EP0597832B1 - Metal-powder blend - Google Patents

Metal-powder blend Download PDF

Info

Publication number
EP0597832B1
EP0597832B1 EP90914132A EP90914132A EP0597832B1 EP 0597832 B1 EP0597832 B1 EP 0597832B1 EP 90914132 A EP90914132 A EP 90914132A EP 90914132 A EP90914132 A EP 90914132A EP 0597832 B1 EP0597832 B1 EP 0597832B1
Authority
EP
European Patent Office
Prior art keywords
graphite
max
content
metal powder
powder mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90914132A
Other languages
German (de)
French (fr)
Other versions
EP0597832A1 (en
Inventor
Norbert Dautzenberg
Heinz Josef Dorweiler
Karl-Heinz Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann AG filed Critical Mannesmann AG
Publication of EP0597832A1 publication Critical patent/EP0597832A1/en
Application granted granted Critical
Publication of EP0597832B1 publication Critical patent/EP0597832B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Definitions

  • the invention relates to a metal powder mixture for producing martensitic through-hardened, high-strength sintered parts on the basis of a steel powder formed by atomizing a steel alloy melt, which is mixed with 0.3 to 0.7% by weight of graphite powder.
  • high-strength sintered parts are understood to mean parts with a tensile strength of at least 550 N / mm2.
  • a steel alloy powder for producing high-strength sintered parts is known from EP 0 136 169 B1, which consists of (% by weight) Max. 0.02% C Max. 0.1% Si 0.4-1.3% Ni 0.2-0.5% Cu 0.1-0.3% Mo Max. 0.3% Mn Max. 0.01% N Balance iron and usual impurities.
  • This alloy powder should be cheap to manufacture and process, have good pressing properties and ensure high strength in the sintered finished part. This document does not specify anything about its properties with regard to the achievable dimensional accuracy in the finished part.
  • Sintering a compact made from steel powder normally changes its geometry.
  • martensitic hardening counteracts this effect because of the associated increase in volume as a result of the structural transformation.
  • a change in volume of the finished part compared to the compact used for sintering can also be taken into account in the design of the pressing tool, ie an attempt is made to anticipate the dimensional deviations and to compensate from the outset by changing the dimensions of the compact.
  • a sintered alloy is known from EP 0 042 654 in which the nickel content is at most 2.5%. This content in connection with the molybdenum content is important for the possibility of air hardening. With the maximum limit of 0.7% Mo disclosed in this document, however, this cannot be carried out. The improved strength of this alloy is achieved through a special heat treatment after sintering.
  • the object of the invention is to provide a metal powder mixture which can be produced with as little effort as possible and which allows the production of high-strength and wear-resistant sintered parts, the dimensional deviations of which can be kept within a tolerance band of a maximum of +/- 0.05% without this being the case additional constructive measures on the pressing tool for the production of the compacts to be sintered are required.
  • the metal powder should therefore have the property of not causing any appreciable shrinkage or waxing when sintering compacts produced therefrom with conventional compaction.
  • the proportions of the individual alloy elements are kept within different limits than in the known steel powder. It is particularly important that the ratio of the proportion of Cu to the proportion of graphite also introduced in powder form as carbon in the metal powder mixture is kept in the range 1.4-2.5, preferably 2.0. If all of the provisions of claim 1 are observed, it is surprisingly possible to produce compacts by conventional pressing processes in powder metallurgy, which under normal sintering conditions have almost complete dimensional stability regardless of the wall thicknesses of the compacts. The dimensional deviations are less than +/- 0.05%.
  • the sintered parts result in a completely martensitic structure, which gives the parts a high strength (over 750 N / mm2) without this a subsequent heat treatment is required.
  • a steel powder was produced by water atomization of a melt with the following composition (% by weight): 0.01% C 0.02% Si 0.10% Mn 4.0% Ni 0.5% Mo 0.020% P 0.010% S Balance iron and usual impurities.
  • this steel powder was dried and subjected to a reduction annealing in an H2 atmosphere at about 1000 o C. After cooling, the resulting agglomerate was ground in fine particles.
  • the residual oxygen content of the steel powder was about 0.15%, its bulk density was about 3 g / cm3.
  • the advantages of the metal powder mixture according to the invention can be seen in particular in the fact that dimensionally constant sintered parts can be produced which no longer require complex mechanical, shaping or thermal aftertreatment after sintering, and the steel powder can be produced inexpensively. It is namely applicable to the selected alloy of the invention, a water atomization with subsequent reduction under an H2 atmosphere. This eliminates the need for costly vacuum annealing, as is required for other fully alloyed water-atomized metal powders for the same purpose. The inexpensive production is also associated with the achievement of excellent strength and wear properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention proposes a metal-powder blend which can be produced simply and can be used to manufacture high-strength wear-resistant cylinder parts to tight dimensional tolerances. This metal-powder blend consists of a steel powder formed by atomizing a steel melt and mixed with 0.3-0.7 % by wt. of graphite, the steel powder consisting of: max. 0.02 % by wt. C; max. 0.03 % by wt. Si; ).05-0.25 % by wt. Mn; 2.5-5.0 % by wt. Ni; 0.2-1.5 % by wt. Mo, remainder iron and the usual impurities and the blend contains in addition 0.7-1.5 % by wt. of finely divided Cu, with the provision that the weight ratio of Cu:graphite lies within the range 1.4-2.5.

