EP2379763B1 - Iron-carbon master alloy - Google Patents

Iron-carbon master alloy Download PDF

Info

Publication number
EP2379763B1
EP2379763B1 EP09799095.6A EP09799095A EP2379763B1 EP 2379763 B1 EP2379763 B1 EP 2379763B1 EP 09799095 A EP09799095 A EP 09799095A EP 2379763 B1 EP2379763 B1 EP 2379763B1
Authority
EP
European Patent Office
Prior art keywords
mass
precursor
iron
master
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09799095.6A
Other languages
German (de)
French (fr)
Other versions
EP2379763A1 (en
Inventor
Christian Gierl
Herbert Danninger
Yousef Hemmatpour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Wien
Original Assignee
Technische Universitaet Wien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Wien filed Critical Technische Universitaet Wien
Publication of EP2379763A1 publication Critical patent/EP2379763A1/en
Application granted granted Critical
Publication of EP2379763B1 publication Critical patent/EP2379763B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C35/00Master alloys for iron or steel
    • C22C35/005Master alloys for iron or steel based on iron, e.g. ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering

Definitions

  • Iron-based powder metallurgy moldings are increasingly being used for high mechanical stresses, viz. in automobile engines and transmissions. Starting from powder mixtures, the parts are pressed axially in pressing tools and then sintered at temperatures of about 1120-1300 ° C under inert gas. In many cases, a heat treatment of the blank, such as e.g. Hardening, carburizing etc., on. It is important to achieve the highest possible relative density - i. low residual porosity - even during pressing, since the porosity during sintering of these moldings hardly decreases and the mechanical properties with higher density correspondingly lower porosity significantly better.
  • Residual iron provided, which has a particle size of> 20 microns and a hardness of ⁇ 350 HV 0.01.
  • carbon master alloy which is similar to the base powder in terms of particle size distribution, but has a high C content, namely up to 8% by mass
  • the carbon diffuses during sintering in the particles of the base powder and is thus distributed homogeneously in the material.
  • this Masteralloy is harder than the base powder, it is much softer than carbide powder. Since only a small percentage of Masteralloy is mixed with the preferably C-free base powder, the effect on pressibility is marginal.
  • the carbon is present in the Masteralloy as cementite Fe 3 C, with a density of 7.4 g.cm -3 .
  • this density practically does not change, above all, no additional pores are formed. That is, the achievable density is limited only by the compressibility of the powder itself - and possibly by the presence of organic lubricants - but not by the volume requirement of the carbon carrier. Since the particles of the Masteralloys have similar size and geometry as the base powder, the segregation tendency is minimal, so dusting can not occur.
  • the essential point in the process according to the invention is the soft annealing of the precursor.
  • the preparation of the powdery C-rich precursor is carried out by atomizing a melt of C and Fe or steel.
  • This precursor is still superficially oxidized after water atomization and hardened by the rapid cooling, it is therefore preferably annealed in a furnace under inert gas reducing reductive.
  • the powdery C-rich precursor is prepared by mixing finely divided Fe or steel powder with C and a subsequent annealing treatment which solubilizes the carbon in the iron powder.
  • a subsequent annealing treatment which solubilizes the carbon in the iron powder.
  • the annealed precursor with a cooling rate of max. 3 ° C / min is cooled to a temperature of 500 ° C and then increases the cooling rate.
  • the goal of the heat treatment is to provide non-cure or low cure discrete areas of cementite or bainite and coarsened discrete areas, respectively.
  • annealing and cooling of the precursor takes place under a protective gas atmosphere (reducing or neutral), which is particularly effective in superficial oxidation of the precursor.
  • a protective gas atmosphere reducing or neutral
  • the processing of the finished master alloy can be done according to the established techniques of iron powder metallurgy, i. by mixing with base powder, die pressing and sintering; Changes to the systems or the process control are not necessary. Also, the new consolidation techniques such as hot pressing, high velocity compaction etc. are easily possible.
  • KIP 4100 is a prior art Cr alloyed iron powder JP 62063647 used steels.
  • Master Original 1 446 ⁇ 139 Master 1 annealed: 297 ⁇ 86 Master Original 2: 352 ⁇ 60 Master 2 annealed: 250 ⁇ 63 Master Original 3: 211 ⁇ 66 Master 3 annealed: 111 ⁇ 45
  • annealed master alloy according to the present invention results in improved properties over unannealed master alloys ("Master Original"). Although the values are somewhat lower than with direct admixture of carbon, a significant drawback of direct admixture, namely segregation, is particularly discouraged in large scale use become.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Pulvermetallurgische Formteile auf Eisenbasis werden zunehmend für hohe mechanische Beanspruchungen eingesetzt, v.a. in Automobilmotoren und -getrieben. Ausgehend von Pulvermischungen werden die Teile in Presswerkzeugen axial gepresst und anschließend bei Temperaturen von etwa 1120-1300°C unter Schutzgas gesintert. In vielen Fällen schließt sich eine Wärmebehandlung des Rohlings, wie z.B. Härten, Aufkohlen etc., an. Wichtig ist die Erzielung möglichst hoher relativer Dichte - d.h. geringer Restporosität - schon beim Pressen, da die Porosität beim Sintern dieser Formteile kaum mehr abnimmt und die mechanischen Eigenschaften mit höherer Dichte entsprechend geringerer Porosität signifikant besser werden.Iron-based powder metallurgy moldings are increasingly being used for high mechanical stresses, viz. in automobile engines and transmissions. Starting from powder mixtures, the parts are pressed axially in pressing tools and then sintered at temperatures of about 1120-1300 ° C under inert gas. In many cases, a heat treatment of the blank, such as e.g. Hardening, carburizing etc., on. It is important to achieve the highest possible relative density - i. low residual porosity - even during pressing, since the porosity during sintering of these moldings hardly decreases and the mechanical properties with higher density correspondingly lower porosity significantly better.

