EP0603485B1 - Electrolytic etching process - Google Patents

Electrolytic etching process Download PDF

Info

Publication number
EP0603485B1
EP0603485B1 EP93116838A EP93116838A EP0603485B1 EP 0603485 B1 EP0603485 B1 EP 0603485B1 EP 93116838 A EP93116838 A EP 93116838A EP 93116838 A EP93116838 A EP 93116838A EP 0603485 B1 EP0603485 B1 EP 0603485B1
Authority
EP
European Patent Office
Prior art keywords
etched
etching
sample
electrolytic solution
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93116838A
Other languages
German (de)
French (fr)
Other versions
EP0603485A1 (en
Inventor
Walter Dr. Stark
Richard Dr. Rapp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP0603485A1 publication Critical patent/EP0603485A1/en
Application granted granted Critical
Publication of EP0603485B1 publication Critical patent/EP0603485B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching

Definitions

  • the invention relates to a method for electrolytic etching according to the preamble of the first claim.
  • the object of the invention is therefore to remedy this disadvantage of the known method.
  • a method of the type mentioned at the outset is to be proposed, with which microscopic areas of a sample can also be etched off, wherein the etching can be carried out selectively over other components or spatial areas of the sample if necessary.
  • electrolytic etching metals are dissolved by electrolysis, whereby chemical reactions are forced on electrodes using a current source. If you switch a sample to be etched as an anode - as in the above-mentioned publication - and bring it into contact with an electrolyte solution in which there is a cathode as counter electrode, then the anode / electrolyte solution / run at the phase interfaces due to the potential difference between the two electrodes.
  • Cathode electrochemical reactions, z. B. is oxidized at the anode metal and goes into solution as a metal ion. Corresponding reducing reactions take place at the cathode, e.g. B. the discharge of hydrogen ions or metal ions.
  • the sample to be etched is switched as an anode, the oxidizing effect of the electrical current being exploited.
  • the reverse circuit can also be selected, in which the sample to be etched represents the cathode.
  • metals indirectly, d. H. under the influence of the reagents formed on the cathode, attacked and dissolved.
  • An example is the generation of OH ⁇ ions, which cause an increase in the pH value and can be corrosive to alkali-sensitive metals such as aluminum.
  • substances other than metals can also be attacked.
  • the sample it is not necessary for the sample to be etched to be completely immersed in the electrolytic solution.
  • a small amount, for example a drop, of the electrolyte solution is applied only to that point on the sample which is to be etched off.
  • the first electrical potential can be applied to the entire sample, while the second electrical potential is applied to an electrode which is immersed in the drops of the electrolyte solution.
  • Micro-carbon fiber is understood to mean a carbon fiber that has a diameter of less than 100 ⁇ m, but preferably a diameter of less than 20 ⁇ m.
  • the length of the micro carbon fibers to be used can be chosen almost arbitrarily. It must at least be dimensioned in such a way that a structural base to be etched, which is surrounded by microstructures, is reached. On the other hand, the length can be up to two centimeters. Micro-carbon fibers that are longer than 5 mm are generally not necessary. Micro-carbon fibers which are suitable for the process according to the invention are commercially available as yarns or individual fibers in various lengths. Their electrical conductivity is approximately 1.5 ⁇ 10 ⁇ 3 ⁇ cm; it is about an order of magnitude lower than the conductivity of mercury.
  • micro-carbon fibers have a number of advantages that are particularly important in microstructure technology: Due to the high dimensional stability, the fiber maintains its elongated shape and does not irreversibly deform. Therefore, an exact positioning of the fiber is possible; after a change of position, it can be reproducibly returned to the original position even if it has bent due to a collision with the sample. If fine microstructures are touched unintentionally, there is no risk of mechanical damage, since the fiber is deflected elastically by an obstacle without transmitting damaging mechanical forces. Micro-carbon fibers are also resistant to highly aggressive etching media, in which they are not attacked and therefore cannot contaminate the etching medium. They can also be easily attached to a conventional wire and quickly replaced.
  • micro-carbon fibers in various lengths and thicknesses are commercially available; Such fibers can also be adapted to special treatment steps by tapering or tapering them by electrochemical removal.
  • disc electrodes can be produced, which are only electrically conductive on the front side and therefore have a more selective influence on the etching process.
  • the sample to be etched can consist of a single material. This material must then be electrically conductive so that it can be etched electrolytically.
  • the sample can consist, for example, of a thin metal plate into which a fine hole is to be etched at a defined point.
  • a suitable electrolyte solution such as an acid
  • the etching process takes place very quickly at this point, so that as a result the metal plate has the desired hole at this point, while the adjacent areas are practically not attacked.
  • other electrically conductive materials such as. B. electrically conductive plastics are etched.
  • the task is often to selectively detach one of these substances from a sample that consists of a composite of several materials in predetermined areas.
  • the procedure can be the same.
  • This technique is particularly advantageous when sputtered or vapor-deposited materials are to be removed in places, since dusting and vapor deposition often result in particularly inert and inert layers that are difficult to attack with wet-chemical etching processes.
  • a fundamental advantage of the method according to the invention is that the etching process can be observed under the microscope.
  • the micro-carbon fiber is connected to a conventional lead wire in such a way that the view under the microscope is not obscured by the comparatively large lead wire.
  • the connection to the lead wire can be done with the help of a conductive lacquer, e.g. B. with conductive silver lacquer.
  • the disc 1 shows a sample in the form of a metal disk 1, into which a hole is to be etched using the method according to the invention.
  • the disc 1 is switched as an anode via the electrical lead 2.
  • An electrolyte drop 3 is applied to the location of the sample to be etched.
  • the cathode consists of the electrical lead wire 4, at the end of which a micro-carbon fiber 5 is attached with the aid of silver conductive lacquer.
  • the experimental setup shown in FIG. 2 was designed for etching processes on microstructures.
  • the electrolytic etching process can be observed here under a microscope 6.
  • the sample 1 to be etched is placed on the work table 7 of the microscope 1 placed; it is connected via the electrical lead 2 to the positive pole of a controllable power supply 8.
  • An electrolyte drop 3, into which the micro-carbon fiber 5 is immersed, is applied to the sample 1 at the location to be etched.
  • the micro-carbon fiber 5 is connected via the electrical lead wire 4 to the negative pole of the controllable power supply 8.
  • the lead wire 4 and thus the micro-carbon fiber 5 can be moved in all spatial directions with the aid of a micromanipulator 9.
  • the stainless steel wire and the nickel wire were wound on a spool by the manufacturer (Goodfellow) and remained strongly bent after unwinding; they could no longer be bent into a straight shape. For this reason, the lead wire had to be bent for each individual piece of wire so that the structural base could be touched by microstructured plates under microscopic control. In addition, plastic bends occurred in the event of unintentional contact with the microstructures, so that it was no longer possible to continue working precisely because precise optical control was no longer possible. With bent wires, it was not possible to penetrate into the structure base of cavities between closely adjacent microstructures.
  • Wafers were obtained as the sample to be etched, on which there was a dusted-on, 1.0 ⁇ m thick aluminum layer and strips of approximately 35 ⁇ m thick copper layers.
  • the experiments served to find an electrolytic solution for the electrolytic etching of aluminum that was as selective as possible.
  • droplets of electrolyte were selectively applied to predetermined locations on the wafer in such a way that both the aluminum and part of the copper strips were wetted.
  • nitric acid 10% K3 [Fe (CN) 6] solution in water; a solution of 20% K3 [Fe (CN) 6] and 3% KNO3; a solution of 5 ml glycol and 250 mg tetrabutylammonium tetrafluoroborate; a solution of 500 mg K3 [Fe (CN) 6], 30 mg 1-H-benzotriazole and 100 mg KNO3; Potassium iodide in concentrations of 10, 20 and 30% and a solution of 10% potassium iodide with 1.8% 1-H-benzotriazole. It was found that aluminum with the Potassium iodide solutions particularly quickly and selectively etched over copper. An attack on copper could not be detected with these solutions.
  • the etching rate can be increased further with potassium iodide solutions, however evaporation losses occur and the surface tension drops. Nevertheless, such electrolyte solutions are very suitable for etching off small amounts of aluminum.
  • the samples to be etched were produced in the following way: Using microtechnology methods, an approximately 3 ⁇ m thin titanium layer was built up on a later removable substrate. The titanium layer was surrounded by a circular, raised edge made of copper with a diameter of 1400 ⁇ m, 940 ⁇ m or 460 ⁇ m. At the center of the circle, an opening was made in the titanium layer, which later served as a valve opening. An approximately 1.0 ⁇ m thick aluminum layer was dusted on the titanium layer within the raised edge. The aluminum layer was in turn covered with an approx. 2 ⁇ m thin polyimide layer, from which several radially symmetrical, circular areas with a diameter of a few 10 ⁇ m were removed using microtechnology processes. These areas later served as valve openings in the polyimide layer.
  • the selective etching of the sacrificial layer made of aluminum should create a cavity, so that a free connection between the individual valve openings in the titanium or polyimide layer (inlet and outlet openings) was created. Both the titanium and polyimide layers served as valve membranes. The etching process could only be initiated through the circular areas in the polyimide layer. Since the polyimide layer is transparent, the etching process on the underlying aluminum layer can be followed optically well; the end point of the etching can be precisely defined. This can prevent the etching solution from creeping under the titanium layer and causing premature detachment of the titanium layer.
  • the electrically contacted sample was placed on the microscope table as shown in FIG. 2 and a drop of an electrolyte solution was pipetted on.
  • the electrolytic solution consisted of an aqueous solution of 10% KJ and 1.8% 1-H-benzotriazole.
  • the micro-carbon fiber (diameter 7 ⁇ m) was then adjusted with the help of the micromanipulator to one of the circular areas close above the aluminum layer.
  • a low DC voltage (......... volts) was then set on the controllable power supply unit until a noticeable hydrogen gas development was detectable on microscopic observation on the carbon fiber connected as cathode.
  • the aluminum did not dissolve when the power was switched on, but required an induction period which was between about 1 and 5 minutes and which depended on the degree of passivation of the aluminum.
  • the process according to the invention achieved an increase in speed by a factor of 60 to 180.
  • the electrolytic etching proceeds very evenly in all directions. After the electrolytic etching, the samples were rinsed well with dilute sulfuric acid to prevent the formation of insoluble basic aluminum compounds as a residue. During the etching process, the copper structures in contact with the electrolyte solution were either only very slightly or not visibly attacked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

