JPH05503318A - Manufacturing method of high hardness sintered member and metal powder mixture - Google Patents

Manufacturing method of high hardness sintered member and metal powder mixture

Info

Publication number
JPH05503318A
JPH05503318A JP2513227A JP51322790A JPH05503318A JP H05503318 A JPH05503318 A JP H05503318A JP 2513227 A JP2513227 A JP 2513227A JP 51322790 A JP51322790 A JP 51322790A JP H05503318 A JPH05503318 A JP H05503318A
Authority
JP
Japan
Prior art keywords
metal powder
powder mixture
graphite
steel
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2513227A
Other languages
Japanese (ja)
Other versions
JP2908018B2 (en
Inventor
ダウツェンベルク,ノルベルト
ドルヴァイラー,ハインツ・ヨーゼフ
リントナー,カール―ハインツ
Original Assignee
マンネスマン・アクチエンゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マンネスマン・アクチエンゲゼルシャフト filed Critical マンネスマン・アクチエンゲゼルシャフト
Publication of JPH05503318A publication Critical patent/JPH05503318A/en
Application granted granted Critical
Publication of JP2908018B2 publication Critical patent/JP2908018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention proposes a metal-powder blend which can be produced simply and can be used to manufacture high-strength wear-resistant cylinder parts to tight dimensional tolerances. This metal-powder blend consists of a steel powder formed by atomizing a steel melt and mixed with 0.3-0.7 % by wt. of graphite, the steel powder consisting of: max. 0.02 % by wt. C; max. 0.03 % by wt. Si; ).05-0.25 % by wt. Mn; 2.5-5.0 % by wt. Ni; 0.2-1.5 % by wt. Mo, remainder iron and the usual impurities and the blend contains in addition 0.7-1.5 % by wt. of finely divided Cu, with the provision that the weight ratio of Cu:graphite lies within the range 1.4-2.5.

Description

【発明の詳細な説明】 発明の名称 金属粉末混合物 本発明は、マルテンサイト硬化し、高い硬度の焼結部材を製造するための、鋼鉄 合金融解物の噴霧化によって生成された鋼鉄粉末を基にして、0.3〜0.7重 量%の黒鉛粉末と混合されている金属粉末混合に関する。[Detailed description of the invention] name of invention metal powder mixture The present invention provides a method for producing martensitically hardened sintered parts with high hardness. Based on steel powder produced by atomization of alloy melt, 0.3 to 0.7 weight Regarding the metal powder mixture, which is mixed with % graphite powder.

高い硬度の焼結部材という語は、この明細書では少なくとも55ON/+i■2 の引っ張り強度を有する部材と解する。The term high hardness sintered member is used in this specification to mean at least 55ON/+i■2 It is understood that a member has a tensile strength of .

ヨーロッパ特許第013616981号に、高い硬度の焼結部材を製造するため の、 C最高 0.02% Si 最高 0.1% Ni O,4〜1.3% Cu 0.2〜0.5% Mo 0.1〜0.3% Mn 最高 0.3% N 最高 0.01% (重量%) 残りFe及び通常の不純物 からなる鋼鉄合金粉末が知られている。European Patent No. 013616981 for producing sintered parts with high hardness of, C maximum 0.02% Si maximum 0.1% Ni O, 4-1.3% Cu 0.2~0.5% Mo 0.1~0.3% Mn maximum 0.3% N maximum 0.01% (weight%) Remaining Fe and normal impurities A steel alloy powder consisting of

該合金粉末は安価に製造及び加工が可能で、かつ良好なプレス特性を有し、さら に焼結された仕上げ部材に高い硬度が保証されている。仕上げ部材における達成 可能な測定正確度については該文書では詳細に記述されていない。The alloy powder can be manufactured and processed at low cost, has good press properties, and has A high degree of hardness is guaranteed in the sintered finished parts. Achievement in finished parts Possible measurement accuracies are not described in detail in the document.

鋼鉄粉末から製造されたプレス加工品は、焼結によって通常幾何学形状が変化す る。所謂焼結潰損である。Pressed parts made from steel powder usually undergo a change in geometry due to sintering. Ru. This is so-called sintering collapse loss.