Description

Die Erfindung betrifft eine Metallpulvermischung zur Herstellung martensitisch durchgehärteter, hochfester Sinterteile auf der Basis eines durch Verdüsung einer Stahllegierungsschmelze entstandenen Stahlpulvers, welches mit 0,3 bis 0,7 Gew-% Graphitpulver vermischt ist. Unter hochfesten Sinterteilen werden in diesem Zusammenhang Teile mit einer Zugfestigkeit von mindestens 550 N/mm² verstanden.The invention relates to a metal powder mixture for producing martensitic through-hardened, high-strength sintered parts on the basis of a steel powder formed by atomizing a steel alloy melt, which is mixed with 0.3 to 0.7% by weight of graphite powder. In this context, high-strength sintered parts are understood to mean parts with a tensile strength of at least 550 N / mm².

Aus der EP 0 136 169 B1 ist ein Stahllegierungspulver zur Herstellung hochfester Sinterteile bekannt, das besteht aus (Gew%)
   max. 0,02 % C
   max. 0,1 % Si
   0,4 - 1,3 % Ni
   0,2 - 0,5 % Cu
   0,1 - 0,3 % Mo
   max. 0,3 % Mn
   max. 0,01 % N
   Rest Eisen und übliche Verunreinigungen.
A steel alloy powder for producing high-strength sintered parts is known from EP 0 136 169 B1, which consists of (% by weight)
Max. 0.02% C
Max. 0.1% Si
0.4-1.3% Ni
0.2-0.5% Cu
0.1-0.3% Mo
Max. 0.3% Mn
Max. 0.01% N
Balance iron and usual impurities.

Dieses Legierungspulver soll billig herstellbar und verarbeitbar sein, gute Preßeigenschaften aufweisen und eine hohe Festigkeit im gesinterten Fertigteil gewährleisten. Über seine Eigenschaften hinsichtlich der erzielbaren Maßgenauigkeit im Fertigteil ist in dieser Schrift nichts Näheres ausgeführt.This alloy powder should be cheap to manufacture and process, have good pressing properties and ensure high strength in the sintered finished part. This document does not specify anything about its properties with regard to the achievable dimensional accuracy in the finished part.

