0609443B1
EP0609443B1 EP92921832A EP92921832A EP0609443B1 EP 0609443 B1 EP0609443 B1 EP 0609443B1 EP 92921832 A EP92921832 A EP 92921832A EP 92921832 A EP92921832 A EP 92921832A EP 0609443 B1 EP0609443 B1 EP 0609443B1
Authority
EP
European Patent Office
Prior art keywords
toner
particles
value
developing electrostatic
electrostatic images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92921832A
Other languages
German (de)
French (fr)
Other versions
EP0609443A1 (en
EP0609443A4 (en
Inventor
Hiroshi Kamada
Hitoshi Masuda
Yukinobu Hasegawa
Hiroyoshi Shimomura
Hiroshi Serizawa
Kensuke Okuda
Masatoshi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Carbide Industries Co Inc
Original Assignee
Nippon Carbide Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3301214A external-priority patent/JP3037799B2/en
Priority claimed from JP03308237A external-priority patent/JP3114295B2/en
Application filed by Nippon Carbide Industries Co Inc filed Critical Nippon Carbide Industries Co Inc
Publication of EP0609443A1 publication Critical patent/EP0609443A1/en
Publication of EP0609443A4 publication Critical patent/EP0609443A4/en
Application granted granted Critical
Publication of EP0609443B1 publication Critical patent/EP0609443B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0906Organic dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains

Definitions

  • This invention relates to a colored toner for developing electrostatic images in electrophotography, electrostatic recording, electrostatic printing, etc.
  • toners used generally widely have been prepared by suitably dry blending a colorant such as carbon black, a charge control agent and/or a magnetic substance, with styrene/acrylate copolymer powder obtained by the suspension polymerization method; melting and kneading the blend by an extruder or the like; and then pulverizing and classifying the kneaded matter.
  • a colorant such as carbon black, a charge control agent and/or a magnetic substance
  • toners obtained by such melting, kneading and pulverizing method there have been problems that there is a limit in controlling the particle size of the toners, it is difficult to prepare the toners of a small particle size in good yields, and further the dispersion becomes ununiform and the charge quantity distribution becomes broad, and thus when the toners are used as a developer, the resolution is low and moreover it is impossible to avoid the drawbacks that fog and splash, etc. occur.
  • This invention aims to provide a toner which has a high image density and a high resolution, and wherein fog, splash, etc. do not occur, and coloring properties, color reproduction, color transmittance when copying to OHP sheets was made, etc. are excellent.
  • This invention provides an electrophotographic colored toner for developing electrostatic images which has a degree of gelation of 2.0% or less and comprises an association of secondary particles containing polymer particles having acidic polar groups or basic polar groups, and an organic pigment and/or an organic dye which have (has) previously been treated with a treatment agent including a surface treatment agent, which has the same ionic character as the polymer particles so that the absolute value of ⁇ -potential becomes 10 to 100 mV at pH 5.
  • the shape factor S value of the toner particles is preferably 100.5 to 160.0.
  • the mean diameter of the toner particles obtained from the distance between circumscribed parallel lines is expressed as rm
  • the mean minimal value of the radius of curvature, on the surface of the toner particles, of each associated particle constituting the toner is expressed as rn
  • V is assumed to be rm/rn
  • V, rm and rn can take the following values: 1.01 ⁇ v ⁇ 320 2.5 ⁇ m ⁇ rm ⁇ 16 ⁇ m 0.05 ⁇ m ⁇ rn ⁇ rm
  • this invention provides a developer for electrostatic images which comprises the above electrophotographic colored toner for developing electrostatic images and a carrier.
  • the toner of this invention comprises associated particles which occurred by association of secondary particles composed of polymer particles having acidic or basic polar groups (hereafter these are sometimes referred to as primary particles) and an organic pigment and/or an organic dye treated specifically as later-described.
  • association means that plural secondary particles aggregate to form particles having a larger particle size.
  • a preferred example of the polymer having acidic polar groups or basic polar groups is a copolymer of a styrene, an alkyl (meth)acrylate and a comonomer having acidic polar groups or basic polar groups (hereafter referred to as "comonomer having polar groups").
  • a preferred specific examples of such copolymers is a copolymer comprising
  • the above copolymer can freely contain a copolymerizable comonomer in an extent of not spoiling the performance of the toner of this invention, besides the monomers of (a), (b) and (c).
  • styrene there can, for example, be mentioned styrene, n-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-n-butylstyrene, p-tert-butylstyrene, p-n-hexylstyrene, p-n-octylstyrene, p-n-nonylstyrene, p-n-decylstyrene, p-n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, p-chloromethylstyrene,
  • alkyl (meth)acrylates there can, for example, be mentioned methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate, n-octyl, acrylate, dodecyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, methyl ⁇ -chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, etc.
  • comonomers having acidic polar groups there can, for example, be mentioned ⁇ , ⁇ -ethylenic unsaturated compounds having a carboxyl group and ⁇ , ⁇ -ethylenic unsaturated compounds having a sulfone group.
  • ⁇ , ⁇ -ethylenic unsaturated compounds having a carboxyl group there can, for example, be mentioned acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, cinnamic acid, maleic acid monobutyl ester, maleic acid monooctyl ester, and their metal salts such as sodium salts and zinc salts, etc.
  • ⁇ , ⁇ -ethylenic unsaturated compounds having a sulfone group there can, for example, be mentioned sulfonated ethylene, its Na salt, arylsulfosuccinic acid, octyl arylsuccinic acid and their Na salts.
  • (meth)acrylic esters which have an amine group or a quaternary ammonium group and wherein the carbon atom number of the ester portion is 1 to 12, preferably 2 to 8; (meth)acrylamide or (meth)acrylamides mono- or di-substituted by an alkyl group having 1 to 18 carbon atoms on optional N(s); vinyl compounds substituted by a heterocyclic group having N as a ring member; and N,N-diallyl-alkylamines or their quaternary ammonium salts.
  • (meth)acrylic esters of aliphatic alcohols having an amine group or a quaternary ammonium group are preferably used as the comonomers having a basic polar group.
  • (meth)acrylic esters of aliphatic alcohols having an amine group or a quaternary ammonium group there can, for example, be mentioned dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, their quaternary ammonium salts, 3-dimethylaminophenyl acrylate, 2-hydroxy-3-methacryloxypropyltrimethylammonium salts, etc.
  • (meth)acrylamide or (teeth)acrylamides mono- or di-substituted by an alkyl group having 1 to 18 carbon atoms or optional N(s) there can, for example, be mentioned acrylamide, N-butylacrylamide, N,N-dibutylacrylamide, piperidylacrylamide, methacrylamide, N-butylmethacrylamide, N,N-dimethylacrylamide, N-octadecylacrylamide, etc.
  • vinylpyridine vinylpyrrolidone
  • vinyl N-methylpyridinium chloride vinyl N-ethylpyridinium chloride, etc.
  • N,N-diallyl-alkylamines there can, for example, be mentioned N,N-diallylmethylammonium chloride, N,N-diallylethylammonium chloride, etc.
  • the polymer particles of this invention can be obtained by polymerizing the above monomer composition by the emulsion polymerization method, the suspension polymerization method, the precipitation polymerization method or the interfacial polymerization method (including the coacervate method). It is also possible to mechanically pulverize synthetic resin pieces to give particles. Further, if necessary, it is also possible to use a method which comprises associating primary particles of the polymer utilizing the ⁇ -potential. Preferred methods for preparing polymer particles are the emulsion polymerization method, the suspension polymerization method and the method utilizing the ⁇ -potential.
  • the above polymer is used in a quantity of 40 to 99.9 wt% in the toner.
  • the above polymer has a glass transition point of preferably -90 to 100°C, more preferably -30 to 80°C, still further preferably -10 to 70°C.
  • the glass transition point is above the above upper limit, there is a tendency that low temperature fixing properties become bad, and when it is under the above lower limit, there is a tendency that powder fluidity lowers.
  • the mean particle size of the primary particles of the above polymer is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 8 ⁇ m, still further preferably 0.01 to 5 ⁇ m, particularly preferably 0.01 to 3 ⁇ m.
  • the ⁇ -potential of the particles of the above polymer desirably takes an appropriate value. It is preferable that the ⁇ -potential ( ⁇ P 5 ) in pH 5 of the acidic polar groups-containing polymer particles is -2 to -60 mV and the ⁇ -potential ( ⁇ P 9 ) in pH 9 thereof is -20 to -100 mV, and ⁇ P 5 is larger than ⁇ P 9 .
  • ⁇ P 5 of the polymer particles is +20 to +100 mV
  • ⁇ P 9 thereof is +2 to +60 mV
  • ⁇ P 5 is larger than ⁇ P 9 .
  • the organic pigment and the organic dye used in this invention are those which were treated with a surface treatment agent having the same ionic character as the polymer particles used, and, as a result, wherein the absolute value of ⁇ -potential at pH 5 became 10 to 100 mV. It was found that by use of the thus treated organic pigment and/or organic dye, reaction between the polar groups in the polymer and the pigment or dye is inhibited, and as a result a colored toner having a degree of gelation of 2.0% or less.
  • the absolute value of the ⁇ -potential at pH 5 is made to be 10 to 100 mV by the above treatment agent, a disperse dye which is used in such a state that the dye was dispersed in a medium is used as the organic dye used in this invention.
  • organic pigment and organic dye used so long as they show coloring other than black, and it is also possible to combine one or two or more organic pigments and/or organic dyes, if necessary. Further, there is no hindrance if a metal is contained in these organic pigments and organic dyes.
  • organic fluorescent dyes In addition, organic fluorescent dyes, Aniline Black, etc.
  • organic dyes there can be used Nigrosine dyes, Aniline dyes, etc.
  • Polyoxyethylene lauryl ethers polyoxyethylene cetyl ethers, polyoxyethylene stearyl ethers, polyoxyethylene oleyl ethers, polyoxyethylene higher alcohol ethers, polyoxyethylene octylphenyl ethers, polyoxyethylene nonylphenyl ethers, oxyethylene-oxypropylene block copolymers, sorbitan monolaurylate or monopalmitate or monostearate or tristearate or monooleate or trioleate or sesquioleate or distearate, polyoxyethylenesorbitan monolaurylate monopalmitate or monostearate or tristearte or monooleate or trioleate or sesquioleate or distearate, silicone surface active agents, fluorine surface active agents, etc.
  • Tetraoleic acid polyoxyethylenesorbitol esters coconut amine acetates, stearylamine acetate, coconut amine hydrochlorides, stearylamine hydrochloride, starylamine oleate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylamonium chloride, alkylbenzyldiroethylaroroonium chloride, laurylbetaine, stearylbetain, lauryldimethylamine oxide, laurylcarboxymethylhydroxyethylimidazoliniumbetaine, silicone surface active agents, fluorine surface active agents, etc.
  • surface active agents which have both of a nonionic portion and a anionic portion in one molecule
  • surface active agents which have both of a nonionic portion and a cationic portion in one molecule.
  • the organic pigment and/or the organic dye can be used in the range of 60 to 0.1 wt% in the toner.
  • the preparation of the toner of this invention can be made by aggregating a mixture of the above polymer particles (primary particles) with the surface-treated organic pigment and/or organic dye and optionally a charge control agent, a mold releasing agent or the like to prepare secondary particles, and further aggregating these secondary particles to form associated particles.
  • the secondary particles constituting the above associated particles which are the toner of this invention, their form is not limited so long as it spoils this invention, but preferably, the secondary particles are those wherein the primary particles of the polymer and the colorant particles are aggregated by bonding strengths such as ionic bond, hydrogen bond, metal bond and weak acid-weak base bond.
  • association methods wherein the ⁇ -potential is utilized, coacervate, an association method such as interfacial polymerization, a method which comprises heat fusing the interfaces of the secondary particles and then pulverizing the heat fused particles, etc., and among them, the association methods are preferably used.
  • the mean particle size of the above secondary particles is preferably 0.05 to 12 ⁇ m, more preferably 0.2 to 8 ⁇ m, particularly preferably 0.5 to 5 ⁇ m. Further, the particle size of the associated particles of this invention is preferably 2.5 to 12 ⁇ m, more preferably 2.5 to 11 ⁇ m.
  • a pigment and/or a dye or other compouding substances are added to a polymer dispersion obtained by emulsion polymerization and uniformly dispersed therein, and then stirring is continued for 0.5 to 10 hours, preferably 1 to 5 hours and thereby the primary particles of the polymer having Dolar groups and the surface-treated organic pigment or the like are aggregated to form secondary particles of 1-5 ⁇ m in size.
  • the dispersion is further stirred for 0.5-10 hours, preferably 1-5 hours under heating, aggregation of the secondary particles advances and they grow into associated particles of 1 to 20 ⁇ m.
  • the resultant dispersion of the associated particles is stabilized and then heated, and stirring is continued at a temperature higher than the glass transition point of the polymer, preferably a temperature 20°C or more higher than that for 1 to 12 hours, preferably 1 to 10 hours.
  • a temperature higher than the glass transition point of the polymer preferably a temperature 20°C or more higher than that for 1 to 12 hours, preferably 1 to 10 hours.
  • the resultant dispersion of the associated particles is dehydrated, washed and dried to give a toner as associated particles.
  • the secondary particles mutually make a membrane and fuse, and thus they become a toner wherein the secondary particles seldom collapse at the times of storage, transportation, preparation of magnetic developers, etc.