Für hochbeanspruchte Präzisionsteile kommen vor allem legierte Sinterstähle mit C-Gehalten von 0,3 bis 0,7% zum Einsatz. Traditionell wird der Kohlenstoff durch Zumischen von feinem Naturgraphit hoher Reinheit eingebracht, der sich beim Sintern in der Eisen- oder Stahlmatrix auflöst. Dieses Gemisch aus Metall- und Graphitpulver ist gut pressbar und ergibt beim Pressen hohe relative Dichten. Allerdings wird beim Pressen auf sehr hohe relative Dichten (>94%) der Volumsbedarf des Graphits hinderlich. Graphit, mit einer Dichte von nur ca. 2,2 gcm-3 gegenüber 7,86 g.cm-3 bei Eisen, nimmt im Pressling relativ viel Platz ein; wenn beim Sintern der Graphit im Eisen in Lösung geht, bleiben an diesen Stellen Poren zurück. Vor allem bei modernen Pressverfahren wie Warmpressen oder Hochgeschwindigkeitspressen ist der Raumbedarf des Graphits ein die erreichbaren Dichten massiv begrenzender Faktor.For highly stressed precision parts, especially alloyed sintered steels with C-contents of 0.3 to 0.7% are used. Traditionally, the carbon is incorporated by admixing fine natural graphite of high purity, which dissolves in the iron or steel matrix during sintering. This mixture of metal and graphite powder is easy to press and results in high relative densities during pressing. However, when pressing to very high relative densities (> 94%), the volume requirement of the graphite hinders. Graphite, with a density of only about 2.2 gcm -3 compared to 7.86 g.cm -3 for iron, occupies a relatively large space in the compact; if the graphite in the iron goes into solution during sintering, pores remain at these points. Especially in modern pressing processes such as hot pressing or high-speed presses, the space requirement of the graphite is a massively limiting factor of the achievable densities.

Weiters neigen die feinen Graphitpulver zur Entmischung durch Stauben ("dusting"); Mischungen mit >0,5% Graphit sind hier zunehmend schwierig zu verarbeiten. Grundsätzlich wäre die Verwendung von Pulvern, die den C-Gehalt bereits in sich tragen - sog. vorlegierter Pulver - möglich, diese Lösung, die für die Einbringung metallischer Legierungselemente bereits erfolgreich angewendet wird, kommt aber für Kohlenstoff wegen der höheren Härte und damit schlechteren Pressbarkeit der entsprechenden Pulver für Präzisionsteile nicht in Frage; Kohlenstoff verfestigt das Eisengitter sehr viel stärker als metallische Legierungszusätze. Einbringen des Kohlenstoffs über zugemischte Karbide wurde mehrfach versucht; die feinen und sehr harten Karbide verursachen aber untragbaren Verschleiß der Pressmatrizen, außerdem neigen solche Pulver auch stark zur Entmischung.Furthermore, the fine graphite powders tend to segregate by dusting; Mixtures with> 0.5% graphite are increasingly difficult to process here. In principle, the use of powders which already carry the C content - so-called pre-alloyed powder - would be possible, but this solution, which is already successfully used for introducing metallic alloying elements, comes for carbon because of the higher hardness and thus poorer pressability the corresponding powder for precision parts out of the question; Carbon solidifies the iron lattice much more strongly than metallic alloying additives. Introduction of the carbon over mixed carbides has been tried several times; However, the fine and very hard carbides cause unacceptable wear of the press matrices, also such powders are also strong segregation.

Aus der JP 62063647 ist ein Eisen-Kohlenstoff Masteralloy Fe-Y%C mit 0,5 ≤ Y ≤ 6,7 bekannt. Dieses Pulver wird in einer Menge von Z% einer Legierung auf Eisenbasis enthaltend A% Sauerstoff zugesetzt, wobei Y x Z ≥ 0,75 x A sei. Laut Beschreibung wird für das Masteralloy ein Cr-legiertes Eisenpulver verwendet. Eine Wärmebehandlung erfolgt erst nach dem Sintern der Legierung.From the JP 62063647 is an iron-carbon Masteralloy Fe-Y% C with 0.5 ≤ Y ≤ 6.7 known. This powder is added in an amount of Z% of an iron-based alloy containing A% oxygen, where Y x Z ≥ 0.75 x A. According to the description, a Cr alloyed iron powder is used for the master alloy. A heat treatment takes place only after the sintering of the alloy.

Gemäß der vorliegenden Erfindung wird nun ein Eisen-Kohlenstoff Masteralloy mit einem C-Gehalt von zwischen 3 und 8 %-Masse und einer Obergrenze von Legierungsmetallen an

  • Ni < 10 %-Masse,
  • P < 4 %-Masse,
  • Cr < 5 %-Masse, vorzugsweise < 1 %-Masse,
  • Mn < 5 %-Masse, vorzugsweise < 1 %-Masse,
  • Mo < 3 %-Masse,
  • W < 3 %-Masse,
  • Cu < 1 %-Masse,
According to the present invention, an iron-carbon masteralloy having a C content of between 3 and 8% by weight and an upper limit of alloying metals will now be mentioned
  • Ni <10% mass,
  • P <4% mass,
  • Cr <5% mass, preferably <1% mass,
  • Mn <5% mass, preferably <1% mass,
  • Mo <3% mass,
  • W <3% mass,
  • Cu <1% mass,