Durch das Sintern eines aus Stahlpulver hergestellten Preßlings wird dessen Geometrie normalerweise verändert. Man spricht von Sinterschwund. Ein martensitisches Härten wirkt im Grundsatz wegen der damit verbundenen Volumenvergrößerung infolge der Gefügeumwandlung diesem Effekt entgegen. Selbstverständlich kann eine Volumenänderung des Fertigteils gegenüber dem zum Sintern eingesetzten Preßling auch bei der Auslegung des Preßwerkzeugs berücksichtigt werden, d.h. man versucht, die Maßabweichungen zu antizipieren und durch eine Änderung der Maße des Preßlings von vornherein auszugleichen. Bisher ist dies aber nur sehr unvollkommen gelungen, weil die relativen Maßabweichungen nicht nur von den jeweiligen Wanddicken im Preßling abhängig sind, sondern auch die am Preßling erzielte Dichte, die innerhalb desselben Preßlings und auch zwischen den einzelnen Exemplaren von an sich gleichartigen Preßlingen Schwankungen unterliegt, hierauf einen großen Einfluß hat. Insofern haben die Bemühungen zur Erzielung einer Maßkonstanz im gesinterten Fertigteil aus fertiglegierten Werkstoffen bisher lediglich eine reproduzierbare Begrenzung der Maßabweichungen auf Werte im günstigsten Fall bis zu etwa +/- 0,1 % erbracht. Für viele Teile sind derartige Abweichungen nicht mehr tolerierbar. Aus diesem Grunde unterzieht man Sinterteile vielfach einem abschließenden Kalibriervorgang, was mit erheblichen Kosten verbunden ist. Bei gehärteten Teilen ist aber wegen der Härte der Sinterteile nicht einmal das mehr möglich.
Aus der EP 0 042 654 ist eine Sinterlegierung bekannt, bei der der Nickelgehalt maximal 2,5 % beträgt. Dieser Gehalt ist in Verbindung mit dem Molybdängehalt von Bedeutung für die Möglichkeit einer Lufthärtung. Bei der in dieser Schrift offenbarten Höchtstgrenze von 0,7 % Mo läßt sich diese allerdings nicht durchführen. Die verbesserte Festigkeit wird bei dieser Legierung durch eine besondere Wärmebehandlung nach dem Sintern erreicht.
Sintering a compact made from steel powder normally changes its geometry. One speaks of shrinkage. In principle, martensitic hardening counteracts this effect because of the associated increase in volume as a result of the structural transformation. Of course, a change in volume of the finished part compared to the compact used for sintering can also be taken into account in the design of the pressing tool, ie an attempt is made to anticipate the dimensional deviations and to compensate from the outset by changing the dimensions of the compact. So far, however, this has only been accomplished very imperfectly because the relative dimensional deviations depend not only on the respective wall thicknesses in the compact, but also on the density achieved on the compact, which is subject to fluctuations within the same compact and also between the individual specimens of compacts of similar type, has a great influence on this. In this respect, efforts to achieve dimensional consistency in the sintered finished part made of alloyed materials have so far only resulted in a reproducible limitation of the dimensional deviations to values in the most favorable case up to approximately +/- 0.1%. Such deviations are no longer tolerable for many parts. For this reason, sintered parts are often subjected to a final calibration process, which is associated with considerable costs. With hardened parts, this is not even possible due to the hardness of the sintered parts.
A sintered alloy is known from EP 0 042 654 in which the nickel content is at most 2.5%. This content in connection with the molybdenum content is important for the possibility of air hardening. With the maximum limit of 0.7% Mo disclosed in this document, however, this cannot be carried out. The improved strength of this alloy is achieved through a special heat treatment after sintering.

Aufgabe der Erfindung ist es, eine Metallpulvermischung anzugeben, die mit möglichst geringem Aufwand herstellbar ist und die Herstellung von hochfesten und verschleißfesten Sinterteilen gestattet, deren Maßabweichungen in einem Toleranzband von maximal +/- 0,05 % Breite gehalten werden können, ohne daß es hierzu zusätzlicher konstruktiver Maßnahmen am Preßwerkzeug für die Herstellung der zu sinternden Preßlinge bedarf. Das Metallpulver soll also die Eigenschaft haben, beim Sintern von daraus mit üblicher Verdichtung hergestellten Preßlingen kein nennenswertes Schrumpfen oder Wachsen zu bewirken.The object of the invention is to provide a metal powder mixture which can be produced with as little effort as possible and which allows the production of high-strength and wear-resistant sintered parts, the dimensional deviations of which can be kept within a tolerance band of a maximum of +/- 0.05% without this being the case additional constructive measures on the pressing tool for the production of the compacts to be sintered are required. The metal powder should therefore have the property of not causing any appreciable shrinkage or waxing when sintering compacts produced therefrom with conventional compaction.