  • the above preparation method is an example of the association method utilizing the ⁇ -potential.
  • the ⁇ -potentials of the polymer particles and the surface-treated pigment particles are lowered in proportion to temperature rise, and as a result aggregation and association of the secondary particles are promoted.
  • methods for lowering the ⁇ -potential there can be mentioned a method of utilizing control of pH, a method utilizing addition of a metal salt, etc.
  • the toner of this invention can contain performance-imparting agents such as a fluidizing agent, a life stabilizer and a printing durability improper in such a range that its performance is not impaired, or such performance-imparting agents can be added to the magnetic toner.
  • performance-imparting agents such as a fluidizing agent, a life stabilizer and a printing durability improper in such a range that its performance is not impaired, or such performance-imparting agents can be added to the magnetic toner.
  • metal oxides such as silica, titanium oxide, aluminum oxide, zinc oxide, cerium oxide and magnetite and substances obtained by making these metal oxides hydrophobic
  • metal salts of higher fatty acids metal soaps
  • metal soaps such as Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of stearic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of oleic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of palmitic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of linolic acid, Zn and Cd salts of ricinolic acid, Pb salt of caprylic acid, and
  • the toner of this invention has a low degree of gelation of 2% or less. When the degree of gelation goes beyond 2%, the light transmittance of the toner becomes low and good coloring properties cannot be obtained.
  • the degree of gelation is preferably 1.80% or less, more preferably 1.00% or less, particularly preferably 0.50% or less.
  • the shape factor S value expressing the shape of the toner of this invention is preferably 100.5 to 160, further preferably 102.0 to 155, more preferably 105.0 to 155, still more preferably 107.0 to 140, particularly preferably 110.0 to 135.
  • the S value expresses the feeling of plane unevenness, and in proportion as the shape of the toner particles becomes close to circle (sphere), the value becomes close to 100, and in proportion as the peripheral shape becomes complicated, the value becomes a larger value.
  • the toner particles become close to spheres, and when they are used as a developer, the charge quantity becomes low, the shortage of image density or fog is liable to take place, and in life characteristics, there is a tendency that defective cleaning, etc. occur and the lifetime is shortened.
  • the V value is preferably 1.01 to 320, more preferably 1.05 to 300, particularly preferablv 2.00 to 250.
  • the diameter of the particles of the toner is obtained from the distance between two circumscribed parallel lines.
  • the above toner has a volume mean particle size of 2.5 to 12 ⁇ m.
  • the above S value expresses the feeling of plane unevenness, whereas the V value hereinabove referred to further expresses unevenness sterically.
  • Such feeling of unevenness is due to primary particles of the polymer, particles of the coloring agent, the charge-controlling agent or their secondary particles.
  • the feeling of the unevenness of the surfaces of the particles can be expressed as a numerical value using the radius of curvature, and it is possible to express the feeling of unevenness of all the toner particles (particularly as associated particles) by deducing the relation of the radius of curvature with the mean particle size of each toner.
  • the toner particles are in such a state that their surface state is substantially free of unevenness and smooth and become close to spheres.
  • the charge quantity becomes low, and the shortage of image density or occurrence of fog are liable to occur.
  • life characteristics in the system of electrophotography wherein cleaning is made by a cleaning blade, there is a tendency that the hang-up frictional force of the toner against the blade extremely decreases, and defective cleaning, etc. occur and the lifetime is shortened.
  • the colored toner obtained by this invention is a colored toner which is excellent in coloring properties due to very good transmittance, is excellent in color reproduction and resolution, exhibits only a small extent of fog and splash, and is excellent in various physical properties.
  • a developer can be prepared by mixing the toner of this invention with a magnetic carrier.
  • the developer can be prepared by stirring and mixing 20 to 95 weight parts of the magnetic carrier and 5 to 80 weight parts of the toner in a V-type mixer or a ball mill, to charge the toner.
  • the magnetic substance there can be used iron hitherto well known, or ferrite or the like. Further, there can also be used a product obtained by binding fine particles of a ferromagnetic substance using a resin.
  • the mean particle size of the magnetic substance carrier is preferably 10 to 200 ⁇ m, further preferably 20 to 180 ⁇ m, particularly preferably 30 to 170 ⁇ m.
  • the particles block the space between the doctor blade and the sleeve in control of the magnetic brush of the developer, and therefore it is recommended to use a particle size of 1/2 or less, preferably 1/5 or less of the doctor gap.
  • the above monomer mixture was added to the following aqueous solution mixture of Water 100 parts Nonionic emulsifier (Emulgen 950 produced by Kao Corporation) 1 part Anionic emulsifier (Neogen R produced by Dai-ichi Kogyo Seiyaku Co. Ltd.) 1.5 parts , and the mixture was subjected to polymerization at 80°C for 8 hours under stirring using potassium persulfate as a catalyst to give an acidic polar groups-containing resin emulsion having a solid content of 50%. (preparation of a surface-treated organic pigment) Water 92 parts C.I.
  • Anionic surface treatment agent 1 (Neogen R produced by Dai-ichi Kogyo Seiyaku Co., Ltd.) 1 part Anionic surface treatment agent 2 (Sodium salt of ⁇ -naphthalene sulfonic acid-formaline condensate; Demol N produced by Kao Corporation) 2 parts
  • the above mixture was held at about 25°C for 2 hours while dispersed and stirred with a disper to give a mixed liquid of the surface-treated organic pigment.
  • the above acidic polar groups-containing resin emulsion 200 parts
  • the above organic pigment mixed liquid 100 parts Water 250 parts
  • the above mixture was held at about 30°C for 2 hours while dispersed and stirred with a slasher. Then the mixture was heated to 80°C under stirring and held for 3 hours. Meanwhile observation was made by an optional microscope, and thereby it was confirmed that the particle size of the secondary particles composed of the polymer particles and the organic pigment grew to 1.2 ⁇ , and further, the particle size of the associated particles (toner particles) wherein the secondary particles were associated grew to about 6.5 ⁇ m. After cooling, the resultant toner was separated by a dispersion centrifuge, washed with water and vacuum dried at 50°C for 10 hours. The gel content of the resultant toner was measured to be 0.3%. Further, as a result of the image processing of this toner, the S value was 119.5 and the V value was 2.35.
  • hydrophobic silica 0.8 part was added as a fluidizing agent to 100 parts of the resultant toner, and the mixture was mixed by a Henschel mixer to give a toner for tests.
  • This toner was mixed with a commercially available ferrite carrier to give a developer for tests having a toner concentration of 3%. This was subjected to a copy test using a commercially available full color copying machine ARTAGE 8000 REALA produced by RICOH COMPANY, LTD., and as a result an image having a high density and a high resolution was obtained. Further, the coloring properties of color was good, and when the image was copied on an OHP sheet, the sheet had very good transparency. The results are shown in Tables 1 and 2.
  • the mean particle size of the primary particles (particles of the resin emulsion) of the above acidic polar groups-containing polymer was 0.08 ⁇ m, the ⁇ -potential ⁇ P 5 at pH5 was -21 mV, and the ⁇ -potential ⁇ P 9 at pH 9 was -80 mV, and the mean particle size of the above surface-treated organic pigment was 0.2 ⁇ m, and the ⁇ -potential ⁇ P 5 at pH 5 was -23 mV.
  • Toners were obtained in the same manner as in Example 1 except that C.I. Pigment Yellow Y-17 was used in Example 2 in place of the organic pigment of Example 1, and C.I. Pigment Blue B-15:3 was used in Example 3 in place thereof.
  • the toners of Examples 2 and 3 were put in the aforesaid copying machine and subjected to the test to give images excellent in color reproduction. The results are shown in Tables 1 and 2.
  • the above mixture was held at about 25°C for 2 hours while dispersed and stirred with a disper, and then the mixture was subjected to dispersion treatment agent by a Gaurin homogenizer to give a mixed liquid of the surface-treated organic pigments.
  • the above basic polar groups-containing resin emulsion 200 parts
  • the above surface-treated organic pigments mixed liquid 100 parts Water 250 parts
  • the above mixture was held at about 30°C for 5 hours under stirring with a slasher. Then the mixture was heated to 80°C under stirring and held for 3 hours. Meanwhile the mixture was observed by an optical microscope, whereby it was confirmed that the associated particles of the secondary particles composed of the polymer particles and the organic pigment grew to about 5.2 ⁇ m. After cooling, the resultant toner dispersion was subjected to separation by a centrifuge, and the obtained toner was washed with water and vacuum dried at 50°C for 10 hours.
  • the gel content of the resultant toner was measured to be 0.2%.
  • 1.2 parts of hydrophobic silica was added as a fluidizing agent to 100 parts of the toner, and the mixture was mixed using a Henschel mixer to give a toner for tests.
  • This toner was mixed with a commercially available ferrite carrier to give a developer for tests having a toner concentration of 5%.
  • Toners were obtained in the same manner as in Example 4 except that C.I. Pigment Yellow Y-17 was used in Example 5 in place of the organic pigment of Example 4, and C.I. Pigment Blue B-15:3 was used in Example 6 in place thereof.
  • the toners of Examples 5 and 6 were put in the aforesaid copying machine and subjected to the test to give images excellent in color reproduction. The results are shown in Tables 1 and 2.
  • Toners were obtained in the same manners as in Examples 1, 2 and 3, respectively, using Styrene 90 parts 2-Ethylhexyl acrylate 10 parts Methacrylic acid 8 parts in place of the polymerization monomer of Example 1. These toners were put in the copying machine of Example 1 and subjected to the test, respectively, whereby image densities excellent in color reproduction and having good transmittance were obtained. The results are shown in Tables 1 and 2.
  • a toner was obtained in the same manner as in Example 1 except that the organic pigment in preparation of the surface-treated organic pigment and dye of Example 1 was replaced by Organic dye C.I. Disperse Red 130 (SRF-46 produced by NIPPON KAYAKU CO., LTD.) 6 parts Organic pigment C.I. Pigment Red 122 2 parts This toner was put in the copying machine of Example 1 and tested to give an image having good transmittance. The results are shown in Tables 1 and 2.
  • a toner was obtained in the same manner as in Example 1 except that the organic pigment in preparation of the surface-treated organic pigment and dye of Example 1 was replaced by Organic dye C.I. Disperse Red 130 (SRF-46 produced by NIPPON KAYAKU CO., LTD.) 8 parts , and the stirring condition in the preparation of the toner of Example 1 was changed so that the mixture is held at about 30°C for 5 hours, and then heated to 93°C and held at that temperature for 5 hours.
  • This toner was put in the copying machine of Example 1 and tested, whereby an image having good transmittance was obtained. The results are shown in Tables 1 and 2.
  • Example 1 Suspension polymerization was carried out on the same monomer composition as in Example 1 using benzoyl peroxide as a catalyst to give a resin for toners.
  • the organic pigment used in Example 1 was added, without being surface-treated, in the same compounding ratio, to this resin, and the mixture was melted and kneaded, and pulverized by a jet mill to give a toner having a mean particle size of 9.3 ⁇ m.
  • the gel content of this toner was 6.5%.
  • a developer was prepared in the same manner as in Example 1 using this toner, and subjected to the same copying test as therein to give an image having bad transmittance and a low resolution. The results are shown in Tables 1 and 2.
  • Example 1 An acidic polar groups-containing emulsion was obtained in the same manner as in Example 1.
  • a toner was prepared in the same manner as in Example 1 using the organic pigment without surface treatment agent, and subjected to the same copying test as therein.
  • the gel content of this toner was 4.2%. The results are shown in Tables 1 and 2.
  • the toner obtained in Comparative example 1 was subjected to processing for making the particles sherical using a hybridizer (produced by Nara Kikai Co., Ltd.), and a copying test was carried out in the entirely same manner as in Example 1 using this toner.
  • the results are shown in Tables 1 and 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