Precision etching small areas of a substrate in which the cathodically connected substrate is contacted with an electrolytic soln. and the areas to be etched are contacted by a micro carbon fibre electrode connected as the anode.

Description

Die Erfindung betrifft ein Verfahren zum elektrolytischen Ätzen gemäß dem Oberbegriff des ersten Patentanspruchs.The invention relates to a method for electrolytic etching according to the preamble of the first claim.

Ein solches Verfahren ist beispielsweise aus der Publikation von D. M. Allen mit dem Titel "The principles and practice of photochemical machining and photoetching", Verlag Adam Hilger, Bristol und Boston bekannt. In Kapitel 4 (Etching, Etchants and Etching Machines) ist unter 4.7 (Electrolytic etching) auf Seite 104 eine Vorrichtung zum elekrolytischen Ätzen abgebildet und kurz beschrieben. Diese Vorrichtung umfaßt ein Gefäß, das mit einer Elektrolytlösung gefüllt ist, in die die zu ätzende Probe eintaucht. Die Probe ist als Anode geschaltet. In die Elektrolytlösung taucht zusätzlich eine Elektrode ein, die als Kathode geschaltet ist. Der Stromdurchgang in dieser elektrochemischen Zelle bewirkt eine anodische Auflösung. Es ist weiterhin angegeben, daß diese Technik üblicherweise nur für schwer ätzbare Materialien wie Keramiken, Edelmetalle, rost-freie amorphe Legierungen und Superlegierungen eingesetzt wird.Such a process is known, for example, from the publication by D. M. Allen entitled "The principles and practice of photochemical machining and photoetching", published by Adam Hilger, Bristol and Boston. In Chapter 4 (Etching, Etchants and Etching Machines) under 4.7 (Electrolytic etching) on page 104 a device for electrolytic etching is shown and briefly described. This device comprises a vessel which is filled with an electrolytic solution into which the sample to be etched is immersed. The sample is connected as an anode. An electrode, which is connected as a cathode, is also immersed in the electrolyte solution. The passage of current in this electrochemical cell causes an anodic dissolution. It is further stated that this technique is usually only used for materials that are difficult to etch, such as ceramics, precious metals, rust-free amorphous alloys and superalloys.

Es ist leicht feststellbar, daß die gezeigte Vorrichtung und das damit durchgeführte Verfahren nur für relativ große abzuätzende Flächen einsetzbar ist. Sie sind ungeeignet, wenn an kleinen Proben gezielt einzelne Bereiche abgeätzt werden sollen.It is easy to ascertain that the device shown and the method carried out with it can only be used for relatively large areas to be etched away. They are unsuitable if individual areas of small samples are to be etched off.