Gelöst wird diese Aufgabe durch das Verfahren und eine Metallpulvermischung mit den Merkmalen des Patentanspruchs 1 bzw 3. Vorteilhafte Weiterbildungen dieser Mischung sind in den Unteransprüchen 2 und 4 bis 8 angegeben.This object is achieved by the method and a metal powder mixture with the features of claims 1 and 3, respectively. Advantageous further developments of this mixture are specified in subclaims 2 and 4 to 8.

Im Gegensatz zu dem aus der EP 0 136 169 B1 bekannten Stahllegierungspulver ist erfindungsgemäß vorgesehen, den Cu-Anteil nicht bereits in die zur Verdüsung eingesetzte Legierung einzubringen, sondern in feinteiliger Form mit dem Stahlpulver zu vermischen. Außerdem sind die Mengenanteile der einzelnen Legierungselemente gemäß Anspruch 1 in anderen Grenzen gehalten als bei dem bekannten Stahlpulver. Besonders wesentlich ist es, daß das Verhältnis des Cu-Anteils an dem ebenfalls in Pulverform als Kohlenstoff in die Metallpulvermischung eingebrachten Graphitanteil im Bereich 1,4-2,5, vorzugsweise 2,0 gehalten wird. Bei Einhaltung aller Vorschriften des Patentanspruchs 1 gelingt es überraschenderweise, Preßlinge nach üblichen Preßverfahren der Pulvermetallurgie herzustellen, die unter wiederum üblichen Sinterbedingungen unabhängig von den Wanddicken der Preßlinge nahezu völlige Maßkonstanz aufweisen. Die Maßabweichungen betragen weniger als +/- 0,05 %.In contrast to the steel alloy powder known from EP 0 136 169 B1, it is provided according to the invention not to introduce the Cu portion into the alloy used for atomization, but to mix it with the steel powder in finely divided form. In addition, the proportions of the individual alloy elements are kept within different limits than in the known steel powder. It is particularly important that the ratio of the proportion of Cu to the proportion of graphite also introduced in powder form as carbon in the metal powder mixture is kept in the range 1.4-2.5, preferably 2.0. If all of the provisions of claim 1 are observed, it is surprisingly possible to produce compacts by conventional pressing processes in powder metallurgy, which under normal sintering conditions have almost complete dimensional stability regardless of the wall thicknesses of the compacts. The dimensional deviations are less than +/- 0.05%.

Bei Abkühlung an Luft oder mittels einer in der Kühlzone des Sinterofens angeordneten Gasdusche (z.B. unter Druck zugeführtes Inertgas) ergibt sich in den Sinterteilen ein vollständig martensitisches Gefüge, das den Teilen eine hohe Festigkeit (über 750 N/mm²) verleiht, ohne daß es hierzu einer nachträglichen Wärmebehandlung bedarf.When cooling in air or by means of a gas shower arranged in the cooling zone of the sintering furnace (for example, inert gas supplied under pressure), the sintered parts result in a completely martensitic structure, which gives the parts a high strength (over 750 N / mm²) without this a subsequent heat treatment is required.

Anhand des nachfolgenden Ausführungsbeispiels wird die Erfindung näher erläutert.The invention is explained in more detail with the aid of the following exemplary embodiment.

Es wurde ein Stahlpulver durch Wasserverdüsung einer Schmelze mit folgender Zusammensetzung (Gew-%) erzeugt:
   0,01 % C
   0,02 % Si
   0,10 % Mn
   4,0 % Ni
   0,5 % Mo
   0,020 % P
   0,010 % S
   Rest Eisen und übliche Verunreinigungen.
A steel powder was produced by water atomization of a melt with the following composition (% by weight):
0.01% C
0.02% Si
0.10% Mn
4.0% Ni
0.5% Mo
0.020% P
0.010% S
Balance iron and usual impurities.