Rest Eisen, zur Verfügung gestellt, welcher eine Teilchengröße von > 20 µm und eine Härte von < 350 HV 0,01 aufweist. Erfindungsgemäß wird Kohlenstoff über ein Masteralloy in die zu bildende Legierung eingebracht, welches Masteralloy von der Teilchengrößenverteilung her dem Basispulver ähnlich ist, aber hohen C-Gehalt aufweist, nämlich bis zu 8 Masse% ("Kohlenstoff-Masteralloy"). Aus den Teilchen dieses Masteralloys diffundiert der Kohlenstoff beim Sintern in die Teilchen des Basispulvers und wird dadurch im Werkstoff homogen verteilt. Dieses Masteralloy ist zwar härter als das Basispulver, aber sehr viel weicher als z.B. Karbidpulver. Da nur ein geringer Prozentsatz an Masteralloy mit dem vorzugsweise C-freien Basispulver gemischt wird, ist der Effekt auf die Pressbarkeit marginal. Der Kohlenstoff ist im Masteralloy als Zementit Fe3C vorhanden, mit einer Dichte von 7,4 g.cm-3. Bei der homogenen Verteilung des C während der Sinterung ändert sich diese Dichte praktisch nicht, vor allem werden keine zusätzlichen Poren gebildet. D.h. die erreichbare Pressdichte wird nur durch die Verpressbarkeit des Pulvers selbst - und eventuell durch das Vorhandensein von organischen Gleitmitteln - begrenzt, aber nicht durch den Volumsbedarf des Kohlenstoffträgers. Da die Teilchen des Masteralloys ähnliche Größe und Geometrie aufweisen wie das Basispulver, ist die Entmischungstendenz minimal, auch dusting kann daher nicht auftreten.Residual iron, provided, which has a particle size of> 20 microns and a hardness of <350 HV 0.01. According to the invention, carbon is introduced into the alloy to be formed via a master alloy, which is similar to the base powder in terms of particle size distribution, but has a high C content, namely up to 8% by mass ("carbon master alloy"). From the particles of this master alloy, the carbon diffuses during sintering in the particles of the base powder and is thus distributed homogeneously in the material. Although this Masteralloy is harder than the base powder, it is much softer than carbide powder. Since only a small percentage of Masteralloy is mixed with the preferably C-free base powder, the effect on pressibility is marginal. The carbon is present in the Masteralloy as cementite Fe 3 C, with a density of 7.4 g.cm -3 . In the homogeneous distribution of the C during sintering, this density practically does not change, above all, no additional pores are formed. That is, the achievable density is limited only by the compressibility of the powder itself - and possibly by the presence of organic lubricants - but not by the volume requirement of the carbon carrier. Since the particles of the Masteralloys have similar size and geometry as the base powder, the segregation tendency is minimal, so dusting can not occur.

Vorzugsweise weist das erfindungsgemäße Masteralloy einen C-Gehalt von zwischen 3 und 8 %-Masse, besonders bevorzugt einen C-Gehalt von zwischen 4 und 6 %-Masse und einer Obergrenze von Legierungsmetallen

  • Ni < 5 %-Masse,
  • P < 2 %-Masse,
  • Cr < 0,5 %-Masse,
  • Mn < 0,5 %-Masse,
  • Mo < 1,5 %-Masse,
  • W < 1,5 %-Masse,
  • Cu < 0,5 %-Masse.
auf. Die Obergrenzen der Legierungsmetalle ergeben sich aus den Einflüssen der verschiedenen Elemente, es ist danach zu trachten, dass das Masteralloy nicht zu hart wird um die spätere Verpressung mit dem Basispulver nicht zu beeinträchtigen.Preferably, the masteralloy according to the invention has a C content of between 3 and 8% by weight, particularly preferably a C content of between 4 and 6% by weight and an upper limit of alloying metals
  • Ni <5% mass,
  • P <2% mass,
  • Cr <0.5% mass,
  • Mn <0.5% mass,
  • Mo <1.5% mass,
  • W <1.5% mass,
  • Cu <0.5% mass.
on. The upper limits of the alloy metals result from the influences of the various elements, it is to be sought that the Masteralloy not too hard in order not to interfere with the subsequent compression with the base powder.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Herstellung eines derartigen Eisen-Kohlenstoff Masteralloys zu Verfügung gestellt, welches die Schritte umfaßt:

  • Herstellen eines pulverförmigen C-reichen Vorprodukts,
  • ggf. Vorglühen des Vorprodukts,
  • ggf. Deagglomerieren des Vorprodukts,
  • Glühen des pulverförmigen C-reichen Vorprodukts bis zu einer Temperatur von mindestens 80°C über der γ-Temperatur des der Zusammensetzung des Vorprodukts entsprechenden Zustandsdiagramms,
  • Abkühlen des Vorprodukts mit einer Abkühlgeschwindigkeit von max. 3°C/min.
According to another embodiment of the present invention, there is provided a process for preparing such an iron-carbon master alloy comprising the steps of:
  • Producing a powdery C-rich precursor,
  • if necessary preheating the precursor,
  • optionally deagglomerating the precursor,
  • Annealing the powdery C-rich precursor up to a temperature of at least 80 ° C above the γ-temperature of the state of the composition of the precursor corresponding state diagram,
  • Cooling of the precursor with a cooling rate of max. 3 ° C / min.

Der wesentliche Punkt im erfindungsgemäßen Verfahren ist das Weichglühen des Vorprodukts.The essential point in the process according to the invention is the soft annealing of the precursor.

Vorzugsweise erfolgt die Herstellung des pulverförmigen C-reiche Vorprodukts durch Verdüsen einer Schmelze von C und Fe oder Stahl. Dieses Vorprodukt ist nach der Wasserverdüsung noch oberflächlich oxidiert und durch die rasche Abkühlung gehärtet, es wird daher vorzugsweise in einem Ofen unter Schutzgas reduzierend weichgeglüht.Preferably, the preparation of the powdery C-rich precursor is carried out by atomizing a melt of C and Fe or steel. This precursor is still superficially oxidized after water atomization and hardened by the rapid cooling, it is therefore preferably annealed in a furnace under inert gas reducing reductive.