マルテンサイト硬化は、原則的にこれに容積の増大を伴い構造が変化する結果、 この効果と相反する。In principle, martensitic hardening results in a change in structure accompanied by an increase in volume. This effect is contradictory.

勿論のことであるが、焼結に使用されるプレス加工品に対する仕上げ部品の容積 の変化はプレス工具に嵌め込む際にも考慮される。即ち容量誤差を見越してプレ ス加工品の容量の変化を通して最初から均衡を図ろうと試みている。しかしこの 試みは今までのところ殆ど成功していない、というのは相対的容量誤差はプレス 加工品のそれぞれの壁の厚さに依存するばかりでな(、又同じプレス加工品の内 部でも又個々の元来同種のプレス加工品のサンプルの間でも変動があり、更に大 きい影響を有する、プレス加工品において達成された密度にも依存する。その限 りでは、合金加工原料からなる焼結仕上げ部品の体積の不、変性を得る努力によ っても、有利な場合には容量誤差の再生可能の限界として今までのところ約±0 .1%までの値が得られたにすぎない。多くの部材に対してはこのような誤差体 もはや許容されない。Of course, the volume of the finished part relative to the pressed product used for sintering This change is also taken into consideration when fitting into a press tool. In other words, the capacity error is anticipated and the attempts to achieve equilibrium from the outset through changes in the capacity of the space products. But this Attempts have so far met with little success, as the relative volume error is It depends not only on the thickness of each wall of the workpiece (also within the same stamped workpiece). There are also variations between individual samples of pressed products of the same type, and there are even larger variations. It also depends on the density achieved in the stamping, which has a significant influence. that limit In this study, efforts were made to obtain volumetric consistency and deformation of sintered finished parts made from alloy processing raw materials. However, in favorable cases, the reproducible limit of capacity error has so far been approximately ±0. .. Only values up to 1% were obtained. For many parts, such an error body It is no longer acceptable.

かかる根拠から焼結部材は幾度となく測定操作にかけられ確定されているが、こ れにはコストが著しくかかる。しかし、焼入れ部材においてはこの操作は焼結部 材の硬度のためにもはや不可能である。For this reason, the sintered member has been subjected to measurement operations many times and the results have been confirmed. This is extremely costly. However, for hardened parts, this operation is This is no longer possible due to the hardness of the material.

発明の課題はできるだけ僅かの出費で製造可能で、高い硬度で磨滅に強い焼結部 材の製造が許される金属粉末混合物を報告することであり、焼結するプレス加工 品製造のためのプレス工具に、構造基準をこれ以上加える必要がなく、焼結部材 の容量誤差を最高±0.05%幅の許容帯に維持できる金属粉末混合物を報告す ることである。金属粉末は、通常の圧縮操作により製造されたプレス加工品の焼 結に際して顕著な収縮又は膨張を引き起こさない特性を所有すべきである。The object of the invention is to create a sintered part that can be manufactured with as little expense as possible, has high hardness and is resistant to abrasion. It is to report metal powder mixtures that are allowed to be manufactured into materials, sintered and pressed. There is no need to add any more structural standards to press tools for manufacturing products, and sintered parts We report a metal powder mixture that can maintain the volumetric error within a tolerance range of up to ±0.05%. Is Rukoto. Metal powder is used in the baking of pressed products produced by normal compression operations. It should possess the property of not causing significant shrinkage or expansion upon binding.

この課題は請求項1の特徴である金属粉末の混合によって解決される。この混合 物の有利な他の組成は続く請求項2から6までに報告されている。This object is achieved by the mixing of metal powders, which is a feature of claim 1. This mixture Advantageous other compositions of the article are reported in the following claims 2 to 6.

ヨーロッパ特許第013616981号記載の既知の鋼鉄合金粉末とは対照に、 発明によれば、Cu分を噴霧された合金に入れるのではなく、鋼鉄粉末に微粉の 形で混合する。更に個々の合金元素の分量は請求項1によれば既知の鋼鉄粉末の 場合とは別の限度で維持されている。In contrast to the known steel alloy powder described in European Patent No. 013616981, According to the invention, the Cu component is not added to the sprayed alloy, but is added to the steel powder as a fine powder. Mix in shape. Furthermore, the amounts of the individual alloying elements are according to the known steel powder. It is maintained at different limits.