Nach der Wasserverdüsung wurde dieses Stahlpulver getrocknet und bei etwa 1000oC einer Reduktionsglühung in einer H₂-Atmosphäre unterzogen. Nach Abkühlung wurde das so entstandene Agglomerat feinteilig vermahlen. Der Restsauerstoffgehalt des Stahlpulvers belief sich auf etwa 0,15 %, seine Fülldichte betrug etwa 3 g/cm³.After the water atomization, this steel powder was dried and subjected to a reduction annealing in an H₂ atmosphere at about 1000 o C. After cooling, the resulting agglomerate was ground in fine particles. The residual oxygen content of the steel powder was about 0.15%, its bulk density was about 3 g / cm³.

Diesem Stahlpulver wurden anschließlich 0,60 % Graphitpulver und 1,0 % feinteiliges Cu sowie ca. 1 % übliches Schmiermittel zugesetzt. Nach gleichmäßiger Mischung dieser Komponenten wurden Preßlinge durch Kaltpressen in üblicher Weise erzeugt, wobei die Dichte der Preßlinge etwa 7 g/cm³ betrug.Then 0.60% graphite powder and 1.0% finely divided Cu as well as approx. 1% common lubricant were added to this steel powder. After these components had been uniformly mixed, compacts were produced in a conventional manner by cold pressing, the density of the compacts being about 7 g / cm 3.

Nach dem Sintern dieser Preßlinge bei etwa 1120oC ergaben sich an den Fertigteilen Maßabweichungen von weniger als +/- 0,03 % gegenüber den Preßlingsmaßen. Die Teile waren bei Abkühlung unter einer Stickstoffdusche nach dem Sintern vollständig martensitisch durchgehärtet und wiesen eine Zugfestigkeit von über 820 N/mm² bei einer Härte von ca. 400 HB.After sintering these compacts at about 1120 o C, there were dimensional deviations of less than +/- 0.03% compared to the compact dimensions. The parts were completely martensitically hardened after cooling under a nitrogen shower after sintering and had a tensile strength of over 820 N / mm² with a hardness of approx. 400 HB.

Bei einem weiteren Versuch mit dieser erfindungsgemäßen Metallpulvermischung wurde eine Zweifachpreß- und -Sintertechnik mit den Temperaturstufen 800oC und 1120oC auf die Preßlinge angewendet. Dabei ergaben sich durch die beiden Sintervorgänge wiederum Maßabweichungen von jeweils weniger als 0,03 %. Die Zugfestigkeit lag bei ca. 900 N/mm², die Härte bei ca. 450 HB.In another experiment with this invention a metal powder mixture and Zweifachpreß- -Sintertechnik with the temperature levels 800 o C and 1120 o C was applied to the compacts. The two sintering processes resulted in dimensional deviations of less than 0.03% each. The tensile strength was approx. 900 N / mm², the hardness approx. 450 HB.

Die Vorteile der erfindungsgemaßen Metallpulvermischung sind insbesondere darin zu sehen, daß maßkonstante Sinterteile hergestellt werden können, die keine aufwendige mechanische, umformtechnische oder wärmetechnische Nachbehandlung nach dem Sintern mehr erfordern und wobei das Stahlpulver auf preisgünstige Weise herstellbar ist. Es ist nämlich für die gewählte Legierung der Erfindung eine Wasserverdüsung mit anschließender Reduktion unter H₂-Atmosphäre anwendbar. Eine kostenaufwendige Vakuumglühung, wie sie bei anderen fertiglegierten wasserverdüsten Metallpulvern für den gleichen Einsatzzweck notwendig ist, kann hierbei entfallen. Die preiswerte Herstellung ist darüberhinaus noch verbunden mit der Erzielung hervorragender Festigkeits- und Verschleißeigenschaften.The advantages of the metal powder mixture according to the invention can be seen in particular in the fact that dimensionally constant sintered parts can be produced which no longer require complex mechanical, shaping or thermal aftertreatment after sintering, and the steel powder can be produced inexpensively. It is namely applicable to the selected alloy of the invention, a water atomization with subsequent reduction under an H₂ atmosphere. This eliminates the need for costly vacuum annealing, as is required for other fully alloyed water-atomized metal powders for the same purpose. The inexpensive production is also associated with the achievement of excellent strength and wear properties.