Der Erfindung liegt daher die Aufgabe zugrunde, diesem Nachteil des bekannten Verfahrens abzuhelfen. Es soll ein Verfahren der eingangs genannten Art vorgeschlagen werden, mit dem auch mikroskopisch kleine Bereiche einer Probe abätzbar sind, wobei das Abätzen bei Bedarf selektiv gegenüber anderen Bestandteilen oder räumlichen Bereichen der Probe durchgeführt werden kann.The object of the invention is therefore to remedy this disadvantage of the known method. A method of the type mentioned at the outset is to be proposed, with which microscopic areas of a sample can also be etched off, wherein the etching can be carried out selectively over other components or spatial areas of the sample if necessary.

Die Aufgabe wird durch das gekennzeichnete Merkmal des ersten Patentanspruchs gelöst. In den abhängigen Ansprüchen sind bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens angegeben.The object is achieved by the marked feature of the first claim. Preferred embodiments of the method according to the invention are specified in the dependent claims.

Beim elektrolytischen Ätzen werden Metalle durch Elektrolysevorgänge aufgelöst, wobei mit Hilfe einer Stromquelle an Elektroden chemische Reaktionen erzwungen werden. Schaltet man - wie in der oben angegebenen Publikation - eine zu ätzende Probe als Anode und bringt diese mit einer Elektrolytlösung in Kontakt, in welcher sich eine Kathode als Gegenelektrode befindet, dann laufen wegen der Potentialdifferenz zwischen den beiden Elektroden an den Phasengrenzflächen Anode/Elektrolytlösung/Kathode elektrochemische Reaktionen ab, wobei z. B. an der Anode Metall oxidiert wird und als Metallion in Lösung geht. An der Kathode finden entsprechende reduzierende Reaktionen statt wie z. B. die Entladung von Wasserstoffionen oder Metallionen.In electrolytic etching, metals are dissolved by electrolysis, whereby chemical reactions are forced on electrodes using a current source. If you switch a sample to be etched as an anode - as in the above-mentioned publication - and bring it into contact with an electrolyte solution in which there is a cathode as counter electrode, then the anode / electrolyte solution / run at the phase interfaces due to the potential difference between the two electrodes. Cathode electrochemical reactions, z. B. is oxidized at the anode metal and goes into solution as a metal ion. Corresponding reducing reactions take place at the cathode, e.g. B. the discharge of hydrogen ions or metal ions.

Im allgemeinen wird beim elektrolytischen Ätzen die zu ätzende Probe als Anode geschaltet, wobei die oxidierende Wirkung des elektrischen Stroms ausgenutzt wird. Es kann jedoch auch die umgekehrte Schaltung gewählt werden, bei der die zu ätzende Probe die Kathode darstellt. Bei einer solchen Schaltung können z. B. Metalle indirekt, d. h. unter dem Einfluß der an der Kathode gebildeten Reagentien, angegriffen und aufgelöst werden. Als Beispiel sei die Erzeugung von OH⁻-Ionen genannt, welche eine Erhöhung des pH-Wertes bewirken und auf alkaliempfindliche Metalle wie Aluminium ätzend wirken können. Bei einer solchen Schaltung können auch andere Stoffe als Metalle angegriffen werden.In general, in the case of electrolytic etching, the sample to be etched is switched as an anode, the oxidizing effect of the electrical current being exploited. However, the reverse circuit can also be selected, in which the sample to be etched represents the cathode. With such a circuit z. B. metals indirectly, d. H. under the influence of the reagents formed on the cathode, attacked and dissolved. An example is the generation of OH⁻ ions, which cause an increase in the pH value and can be corrosive to alkali-sensitive metals such as aluminum. With such a circuit, substances other than metals can also be attacked.

An die als erste Elektrode geschaltete, zu ätzende Probe und an die zweite Elektrode müssen daher lediglich unterschiedliche Potentiale angelegt werden. Außerdem können je nach Problemstellung außer Gleichstrom auch Wechselstrom oder andere periodische Ströme als Elektrodenpotentiale aufgeprägt werden. Als weitere Besonderheiten seien noch das potentiostatische Ätzen (bei konstantem Potential) und das galvanostatische Ätzen (bei konstanter Stromstärke) genannt.It is therefore only necessary to apply different potentials to the sample to be etched, which is switched as the first electrode, and to the second electrode. In addition to direct current, alternating current or others can also be used depending on the problem periodic currents are impressed as electrode potentials. Potentiostatic etching (at constant potential) and galvanostatic etching (at constant current) are further special features.

Es ist nicht notwendig, daß die zu ätzende Probe vollständig in die Elektrolytlösung eintaucht. Insbesondere in der Mikrostrukturtechnik ist es vorteilhaft, wenn lediglich auf diejenige Stelle der Probe, die abgeätzt werden soll, eine kleine Menge, etwa ein Tropfen, der Elektrolytlösung aufgebracht wird. Hierbei kann das erste elektrische Potential an die gesamte Probe angelegt werden, während das zweite elektrische Potential an eine Elektrode angelegt wird, die in den Tropfen der Elektrolytlösung eintaucht.It is not necessary for the sample to be etched to be completely immersed in the electrolytic solution. In microstructure technology in particular, it is advantageous if a small amount, for example a drop, of the electrolyte solution is applied only to that point on the sample which is to be etched off. Here, the first electrical potential can be applied to the entire sample, while the second electrical potential is applied to an electrode which is immersed in the drops of the electrolyte solution.

Insbesondere in der Mikrostrukturtechnik werden an die Ätzschritte besondere Anforderungen gestellt. Da häufig sehr filigrane, zum Teil überhängende und nur an kleinen Grundflächen haftende Strukturen mit strukturdetails im Mikrometermaßstab mit Hilfe der Ätztechnik hergestellt werden, muß der Ätzvorgang sehr schonend und dennoch möglichst schnell und effektiv durchgeführt werden. In jedem Fall muß eine mechanische Schädigung der Mikrostrukturen vermieden werden. Dies muß insbesondere bei der Ausgestaltung der Elektrode berücksichtigt werden.Particularly in microstructure technology, special requirements are placed on the etching steps. Since very filigree, in part overhanging and only adhering to small base structures with structural details on a micrometer scale are produced with the help of etching technology, the etching process must be carried out very gently and yet as quickly and effectively as possible. In any case, mechanical damage to the microstructures must be avoided. This must be taken into account in particular when designing the electrode.