Technical Field
This invention relates to a colored toner for developing electrostatic images in electrophotography, electrostatic recording, electrostatic printing, etc.
Background Art
Heretofore, toners used generally widely have been prepared by suitably dry blending a colorant such as carbon black, a charge control agent and/or a magnetic substance, with styrene/acrylate copolymer powder obtained by the suspension polymerization method; melting and kneading the blend by an extruder or the like; and then pulverizing and classifying the kneaded matter. (see Japanese Laid-Open Patent Publication No. 23354/1976).
However, as to toners obtained by such melting, kneading and pulverizing method, there have been problems that there is a limit in controlling the particle size of the toners, it is difficult to prepare the toners of a small particle size in good yields, and further the dispersion becomes ununiform and the charge quantity distribution becomes broad, and thus when the toners are used as a developer, the resolution is low and moreover it is impossible to avoid the drawbacks that fog and splash, etc. occur.
Further, when such toners are used as a full-colored toner and heat fixing is carried out, the coloring properties, etc. are bad, full-colored images based on the principle of superposition become indefinite, and further, color reproduction becomes bad, and when such toners are used in OHP, etc., the transmittance is bad and therefore definite images cannot be obtained.
This invention aims to provide a toner which has a high image density and a high resolution, and wherein fog, splash, etc. do not occur, and coloring properties, color reproduction, color transmittance when copying to OHP sheets was made, etc. are excellent.
Disclosure of Invention
This invention provides an electrophotographic colored toner for developing electrostatic images which has a degree of gelation of 2.0% or less and comprises an association of secondary particles containing polymer particles having acidic polar groups or basic polar groups, and an organic pigment and/or an organic dye which have (has) previously been treated with a treatment agent including a surface treatment agent, which has the same ionic character as the polymer particles so that the absolute value of ζ-potential becomes 10 to 100 mV at pH 5.
In the toner of this invention, the shape factor S value of the toner particles is preferably 100.5 to 160.0.
Further, it is preferable that when the mean diameter of the toner particles obtained from the distance between circumscribed parallel lines is expressed as rm, the mean minimal value of the radius of curvature, on the surface of the toner particles, of each associated particle constituting the toner is expressed as rn, and V is assumed to be rm/rn, V, rm and rn can take the following values: 1.01 ≦ v ≦ 320 2.5 µm ≦ rm ≦ 16 µm 0.05 µm ≦ rn < rm
Further, this invention provides a developer for electrostatic images which comprises the above electrophotographic colored toner for developing electrostatic images and a carrier.
The toner of this invention comprises associated particles which occurred by association of secondary particles composed of polymer particles having acidic or basic polar groups (hereafter these are sometimes referred to as primary particles) and an organic pigment and/or an organic dye treated specifically as later-described. In this connection, "association" means that plural secondary particles aggregate to form particles having a larger particle size.
A preferred example of the polymer having acidic polar groups or basic polar groups is a copolymer of a styrene, an alkyl (meth)acrylate and a comonomer having acidic polar groups or basic polar groups (hereafter referred to as "comonomer having polar groups").
A preferred specific examples of such copolymers is a copolymer comprising
  • (a) 90 to 20 wt%, preferably 88 to 30 wt% of a styrene based on the total of (a) and (b),
  • (b) 80 to 10 wt%, preferably 70 to 12 wt% of an alkyl (meth)acrylate based on the total of (a) and (b), and
  • (c) when the total of (a) and (b) is assumed to be 100 weight parts, 0.05 to 30 weight parts, preferably 1 to 20 weight parts of the comonomer having polar groups.
  • Further, the above copolymer can freely contain a copolymerizable comonomer in an extent of not spoiling the performance of the toner of this invention, besides the monomers of (a), (b) and (c).
    As the above styrenes, there can, for example, be mentioned styrene, n-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-n-butylstyrene, p-tert-butylstyrene, p-n-hexylstyrene, p-n-octylstyrene, p-n-nonylstyrene, p-n-decylstyrene, p-n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, p-chloromethylstyrene, etc.
    As the above alkyl (meth)acrylates, there can, for example, be mentioned methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, propyl acrylate, n-octyl, acrylate, dodecyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, 2-chloroethyl acrylate, methyl α-chloroacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, lauryl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, etc.
    Among them, those wherein the carbon atom number of the ester portion is 1 to 12 are preferable, and those wherein the number is 3 to 8 are further preferable, and particularly, (meth)acrylic esters of aliphatic alcohols having 4 carbon atoms are used preferably.
    As the above comonomers having acidic polar groups, there can, for example, be mentioned α,β-ethylenic unsaturated compounds having a carboxyl group and α,β-ethylenic unsaturated compounds having a sulfone group.
    As the above α,β-ethylenic unsaturated compounds having a carboxyl group, there can, for example, be mentioned acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, cinnamic acid, maleic acid monobutyl ester, maleic acid monooctyl ester, and their metal salts such as sodium salts and zinc salts, etc.
    As the above α,β-ethylenic unsaturated compounds having a sulfone group, there can, for example, be mentioned sulfonated ethylene, its Na salt, arylsulfosuccinic acid, octyl arylsuccinic acid and their Na salts.
    As the above comonomers having a basic polar group, there can, for example, be mentioned (meth)acrylic esters which have an amine group or a quaternary ammonium group and wherein the carbon atom number of the ester portion is 1 to 12, preferably 2 to 8; (meth)acrylamide or (meth)acrylamides mono- or di-substituted by an alkyl group having 1 to 18 carbon atoms on optional N(s); vinyl compounds substituted by a heterocyclic group having N as a ring member; and N,N-diallyl-alkylamines or their quaternary ammonium salts. Among them, (meth)acrylic esters of aliphatic alcohols having an amine group or a quaternary ammonium group are preferably used as the comonomers having a basic polar group.
    As the above (meth)acrylic esters of aliphatic alcohols having an amine group or a quaternary ammonium group, there can, for example, be mentioned dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, their quaternary ammonium salts, 3-dimethylaminophenyl acrylate, 2-hydroxy-3-methacryloxypropyltrimethylammonium salts, etc.
    As the above (meth)acrylamide or (teeth)acrylamides mono- or di-substituted by an alkyl group having 1 to 18 carbon atoms or optional N(s), there can, for example, be mentioned acrylamide, N-butylacrylamide, N,N-dibutylacrylamide, piperidylacrylamide, methacrylamide, N-butylmethacrylamide, N,N-dimethylacrylamide, N-octadecylacrylamide, etc.
    As the above vinyl compounds substituted by a heterocyclic group having N as a ring member, there can, for example, be mentioned vinylpyridine, vinylpyrrolidone, vinyl N-methylpyridinium chloride, vinyl N-ethylpyridinium chloride, etc.
    As the above N,N-diallyl-alkylamines, there can, for example, be mentioned N,N-diallylmethylammonium chloride, N,N-diallylethylammonium chloride, etc.
    The polymer particles of this invention can be obtained by polymerizing the above monomer composition by the emulsion polymerization method, the suspension polymerization method, the precipitation polymerization method or the interfacial polymerization method (including the coacervate method). It is also possible to mechanically pulverize synthetic resin pieces to give particles. Further, if necessary, it is also possible to use a method which comprises associating primary particles of the polymer utilizing the ζ-potential. Preferred methods for preparing polymer particles are the emulsion polymerization method, the suspension polymerization method and the method utilizing the ζ-potential.
    The above polymer is used in a quantity of 40 to 99.9 wt% in the toner.
    Further, the above polymer has a glass transition point of preferably -90 to 100°C, more preferably -30 to 80°C, still further preferably -10 to 70°C. When the glass transition point is above the above upper limit, there is a tendency that low temperature fixing properties become bad, and when it is under the above lower limit, there is a tendency that powder fluidity lowers.
    The mean particle size of the primary particles of the above polymer is preferably 0.01 to 10 µm, more preferably 0.01 to 8 µm, still further preferably 0.01 to 5 µm, particularly preferably 0.01 to 3 µm.
    When the toner is prepared using the later-described association method utilizing the ζ-potential, the ζ-potential of the particles of the above polymer desirably takes an appropriate value. It is preferable that the ζ-potential (ζP5) in pH 5 of the acidic polar groups-containing polymer particles is -2 to -60 mV and the ζ-potential (ζP9) in pH 9 thereof is -20 to -100 mV, and ζP5 is larger than ζP9.
    Further, in the case of the basic polar groups-containing particles, it is desirable that ζP5 of the polymer particles is +20 to +100 mV, ζP9 thereof is +2 to +60 mV, and ζP5 is larger than ζP9.
    The organic pigment and the organic dye used in this invention are those which were treated with a surface treatment agent having the same ionic character as the polymer particles used, and, as a result, wherein the absolute value of ζ-potential at pH 5 became 10 to 100 mV. It was found that by use of the thus treated organic pigment and/or organic dye, reaction between the polar groups in the polymer and the pigment or dye is inhibited, and as a result a colored toner having a degree of gelation of 2.0% or less.
    Although it is necessary for the surface treatment agent used to have the same ionic character as the polymer particles used, it causes no inconvenience that another kind of surface treatment agent is contained.
    Since the absolute value of the ζ-potential at pH 5 is made to be 10 to 100 mV by the above treatment agent, a disperse dye which is used in such a state that the dye was dispersed in a medium is used as the organic dye used in this invention.
    There is no particular limitation about the above organic pigment and organic dye used so long as they show coloring other than black, and it is also possible to combine one or two or more organic pigments and/or organic dyes, if necessary. Further, there is no hindrance if a metal is contained in these organic pigments and organic dyes.
    As preferred examples of these organic pigments, the following ones can be mentioned.
  • (a) Azo pigments
    Hansa Yellow G, Benzidine Yellow, Benzidine Orange, Permanent Red 4R, Pyrazolone Red, Lithol Red, Brilliant Scarlet G, BON Maroon Light, etc.
  • (b) Acid dye pigments and basic dye pigments
    A pigment obtained by precipitating with a precipitating agent a dye such as Orange II, Acid Orange R, Eosine, Quinoline Yellow, Tartrazine Yellow, Acid Green, Peacock Blue or Alkali Blue; A pigment obtained by precipitating a dye such as Rhodamine, Magenta, Malachite Green, Methyl violet or Victoria Blue with tannic acid, tartar emetic PTA, PMA, PTMA or the like.
  • (c) Mordant dye pigments
    Metal salts of hydroxyanthraquinones, Alizarine Madder Lake, etc.
  • (d) Phthalocyanine pigments
    Phthalocyanine Blue, Sulfonated Copper Phthalocyanine, etc.
  • (e) Quinacridone pigments and Dioxane pigments
    Quinacridone Red, Quinacridone Violet, Carbazole Dioxazine Violet, etc.
  • In addition, organic fluorescent dyes, Aniline Black, etc.
    Further, as the above organic dyes, there can be used Nigrosine dyes, Aniline dyes, etc.
    Further, as specific suitable examples of the pigments and dyes, the following ones can be mentioned.
  • (1) Red pigments
    C.I. Pigment Red
    31, 57, 81, 84, 89, 112, 122, 123, 139, 144, 149, 166, 177, 178, 190, etc.
    C.I. Pigment Violet
    1, 19, 38, etc.
  • (2) Yellow pigments
    C. I. Pigment Yellow
    6, 12, 13, 14, 17, 83, 95, etc.
  • (3) Blue pigments
    C. I. Pigment Blue
    2, 3, 9, 14, 15, 16, 25, 60, 66, etc.
  • (4) Green pigments
    C. I. Pigment Green
    2, 7, 12, 36, 37, etc.
  • (5) Red dyes
    C. I. Solvent Red
    3, 16, 19, 24, 49, 52, 83, 125, 179, etc.
    C. I. Solvent Violet
    1, 21, etc.
  • (6) Yellow dyes
    C. I. Solvent Yellow
    2, 6, 14, 15, 16, 19, 21, 25, 60, 77, etc.
    C. I. Solvent Orange
    2, 7, 37, etc.
    C. I. Disperse Yellow
    242, etc.
  • (7) Blue dyes
    C. I. Solvent Blue
    4, 25, 40, 49, 55, 70, 83, 86, etc.
    C. I. Disperse Blue
    60, etc.
  • As examples of surface treatment agents for treating the pigments or dyes as described above, the following ones can be mentioned.
    (1) Anionic surface active agents, dispersants
    Mixed fatty acid sodium or potassium soaps, semi-hardened beef tallow fatty acid sodium or potassium soaps, sodium stearate soap, potassium oleate soap, castor oil potassium soap, lauryl sulfate sodium, potassium, ammonium or triethanolamine salt, sodium higher alcohol sulfate salts, sodium dodecylbenzenesulfonate, sodium or potassium alkylnaphthalenesulfonate, sodium or potassium dialkylsulfonesuccinate, sodium alkyl diphenyl ether disulfonate, sodium alkyl diphenyl ether disulfonate, alkyl phosphate diethanolamine salts or potassium salts, polyoxyethylene lauryl ether sulfate sodium or triethanolamine salts, polyoxyethylene alkylphenyl ether sulfate sodium salts, sodium alkanesulfonates, sodium salts of aromatic sulfonic acid-formalin condensates such as sodium salts of β-naphthalene sulfonic acid-formalin condensates, polycarboxylic acid type high molecular surface active agents, silicone surface active agents, fluorine surface active agents, etc.