Claims (8)

  1. Method for manufacturing high-strength sintered parts by sintering compacts which have been produced from a steel alloy powder containing Ni and with (in % by weight)
       max. 0.02 % C
       max. 0.03 % Si
       0.05 - 0.25 % Mn
       0.2 - 1.5 % Mo
       the remainder iron and usual impurities,
    fine Cu having been added to the steel alloy powder in a quantity of 0.7 - 1.5 % and graphite in a quantity of 0.3 - 0.7 %,
    on the condition
    that the Ni content of the steel alloy powder, which was produced by spraying a steel melt with water, is above 2.5 % to a maximum of 5.0 %,
    that the quantitative ratio of Cu : graphite is maintained in the range from 1.4 to 2.5
    and
    that the sintered parts undergo martensite full hardening by being cooled in air or under a gas spray without a subsequent heat treatment following sintering.
  2. Method according to claim 1,
    characterised in that the Ni content is maintained in the range from 3.0 to 4.0 %.
  3. Metal powder mixture for use in the method according to claim 1, manufactured from a steel alloy containing Ni and with (in % by weight)
       max. 0.02 % C
       max. 0.03 % Si
       0.05 - 0.25 % Mn
       0.2 - 1.5 % Mo
       the remainder iron and usual impurities,
    with fine Cu being added in a quantity of 0.7 to 1.5 % and graphite in a quantity of 0.3 - 0.7 %, the steel powder produced by spraying with water having a Ni content above 2.5 % to a maximum of 5.0 % and the quantitative ratio of Cu : graphite being maintained in the range from 1.4 to 2.5.
  4. Metal powder mixture according to claim 3, characterised in that the Mn content is restricted to values of 0.10 - 0.20.
  5. Metal powder mixture according to claim 3 or 4,
    characterised in that the Ni content is restricted to 3.0 - 4.0 %.
  6. Metal powder mixture according to one of claims 3 to 5,
    characterised in that the Mo content is restricted to values of 0.5 - 1.0 %.
  7. Metal powder mixture according to one of claims 3 to 6,
    characterised in that the graphite addition is restricted to 0.5 - 0.6 %.
  8. Metal powder mixture according to one of claims 3 to 7,
    characterised in that the Cu : graphite ratio is 2.
EP90914132A 1990-01-19 1990-09-28 Metal-powder blend Expired - Lifetime EP0597832B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4001900 1990-01-19
DE4001900A DE4001900A1 (en) 1990-01-19 1990-01-19 METAL POWDER MIXING
PCT/DE1990/000751 WO1991010753A1 (en) 1990-01-19 1990-09-28 Metal-powder blend

Publications (2)

Publication Number Publication Date
EP0597832A1 EP0597832A1 (en) 1994-05-25
EP0597832B1 true EP0597832B1 (en) 1995-06-28

Family

ID=6398606

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90914132A Expired - Lifetime EP0597832B1 (en) 1990-01-19 1990-09-28 Metal-powder blend

Country Status (6)