Erfindungswesentlich ist daher, daß als Elektrode eine elektrisch leitende Mikro-Carbonfaser eingesetzt wird. Unter Mikro-Carbonfaser wird eine Carbonfaser verstanden, die einen Durchmesser von weniger als 100 µm, vorzugsweise jedoch einen Durchmesser von weniger als 20 µm aufweist. Die Länge der einzusetzenden Mikro-Carbonfasern kann nahezu beliebig gewählt werden. Sie muß zumindest so bemessen werden, daß ein zu ätzender Strukturgrund, der von Mikrostrukturen umgeben ist, erreicht wird. Die Länge kann andererseits bis zu zwei Zentimeter betragen. Mikro-Carbonfasern, die länger als 5 mm sind, sind im allgemeinen nicht notwendig. Mikro-Carbonfasern, die sich für das erfindungsgemäße Verfahren eignen, sind als Garne oder Einzelfasern in verschiedenen Längen im Handel. Ihre elektrische Leitfähigkeit beträgt ca. 1,5 · 10⁻³ Ωcm; sie ist damit um ca. eine Größenordnung geringer als die Leitfähigkeit von Quecksilber.It is therefore essential to the invention that an electrically conductive micro-carbon fiber is used as the electrode. Micro-carbon fiber is understood to mean a carbon fiber that has a diameter of less than 100 μm, but preferably a diameter of less than 20 μm. The length of the micro carbon fibers to be used can be chosen almost arbitrarily. It must at least be dimensioned in such a way that a structural base to be etched, which is surrounded by microstructures, is reached. On the other hand, the length can be up to two centimeters. Micro-carbon fibers that are longer than 5 mm are generally not necessary. Micro-carbon fibers which are suitable for the process according to the invention are commercially available as yarns or individual fibers in various lengths. Their electrical conductivity is approximately 1.5 · 10⁻³ Ωcm; it is about an order of magnitude lower than the conductivity of mercury.

Solche Mikro-Carbonfasern weisen eine Reihe von Vorteilen auf, die insbesondere in der Mikrostrukturtechnik ins Gewicht fallen:
Durch die hohe Formstabilität behält die Faser ihre langgestreckte Form bei und deformiert sich nicht irreversibel. Deshalb ist eine exakte Positionierung der Faser möglich; sie kann nach einem Positionswechsel selbst dann reproduzierbar an die ursprüngliche Stelle zurückgeführt werden, wenn sie sich durch Kollision mit der Probe durchgebogen hat. Bei ungewollter Berührung von feinen Mikrostrukturen sind keine mechanischen Schädigungen zu befürchten, da die Faser von einem Hindernis elastisch abgelenkt wird, ohne schädigende mechanische Kräfte zu übertragen. Mikro-Carbonfasern sind zudem in stark aggressiven Ätzmedien beständig, in denen sie nicht angegriffen werden und daher das Ätzmedium nicht kontaminieren können. Sie lassen sich ferner leicht an einem konventionellen Leitungsdraht fixieren und schnell austauschen. Schließlich sind Mikro-Carbonfasern in verschiedensten Längen und Dicken im Handel; an spezielle Behandlungsschritte lassen sich solche Fasern zudem dadurch anpassen, daß sie durch elektrochemisches Abtragen verjüngt oder zugespitzt werden. Außerdem lassen sich durch Aufbringen von Isolierlack auf die Faser und durch Abschneiden der Faser nach dem Trocknen des Lackes sogenannte Scheibenelektroden herstellen, welche nur noch an der Stirnseite elektrisch leitend sind und daher noch selektiver den Ätzvorgang beeinflussen.
Such micro-carbon fibers have a number of advantages that are particularly important in microstructure technology:
Due to the high dimensional stability, the fiber maintains its elongated shape and does not irreversibly deform. Therefore, an exact positioning of the fiber is possible; after a change of position, it can be reproducibly returned to the original position even if it has bent due to a collision with the sample. If fine microstructures are touched unintentionally, there is no risk of mechanical damage, since the fiber is deflected elastically by an obstacle without transmitting damaging mechanical forces. Micro-carbon fibers are also resistant to highly aggressive etching media, in which they are not attacked and therefore cannot contaminate the etching medium. They can also be easily attached to a conventional wire and quickly replaced. After all, micro-carbon fibers in various lengths and thicknesses are commercially available; Such fibers can also be adapted to special treatment steps by tapering or tapering them by electrochemical removal. In addition, by applying insulating varnish to the fiber and cutting the fiber after drying the varnish, so-called disc electrodes can be produced, which are only electrically conductive on the front side and therefore have a more selective influence on the etching process.

Die zu ätzende Probe kann aus einem einzigen Material bestehen. Dieses Material muß dann elektrisch leitend sein, damit es sich elektrolytisch ätzen läßt. Die Probe kann beispielsweise aus einem dünnen Metallplättchen bestehen, in das an einer definierten Stelle ein feines Loch eingeätzt werden soll. In diesem Fall wird auf die Stelle ein kleiner Tropfen einer geeigneten Elektrolytlösung, etwa eine Säure, aufgebracht und mit der Mikro-Carbonfaser die Elektrolytlösung kontaktiert. Unter dem Einfluß der elektrischen Potentialdifferenz läuft an dieser Stelle der Ätzvorgang sehr rasch ab, so daß im Ergebnis das Metallplättchen an dieser Stelle das gewünschte Loch aufweist, während die benachbarten Bereiche praktisch nicht angegriffen werden. Wie oben erwähnt, können auf diese Weise auch andere elektrisch leitende Materialien wie z. B. elektrisch leitende Kunststoffe geätzt werden.The sample to be etched can consist of a single material. This material must then be electrically conductive so that it can be etched electrolytically. The sample can consist, for example, of a thin metal plate into which a fine hole is to be etched at a defined point. In this case, a small drop of a suitable electrolyte solution, such as an acid, is applied to the site and the electrolyte solution is contacted with the micro-carbon fiber. Under the influence of the electrical potential difference, the etching process takes place very quickly at this point, so that as a result the metal plate has the desired hole at this point, while the adjacent areas are practically not attacked. As mentioned above, other electrically conductive materials such as. B. electrically conductive plastics are etched.

Häufig stellt sich in der Mikrostrukturtechnik die Aufgabe, von einer Probe, die aus einem Verbund mehrerer Materialien besteht, selektiv in vorgegebenen Bereichen einen dieser Stoffe abzulösen. In diesem Fall kann in derselben Weise vorgegangen werden. Diese Technik ist insbesondere dann von Vorteil, wenn aufgestäubte (gesputterte) oder aufgedampfte Materialien stellenweise entfernt werden sollen, da beim Aufstäuben und Aufdampfen oft besonders inerte und reaktionsträge Schichten erhalten werden, die mit naßchemischen Ätzverfahren nur schwer angreifbar sind.In microstructure technology, the task is often to selectively detach one of these substances from a sample that consists of a composite of several materials in predetermined areas. In this case, the procedure can be the same. This technique is particularly advantageous when sputtered or vapor-deposited materials are to be removed in places, since dusting and vapor deposition often result in particularly inert and inert layers that are difficult to attack with wet-chemical etching processes.