    (2) Nonionic surface active agents, dispersants
    Polyoxyethylene lauryl ethers, polyoxyethylene cetyl ethers, polyoxyethylene stearyl ethers, polyoxyethylene oleyl ethers, polyoxyethylene higher alcohol ethers, polyoxyethylene octylphenyl ethers, polyoxyethylene nonylphenyl ethers, oxyethylene-oxypropylene block copolymers, sorbitan monolaurylate or monopalmitate or monostearate or tristearate or monooleate or trioleate or sesquioleate or distearate, polyoxyethylenesorbitan monolaurylate monopalmitate or monostearate or tristearte or monooleate or trioleate or sesquioleate or distearate, silicone surface active agents, fluorine surface active agents, etc.
    (3) Cationic surface active agents, dispersants
    Tetraoleic acid polyoxyethylenesorbitol esters, coconut amine acetates, stearylamine acetate, coconut amine hydrochlorides, stearylamine hydrochloride, starylamine oleate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylamonium chloride, alkylbenzyldiroethylaroroonium chloride, laurylbetaine, stearylbetain, lauryldimethylamine oxide, laurylcarboxymethylhydroxyethylimidazoliniumbetaine, silicone surface active agents, fluorine surface active agents, etc. There can also be used surface active agents which have both of a nonionic portion and a anionic portion in one molecule, and surface active agents which have both of a nonionic portion and a cationic portion in one molecule.
    The organic pigment and/or the organic dye can be used in the range of 60 to 0.1 wt% in the toner.
    The preparation of the toner of this invention can be made by aggregating a mixture of the above polymer particles (primary particles) with the surface-treated organic pigment and/or organic dye and optionally a charge control agent, a mold releasing agent or the like to prepare secondary particles, and further aggregating these secondary particles to form associated particles.
    As to the secondary particles constituting the above associated particles, which are the toner of this invention, their form is not limited so long as it spoils this invention, but preferably, the secondary particles are those wherein the primary particles of the polymer and the colorant particles are aggregated by bonding strengths such as ionic bond, hydrogen bond, metal bond and weak acid-weak base bond.
    Further as to the above associated particles, their aggregation form is not particularly limited so long as the polymer particles and the colorant are aggregated. For formation of the associated particles formed by association of the secondary particles, there can generally be used an association method wherein the ζ-potential is utilized, coacervate, an association method such as interfacial polymerization, a method which comprises heat fusing the interfaces of the secondary particles and then pulverizing the heat fused particles, etc., and among them, the association methods are preferably used.
    The mean particle size of the above secondary particles is preferably 0.05 to 12 µm, more preferably 0.2 to 8 µm, particularly preferably 0.5 to 5 µm. Further, the particle size of the associated particles of this invention is preferably 2.5 to 12 µm, more preferably 2.5 to 11 µm.
    A preferred process for preparation of the toner of this invention is exemplified as follows.
    A pigment and/or a dye or other compouding substances are added to a polymer dispersion obtained by emulsion polymerization and uniformly dispersed therein, and then stirring is continued for 0.5 to 10 hours, preferably 1 to 5 hours and thereby the primary particles of the polymer having Dolar groups and the surface-treated organic pigment or the like are aggregated to form secondary particles of 1-5 µm in size. When the dispersion is further stirred for 0.5-10 hours, preferably 1-5 hours under heating, aggregation of the secondary particles advances and they grow into associated particles of 1 to 20 µm. The resultant dispersion of the associated particles is stabilized and then heated, and stirring is continued at a temperature higher than the glass transition point of the polymer, preferably a temperature 20°C or more higher than that for 1 to 12 hours, preferably 1 to 10 hours. Thereby are formed associated particles wherein at least part of the contact portions between the secondary particles in the associated particles make membrances and fuse. The resultant dispersion of the associated particles is dehydrated, washed and dried to give a toner as associated particles. In such associated particles, the secondary particles mutually make a membrane and fuse, and thus they become a toner wherein the secondary particles seldom collapse at the times of storage, transportation, preparation of magnetic developers, etc.
    The above preparation method is an example of the association method utilizing the ζ-potential. The ζ-potentials of the polymer particles and the surface-treated pigment particles are lowered in proportion to temperature rise, and as a result aggregation and association of the secondary particles are promoted. As other methods for lowering the ζ-potential, there can be mentioned a method of utilizing control of pH, a method utilizing addition of a metal salt, etc.
    The toner of this invention can contain performance-imparting agents such as a fluidizing agent, a life stabilizer and a printing durability improper in such a range that its performance is not impaired, or such performance-imparting agents can be added to the magnetic toner.
    As preferred examples of such performance-imparting agents, there can be mentioned metal oxides such as silica, titanium oxide, aluminum oxide, zinc oxide, cerium oxide and magnetite and substances obtained by making these metal oxides hydrophobic; metal salts of higher fatty acids (metal soaps) such as Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of stearic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of oleic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of palmitic acid, Cd, Mn, Pb, Ba, Ni, Co, Sr, Cu, Mg, Ca, Fe, Al and Zn salts of linolic acid, Zn and Cd salts of ricinolic acid, Pb salt of caprylic acid, and Pb salt of caproic acid; titanate salts such as barium titanate and strontium titanate; ultrafine powder of acrylic resins; ultrafine powders of fluororesins such as polyvinylidene fluoride resins and ethylene tetrafluoride resins, polyvinylidiene chloride resins, polyvinyl chloride resins, melamine resins, phenol resins, benzoquanamine resins, urea resins, etc.; etc.
    The toner of this invention has a low degree of gelation of 2% or less. When the degree of gelation goes beyond 2%, the light transmittance of the toner becomes low and good coloring properties cannot be obtained. The degree of gelation is preferably 1.80% or less, more preferably 1.00% or less, particularly preferably 0.50% or less.
    The shape factor S value expressing the shape of the toner of this invention is preferably 100.5 to 160, further preferably 102.0 to 155, more preferably 105.0 to 155, still more preferably 107.0 to 140, particularly preferably 110.0 to 135.
    The S value means a shape factor determined by dividing the squared perimeter of the toner particles by the area. Namely, the S value is obtained by processing the plane images of the toner particles by an image processor or the like, calculating the perimeter (PM) and the area (A), and applying the values to the following equation. S value = [(PM)2 ÷ (4Aπ)] x 100
    The S value expresses the feeling of plane unevenness, and in proportion as the shape of the toner particles becomes close to circle (sphere), the value becomes close to 100, and in proportion as the peripheral shape becomes complicated, the value becomes a larger value.
    When the S value is smaller than the above lower limit value, the toner particles become close to spheres, and when they are used as a developer, the charge quantity becomes low, the shortage of image density or fog is liable to take place, and in life characteristics, there is a tendency that defective cleaning, etc. occur and the lifetime is shortened.
    On the other hand, when the S value becomes larger than the above upper limit value, the state of the surface becomes jagged and becomes an ununiform surface in probability, and thus when the toner particles are used as a developer, the charge quantity remains unstable and the charge quantity distribution becomes uneven and the above-mentioned problems on the images tend to occur, and in life characteristics, there is a tendency that the lifetime is shortened due to occurrence of fine particles, etc.
    Further, it is desirable that the relation between the mean rm of the diameters of the toner particles (the mean of 1,000 particles) and the mean rn of the minimal values of the radii of curvature of the surfaces of the particles constituting the toner (the mean of 1,000 particles) is as follows. 1.01 ≦ v ≦ 320, wherein V = rm/rn 2.5 µm ≦ rm ≦ 16 µm 0.05 µm ≦ rn ≦ rm
    The V value is preferably 1.01 to 320, more preferably 1.05 to 300, particularly preferablv 2.00 to 250. The diameter of the particles of the toner is obtained from the distance between two circumscribed parallel lines.
    Further it is preferable that the above toner has a volume mean particle size of 2.5 to 12 µm.
    The above S value expresses the feeling of plane unevenness, whereas the V value hereinabove referred to further expresses unevenness sterically. Such feeling of unevenness is due to primary particles of the polymer, particles of the coloring agent, the charge-controlling agent or their secondary particles.
    Therefore by processing the plane image of each toner by an image processor or the like, the feeling of the unevenness of the surfaces of the particles can be expressed as a numerical value using the radius of curvature, and it is possible to express the feeling of unevenness of all the toner particles (particularly as associated particles) by deducing the relation of the radius of curvature with the mean particle size of each toner.
    When the V value is smaller than the above lower limit, the toner particles are in such a state that their surface state is substantially free of unevenness and smooth and become close to spheres. In the case of such a toner, as stated above, when it is used as a developer, the charge quantity becomes low, and the shortage of image density or occurrence of fog are liable to occur. Further, as to life characteristics, in the system of electrophotography wherein cleaning is made by a cleaning blade, there is a tendency that the hang-up frictional force of the toner against the blade extremely decreases, and defective cleaning, etc. occur and the lifetime is shortened.
    On the other hand, when the V value becomes larger than the above upper limit, the unevenness of the toner surface becomes relatively smaller, the behavior pattern closely resembles that in the case where the V value is smaller than the above lower limit. Therefore, not only the above problems easily occur, but in electrophotography of the above system, the hang-up frequency against the blade extremely decreases and defective cleaning easily occurs.
    The colored toner obtained by this invention is a colored toner which is excellent in coloring properties due to very good transmittance, is excellent in color reproduction and resolution, exhibits only a small extent of fog and splash, and is excellent in various physical properties.
    A developer can be prepared by mixing the toner of this invention with a magnetic carrier. For example, the developer can be prepared by stirring and mixing 20 to 95 weight parts of the magnetic carrier and 5 to 80 weight parts of the toner in a V-type mixer or a ball mill, to charge the toner.
    As the magnetic substance, there can be used iron hitherto well known, or ferrite or the like. Further, there can also be used a product obtained by binding fine particles of a ferromagnetic substance using a resin.
    As to the particle size of the magnetic substance carrier, the mean particle size is preferably 10 to 200 µm, further preferably 20 to 180 µm, particularly preferably 30 to 170 µm. When the mean particle size goes beyond the above upper limit value, the particles block the space between the doctor blade and the sleeve in control of the magnetic brush of the developer, and therefore it is recommended to use a particle size of 1/2 or less, preferably 1/5 or less of the doctor gap.
    Examples
    Preferred embodiments of this invention are described by the following examples.
  • (a) Measurement of gel content ASTM D2765-84 and D3351-74 were referred to. 1 g of a toner is molded at normal temperature using a hydraulic press and a die (press 6.4T/2cm , 5 min) into a disc tablet having a diameter of 2 cm. The tablet is wrapped in a 400-mesh stainless steel-made wire gauze, and the wire gauze is immersed in acetone reflux for 7 hours. After cooling the wire gauze is taken out, air dried at ordinary temperature for 1 hour and hot air dried at 50°C for 1 hour, and weighed, and the acetone-insoluble matter is calculated as the gel content according to the following equation. Gel content (%) = Wbb - Wmm Waa x 100
  • Waa : weight of the piece molded from the toner
  • Wbb : weight of the wire gauze and the residue in the wire gauze after drying
  • Wmm : weight of the wire gauze
  • (b) Method for measurement of transmittance An image was printed on an OHP sheet with a toner of monochrome, and transmitted light was measured on the solid portion having an image density ID of 1.0 or more using a color analyzer TC-1800 MK2 produced by Tokyo Denshoku Co., Ltd.Evaluation was made as follows in accordance with a T value obtained by T = (1 - Tn/Tm) x 100    Wherein Tm denotes the transmittance percentage at a wavelength of m, and Tn denotes the transmittance percentage at a wavelength of n.