Alternativ ist es möglich, dass das pulverförmige C-reiche Vorprodukt durch Vermischen von feinteiligen Fe- oder Stahlpulver mit C hergestellt wird und einer anschließenden Glühbehandlung, die den Kohlenstoff im Eisenpulver in Lösung bringt. Wie sich gezeigt hatte, können dabei überraschenderweise relativ hohe Gehalte an C - bis zu 8%-Masse - in der Eisenmatrix gelöst werden.Alternatively, it is possible that the powdery C-rich precursor is prepared by mixing finely divided Fe or steel powder with C and a subsequent annealing treatment which solubilizes the carbon in the iron powder. As it turned out, surprisingly, relatively high contents of C - up to 8% mass - can be dissolved in the iron matrix.

Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das geglühte Vorprodukt mit einer Abkühlgeschwindigkeit von max. 3°C/min bis zu einer Temperatur von 500°C abgekühlt wird und danach die Abkühlgeschwindigkeit erhöht. Besonders bevorzugt wird das geglühte Vorprodukt mit einer Abkühlgeschwindigkeit von max. 0,5°C/min abgekühlt. Durch das langsame Abkühlen bilden sich in der Mikrostruktur des Masteralloys runde Zementitteilchen. Das Ziel der Wärmebehandlung ist die Schaffung von härtungsunwirksamen bzw. wenig härtungswirksamen diskreten Bereichen von Zementit oder Bainit bzw. vergröberte diskrete Bereiche.According to a preferred embodiment of the present invention, the annealed precursor with a cooling rate of max. 3 ° C / min is cooled to a temperature of 500 ° C and then increases the cooling rate. Particularly preferred is the annealed precursor with a cooling rate of max. Cooled to 0.5 ° C / min. Due to the slow cooling, round cementite particles form in the microstructure of the master alloy. The goal of the heat treatment is to provide non-cure or low cure discrete areas of cementite or bainite and coarsened discrete areas, respectively.

Vorzugsweise findet Glühen und Abkühlen des Vorprodukts unter Schutzgasatmosphäre (reduzierend oder neutral) statt, dies ist insbesondere bei oberflächlicher Oxidation des Vorprodukts zielführend.Preferably, annealing and cooling of the precursor takes place under a protective gas atmosphere (reducing or neutral), which is particularly effective in superficial oxidation of the precursor.

Die Verarbeitung des fertigen Masteralloys kann nach den eingeführten Techniken der Eisenpulvermetallurgie geschehen, d.h. durch Mischen mit Basispulver, Matrizenpressen und Sintern; Änderungen an den Anlagen oder der Prozessführung sind nicht notwendig. Auch die neuen Konsolidierungstechniken wie Warmpressen, high velocity compaction etc. sind problemlos möglich.The processing of the finished master alloy can be done according to the established techniques of iron powder metallurgy, i. by mixing with base powder, die pressing and sintering; Changes to the systems or the process control are not necessary. Also, the new consolidation techniques such as hot pressing, high velocity compaction etc. are easily possible.

Die vorliegende Erfindung wird nun anhand der folgenden Beispiele bzw. Vergleichsversuche näher erläutert, wobei sie nicht auf die angeführten Beispiele beschränkt ist.The present invention will now be explained in more detail with reference to the following examples and comparative experiments, wherein it is not limited to the examples given.

1) Herstellung von Masterlegierungen:1) Preparation of master alloys:

  1. a) Mischen von KIP 4100 + 5% C → Glühen bei 1100°C in N2 während 60 min → Master Original 1 (Vergleichsmischung entsprechend Stand der Technik)a) Mixing of KIP 4100 + 5% C → Annealing at 1100 ° C. in N 2 for 60 min → Master Original 1 (comparative mixture according to the prior art)
  2. b) Mischen von AstaloyMo (Fe-1,5%Mo, Höganäs AB) + 5% C → Glühen bei 1100°C in N2 während 60 min → Master Original 2b) Mixing of AstaloyMo (Fe-1.5% Mo, Höganäs AB) + 5% C → Annealing at 1100 ° C in N 2 for 60 min → Master Original 2
  3. c) Mischen von ASC<45 µm (Fe, ASC100.29-Siebfraktion < 45 µm, Höganäs AB) + 5% C → Glühen bei 1100°C in N2 während 60 min → Master Original 3c) Mixing ASC <45 μm (Fe, ASC100.29 sieve fraction <45 μm, Höganäs AB) + 5% C → Annealing at 1100 ° C. in N 2 for 60 min → Master Original 3

Die 3 Master wurden deagglomeriert und bei 900°C geglüht, gefolgt von langsamer Ofenabkühlung. Bei KIP 4100 handelt es sich um ein Cr-legiertes Eisenpulver entsprechend dem Stand der Technik JP 62063647 verwendeten Stählen.The 3 masters were deagglomerated and annealed at 900 ° C, followed by slow oven cooling. KIP 4100 is a prior art Cr alloyed iron powder JP 62063647 used steels.

2) C-Messung2) C measurement

C-Gehalte:C contents: Master Original 1:Master Original 1: 4,575%C4.575% C Master 1 geglüht:Master 1 annealed: 4,375%C4.375% C Master Original 2:Master Original 2: 4,66% C4.66% C Master 2 geglüht:Master 2 annealed: 4,44% C4.44% C Master Original 3:Master Original 3: 4,58% C4.58% C Master 3 geglüht:Master 3 annealed: 4,495% C4,495% C

3) Mikrohärtemessung (HV0,01)3) Microhardness measurement (HV0.01)

Master Original 1:Master Original 1: 446±139446 ± 139 Master 1 geglüht:Master 1 annealed: 297±86297 ± 86 Master Original 2:Master Original 2: 352±60352 ± 60 Master 2 geglüht:Master 2 annealed: 250±63250 ± 63 Master Original 3:Master Original 3: 211±66211 ± 66 Master 3 geglüht:Master 3 annealed: 111±45111 ± 45

4) Mischen der Masterlegierungen mit dem entsprechenden Basispulver auf einen Zielkohlenstoff von 0,55%C4) Mix the master alloys with the corresponding base powder to a target carbon of 0.55% C

  1. a) Von:
    • KIP4100 + Master Original 1
    • KIP4100 + Master 1 geglüht (erfindungsgemäß)
    • KIP4100 + 0,55% C (Graphit UF4, Standardmaterial)
    a) From:
    • KIP4100 + Master Original 1
    • KIP4100 + Master 1 annealed (according to the invention)
    • KIP4100 + 0.55% C (graphite UF4, standard material)

Verpressen von Schlagarbeitsproben bei 200, 400, 600 und 800 MPa, Verpressen einer Zugprobe bei 600 MPa, Sintern bei 1200°C während 60 min unter N2. Geprüft wurden Gründichte, Sinterdichte, Dehngrenze und Zugfestigkeit. Pressdruck [MPa] Gründichte [g/cm3] Sinterdichte [g/cm3] Dehngrenze RP0,2 [MPa] Zugfestigkeit [MPa] KIP + Master 1 geglüht 200 5,66 5,664 400 6,50 6,499 600 6,90 6,902 800 7,07 7,074 600 MPA Zug 6,85 6,848 471,1 581,1 KIP + Master 1Oginal 200 5,546 5,747 400 6,285 6,501 600 6,769 6,968 800 7,029 7,205 600 MPA Zug 6,829 6,990 492,5 586,2 KIP +0,55 UF4 200 5,58 6,460 400 6,39 6,654 600 6,80 7,066 800 7,04 7,273 600 MPA Zug 6,95 7,099 506,4 612,1 Pressing impact work samples at 200, 400, 600 and 800 MPa, compressing a tensile specimen at 600 MPa, sintering at 1200 ° C for 60 minutes under N 2 . Green density, sintered density, yield strength and tensile strength were tested. Pressing pressure [MPa] Green density [g / cm 3 ] Sintered density [g / cm 3 ] Yield strength R P0,2 [MPa] Tensile strength [MPa] KIP + Master 1 annealed 200 5.66 5,664 400 6.50 6,499 600 6.90 6,902 800 7.07 7,074 600 MPA train 6.85 6,848 471.1 581.1 KIP + Master 1Oginal 200 5,546 5,747 400 6,285 6,501 600 6,769 6,968 800 7,029 7,205 600 MPA train 6.829 6,990 492.5 586.2 KIP +0.55 UF4 200 5.58 6.460 400 6.39 6,654 600 6.80 7,066 800 7.04 7,273 600 MPA train 6.95 7,099 506.4 612.1

Die Gründichte, und damit entsprechend auch die Verpressbarkeit, verhält sich wie erwartet, das geglühte Pulver zeigt signifikant höhere Gründichten, jedoch hebt sich dieser Vorteil durch offenbar verbesserte Sinterung beim ungeglühtem Pulver wieder auf, sodass bei beiden Varianten praktisch idente Eigenschaften erzielt werden. Die Referenzprobe mit lediglich zugemischtem Kohlenstoff (UF4) und ohne Wärmebehandlung, welche die herkömmliche Verarbeitungsweise darstellt, hat zwar noch geringere Gründichten, welche aber beim Sintern in deutlich höhere Dichten übergehen. Daraus folgt, dass das erfindungsgemäße Verfahren bei dem im Stand der Technik JP 62063647 verwendeten Cr-Mn-Mo-legierten Eisenpulver bei Zugabe einer hochkohlenstoffhaltigen Masterlegierung keinerlei Verbesserung zeigt.
b) Von:

  • Astaloy Mo + Master Original 2
  • Astaloy Mo + Master 2 geglüht (erfindungsgemäß)
  • Astaloy Mo + 0,55% C (Graphit UF4, Standardmaterial)
The green density, and thus also the compressibility, behaves as expected, the annealed powder shows significantly higher green densities, but this advantage is offset by apparently improved sintering of the unannealed powder, so that in both variants virtually identical properties are achieved. The reference sample with only admixed carbon (UF4) and without heat treatment, which represents the conventional method of processing, has even lower green densities, which, however, change to significantly higher densities during sintering. It follows that the inventive method in the in the prior art JP 62063647 used Cr-Mn-Mo alloyed iron powder shows no improvement with the addition of a high-carbon-containing master alloy.
b) From:
  • Astaloy Mo + Master Original 2
  • Astaloy Mo + Master 2 annealed (according to the invention)
  • Astaloy Mo + 0.55% C (Graphite UF4, standard material)

Verpressen von Schlagarbeitsproben bei 200, 400, 600 und 800 MPa, Verpressen Zugproben 600 MPa, Sintern bei 1200°C während 60 min unter N2. Geprüft wurden Gründichte, Sinterdichte, Dehngrenze und Zugfestigkeit. Pressdruck [MPa] Gründichte [g/cm3] Sinterdichte [g/cm3] Dehngrenze RP0,2 [MPa] Zugfestigkeit [MPa] AstaloyMo + Master 2 geglüht 200 5,74 5,92 400 6,54 6,66 600 6,95 7,08 800 7,17 7,30 600 MPa Zug 6,92 7,06 411,2 501,6 AstaloyMo + Master 2 Original 200 5,75 5,90 400 6,51 6,66 600 6,92 7,06 800 7,14 7,31 600 MPa Zug 6,89 7,02 406,5 473,6 AstaloyMo +0,55 UF4 200 5,83 5,93 400 6,60 6,70 600 7,01 7,12 800 7,16 7,30 600 MPa Zug 6,99 7,08 424,0 511,0 c) Von:

  • ASC<45 µm + Master Original 3
  • ASC<45 µm + Master 3 geglüht (erfindungsgemäß)
  • ASC<45 µm + 0,55% C (Graphit UF4, Standardmaterial)
Pressing impact work samples at 200, 400, 600 and 800 MPa, compressing tensile specimens 600 MPa, sintering at 1200 ° C for 60 min under N 2 . Green density, sintered density, yield strength and tensile strength were tested. Pressing pressure [MPa] Green density [g / cm 3 ] Sintered density [g / cm 3 ] Yield strength R P0,2 [MPa] Tensile strength [MPa] AstaloyMo + Master 2 annealed 200 5.74 5.92 400 6.54 6.66 600 6.95 7.08 800 7.17 7.30 600 MPa train 6.92 7.06 411.2 501.6 AstaloyMo + Master 2 Original 200 5.75 5.90 400 6.51 6.66 600 6.92 7.06 800 7.14 7.31 600 MPa train 6.89 7.02 406.5 473.6 AstaloyMo +0.55 UF4 200 5.83 5.93 400 6.60 6.70 600 7.01 7.12 800 7.16 7.30 600 MPa train 6.99 7.08 424.0 511.0 c) From:
  • ASC <45 μm + Master Original 3
  • ASC <45 μm + Master 3 annealed (according to the invention)
  • ASC <45 μm + 0.55% C (Graphite UF4, standard material)

Verpressen von Schlagarbeitsproben bei 200, 400, 600 und 800 MPa, Verpressen Zugproben 600 MPa, Sintern bei 1200°C während 60 min unter N2. Geprüft wurden Gründichte, Sinterdichte, Dehngrenze und Zugfestigkeit. Pressdruck [MPa] Gründichte [g/cm3] Sinterdichte [g/cm3] Dehngrenze RP0,2 [MPa] Zugfestigkeit [MPa] ASC + Master 3 geglüht 200 5,87 6,02 400 6,65 6,79 600 7,03 7,15 800 7,16 7,32 600 MPa Zug 7,00 7,14 237,5 339,2 ASC + Master 3 Original 200 5,76 5,91 400 6,60 6,70 600 6,98 7,10 800 7,11 7,30 600 MPa Zug 6,91 7,07 223,8 320,6 ASC +0,55 UF4 200 5,93 6,03 400 6,85 6,83 600 7,06 7,21 800 7,18 7,35 600 MPa Zug 7,05 7,18 233,8 340,0 Pressing impact work samples at 200, 400, 600 and 800 MPa, compressing tensile specimens 600 MPa, sintering at 1200 ° C for 60 min under N 2 . Green density, sintered density, yield strength and tensile strength were tested. Pressing pressure [MPa] Green density [g / cm 3 ] Sintered density [g / cm 3 ] Yield strength R P0,2 [MPa] Tensile strength [MPa] ASC + Master 3 annealed 200 5.87 6.02 400 6.65 6.79 600 7.03 7.15 800 7.16 7.32 600 MPa train 7.00 7.14 237.5 339.2 ASC + Master 3 Original 200 5.76 5.91 400 6.60 6.70 600 6.98 7.10 800 7.11 7.30 600 MPa train 6.91 7.07 223.8 320.6 ASC +0.55 UF4 200 5.93 6.03 400 6.85 6.83 600 7.06 7.21 800 7.18 7.35 600 MPa train 7.05 7.18 233.8 340.0

Die Verwendung des erfindungsgemäßen, weichgeglühten Masteralloys resultiert in verbesserten Eigenschaften gegenüber ungeglühten Masteralloys ("Master Original). Obwohl die Werte etwas geringer sind als bei direkter Zumischung von Kohlenstoff, kann ein wesentlicher Nachteil der direkten Zumischung, nämlich die Entmischung, speziell beim großtechnischen Einsatz hintangehalten werden.The use of the annealed master alloy according to the present invention results in improved properties over unannealed master alloys ("Master Original"). Although the values are somewhat lower than with direct admixture of carbon, a significant drawback of direct admixture, namely segregation, is particularly discouraged in large scale use become.

5) Mischen der Masterlegierungen mit dem entsprechenden Basispulver auf einen Zielkohlenstoff von 0,85%C5) Mix the master alloys with the corresponding base powder to a target carbon of 0.85% C

  1. a) von Fe (ASC 100.29) + 18,9 % Master 3 → 0,85% C
    Fe (ASC 100.29) + 0,85 % C (UF4) → 0,85% C
    a) from Fe (ASC 100.29) + 18.9% Master 3 → 0.85% C
    Fe (ASC 100.29) + 0.85% C (UF4) → 0.85% C
  2. b) von Fe-1,5Mo (AstaloyMo) + 19,1 % Master 2 → 0,85% C
    Fe-1,5Mo (AstaloyMo) + 0,85 % C (UF4) → 0,85% C
    b) from Fe-1.5Mo (AstaloyMo) + 19.1% Master 2 → 0.85% C
    Fe-1.5Mo (AstaloyMo) + 0.85% C (UF4) → 0.85% C

Verpressen von Schlagarbeitsproben bei 600 MPa, Verpressen einer Zugprobe 600 MPa, Sintern bei 1200°C während 60 min unter N2. Geprüft wurden Gründichte, Sinterdichte, Dehngrenze und Zugfestigkeit. Pressdruck [MPa] Gründichte [g/cm3] Sinterdichte [g/cm3] Dehngrenze RP0,2 [MPa] Zugfestigkeit [MPa] ASC + 18,9% Master 3 geglüht 600 6,99 7,13 600 MPa Zug 6,94 7,12 267,0 460,4 ASC + 0,85% UF4 600 7,05 7,16 600 MPa Zug 7,05 7,16 280,8 485,3 Pressdruck [MPa] Gründichte [g/cm3] Sinterdichte [g/cm3] Dehngrenze RP0,2 [MPa] Zugfestigkeit [MPa] AstaloyMo + 19,2% 600 6,93 7,04 Master 2 geglüht 600 MPa Zug 6,90 7,05 457,2 550,0 Astaloy + 0,85% UF4 600 7,00 7,10 600 MPa Zug 7,01 7,09 472,2 572,7 Pressing of impact work samples at 600 MPa, pressing a tensile test 600 MPa, sintering at 1200 ° C for 60 min under N 2 . Green density, sintered density, yield strength and tensile strength were tested. Pressing pressure [MPa] Green density [g / cm 3 ] Sintered density [g / cm 3 ] Yield strength R P0,2 [MPa] Tensile strength [MPa] ASC + 18.9% Master 3 annealed 600 6.99 7.13 600 MPa train 6.94 7.12 267.0 460.4 ASC + 0.85% UF4 600 7.05 7.16 600 MPa train 7.05 7.16 280.8 485.3 Pressing pressure [MPa] Green density [g / cm 3 ] Sintered density [g / cm 3 ] Yield strength R P0,2 [MPa] Tensile strength [MPa] AstaloyMo + 19.2% 600 6.93 7.04 Master 2 annealed 600 MPa train 6.90 7.05 457.2 550.0 Astaloy + 0.85% UF4 600 7.00 7.10 600 MPa train 7.01 7.09 472.2 572.7

Claims (7)

  1. Iron-carbon master alloy having a C content of between 3 and 8% by mass and an upper limit of alloying metals of
    Ni <10% by mass,
    P <4% by mass,
    Cr <5% by mass, preferably <1% by mass,
    Mn <5% by mass, preferably <1% mass,
    Mo <3% by mass,
    W <3% by mass,
    Cu <1% by mass,
    the remainder iron,
    wherein the iron-carbon master alloy has a particle size of >20 µm and a hardness of <350 HV 0.01.
  2. Iron-carbon master alloy according to claim 1, characterised by a C content of between 4 and 6% by mass and an upper limit of alloying metals of
    Ni <5% by mass,
    P <2% by mass,
    Cr <0.5% by mass,
    Mn <0.5% by mass,
    Mo <1.5% by mass,
    W <1.5% by mass,
    Cu <0.5% by mass.
  3. Method for producing an iron-carbon master alloy according to either claim 1 or claim 2, characterised in that it comprises the steps of:
    • producing a powdered C-rich precursor,
    • optionally pre-annealing the precursor,
    • optionally deagglomerating the precursor,
    • annealing the powdered C-rich precursor to a temperature of at least 80°C above the γ-temperature (eutectoid temperature) of the phase diagram which corresponds to the composition of the precursor,
    • cooling the precursor at a cooling rate of at most 3°C/min, the annealed precursor preferably being cooled at a cooling rate of at most 3°C/min to a temperature of 500°C, and the cooling rate then being increased.
  4. Method according to claim 3, characterised in that the powdered C-rich precursor is produced by atomising a melt of C and Fe or steel.
  5. Method according to claim 3, characterized in that the powdered C-rich precursor is produced by mixing fine-particle Fe or steel powder with C and subsequent solution annealing.
  6. Method according to any of claims 3 to 5, characterised in that the annealed precursor is cooled at a cooling rate of at most 0.5°C/min.
  7. Method according to any of claims 3 to 6, characterised in that the precursor is annealed and cooled in an inert gas atmosphere.
EP09799095.6A 2008-12-19 2009-12-17 Iron-carbon master alloy Not-in-force EP2379763B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0198908A AT507707B1 (en) 2008-12-19 2008-12-19 IRON CARBON MASTERALLOY
PCT/EP2009/067445 WO2010070065A1 (en) 2008-12-19 2009-12-17 Iron-carbon master alloy

Publications (2)

Publication Number Publication Date
EP2379763A1 EP2379763A1 (en) 2011-10-26
EP2379763B1 true EP2379763B1 (en) 2019-07-17

Family

ID=41660298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09799095.6A Not-in-force EP2379763B1 (en) 2008-12-19 2009-12-17 Iron-carbon master alloy

Country Status (4)

Country Link
US (1) US9359662B2 (en)
EP (1) EP2379763B1 (en)
AT (1) AT507707B1 (en)
WO (1) WO2010070065A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933731B (en) * 2010-02-15 2016-02-03 费德罗-莫格尔公司 The manufacturing process of a kind of master alloy for the manufacture of sintering-hardened steel part and this sinter-hardened part
CN105648333A (en) * 2016-03-31 2016-06-08 泰安皆瑞金属科技有限公司 Copper-containing iron-based powder metallurgy material and preparation process thereof
CN107297494A (en) * 2017-06-20 2017-10-27 江苏军威电子科技有限公司 A kind of garden tool set mixed powder and preparation method thereof
RU2652922C1 (en) * 2017-12-05 2018-05-03 Юлия Алексеевна Щепочкина Iron-based alloy
RU2652928C1 (en) * 2017-12-05 2018-05-03 Юлия Алексеевна Щепочкина Iron-based alloy
RU2663955C1 (en) * 2018-02-13 2018-08-13 Юлия Алексеевна Щепочкина Iron-based alloy
RU2665644C1 (en) * 2018-02-13 2018-09-03 Юлия Алексеевна Щепочкина Iron-based alloy
CN108425063B (en) * 2018-03-20 2019-07-12 湖州久立永兴特种合金材料有限公司 A kind of preparation method of the high manganese intermediate alloy of high cleanliness
CN110695352A (en) * 2019-11-08 2020-01-17 常熟市迅达粉末冶金有限公司 Machining method of steering gear fixing sheet
CN111702167A (en) * 2020-06-24 2020-09-25 重庆科利得精密机械工业有限公司 Three-step mixing process for iron-based powder metallurgy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368890A (en) 1966-12-27 1968-02-13 Gen Motors Corp Metal powder from cast iron chips
DE1960433A1 (en) * 1969-12-02 1971-06-03 Naeser Ge Hard Dr Ing Iron powder containing spheroidal cementite - in ferritic matrix for extrusion
JPS62124256A (en) 1985-11-21 1987-06-05 Kawasaki Steel Corp Graphite-precipitated sintered steel for sliding member
JPS6318001A (en) 1986-07-11 1988-01-25 Kawasaki Steel Corp Alloy steel powder for powder metallurgy
JPH06228603A (en) * 1993-01-29 1994-08-16 Iwate Seitetsu Kk Raw iron powder for sintered metal and its production
US6358298B1 (en) * 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
US20060201280A1 (en) * 2004-06-10 2006-09-14 Kuen-Shyang Hwang Sinter-hardening powder and their sintered compacts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2379763A1 (en) 2011-10-26
US9359662B2 (en) 2016-06-07
AT507707B1 (en) 2010-09-15
WO2010070065A1 (en) 2010-06-24
AT507707A1 (en) 2010-07-15
US20110253264A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
EP2379763B1 (en) Iron-carbon master alloy
DE2943601C2 (en) Pre-alloyed steel powder for the powder metallurgical production of high-strength parts
DE69913650T2 (en) STEEL POWDER FOR THE PRODUCTION OF Sintered Products
DE602004008192T2 (en) Raw or granulated powder for the production of sintered bodies, and sintered bodies
DE112009002701B4 (en) Process for producing a sintered iron alloy
DE3853000T2 (en) COMPOSED ALLOY STEEL POWDER AND Sintered Alloy Steel.
DE102006027851B3 (en) Sinter hardening powder for making granulated powder for use in manufacture of sintered compact, comprises iron as its primary composition, carbon, nickel, chromium, and molybdenum
DE102005008789A1 (en) Process for producing a sintered body with metal powder and a sintered body produced therefrom
DE3219324A1 (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF HIGH-STRENGTH MOLDED PARTS AND HARDNESS OF SI-MN OR SI-MN-C ALLOY STEELS
DE19756608A1 (en) Liquid phase sintered ferrous metal article production
DE3206475C2 (en)
DE2414909A1 (en) STEEL POWDER
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE1125459B (en) Process for producing alloyed iron-based powder for powder metallurgical purposes
DE69717541T2 (en) Low-alloy steel powder for hardener sintering
DE69331829T2 (en) STEEL ALLOY POWDER FOR SINTERING, WITH HIGH STRENGTH, HIGH FATIGUE RESISTANCE AND HIGH TOUGHNESS, MANUFACTURING PROCESS AND SINTER BODY
DE69514935T2 (en) MATERIALS WITH HIGH TENSILE STRENGTH
DE69521516T2 (en) IRON BASE POWDER WITH CHROME, MOLYBDEN AND MANGANESE
DE60121159T2 (en) SINTERING METHOD FOR A CARBON PART, USING A HYDROCOLLOID BINDER AS A CARBON SOURCE
DE2846889A1 (en) Hard alloy iron boride-based powder - produced by atomising melt contg. boron, silicon, iron and boride-forming metals
DE1170149B (en) Process for the powder-metallurgical production of roller bearing races from sintered steel
EP0597832B1 (en) Metal-powder blend
DE2537340C3 (en) Process for the production of alloyed sintered steel workpieces
DE2335986C3 (en) Powder mixture and process for the production of molded parts from carbide-free, low-alloy sintered steel
EP0354389A1 (en) Process for manufacturing sintered steel bodies, and bodies obtained thereby

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170504

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 9/04 20060101ALI20181221BHEP

Ipc: B22F 1/00 20060101ALI20181221BHEP

Ipc: C21D 1/18 20060101ALN20181221BHEP

Ipc: C22C 33/02 20060101AFI20181221BHEP

Ipc: B22F 9/08 20060101ALI20181221BHEP

Ipc: C22C 38/44 20060101ALI20181221BHEP

Ipc: C22C 38/42 20060101ALI20181221BHEP

Ipc: C22C 38/04 20060101ALI20181221BHEP

Ipc: C22C 38/56 20060101ALI20181221BHEP

Ipc: C22C 35/00 20060101ALI20181221BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 1/18 20060101ALN20190109BHEP

Ipc: C22C 38/42 20060101ALI20190109BHEP

Ipc: C22C 38/56 20060101ALI20190109BHEP

Ipc: C22C 38/04 20060101ALI20190109BHEP

Ipc: B22F 1/00 20060101ALI20190109BHEP

Ipc: C22C 35/00 20060101ALI20190109BHEP

Ipc: B22F 9/04 20060101ALI20190109BHEP

Ipc: C22C 33/02 20060101AFI20190109BHEP

Ipc: B22F 9/08 20060101ALI20190109BHEP

Ipc: C22C 38/44 20060101ALI20190109BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015880

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1155899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190717

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191217

Year of fee payment: 11

Ref country code: SE

Payment date: 20191220

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191219

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015880

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1155899

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009015880

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091217

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201218

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717