Soll Aluminium mit dem erfindungsgemäßen Verfahren selektiv gegenüber anderen Stoffen, z. B. Kunststoffen wie Polyimid oder Metallen wie Kupfer oder Titan, abgeätzt werden, so wird als Elektrolytlösung vorzugsweise eine Lösung eines Jodidsalzes, z. B. ein Alkalimetalljodidsalz wie Kaliumjodid eingesetzt. Eine noch schnellere Ätzung des Aluminiums und damit eine noch stärkere Schonung der übrigen Stoffe ist möglich, wenn der Lösung des Jodsalzes Alkohole wie Methanol oder Isopropanol beigemischt werden. Eine solche Elektrolytlösung besitzt jedoch eine geringere Oberflächenspannung, weshalb die aufgebrachten Tropfen zum Verlaufen neigen. Bei längeren Ätzzeiten muß Elektrolytlösung nachdosiert werden, da Verdunstungsverluste eintreten.Should aluminum be selective with the method according to the invention compared to other substances, e.g. B. plastics such as polyimide or metals such as copper or titanium are etched off, preferably a solution of an iodide salt, e.g. B. an alkali metal iodide salt such as potassium iodide. An even faster etching of the aluminum and thus an even greater protection of the other substances is possible if alcohols such as methanol or isopropanol are added to the solution of the iodine salt. Such an electrolytic solution has however, a lower surface tension, which is why the applied drops tend to run. In the case of longer etching times, the electrolyte solution must be replenished, as evaporation losses occur.

Ein prinzipieller Vorteil des erfindungsgemäßen Verfahrens ist, daß der Ätzvorgang unter dem Mikroskop beobachtet werden kann. Hierzu wird die Mikro-Carbonfaser in der Weise mit einem konventionellen Leitungsdraht verbunden, daß die Sicht unter dem Mikroskop durch den vergleichsweise großen Leitungsdraht nicht verdeckt ist. Die Verbindung mit dem Leitungsdraht kann mit Hilfe eines Leitlacks, z. B. mit Silberleitlack hergestellt werden.A fundamental advantage of the method according to the invention is that the etching process can be observed under the microscope. For this purpose, the micro-carbon fiber is connected to a conventional lead wire in such a way that the view under the microscope is not obscured by the comparatively large lead wire. The connection to the lead wire can be done with the help of a conductive lacquer, e.g. B. with conductive silver lacquer.

Die Erfindung wird im folgenden anhand von Figuren und Durchführungsbeispielen näher erläutert.The invention is explained in more detail below with reference to figures and examples of implementation.

Fig. 1 zeigt eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens. 1 shows a preferred embodiment of the method according to the invention.

Fig. 2 stellt den Versuchsaufbau zur Durchführung des erfindungsgemäßen Verfahrens dar. 2 shows the experimental setup for carrying out the method according to the invention.

In Fig. 1 ist eine Probe in Form einer Metallscheibe 1 dargestellt, in die mit dem erfindungsgemäßen Verfahren ein Loch eingeätzt werden soll. Über die elektrische Zuleitung 2 wird die Scheibe 1 als Anode geschaltet. Auf die zu ätzende Stelle der Probe wird ein Elektrolyttropfen 3 aufgetragen. Die Kathode besteht aus dem elektrischen Leitungsdraht 4, an dessen Ende mit Hilfe von Silberleitlack eine Mikro-Carbonfaser 5 befestigt ist. 1 shows a sample in the form of a metal disk 1, into which a hole is to be etched using the method according to the invention. The disc 1 is switched as an anode via the electrical lead 2. An electrolyte drop 3 is applied to the location of the sample to be etched. The cathode consists of the electrical lead wire 4, at the end of which a micro-carbon fiber 5 is attached with the aid of silver conductive lacquer.

Für Ätzprozesse an Mikrostrukturen wurde der in Fig. 2 dargestellte Versuchsaufbau konzipiert. Hieran läßt sich der elektrolytische Ätzvorgang unter einem Mikroskop 6 beobachten. Die zu ätzende Probe 1 wird auf den Arbeitstisch 7 des Mikroskops 1 gelegt; sie ist über die elektrische Zuleitung 2 mit dem Pluspol einer regelbaren Stromversorgung 8 verbunden. Auf die Probe 1 wird an der zu ätzenden Stelle ein Elektrolyttropfen 3 aufgebracht, in den die Mikro-Carbonfaser 5 eintaucht. Die Mikro-Carbonfaser 5 ist über den elektrischen Leitungsdraht 4 am Minuspol der regelbaren Stromversorgung 8 angeschlossen. Der Leitungsdraht 4 und damit die Mikro-Carbonfaser 5 lassen sich mit Hilfe eines Mikromanipulators 9 in sämtliche Raumrichtungen bewegen.The experimental setup shown in FIG. 2 was designed for etching processes on microstructures. The electrolytic etching process can be observed here under a microscope 6. The sample 1 to be etched is placed on the work table 7 of the microscope 1 placed; it is connected via the electrical lead 2 to the positive pole of a controllable power supply 8. An electrolyte drop 3, into which the micro-carbon fiber 5 is immersed, is applied to the sample 1 at the location to be etched. The micro-carbon fiber 5 is connected via the electrical lead wire 4 to the negative pole of the controllable power supply 8. The lead wire 4 and thus the micro-carbon fiber 5 can be moved in all spatial directions with the aid of a micromanipulator 9.

Beispiel 1:Example 1: Alternative MikroelektrodenAlternative microelectrodes

Mit Hilfe des in Fig. 2 gezeigten Versuchsaufbaus wurden alternative Mikroelektroden auf ihre Eignung untersucht. Hierzu wurden von einem Edelstahldraht mit 25 µm Durchmesser, einem Nickeldraht mit 10 µm Durchmesser und einem Golddraht mit 17 µm Durchmesser ca. 1 cm lange Stücke abgeschnitten und mit Silberleitlack mit dem elektrischen Leitungsdraht 4 verbunden. Der Leitungsdraht bestand aus einem versilberten Kupferdraht. Die freistehenden dünnen Drahtenden wurden auf 3 mm gekürzt und für elektrolytische Ätzversuche verwendet.With the aid of the experimental setup shown in FIG. 2, alternative microelectrodes were examined for their suitability. For this purpose, pieces of approx. 1 cm in length were cut from a stainless steel wire with a diameter of 25 µm, a nickel wire with a diameter of 10 µm and a gold wire with a diameter of 17 µm and connected to the electrical lead wire 4 with silver conductive lacquer. The lead wire consisted of a silver-plated copper wire. The free-standing thin wire ends were shortened to 3 mm and used for electrolytic etching tests.