    T Evaluation
    100 - 85 % o ○
    85 - 70 %
    70 - 60 % Δ
    60 - 55 % x
    55 % or less xx
    The measuring wavelength was selected as follows.
    in the case of cyan-color
    m = 490 nm
    n = 615 nm
    in the case of Magenta color
    m = 700 nm
    n = 540 nm
    in the case of Yellow color
    m = 600 nm
    n = 415 nm
  • (c) Method for evaluation of coloring properties An image was printed on a paper sheet with the solid portion of a toner of monochrome, and color difference ΔE (NBS unit) was measured by a color analyzer TC-1800 MK2 produced by Tokyo Denshoku Co., Ltd.As the color standard, a color chart No. 5-1 published by the Electrophotography Society was used.Evaluation was made as follows in accordance with the color difference ΔE (NBS unit) between the example and the standard.
    ΔE Evaluation
    0 - 0.5 o ○
    0.5 - 1.5
    1.5 - 3.0 Δ
    3.0 - 6.0 x
    6.0 or more xx
  • (d) Method for evaluation of the density of a copied image The density of the image (the solid black portion of a test chart N01-R1975 published by the Society of Electrophotography of Japan) was measured using a Macbeth densitometer RD-914.
  • (e) Fog Whiteness is measured using a color-difference meter (CR-200) produced by MINOLTA CAMERA CO., Ltdtd.Color differences L, a and b are measured, and thereby the whiteness of a sheet of paper before copying Ko = 100 - [(100-L)2+a2+b2]1/2 and the whiteness of the non-image portion after copying K = 100 - [(100-L)2+a2+b2]1/2 are calculated, and fog is calculated therefrom according to the following equation Fog (%) = K/Ko x 100 The smaller the figure is, the better the fog is, and the fog is judged to be good at 0.5 or less and bad at 1.0 or more.
  • (f) Resolution A test chart N01-R1975 published by the Electrophotography Society was copied, the resolving power pattern of 8.0 points was enlarged 100-fold by an optical microscope, and evaluation was made by visual observation according to the following criterion.
  • 5. The thin lines are reproduced, and there is almost no fog between the thin lines.
  • 4. Although the thin lines are reproduced, a small extent of fog is observed between the thin lines.
  • 3. Reproduction of the thin lines is rather bad, and there is a rather large extent of fog between the thin lines.
  • 2. Reproduction of the thin lines is bad, and there is a large extent of fog between the thin lines.
  • 1. The thin lines are not reproduced, and observed as one line.
  • The larger the figure is, the better the resolution is, and the resolution is judged to be good at 4 or more and bad at 3 or less.
  • (g) Method for measurement of the S value and the V value A toner obtained was image processed using LUZEX 3U produced by Nikon Co., Ltd. to determine an S value. At this time, the measured number of the particles was 10,000 and their mean value is expressed by the S value. Further, the electron photomicrographs (10,000-fold) of the toner particles were subjected to the above processor to determine V values, and the mean value of a measured number of 1,000 was expressed by the V value.
  • (h) Change of particle sizes A life test (10,000 sheets) was made in the copying test of the examples and the comparative examples, and a comparative value was calculated of the distribution of the number (the number (%) of particles of 5 µm or less) of the toner in the initial developer to the distribution of the number of the toner in the developer after the life test.
    Comparative value Evaluation
    130 % or more Splashes occur and the charge quantity becomes unstable; bad
    110 % or less good
  • (10) Evaluation by visual observation The state in the life was observed in the copy life test (10,000 sheets) and evaluation was made. The observation was made on the following items, etc.
  • (1) Defective cleaning
  • (2) Peeling of the cleaning blade
  • (3) Splash
  • (4) Toner stagnant point/white spot
  • Example 1
    (Preparation of an acidic polar groups-containing polymerization resin)
    Styrene monomer (ST) 82 parts
    Butyl acrylate (BA) 18 parts
    Acrylic acid (AA) 5 parts
    The above monomer mixture was added to the following aqueous solution mixture of
    Water 100 parts
    Nonionic emulsifier (Emulgen 950 produced by Kao Corporation) 1 part
    Anionic emulsifier (Neogen R produced by Dai-ichi Kogyo Seiyaku Co. Ltd.) 1.5 parts
    , and the mixture was subjected to polymerization at 80°C for 8 hours under stirring using potassium persulfate as a catalyst to give an acidic polar groups-containing resin emulsion having a solid content of 50%.
    (preparation of a surface-treated organic pigment)
    Water 92 parts
    C.I. Pigment Red 122 8 parts
    Anionic surface treatment agent 1 (Neogen R produced by Dai-ichi Kogyo Seiyaku Co., Ltd.) 1 part
    Anionic surface treatment agent 2 (Sodium salt of β-naphthalene sulfonic acid-formaline condensate; Demol N produced by Kao Corporation) 2 parts
    The above mixture was held at about 25°C for 2 hours while dispersed and stirred with a disper to give a mixed liquid of the surface-treated organic pigment.
    (preparation of a toner)
    The above acidic polar groups-containing resin emulsion 200 parts
    The above organic pigment mixed liquid 100 parts
    Water 250 parts
    The above mixture was held at about 30°C for 2 hours while dispersed and stirred with a slasher. Then the mixture was heated to 80°C under stirring and held for 3 hours. Meanwhile observation was made by an optional microscope, and thereby it was confirmed that the particle size of the secondary particles composed of the polymer particles and the organic pigment grew to 1.2 µ, and further, the particle size of the associated particles (toner particles) wherein the secondary particles were associated grew to about 6.5 µm. After cooling, the resultant toner was separated by a dispersion centrifuge, washed with water and vacuum dried at 50°C for 10 hours. The gel content of the resultant toner was measured to be 0.3%. Further, as a result of the image processing of this toner, the S value was 119.5 and the V value was 2.35.
    0.8 part of hydrophobic silica was added as a fluidizing agent to 100 parts of the resultant toner, and the mixture was mixed by a Henschel mixer to give a toner for tests.
    This toner was mixed with a commercially available ferrite carrier to give a developer for tests having a toner concentration of 3%. This was subjected to a copy test using a commercially available full color copying machine ARTAGE 8000 REALA produced by RICOH COMPANY, LTD., and as a result an image having a high density and a high resolution was obtained. Further, the coloring properties of color was good, and when the image was copied on an OHP sheet, the sheet had very good transparency. The results are shown in Tables 1 and 2.
    The mean particle size of the primary particles (particles of the resin emulsion) of the above acidic polar groups-containing polymer was 0.08 µm, the ζ-potential ζP5 at pH5 was -21 mV, and the ζ-potential ζP9 at pH 9 was -80 mV, and the mean particle size of the above surface-treated organic pigment was 0.2 µm, and the ζ-potential ζP5 at pH 5 was -23 mV.
    Examples 2 and 3
    Toners were obtained in the same manner as in Example 1 except that C.I. Pigment Yellow Y-17 was used in Example 2 in place of the organic pigment of Example 1, and C.I. Pigment Blue B-15:3 was used in Example 3 in place thereof. The toners of Examples 2 and 3 were put in the aforesaid copying machine and subjected to the test to give images excellent in color reproduction. The results are shown in Tables 1 and 2.
    Example 14
    (Basic polar groups-containing polymerization resin)
    Styrene monomer (ST) 85 parts
    Butyl acrylate (BA) 15 parts
    Diethylaminoethyl methacrylate (DE) 5 parts
    The above monomer mixture was added to an aqueous solution mixture of
    Water 100 parts
    Cationic emulsifier (Sanisol B-50 produced by Kao Corporation) 2 parts
    Nonionic emulsifier (Emulgen 950 produced by Kao Corporation) 1.6 parts
    , and polymerization was carried out under stirring at 80°C for 8 hours using an azo polymerization initiator (V-50 produced by Wako Pure Chemical Industries, Ltd.) as catalyst to give a basic polar groups-containing resin nulsion having a solid content of 50%.
    (Preparation of a surface-treated organic pigment)
    Water 92 parts
    C.I. Pigment Red 122 8 parts
    Cationic surface treatment agent (Sanisol B-50 produced by Kao Corporation) 1.5 parts
    Nonionic surface treatment agent (Emulgen 950 produced by Kao Corporation) 0.5 part
    The above mixture was held at about 25°C for 2 hours while dispersed and stirred with a disper, and then the mixture was subjected to dispersion treatment agent by a Gaurin homogenizer to give a mixed liquid of the surface-treated organic pigments.
    (Preparation of a toner)
    The above basic polar groups-containing resin emulsion 200 parts
    The above surface-treated organic pigments mixed liquid 100 parts
    Water 250 parts
    The above mixture was held at about 30°C for 5 hours under stirring with a slasher. Then the mixture was heated to 80°C under stirring and held for 3 hours. Meanwhile the mixture was observed by an optical microscope, whereby it was confirmed that the associated particles of the secondary particles composed of the polymer particles and the organic pigment grew to about 5.2 µm. After cooling, the resultant toner dispersion was subjected to separation by a centrifuge, and the obtained toner was washed with water and vacuum dried at 50°C for 10 hours.
    The gel content of the resultant toner was measured to be 0.2%. 1.2 parts of hydrophobic silica was added as a fluidizing agent to 100 parts of the toner, and the mixture was mixed using a Henschel mixer to give a toner for tests. This toner was mixed with a commercially available ferrite carrier to give a developer for tests having a toner concentration of 5%.
    A copying test was carried out using this developer and a commercially available full color copying machine ARTAGE 5330 produced by RICOH COMPANY, LTD., whereby an image having a high density and a high resolution was obtained. Further, the coloring properties of color were good, and when the image was copied on an OHP sheet, the sheet had very good transparency. The results are shown in Tables 1 and 2.
    Examples 5 and 6
    Toners were obtained in the same manner as in Example 4 except that C.I. Pigment Yellow Y-17 was used in Example 5 in place of the organic pigment of Example 4, and C.I. Pigment Blue B-15:3 was used in Example 6 in place thereof. The toners of Examples 5 and 6 were put in the aforesaid copying machine and subjected to the test to give images excellent in color reproduction. The results are shown in Tables 1 and 2.
    Examples 7, 8 and 9
    Toners were obtained in the same manners as in Examples 1, 2 and 3, respectively, using
    Styrene 90 parts
    2-Ethylhexyl acrylate 10 parts
    Methacrylic acid 8 parts
    in place of the polymerization monomer of Example 1. These toners were put in the copying machine of Example 1 and subjected to the test, respectively, whereby image densities excellent in color reproduction and having good transmittance were obtained. The results are shown in Tables 1 and 2.
    Example 10
    A toner was obtained in the same manner as in Example 1 except that the organic pigment in preparation of the surface-treated organic pigment and dye of Example 1 was replaced by
    Organic dye C.I. Disperse Red 130 (SRF-46 produced by NIPPON KAYAKU CO., LTD.) 6 parts
    Organic pigment C.I. Pigment Red 122 2 parts
    This toner was put in the copying machine of Example 1 and tested to give an image having good transmittance. The results are shown in Tables 1 and 2.
    Example 11
    A toner was obtained in the same manner as in Example 1 except that the organic pigment in preparation of the surface-treated organic pigment and dye of Example 1 was replaced by
    Organic dye C.I. Disperse Red 130 (SRF-46 produced by NIPPON KAYAKU CO., LTD.) 8 parts
    , and the stirring condition in the preparation of the toner of Example 1 was changed so that the mixture is held at about 30°C for 5 hours, and then heated to 93°C and held at that temperature for 5 hours. This toner was put in the copying machine of Example 1 and tested, whereby an image having good transmittance was obtained. The results are shown in Tables 1 and 2.
    Comparative example 1
    Suspension polymerization was carried out on the same monomer composition as in Example 1 using benzoyl peroxide as a catalyst to give a resin for toners. The organic pigment used in Example 1 was added, without being surface-treated, in the same compounding ratio, to this resin, and the mixture was melted and kneaded, and pulverized by a jet mill to give a toner having a mean particle size of 9.3 µm. The gel content of this toner was 6.5%. A developer was prepared in the same manner as in Example 1 using this toner, and subjected to the same copying test as therein to give an image having bad transmittance and a low resolution. The results are shown in Tables 1 and 2.
    Comparative example 2
    An acidic polar groups-containing emulsion was obtained in the same manner as in Example 1. A toner was prepared in the same manner as in Example 1 using the organic pigment without surface treatment agent, and subjected to the same copying test as therein. The gel content of this toner was 4.2%. The results are shown in Tables 1 and 2.
    Comparative example 3
    The toner obtained in Comparative example 1 was subjected to processing for making the particles sherical using a hybridizer (produced by Nara Kikai Co., Ltd.), and a copying test was carried out in the entirely same manner as in Example 1 using this toner. The results are shown in Tables 1 and 2.
    Figure 00280001
    Figure 00290001