特に本質的なことはCu分の、炭素と同じく粉末型で鋼鉄粉末に混合された黒鉛 分に対する割合が1.4〜2.5、有利には2.0の範囲に維持されることであ る。Particularly essential is the Cu content, which is graphite mixed into steel powder in powder form like carbon. The ratio of Ru.

請求項1のすべての条件を厳守すると、通例の粉末冶金学的の圧縮操作に従って 、又慣例の焼結条件のもとで、プレス加工品の壁の厚さとは無関係に、殆ど充分 な体積の一定性を示すプレス加工品の製造に成功することは驚異的である。容量 偏差は±0.05%以下であった・ 空気冷却又は焼結炉の冷却域に備え付けられたガスシャワー(例えば導入された 不活性ガス圧の下で)により、高い硬度(750N / ma+”以上)を与え る完全なマルテンサイト結晶集合組織が焼結部材に生成し、これはもはや温熱処 理の必要がない。Strict observance of all the conditions of claim 1 results in the following: , and under customary sintering conditions, it is almost sufficient, independent of the wall thickness of the stamping. It is amazing that we have been able to successfully produce a press-formed product that exhibits a constant volume. capacity The deviation was less than ±0.05%・ Air cooling or a gas shower installed in the cooling zone of the sintering furnace (e.g. installed (under inert gas pressure) gives high hardness (over 750N/ma+”) A completely martensitic crystal texture is formed in the sintered part, which can no longer be heated. There is no need to reason.

以下の実施例により本発明の詳細な説明する。The following examples provide a detailed explanation of the invention.

鋼鉄粉末は、以下の組成(重量%)を有する溶融物の水噴霧によって製造された : CO,01% Si O,02% Mn O,10% Ni 4.0 % Mo 0.5 % P 0.020% S O,010% 残りPe及び通常の不純物 水噴霧の後、該鋼鉄粉末を乾燥し、約1000°Cで水素雰囲気中で還元焼き入 れを行った。冷却後生成した凝塊を挽いて細粉化した。該鋼鉄粉末の残余酸素含 有量は約0.15%に達し、それの密度は約3g/cm’であった。Steel powder was produced by water spraying of the melt with the following composition (wt%) : CO, 01% SiO, 02% Mn O, 10% Ni 4.0% Mo 0.5% P 0.020% SO, 010% Remaining Pe and normal impurities After water spraying, the steel powder is dried and reductively quenched at approximately 1000°C in a hydrogen atmosphere. I did this. After cooling, the resulting coagulum was ground into a fine powder. The residual oxygen content of the steel powder The content amounted to about 0.15% and its density was about 3 g/cm'.

該鋼鉄粉末に引き続いて黒鉛粉末0.60%及び細分化されたCu 1.0%並 びに慣用の潤滑剤約1%を添加した。The steel powder was followed by 0.60% graphite powder and 1.0% finely divided Cu. Approximately 1% of a conventional lubricant was added.

これらの成分を均一に混合した後、プレス加工製品を冷却圧縮により通常の方法 で製造、その際プレス加工品の密度は約7g/cm3であった。After uniformly mixing these ingredients, the pressed product is cooled and compressed in the usual manner. The density of the pressed product was approximately 7 g/cm3.

約1120°Cで該プレス加工品を焼結した後、仕上げ部材にはプレス加工品の 尺度に対して±0.03%以下の容量誤差を生じた。部材は焼結以後窒素シャワ ーの下で冷却した際に完全にマルテンサイトに硬化し、約400)IBの硬度で 82ON/+am”以上の引っ張り強度を示した。After sintering the press work at approximately 1120°C, the finished part is coated with the press work. A capacity error of ±0.03% or less was produced with respect to the scale. The parts are subjected to nitrogen shower after sintering. It completely hardens to martensite when cooled under It exhibited a tensile strength of 82ON/+am'' or more.

本発明の金属粉末混合物を用いた別の実験において、800°C及び1120’ Cの温度段階で二倍圧縮及び焼結技術をプレス加工品に通用した。その際、該双 方の焼結経過により再びそれぞれ0.03%以下の容量誤差しか生じなかった。In another experiment using the metal powder mixture of the present invention, 800°C and 1120' Double compression and sintering technology was applied to the pressed product at a temperature stage of C. At that time, the corresponding pair Due to the sintering process, the capacity error was less than 0.03% in each case.