Country Link
EP (1) EP0597832B1 (en)
JP (1) JP2908018B2 (en)
AT (1) ATE124467T1 (en)
CA (1) CA2074193C (en)
DE (2) DE4001900A1 (en)
WO (1) WO1991010753A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203135D0 (en) 2002-10-23 2002-10-23 Hoeganaes Ab Dimensional control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1298614A (en) * 1961-08-08 1962-07-13 Mannesmann Ag Process for the production of sintered pressed bodies
DE1207634B (en) * 1961-11-30 1965-12-23 Birmingham Small Arms Co Ltd Powder mixture for the production of steel objects according to known powder metallurgical processes
GB1162702A (en) * 1965-09-14 1969-08-27 Hoganas Billesholms Ab Low Alloy Iron Powder and process of preparing the same
GB1305608A (en) * 1970-03-18 1973-02-07
US4170474A (en) * 1978-10-23 1979-10-09 Pitney-Bowes Powder metal composition
JPS6075501A (en) * 1983-09-29 1985-04-27 Kawasaki Steel Corp Alloy steel powder for high strength sintered parts

Also Published As

Publication number Publication date
DE59009358D1 (en) 1995-08-03
DE4001900A1 (en) 1991-07-25
CA2074193A1 (en) 1991-07-20
WO1991010753A1 (en) 1991-07-25
CA2074193C (en) 2003-09-16
EP0597832A1 (en) 1994-05-25
JPH05503318A (en) 1993-06-03
JP2908018B2 (en) 1999-06-21
ATE124467T1 (en) 1995-07-15

Similar Documents

Publication Publication Date Title
DE2943601C2 (en) Pre-alloyed steel powder for the powder metallurgical production of high-strength parts
DE112005000921B4 (en) A process for producing an iron-based sintered alloy and an iron-based sintered alloy element
DE69913650T2 (en) STEEL POWDER FOR THE PRODUCTION OF Sintered Products
EP0097737B1 (en) Powder metallurgy process for producing parts having high strength and hardness from si-mn or si-mn-c alloyed steel
EP2379763B1 (en) Iron-carbon master alloy
DE102013004817B4 (en) Sintered alloy and process for its manufacture
DE4031408A1 (en) METHOD FOR PRODUCING A SINTERED MACHINE PART
DE112009002701B4 (en) Process for producing a sintered iron alloy
DE102005008789A1 (en) Process for producing a sintered body with metal powder and a sintered body produced therefrom
DE19756608A1 (en) Liquid phase sintered ferrous metal article production
DE2650766A1 (en) STEEL ALLOY POWDER
DE19651740B4 (en) Process for producing an iron sintered alloy with a quenching structure
DE2414909A1 (en) STEEL POWDER
DE3206475C2 (en)
DE3232001A1 (en) WEAR-RESISTANT SINTER ALLOY, METHOD FOR THE PRODUCTION THEREOF AND THE SOCKET PRODUCED THEREOF
EP0747154A1 (en) Process and apparatus for producing sintered parts
DE2049546A1 (en)
DE19711642A1 (en) Wear resistant steel matrix composite material production
DE3313736A1 (en) HIGH-STRENGTH MOLDED BODY FROM A MECHANICALLY MACHINABLE POWDER METAL ALLOY ON IRON-BASED, AND METHOD FOR THE PRODUCTION THEREOF
DE69737265T2 (en) MANUFACTURE NICKEL-KEEPING, SINTERED, FIXED, FERITIC STAINLESS STEEL
EP0597832B1 (en) Metal-powder blend
EP0719349B1 (en) Process of producing sintered articles
DE4001899C1 (en)
EP0564778B1 (en) Material for sintering
EP0263373A2 (en) Process for manufacturing a wear-resistant sintered alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19941013

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950628

Ref country code: FR

Effective date: 19950628

Ref country code: GB

Effective date: 19950628

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950628

REF Corresponds to:

Ref document number: 124467

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009358

Country of ref document: DE

Date of ref document: 19950803

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MANNESMANN AKTIENGESELLSCHAFT TRANSFER- QMP METAL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: QMP METAL POWDERS GMBH

Free format text: QMP METAL POWDERS GMBH#OHLERKIRCHWEG 66#41069 MOENCHENGLADBACH (DE) -TRANSFER TO- QMP METAL POWDERS GMBH#OHLERKIRCHWEG 66#41069 MOENCHENGLADBACH (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070914

Year of fee payment: 18

Ref country code: AT

Payment date: 20070917

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070913

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090922

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100928