EP0599061B1 - Méthode de purification de gaz d'échappement d'un moteur à combustion interne - Google Patents

Méthode de purification de gaz d'échappement d'un moteur à combustion interne Download PDF

Info

Publication number
EP0599061B1
EP0599061B1 EP93117058A EP93117058A EP0599061B1 EP 0599061 B1 EP0599061 B1 EP 0599061B1 EP 93117058 A EP93117058 A EP 93117058A EP 93117058 A EP93117058 A EP 93117058A EP 0599061 B1 EP0599061 B1 EP 0599061B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
exhaust gas
secondary air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93117058A
Other languages
German (de)
English (en)
Other versions
EP0599061A1 (fr
Inventor
Günter Härtel
Armin Schürfeld
Riedel Röttges
Matthias Hullmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP0599061A1 publication Critical patent/EP0599061A1/fr
Application granted granted Critical
Publication of EP0599061B1 publication Critical patent/EP0599061B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for exhaust gas detoxification of an internal combustion engine according to the preamble of claim 1.
  • a secondary air system can be found in the PIERBURG product information 'Electrical Secondary Air Blowers', No. 5/4 00-151.01, 9/91, published at the International Motor Show, Frankfurt / Main, 1991, which allows secondary air to be blown into an internal combustion engine provides the exhaust manifold during the cold, not yet operational phase of the catalytic converter.
  • the secondary air injection system consists of an air blower, or several check valves and a shut-off valve.
  • the emission of HC and CO occurring after the cold start of the internal combustion engine can be considerably reduced or its exit time can be shortened.
  • An exhaust pipe 2 leads from an internal combustion engine 1 to a burner 3, which is connected to a catalytic converter 5 via an exhaust gas mixing section 4.
  • the burner 3 consists of a mixture preparation chamber 6, a mixture outlet orifice 7, a combustion chamber 8 and a combustion chamber outlet 9.
  • An atomizer nozzle 10 opens into the mixture preparation chamber 6 and passes through a fuel line 11 fuel and 12 air is supplied via a combustion air line.
  • the fuel for the burner system is taken from a fuel distribution line 13, which supplies injection valves 14, which are arranged in intake air channels 15 of the internal combustion engine.
  • a safety shut-off valve 16, a fuel regulator 17 and a fuel shut-off valve 18 are arranged in the fuel line 11.
  • the combustion air for the burner system is drawn in from the atmosphere by an air blower 19 via an air filter (not shown in the drawing) and is conveyed into a branching secondary air pressure line 20.
  • the branching combustion air line 12 leads via a combustion air shut-off valve 21 to the atomizing nozzle 10.
  • the secondary air pressure line 20 leads on the one hand to a secondary air pressure regulator 22 and from there to a secondary air shut-off and clock valve 23.
  • the secondary air can alternatively be allocated either via a secondary air distributor line 24 and the injection tubes 25 assigned to the cylinder outlet channels take place in the vicinity of the outlet valves in the cylinder head of the internal combustion engine or are assigned to the collecting pipe of the exhaust line 2 via a line 26 shown in broken lines.
  • the secondary air conveyed in excess is blown off into the atmosphere by the secondary air pressure regulator 22 via an outlet line 27.
  • the rear diaphragm space of the secondary air pressure regulator 22 is in operation of the secondary air blower 19 via a reference pressure line 38, a reference pressure changeover valve 39 and an exhaust pressure line 40 with one of the combustion chambers of the burner 3, here connected to the mixture preparation chamber 6, or the exhaust pipe 2.
  • the secondary air pressure regulator 22 is connected to the atmospheric pressure via the reference pressure changeover valve 39 via an atmospheric pressure line 41.
  • An ignition electrode 28, which is controlled via an ignition module 29, serves to ignite the combustion mixture in the combustion chamber 8.
  • a flame monitor 30 can be arranged in the area of the mixture preparation chamber 6 or the combustion chamber 8. Furthermore, a lambda probe 31 can be provided for detecting the exhaust gas mixture fed to the catalytic converter 5 directly between the exhaust gas mixing section 4 and the catalytic converter 5, additionally or alternatively to the conventional installation location.
  • a temperature sensor 32 serves to detect the catalytic converter temperature on the outer wall or inside the catalytic converter 5. All components of the burner system are connected via connecting lines 33 to an electronic control unit 34, which forms a structural unit with the internal combustion engine management control unit or has an interface with it .
  • Air-assisted atomization of the fuel takes place in the mixture preparation chamber 6 through the partial flow of the combustion air emerging centrally at the atomizer nozzle 10.
  • the radially emerging combustion air surrounds the fuel atomized around the central axis (spray cone) with an air jacket, as a result of which the ignition by means of the ignition electrode 28 and the stability of the flame in the combustion chamber 8 are improved.
  • the flame begins in the area of the mixture outlet orifice 7 and extends into the area of the combustion chamber outlet 9.
  • the engine exhaust gas flowing in through the exhaust gas line 2 may only mix with the exhaust gas of the combustion chamber 8 in the area of the combustion chamber outlet 9, since otherwise the combustion in the Combustion chamber is affected.
  • the combustion chamber is therefore designed so that it is closed in the area of the flame and has a reduced cross section in the area of the combustion chamber outlet 9.
  • the two exhaust gas flows only meet in the area of the burning flame or through holes 35, whereby mixing of the two exhaust gases in the area of the exhaust gas mixing section 4 is to be promoted through the through holes 35.
  • the lambda probe 31 is arranged downstream of the exhaust gas mixing section 4 in order to be able to measure the composition of the total mixture after the mixing has been completed.
  • the secondary air blower 19 is put into operation when the ignition is switched on and the catalytic converter 5 is not warm and delivers at full power.
  • the supply of the burner 3 with combustion air is only necessary until after about 15 to 20 seconds the front part of the catalytic converter 5 is warm from operation or a predetermined temperature threshold value is reached in the catalytic converter.
  • the burner 3 is preferably set to lambda just above 1 in the mixing ratio. A constant amount of burner air per unit of time is therefore required for constant burner output and constant lambda. Since the delivery characteristic of the secondary air blower 19 can change in the course of the operating time and the delivery rate also depends on the exhaust gas back pressure, the secondary air pressure regulator 22 is required to avoid a change in the amount of combustion air.
  • the combustion air shutoff valve 21 When the burner is in operation, the combustion air shutoff valve 21 is opened and the air conveyed by the secondary air blower 19 is conveyed to the atomizing nozzle 10.
  • the concentric outlet gap for atomizing the fuel and holes for the radially escaping air (not shown) are dimensioned so that at a certain pressure in the Combustion air line 12 is allocated exactly the amount of air required by the burner. According to this pressure, the excess air flow flows. In the event that the delivery characteristic of the secondary air blower 19 has changed, this change has no effect on the allocated amount of combustion air, since the pressure is maintained by the function of the secondary air pressure regulator 22 and only the amount conveyed in excess changes. It was initially assumed that the exhaust gas back pressure is negligible.
  • the exhaust gas back pressure rises to values which lead to a reduction in the pressure difference at the atomizing nozzle 10, as a result of which the allocated combustion air is also reduced and the lambda value is changed in the direction of rich.
  • the exhaust gas back pressure is passed via the exhaust gas pressure line 40, the reference pressure changeover valve 39 and the reference pressure line 38 into the membrane chamber of the secondary air pressure regulator 22.
  • the excess air conveyed in the example described here is either fed to the engine exhaust gas of the individual cylinders via the secondary air shut-off valve and timing valve 23 via the injection tubes 25 in the area of the exhaust valves or - as shown in dashed lines - via line 26 to the exhaust line 2 (manifold) added.
  • the secondary air in the area of the exhaust valves can be used to burn CO and HC.
  • the secondary air is metered by activating the secondary air shut-off clock valve 23 or an electronically controllable servomotor of the secondary air pressure regulator 22 by means of the signals from the electronic control unit 34.
  • the lambda probe 31 has already reached its operating temperature and the delivery of secondary air beyond the warming-up phase of the catalytic converter 5 is maintained with the secondary air blower 19.
  • the metering of the secondary air is taken over by the control of the secondary air shut-off and clock valve 23 by the lambda control.
  • the secondary air shut-off and cycle valve 23 can also be designed as a 2/3 way valve (switching from metering and blowing to the atmosphere) in order to improve the allocation of small amounts of secondary air.
  • the fuel is preferably supplied through the fuel line 11 branching off from the fuel rail.
  • the metering of a constant amount of fuel is carried out by means of the fuel regulator 17 via the fuel line 11 and the fuel shut-off valve 18 and this is fed to the atomizer nozzle 10.
  • the amount metered by the fuel regulator is largely independent of the pressure in the fuel line 11 and the pressure in the mixture preparation chamber 6.
  • the safety shut-off valve 16 serves to avoid uncontrolled fuel leakage in the event of a defect in the fuel line 11 (crash test ) when the throughput in the fuel regulator 17 rises above the normal value, and interrupts the flow of the fuel as long as there is excess pressure in the fuel line 11 upstream of the safety shut-off valve 16.
  • the amount of fuel can be changed by varying the pressure difference at the fuel regulator 17, for example by means of an electronically controllable lifting magnet.
  • the burner system with which the catalytic converter and the lambda probe are heated by the fuel of the internal combustion engine is operated beyond the point in time at which the catalytic converter has at least partially reached operating temperature until the full operating temperature has been reached, the burner system exhaust gas being contained in the total exhaust gas stream.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (4)

  1. Procédé de décontamination des gaz d'échappement d'un moteur à combustion interne pendant la phase de marche à froid après le démarrage, en association avec une injection d'air secondaire dans le tuyau d'échappement, en vue d'une post-combustion et du chauffage d'une sonde lambda et d'un catalyseur, la formation du mélange combustible étant commandée en fonction de paramètres de service du moteur à combustion interne, tels que vitesse de rotation, position du papillon des gaz et température du moteur, de sorte que le moteur à combustion interne soit exploitable dans une plage d'une bonne tenue en service, en défaut d'air, caractérisé en ce que, après que la sonde lambda et, en partie au moins, le catalyseur aient atteint la température de service, l'injection d'air secondaire est mainenue, le débit et la durée de cette injection étant toutefois commandés en fonction de paramètres de service du moteur à combustion interne, tels que vitesse de rotation, position du papillon et température du moteur, de sorte que la sonde lambda établit un excès d'air dans le flux total des gaz d'échappement, et que le mélange combustible est enrichi au-delà de la régulation lambda = 1, si bien que le moteur à combustion interne est exploitable dans une plage d'une bonne tenue en service, le débit d'air secondaire étant réduit en continu, jusqu'à ce que les gaz d'échappement atteignent lambda = 1 sans addition d'air secondaire.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'un système de brûleur, par lequel sont chauffés le catalyseur et la sonde lambda, par le combustible du moteur à combustion interne, fonctionne au-delà de l'instant où le catalyseur a atteint, en partie au moins, la température de service, jusqu'à l'obtention de la température de service intégrale, les gaz brûlés du système de brûleur étant alors compris dans le flux total des gaz d'échappement.
  3. Procédé suivant la revendication 2, caractérisé en ce que le système de brûleur est commandé, par des signaux pilotes d'un appareil de commande électronique (34), en fonction de paramètres de service du moteur à combustion interne ou du système de brûleur.
  4. Procédé suivant la revendication 3, caractérisé en ce que le système de brûleur est mis en marche, dans le temps, quelques secondes avant le démarrage du moteur à combustion interne par un circuit prioritaire.
EP93117058A 1992-11-20 1993-10-21 Méthode de purification de gaz d'échappement d'un moteur à combustion interne Expired - Lifetime EP0599061B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4239081A DE4239081A1 (de) 1992-11-20 1992-11-20 Verfahren zur Abgasentgiftung einer Brennkraftmaschine
DE4239081 1992-11-20

Publications (2)

Publication Number Publication Date
EP0599061A1 EP0599061A1 (fr) 1994-06-01
EP0599061B1 true EP0599061B1 (fr) 1995-12-27

Family

ID=6473293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93117058A Expired - Lifetime EP0599061B1 (fr) 1992-11-20 1993-10-21 Méthode de purification de gaz d'échappement d'un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP0599061B1 (fr)
DE (2) DE4239081A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4430965C2 (de) * 1994-08-31 1997-09-11 Siemens Ag Verfahren zum Steuern der Kraftstoffzufuhr für eine Brennkraftmaschine mit beheizbarem Katalysator
DE4437655C2 (de) * 1994-10-21 1998-03-26 Bayerische Motoren Werke Ag Verfahren zur Überwachung der Funktionsfähigkeit einer Katalysatorheizvorrichtung
DE19510642C2 (de) * 1994-12-02 1997-04-10 Volkswagen Ag Verfahren zur Reduzierung von Schadstoffen des Abgases einer mehrere Zylinder aufweisenden Brennkraftmaschine
DE19508013C1 (de) * 1995-03-07 1996-03-14 Siemens Ag Vorrichtung und Verfahren zum Aufheizen eines Abgaskatalysators für eine Brennkraftmaschine
DE19541903A1 (de) * 1995-11-10 1997-05-15 Bayerische Motoren Werke Ag Überwachungssystem für die Abgasreinigung einer Brennkraftmaschine
DE19816276C2 (de) 1998-04-11 2000-05-18 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
GB2357047B (en) * 1999-12-11 2004-01-14 Ford Global Tech Inc Exhaust gas purification system
EP1637706A1 (fr) * 2004-09-16 2006-03-22 Delphi Technologies, Inc. Système et méthode pour augmenter la température de gaz dans l'échappement d'un moteur à combustion interne
DE102018118565A1 (de) * 2018-07-31 2020-02-06 Volkswagen Ag Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors und Abgasnachbehandlungssystem
IT202100029297A1 (it) * 2021-11-19 2023-05-19 Marelli Europe Spa Metodo di controllo di un dispositivo riscaldatore per un sistema di scarico di un motore a combustione interna
IT202200006179A1 (it) * 2022-03-29 2023-09-29 Marelli Europe Spa Dispositivo riscaldatore per un sistema di scarico di un motore a combustione interna
DE102022210185A1 (de) 2022-09-27 2024-03-28 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren, Recheneinheit und Computerprogramm zum optimalen Betreiben einer Brennkraftmaschine und eines Brenners eines Kraftfahrzeugs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828820A (fr) * 1971-08-17 1973-04-17
JPS51141921A (en) * 1975-05-30 1976-12-07 Nissan Motor Co Ltd Internal combustion engine with exhaust gas cleaning device
DE3835939C2 (de) * 1987-10-31 1998-01-15 Volkswagen Ag Abgasanlage
DE3933924A1 (de) * 1989-10-11 1991-04-18 Bayerische Motoren Werke Ag Verfahren zur abgasnachbehandlung an einer brennkraftmaschine
DE59004943D1 (de) * 1990-08-01 1994-04-14 Siemens Ag Verfahren zum Aufheizen eines Abgaskatalysators.

Also Published As

Publication number Publication date
DE4239081A1 (de) 1994-05-26
DE59301254D1 (de) 1996-02-08
EP0599061A1 (fr) 1994-06-01

Similar Documents

Publication Publication Date Title
EP0599060B1 (fr) Brûleur de dépollution ou de purification d'un moteur à combustion interne
EP0367280B2 (fr) Système de filtre de particules
EP2199678B1 (fr) Brûleur pour dispositif de chauffage pour véhicule
DE112007002006B4 (de) Abgasaufbereitungsvorrichtung mit einem kraftstoffbetriebenen Brenner
DE3729861C2 (de) Verfahren zum Betreiben einer Rußfiltervorrichtung für einen Dieselmotor und Rußfiltervorrichtung zur Durchführung dieses Verfahrens
DE102006015841B3 (de) Verfahren zur Erzeugung von Heißgas
EP0118500B1 (fr) Procede et dispositif pour dissoudre un gaz, notamment du bioxyde de carbone dans un combustible liquide, et le distribuer dans l'air de combustion a l'etat sature
EP0599061B1 (fr) Méthode de purification de gaz d'échappement d'un moteur à combustion interne
EP2291579B1 (fr) Système de post-traitement des gaz d échappement pour un moteur à combustion interne à auto-allumage
EP0238916A1 (fr) Procédé et dispositif de régénération de systèmes de filtres pour gaz d'échappement
DE102005054733A1 (de) Brenner zur Katalysatoraufheizung mit gesteuerter oder geregelter Kraftstoffzuführung
DE69513596T2 (de) Brennstoffeinspritz- und Zündeinheit
EP0417383B1 (fr) Procédé et dispositif de nettoyage d'un filtre à suie
DE4307525A1 (de) Verfahren und Vorrichtung zur Nachbehandlung der Abgase einer Brennkraftmaschine
EP2166204A1 (fr) Bougie de préchauffage à flamme
DE69326286T2 (de) Brennkraftmaschine und Verfahren zum Betrieb der Brennkraftmaschine
DE4411959A1 (de) Vorrichtung und Verfahren zur Vorwärmung der Ansaugluft einer Diesel-Brennkraftmaschine
US4246879A (en) Fuel injection apparatus
DE3318054C2 (de) Brenner für kleine Luftheizgeräte zur Beheizung ortsbeweglicher Räume
EP0556693A1 (fr) Brûleur pour combustible liquide
WO2008012005A1 (fr) Moteur à combustion interne à allumage commandé pour carburants gazeux, et procédé de fonctionnement d'un tel moteur à combustion interne
DE4416014A1 (de) Verfahren und Vorrichtung zur Verbesserung der Reinigung des Abgases eines Verbrennungsmotors mit einer Abgasreinigungsanlage, insbesondere in einem Kraftfahrzeug
DE19731739C1 (de) Vorrichtung und Verfahren zur Abgasbehandlung bei einer Brennkraftmaschine
WO2012016817A1 (fr) Brûleur à pulvérisation stable en cas de faible contre-pression
DE69128798T2 (de) Emissionsarmes verbrennungssystem fuer ein gasturbinentriebwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19941031

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PIERBURG GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59301254

Country of ref document: DE

Date of ref document: 19960208

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960226

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PIERBURG AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990927

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001021

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051021