引っ張り強度は約90ON/m+i”にあり、硬度は約450HBであった。The tensile strength was approximately 90 ON/m+i'' and the hardness was approximately 450 HB.

本発明による金属粉末混合の有利性は、体積が一定の焼結部材が製造でき、特に 出費の大きい焼結後の機械的、変形技術又は温熱技術の後処理がもはや必要とさ れず、又その際に鋼鉄粉末は安価な方式で製造されるという点にある。即ち本発 明で選択された合金に対して、水噴霧およびそれに続く水素雰囲気中の還元を通 用することができる。高価な真空焼き入れは、他の合金化され水噴霧された金属 粉末においては同様な使用目的に対して必要であるが、このような真空焼き入れ は本方法では必要ない。その上に安価な製造法が優秀な硬度及び摩耗特性と結び 付いている。The advantage of the metal powder mixture according to the invention is that sintered parts of constant volume can be produced, in particular Expensive post-sintering mechanical, deformation or thermal processing is no longer necessary. Moreover, the steel powder is produced in a cheap manner. That is, the original Through water spray and subsequent reduction in a hydrogen atmosphere, can be used. Expensive vacuum hardening is not required for other alloyed and water sprayed metals. This kind of vacuum quenching is necessary for powders for similar purposes. is not necessary in this method. In addition, inexpensive manufacturing methods combine with excellent hardness and wear properties. attached.

補正書の翻訳文提出書 (特許法第184条の8) 平成4年7月17日 囚Submission of translation of written amendment (Article 184-8 of the Patent Act) July 17, 1992 prisoner

Claims (6)

【特許請求の範囲】[Claims] 1.マルテンサイト硬化し高い硬度を有する焼結部材を製造するための、鋼鉄合 金溶融物の噴霧によって生成された鋼鉄粉末を基にして、0.3〜0.7重量% の黒鉛と混合した金属粉末混合物において、上記鋼鉄合金粉末が(重量%): C  最高0.02% Si 最高0.03% Mn 0.05〜0.25% Ni 2.5〜5.0% Mo 0.2〜1.5% 残りFe及び通常の不純物 からなり、かつ上記混合物は細分されたCuを、Cu/黒鉛の量比が1.4〜2 .5の範囲の割合で、0.7〜1.5%の量で含むことを特徴とする金属粉末混 合物。1. Steel alloys for manufacturing martensitically hardened sintered parts with high hardness. 0.3-0.7% by weight, based on steel powder produced by atomization of gold melt In a metal powder mixture mixed with graphite, the above steel alloy powder (wt%): C Maximum 0.02% Si maximum 0.03% Mn 0.05~0.25% Ni 2.5-5.0% Mo 0.2~1.5% Remaining Fe and normal impurities The mixture consists of finely divided Cu with a Cu/graphite ratio of 1.4 to 2. .. A metal powder mixture characterized in that it contains a metal powder mixture in an amount of 0.7 to 1.5% in a proportion in the range of 5. Compound. 2.Mnの含有量が0.10〜0.20%の値に制限されていることを特徴とす る請求項1に記載の金属粉末混合物。2. Characterized by the fact that the Mn content is limited to a value of 0.10 to 0.20%. The metal powder mixture according to claim 1. 3.Niの含有量が3.0〜4.0%に制限されていることを特徴とする請求項 1,2に記載の金属粉末混合物。3. A claim characterized in that the Ni content is limited to 3.0 to 4.0%. The metal powder mixture according to items 1 and 2. 4.Moの含有量が0.5〜1.0%の値に制限されていることを特徴とする請 求項1から3までのいずれか1項に記載の金属粉末混合物。4. A claim characterized in that the Mo content is limited to a value of 0.5 to 1.0%. The metal powder mixture according to any one of claims 1 to 3. 5.黒鉛添加が0.5〜0.6%に制限されていることを特徴とする請求項1か ら4までのいずれか1項に記載の金属粉末混合物。5. Claim 1 characterized in that graphite addition is limited to 0.5 to 0.6%. 4. The metal powder mixture according to any one of Items 3 to 4. 6.Cu/黒鉛の比率が2であることを特徴とする請求項1から5までのいずれ か1項に記載の金属粉末混合物。6. Any one of claims 1 to 5, characterized in that the Cu/graphite ratio is 2. The metal powder mixture according to item 1.
JP2513227A 1990-01-19 1990-09-28 Method for producing high hardness sintered member and metal powder mixture Expired - Fee Related JP2908018B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4001900A DE4001900A1 (en) 1990-01-19 1990-01-19 METAL POWDER MIXING
DE4001900.4 1990-01-19