Der Edelstahldraht und der Nickeldraht waren vom Hersteller (Fa. Goodfellow) auf einen Spulenkörper aufgewickelt und blieben nach dem Abwickeln stark verbogen; sie ließen sich nicht mehr in eine gestreckte Form zurechtbiegen. Deshalb mußte für jedes einzelne Drahtstück der Leitungsdraht zurechtgebogen werden, damit der Strukturgrund von mikrostrukturierten Platten unter mikroskopischer Kontrolle berührt werden konnte. Zudem kam es bei unbeabsichtigten Berührungen mit den Mikrostrukturen zu plastischen Verbiegungen, so daß nicht mehr exakt weitergearbeitet werden konnte, weil eine genaue optische Kontrolle nicht mehr möglich war. Mit verbogenen Drähten war es nicht möglich, bis auf den Strukturgrund von Hohlräumen zwischen eng benachbarten Mikrostrukturen einzudringen.The stainless steel wire and the nickel wire were wound on a spool by the manufacturer (Goodfellow) and remained strongly bent after unwinding; they could no longer be bent into a straight shape. For this reason, the lead wire had to be bent for each individual piece of wire so that the structural base could be touched by microstructured plates under microscopic control. In addition, plastic bends occurred in the event of unintentional contact with the microstructures, so that it was no longer possible to continue working precisely because precise optical control was no longer possible. With bent wires, it was not possible to penetrate into the structure base of cavities between closely adjacent microstructures.

Alle diese Schwierigkeiten traten nicht auf, wenn in gleicher Weise mit kommerziell erhältlichen, ca. 7 µm dicken und 5 - 7 mm langen Mikro-Carbonfasern gearbeitet wurde.All of these difficulties did not arise if the same was done with commercially available, about 7 µm thick and 5 - 7 mm long micro-carbon fibers.

Beispiel 2:Example 2: Ätzversuche mit dem erfindungsgemäßen Verfahren an WafernEtching experiments with the method according to the invention on wafers

Als zu ätzende Probe wurden Wafer beschafft, auf denen sich eine aufgestäubte, 1,0 µm dicke Aluminiumschicht und darauf streifenweise angeordnete ca. 35 µm dicke Kupferschichten befanden. Die Versuche dienten dazu, eine möglichst selektiv wirkende Elektrolytlösung für das elektrolytische Ätzen von Aluminium zu finden. Dazu wurden mit einer Pipette punktuell Elektrolyttropfen an vorbestimmte Stellen des Wafers so aufgebracht, daß sowohl das Aluminium als auch ein Teil der Kupferstreifen benetzt wurden. Bei den elektrolytischen Ätzversuchen wurde dann unter dem Mikroskop kontrolliert, ob ein sichtbarer Angriff des Kupfers erfolgte oder ob sich an der als Kathode geschalteten Mikro-Carbonfaser durch eventuelles Auflösen des Kupfers entstandene Kupferionen wieder als Metall niederschlugen.Wafers were obtained as the sample to be etched, on which there was a dusted-on, 1.0 μm thick aluminum layer and strips of approximately 35 μm thick copper layers. The experiments served to find an electrolytic solution for the electrolytic etching of aluminum that was as selective as possible. For this purpose, droplets of electrolyte were selectively applied to predetermined locations on the wafer in such a way that both the aluminum and part of the copper strips were wetted. During the electrolytic etching tests, it was then checked under a microscope whether there was a visible attack on the copper or whether copper ions formed on the micro-carbon fiber connected as the cathode due to possible dissolution of the copper were reflected again as metal.

Mit Rücksicht auf später durchzuführende Versuche, bei denen Aluminium in Gegenwart von Polyimid selektiv abgeätzt werden sollte, wurde auf den Einsatz von alkalischen Elektrolytlösungen verzichtet.With regard to experiments to be carried out later, in which aluminum should be etched selectively in the presence of polyimide, the use of alkaline electrolyte solutions was dispensed with.

Folgende Elektrolytlösungen wurden untersucht:The following electrolyte solutions were examined:

3 %-ige Salpetersäure; 10 %-ige K₃[Fe(CN)₆]-Lösung in Wasser; eine Lösung aus 20 % K₃[Fe(CN)₆] und 3 % KNO₃; eine Lösung aus 5 ml Glycol und 250 mg Tetrabutylammoniumtetrafluoroborat; eine Lösung aus 500 mg K₃[Fe(CN)₆], 30 mg 1-H-Benzotriazol und 100 mg KNO₃; Kaliumjodid in Konzentrationen von 10, 20 und 30 % sowie eine Lösung aus 10 % Kaliumjodid mit 1,8 % 1-H-Benzotriazol. Dabei zeigte es sich, daß sich Aluminium mit den Kaliumjodid-Lösungen besonders schnell und selektiv gegenüber Kupfer abätzen ließ. Ein Angriff auf Kupfer war mit diesen Lösungen nicht festzustellen.3% nitric acid; 10% K₃ [Fe (CN) ₆] solution in water; a solution of 20% K₃ [Fe (CN) ₆] and 3% KNO₃; a solution of 5 ml glycol and 250 mg tetrabutylammonium tetrafluoroborate; a solution of 500 mg K₃ [Fe (CN) ₆], 30 mg 1-H-benzotriazole and 100 mg KNO₃; Potassium iodide in concentrations of 10, 20 and 30% and a solution of 10% potassium iodide with 1.8% 1-H-benzotriazole. It was found that aluminum with the Potassium iodide solutions particularly quickly and selectively etched over copper. An attack on copper could not be detected with these solutions.

Wie erwähnt, kann bei Kaliumjodidlösungen die Ätzgeschwindigkeit weiter erhöht werden, wobei allerdings Verdampfungsverluste auftreten und die Oberflächenspannung absinkt. Dennoch sind solche Elektrolytlösungen zum Abätzen von kleinen Mengen an Aluminium sehr gut geeignet.As mentioned, the etching rate can be increased further with potassium iodide solutions, however evaporation losses occur and the surface tension drops. Nevertheless, such electrolyte solutions are very suitable for etching off small amounts of aluminum.

Beispiel 3:Example 3: Abätzen von Opferschichten bei der Herstellung von MikroventilenEtching off sacrificial layers in the manufacture of micro valves

Die zu ätzenden Proben wurden in folgender Weise hergestellt: Durch Methoden der Mikrotechnik wurden auf einem später ablösbaren Substrat eine ca. 3 µm dünne Titanschicht aufgebaut. Die Titanschicht war von einem kreisförmigen, erhöhten Rand aus Kupfer mit einem Durchmesser von 1400 µm, 940 µm oder 460 µm umgeben. Im Kreismittelpunkt wurde in der Titanschicht eine Öffnung angebracht, die im späteren Ventil als Ventilöffnung diente. Auf der Titanschicht wurde innerhalb des erhöhten Randes eine ca. 1,0 µm dicke Aluminiumschicht aufgestäubt. Die Aluminiumschicht wurde ihrerseits mit einer ca. 2 µm dünnen Polyimidschicht überdeckt, aus der mit Verfahren der Mikrotechnik mehrere radialsymmetrisch angeordnete, kreisförmige Bereiche mit einem Durchmesser von einigen 10 µm herausgelöst wurden. Diese Bereiche dienten später als Ventilöffnung in der Polyimidschicht. Durch das selektive Abätzen der Opferschicht aus Aluminium sollte ein Hohlraum erzeugt werden, so daß eine freie Verbindung zwischen den einzelnen Ventilöffnungen in der Titan- bzw. Polyimidschicht (Einlaß- und Auslaßöffnungen) geschaffen wurde. Sowohl die Titan- als auch die Polyimidschicht dienten als Ventilmembranen. Der Ätzvorgang konnte dabei nur durch die kreisförmigen Bereiche in der Polyimidschicht eingeleitet werden. Da die Polyimidschicht transparent ist, kann der Ätzvorgang an der darunterliegenden Aluminiumschicht optisch gut verfolgt werden; der Endpunkt der Ätzung läßt sich genau definieren. Hierdurch läßt sich verhindern, daS die Ätzlösung unter die Titanschicht kriecht und eine vorzeitigen Ablösung der Titanschicht bewirkt.The samples to be etched were produced in the following way: Using microtechnology methods, an approximately 3 µm thin titanium layer was built up on a later removable substrate. The titanium layer was surrounded by a circular, raised edge made of copper with a diameter of 1400 µm, 940 µm or 460 µm. At the center of the circle, an opening was made in the titanium layer, which later served as a valve opening. An approximately 1.0 µm thick aluminum layer was dusted on the titanium layer within the raised edge. The aluminum layer was in turn covered with an approx. 2 µm thin polyimide layer, from which several radially symmetrical, circular areas with a diameter of a few 10 µm were removed using microtechnology processes. These areas later served as valve openings in the polyimide layer. The selective etching of the sacrificial layer made of aluminum should create a cavity, so that a free connection between the individual valve openings in the titanium or polyimide layer (inlet and outlet openings) was created. Both the titanium and polyimide layers served as valve membranes. The etching process could only be initiated through the circular areas in the polyimide layer. Since the polyimide layer is transparent, the etching process on the underlying aluminum layer can be followed optically well; the end point of the etching can be precisely defined. This can prevent the etching solution from creeping under the titanium layer and causing premature detachment of the titanium layer.

Zur Durchführung des Ätzschrittes wurde die elektrisch kontaktierte Probe wie in Fig. 2 dargestellt auf den Mikroskoptisch gelegt und ein Tropfen einer Elektrolytlösung aufpipettiert. Die Elektrolytlösung bestand aus einer wäßrigen Lösung von 10 % KJ und 1.8 % 1-H-Benzotriazol. Danach wurde mit Hilfe des Mikromanipulators die Mikro-Carbonfaser (Durchmesser 7 µm) an einen der kreisförmigen Bereiche nahe oberhalb der Aluminiumschicht justiert. Anschließend wurde am regelbaren Netzgerät eine niedrige Gleichspannung (......... Volt) so eingestellt, bis an der als Kathode geschalteten Carbonfaser eine merkliche Wasserstoffgasentwicklung bei der mikroskopischen Beobachtung feststellbar war. In der Regel erfolgte eine Auflösung des Aluminiums nicht bei Beginn der Stromeinschaltung, sondern erforderte eine Induktionsperiode, welche zwischen ca. 1 und 5 Minuten lag und von dem Grad der Passivierung des Aluminiums abhing.To carry out the etching step, the electrically contacted sample was placed on the microscope table as shown in FIG. 2 and a drop of an electrolyte solution was pipetted on. The electrolytic solution consisted of an aqueous solution of 10% KJ and 1.8% 1-H-benzotriazole. The micro-carbon fiber (diameter 7 µm) was then adjusted with the help of the micromanipulator to one of the circular areas close above the aluminum layer. A low DC voltage (......... volts) was then set on the controllable power supply unit until a noticeable hydrogen gas development was detectable on microscopic observation on the carbon fiber connected as cathode. As a rule, the aluminum did not dissolve when the power was switched on, but required an induction period which was between about 1 and 5 minutes and which depended on the degree of passivation of the aluminum.

Der Beginn der Aluminiumätzung und das Fortschreiten des Ätzvorgangs war jedesmal sehr gut erkennbar, weil das beim Freiätzen darunter zum Vorschein kommende Titan einen guten Kontrast bildete. Je nach Größe der zu ätzenden Fläche betrugen die Ätzzeiten einschließlich der Induktionsperiode zwischen ca. 5 und 15 Minuten. Die für den elektrolytischen Ätzvorgang erforderlichen Spannungen lagen in einem Bereich zwischen 1 und 1,5 V, die dazugehörigen Stromstärken zwischen 10 und 50 µA. Stromdichten lassen sich nicht angeben, da sich die Fläche während des Ätzprozesses fortwährend änderte. Durch Anwendung von Spannungen bis zu 2 V konnte die Ätzgeschwindigkeit wesentlich gesteigert werden, wobei aber aus Sicherheitsgründen im Hinblick auf die Selektivität der Ätzung gegenüber Kupfer verzichtet wurde. Gegenüber dem naßchemischen Ätzen mit 5 %-iger Schwefelsäure wurde mit dem erfindungsgemäßen Verfahren eine Geschwindigkeitssteigerung um den Faktor 60 bis 180 erzielt.The beginning of the aluminum etching and the progress of the etching process were always clearly recognizable, because the titanium that emerged during the free etching formed a good contrast. Depending on the size of the area to be etched, the etching times including the induction period were between approx. 5 and 15 minutes. The voltages required for the electrolytic etching process were in a range between 1 and 1.5 V, the associated currents between 10 and 50 µA. Current densities cannot be specified because the area changed continuously during the etching process. By using voltages up to 2 V, the etching speed could be increased significantly, but for safety reasons with regard to the selectivity of the etching towards copper was waived. Compared to wet chemical etching with 5% sulfuric acid, the process according to the invention achieved an increase in speed by a factor of 60 to 180.

Als weitere interessante Tatsache wurde beobachtet, daß es möglich ist, die Induktionsperiode vor dem eigentlichen Aluminiumätzen durch Erzeugung eines Kurzschlusses stark zu verkürzen. Bringt man die Mikro-Carbonfaser kurzzeitig auf die Aluminiumoberfläche und erzeugt so einen Kurzschlußstrom, dann setzt innerhalb kürzester Frist an dieser Stelle der Ätzvorgang ein. Ebenso kann man dann auch an anderen Stellen, an denen noch keine Ätzung stattfindet, durch Erzeugung eines Kurzschlusses den Ätzvorgang induzieren.Another interesting fact has been observed that it is possible to shorten the induction period before the actual aluminum etching by creating a short circuit. If you bring the micro-carbon fiber briefly onto the aluminum surface and thus generate a short-circuit current, then the etching process starts at this point within a very short time. It is also possible to induce the etching process at other points where no etching is taking place by generating a short circuit.

Die elektrolytische Ätzung verläuft im Falle der hier beschriebenen Unterätzung in alle Richtungen sehr gleichmäßig ab. Nach dem elektrolytischen Ätzen wurden die Proben mit verdünnter Schwefelsäure gut gespült, um die Bildung von unlöslichen basischen Aluminiumverbindungen als Rückstand zu verhindern. Während des Ätzvorgangs wurden die mit der Elektrolytlösung in Kontakt stehenden Kupferstrukturen entweder nur sehr gering oder nicht sichtbar angegriffen.In the case of the underetching described here, the electrolytic etching proceeds very evenly in all directions. After the electrolytic etching, the samples were rinsed well with dilute sulfuric acid to prevent the formation of insoluble basic aluminum compounds as a residue. During the etching process, the copper structures in contact with the electrolyte solution were either only very slightly or not visibly attacked.

Claims (9)

  1. Method for electrolytic etching, wherein
    a) a first electrical potential is applied to a sample to be etched,
    b) the sample to be etched is brought into contact with an electrolytic solution,
    c) an electrode is introduced into the electrolytic solution,
    d) a second electrical potential is applied to the electrode, the first potential differing from the second potential, characterised in that an electrically conductive micro-carbon fibre is used as the electrode.
  2. Method according to claim 1, characterised in that the sample to be etched is brought into contact with electrolytic solution by a drop of the electrolytic solution being applied to the sample.
  3. Method according to claim 1 or 2, characterised in that the sample to be etched is formed from at least two different substances, of which one substance is selectively etched from the remaining substance or substances.
  4. Method according to claim 3, characterised in that the substance, which is selectively to be etched from the remaining substances, has been sprayed-on (sputtered-on).
  5. Method according to claim 3 or 4, characterised in that the substance, which is selectively to be etched from the remaining substances, is aluminium.
  6. Method according to claim 5, characterised in that the electrolytic solution contains water and an iodide salt.
  7. Method according to claim 6, characterised in that the iodide salt is an alkali metal iodide.
  8. Method according to claim 6 or 7, characterised in that an alcohol is added to the electrolytic solution.
  9. Method according to claim 8, characterised in that the alcohol is methanol and/or isopropanol.
EP93116838A 1992-11-25 1993-10-19 Electrolytic etching process Expired - Lifetime EP0603485B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4239538 1992-11-25
DE4239538A DE4239538C1 (en) 1992-11-25 1992-11-25 Precision etching small areas of substrate - in which cathodically connected substrate is contacted with electrolytic soln. and areas to be etched are contacted by micro carbon@ fibre electrode

Publications (2)

Publication Number Publication Date
EP0603485A1 EP0603485A1 (en) 1994-06-29
EP0603485B1 true EP0603485B1 (en) 1996-05-15

Family

ID=6473570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93116838A Expired - Lifetime EP0603485B1 (en) 1992-11-25 1993-10-19 Electrolytic etching process

Country Status (3)

Country Link
EP (1) EP0603485B1 (en)
AT (1) ATE138119T1 (en)
DE (2) DE4239538C1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE505231C2 (en) * 1995-09-26 1997-07-21 Foersvarets Forskningsanstalt Electrode
DE19749832A1 (en) * 1997-07-01 1999-01-07 Thomson Brandt Gmbh Conductive material application to and-or removal from circuit board
EP0889680A3 (en) 1997-07-01 2000-07-05 Deutsche Thomson-Brandt Gmbh Method of removing and/or applying conductive material

Also Published As

Publication number Publication date
ATE138119T1 (en) 1996-06-15
DE59302602D1 (en) 1996-06-20
DE4239538C1 (en) 1993-11-11
EP0603485A1 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
DE69724269T2 (en) METHOD FOR ANISOTROPE ETCHING STRUCTURES IN CONDUCTIVE MATERIALS
DE10259934B3 (en) Process for the production of molded parts from niobium or tantalum by electrochemical etching and molded parts obtainable in this way
DE2913802C2 (en) Emitter for field emission of electrons or ions and method of making such an emitter
EP0416099A1 (en) Method for electrochemically treating articles made of conductive materials
DE2951287A1 (en) METHOD FOR PRODUCING PLANE SURFACES WITH THE FINEST TIPS IN THE MICROMETER AREA
DE3046213C2 (en)
DE2631684A1 (en) METHOD AND DEVICE FOR THE EXTRACTION OF ZINC FROM AN ALKALINE ZINCATE SOLUTION
EP0603485B1 (en) Electrolytic etching process
EP1672101B1 (en) Process for the electrochemical removal of refractory metals or their alloys and use of a solution for this process
EP1323463B1 (en) Method and device for the production of a metal membrane
DE19650881A1 (en) Producing plastic foils which are electrically conductive in the z=direction and non:conductive in the x= and y= directions
EP0523331A1 (en) Process for the manufacture of a filter material
EP0973027B1 (en) Method for manufacturing an electrode
EP1442155B1 (en) Method for the treatment of electrically conductive substrates and printed circuit boards and the like
DE2522926A1 (en) PROCESS FOR MANUFACTURING METAL-CLAD LONG STRETCH ALUMINUM MATERIALS
DE2152222A1 (en) Process for removing gold
DE10021489C2 (en) Microfabrication process for the production of microstructures with a large aspect ratio
EP2619354B1 (en) Process for removing a coating from workpieces
DE3022634A1 (en) METHOD AND DEVICE FOR RAPID DETERMINATION OF THE CORROSION RESISTANCE OF AN ELECTROPHORETIC COATING
DE102019204979A1 (en) Process for the preparation of a component for EUV lithography devices
DE102014102550A1 (en) Electrodes suitable for the production of micro and / or nanostructures on materials
DE10305270B4 (en) Process for removing a crosslinked epoxy resin structure
DE4024909C2 (en)
DE2164490A1 (en) Process for the production of a conductor track system
DE1095614B (en) Method for producing a metal object, in particular a waveguide, by electroforming

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

17Q First examination report despatched

Effective date: 19950530

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL

REF Corresponds to:

Ref document number: 138119

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REF Corresponds to:

Ref document number: 59302602

Country of ref document: DE

Date of ref document: 19960620

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19981008

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990729

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990928

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19991025

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991031

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19991031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001019

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001031

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031017

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050503