    Claims (4)

    1. An electrophotographic colored toner for developing electrostatic images which has a degree of gelation of 2.0% or less and comprises an association of secondary particles containing polymer particles having acidic polar groups or basic polar groups, and an organic pigment and/or an organic dye which have (has) previously been treated with a treatment agent including a surface treatment agent, which has the same ionic character as the polymer particles so that the absolute value of ζ-potential becomes 10 to 100 mV at pH 5.
    2. The colored toner for developing electrostatic images according to claim 1 wherein the shape factor S value of the toner particles is 100.5 to 160.0.
    3. The colored toner for developing electrostatic images according to claim 1 or 2 wherein when the mean diameter of the toner particles obtained from the distance between circumscribed parallel lines is expressed as rm, the mean minimal value of the radius of curvature, on the surface of the toner particles, of each associated particle constituting the toner is expressed as rn, and V is assumed to be rm/rn, V, rm and rn can take the following values: 1.01 ≦ v ≦ 320 2.5 µm ≦ rm ≦ 16 µm 0.05 µm ≦ rn < rm
    4. A developer for electrostatic images which comprises the colored toner for developing electrostatic images according to any of claims 1 to 3 and a carrier.
    EP92921832A 1991-10-22 1992-10-21 Colored toner for developing electrostatic image Expired - Lifetime EP0609443B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    JP3301214A JP3037799B2 (en) 1991-10-22 1991-10-22 Color toner for electrostatic image development
    JP301214/91 1991-10-22
    JP308237/91 1991-10-29
    JP03308237A JP3114295B2 (en) 1991-10-29 1991-10-29 Toner for electrostatic image development
    PCT/JP1992/001371 WO1993008510A1 (en) 1991-10-22 1992-10-21 Colored toner for developing electrostatic image

    Publications (3)

    Publication Number Publication Date
    EP0609443A1 EP0609443A1 (en) 1994-08-10
    EP0609443A4 EP0609443A4 (en) 1995-04-19
    EP0609443B1 true EP0609443B1 (en) 1999-01-27

    Family

    ID=26562605

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP92921832A Expired - Lifetime EP0609443B1 (en) 1991-10-22 1992-10-21 Colored toner for developing electrostatic image

    Country Status (4)

    Country Link
    EP (1) EP0609443B1 (en)
    CA (1) CA2121893C (en)
    DE (1) DE69228314T2 (en)
    WO (1) WO1993008510A1 (en)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB9708815D0 (en) 1997-05-01 1997-06-25 Zeneca Ltd Process for making particulate compositions
    GB9806934D0 (en) * 1998-04-01 1998-05-27 Zeneca Ltd Process for making particulate compositions
    JP6310827B2 (en) * 2014-09-16 2018-04-11 株式会社東芝 Method for producing toner for electrophotography

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3615749A (en) * 1970-06-19 1971-10-26 American Cyanamid Co Printing ink of improved blackness
    US4218530A (en) * 1977-05-02 1980-08-19 Xerox Corporation Single component magnetic toner
    US4621039A (en) * 1984-12-18 1986-11-04 Xerox Corporation Developer compositions with fast admixing characteristics
    JPH0687174B2 (en) * 1986-11-11 1994-11-02 東洋インキ製造株式会社 Toner for electrostatic charge development
    DE3855939T2 (en) * 1987-01-29 1997-10-23 Nippon Carbide Kogyo Kk TONER FOR DEVELOPING ELECTROSTATICALLY CHARGED IMAGES
    JP2547014B2 (en) * 1987-05-15 1996-10-23 日本カーバイド工業株式会社 Toner for electrostatic image development
    JP2537503B2 (en) * 1987-01-29 1996-09-25 日本カーバイド工業株式会社 Toner for electrostatic image development
    JPH01186964A (en) * 1988-01-20 1989-07-26 Minolta Camera Co Ltd Photoconductive toner and production thereof
    JPH03267947A (en) * 1989-07-31 1991-11-28 Ricoh Co Ltd Color toner for developing electrostatic charge image
    US5118588A (en) * 1990-03-30 1992-06-02 Eastman Kodak Company Toner particles having improved transfer efficiency and which comprise a pigment surface modifier

    Also Published As

    Publication number Publication date
    WO1993008510A1 (en) 1993-04-29
    CA2121893A1 (en) 1993-04-29
    EP0609443A1 (en) 1994-08-10
    DE69228314D1 (en) 1999-03-11
    DE69228314T2 (en) 1999-06-10
    EP0609443A4 (en) 1995-04-19
    CA2121893C (en) 2003-01-21

    Similar Documents

    Publication Publication Date Title
    EP0162577B1 (en) Process for producing toner for electrophotography
    JP3653736B2 (en) Non-spherical particles and method for producing the same
    US5863696A (en) Toner particle for electrophotography and production method thereof
    EP0594126A1 (en) Toner for use in electrostatic development
    KR950003303B1 (en) Coloring fine particle and manufacturing method thereof
    US5695899A (en) Colored toner for developing electrostatic images
    JP2002244340A (en) Electrostatic latent image developing toner
    EP1816523B1 (en) Process for producing toner for electrostatic charge image development and toner for electrostatic charge image development
    KR0161241B1 (en) Toner for developing electrostatic image, image forming method and process cartridge
    JPH10123748A (en) Toner for developing electrostatic charge image
    KR20100089335A (en) Toner for electrophotographic and process for preparing the same
    JP3135875B2 (en) Flash fixing polymerized toner for electrophotography
    EP1645915A1 (en) Toner for electrostatic charge image development
    JP2003330225A (en) Method for manufacturing nonmagnetic toner
    EP0656568A1 (en) Encapsulated toner for heat-and-pressure fixing and production thereof
    EP0609443B1 (en) Colored toner for developing electrostatic image
    EP0926564B1 (en) Process for producing toner
    JP3114295B2 (en) Toner for electrostatic image development
    JPH05341573A (en) Heat fixable polymer toner
    JP3692865B2 (en) Toner for electrostatic image development
    JP2809737B2 (en) Method for producing polymerized toner
    JPH03248162A (en) Toner for dry processing for electrophotography and production thereof
    JP2000275904A (en) Production of colored polymerized toner
    KR950003306B1 (en) Electrostatic developing toner
    JPH06118696A (en) Magnetic developer for electrostatic charge image developing

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19940421

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT

    A4 Supplementary search report drawn up and despatched
    AK Designated contracting states

    Kind code of ref document: A4

    Designated state(s): DE FR GR IT

    17Q First examination report despatched

    Effective date: 19970523

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB IT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT

    REF Corresponds to:

    Ref document number: 69228314

    Country of ref document: DE

    Date of ref document: 19990311

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CA

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100922

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20101023

    Year of fee payment: 19

    Ref country code: GB

    Payment date: 20101020

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20111103

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69228314

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 69228314

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20121020

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20121020