Publications (2)

Publication Number Publication Date
JPH05503318A true JPH05503318A (en) 1993-06-03
JP2908018B2 JP2908018B2 (en) 1999-06-21

Family

ID=6398606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2513227A Expired - Fee Related JP2908018B2 (en) 1990-01-19 1990-09-28 Method for producing high hardness sintered member and metal powder mixture

Country Status (6)

Country Link
EP (1) EP0597832B1 (en)
JP (1) JP2908018B2 (en)
AT (1) ATE124467T1 (en)
CA (1) CA2074193C (en)
DE (2) DE4001900A1 (en)
WO (1) WO1991010753A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203135D0 (en) * 2002-10-23 2002-10-23 Hoeganaes Ab Dimensional control

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1298614A (en) * 1961-08-08 1962-07-13 Mannesmann Ag Process for the production of sintered pressed bodies
DE1207634B (en) * 1961-11-30 1965-12-23 Birmingham Small Arms Co Ltd Powder mixture for the production of steel objects according to known powder metallurgical processes
GB1162702A (en) * 1965-09-14 1969-08-27 Hoganas Billesholms Ab Low Alloy Iron Powder and process of preparing the same
GB1305608A (en) * 1970-03-18 1973-02-07
US4170474A (en) * 1978-10-23 1979-10-09 Pitney-Bowes Powder metal composition
JPS6075501A (en) * 1983-09-29 1985-04-27 Kawasaki Steel Corp Alloy steel powder for high strength sintered parts

Also Published As

Publication number Publication date
CA2074193A1 (en) 1991-07-20
EP0597832B1 (en) 1995-06-28
CA2074193C (en) 2003-09-16
ATE124467T1 (en) 1995-07-15
JP2908018B2 (en) 1999-06-21
EP0597832A1 (en) 1994-05-25
WO1991010753A1 (en) 1991-07-25
DE59009358D1 (en) 1995-08-03
DE4001900A1 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
JPS63114904A (en) Valve seat insert composed of powder metal and its production
JP5535576B2 (en) Iron-based sintered alloy, method for producing the same, and iron-based sintered alloy member
JPH07500878A (en) Method of manufacturing powder metal alloy
US4954171A (en) Composite alloy steel powder and sintered alloy steel
JP2001513143A (en) High density forming process using ferro-alloy and pre-alloy
KR20010052151A (en) Steel powder for the preparation of sintered products
US5997805A (en) High carbon, high density forming
JP3177482B2 (en) Low alloy steel powder for sinter hardening
JPH07505678A (en) Coining method while sintered
KR100263283B1 (en) Iron-based powder containing chromium, molybdenium and manganese
US4702772A (en) Sintered alloy
JPS634031A (en) Manufacture of wear-resistant alloy
JPH05503318A (en) Manufacturing method of high hardness sintered member and metal powder mixture
JP3351844B2 (en) Alloy steel powder for iron-based sintered material and method for producing the same
JPS61295302A (en) Low-alloy iron powder for sintering
JPH09195006A (en) Raw material powder for sintering wear resistant material
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPS61139601A (en) Low-alloy iron powder for sintering and its manufacture
JPH02153046A (en) High strength sintered alloy steel
JPS61117202A (en) Low alloy iron powder for sintering
EP0334968A1 (en) Composite alloy steel powder and sintered alloy steel
Gélinas et al. Effect of Density and Mix Formulation on Sintered Strength and Dimensional Stability of 0.85% Mo Low Alloy Steel Powders
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
JPH03264642A (en) Production of iron-based high-strength sintered body
JPS61117201A (en) Low alloy iron powder for sintering

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees