EP0590262B1 - Explosion assisted hydromechanical deep drawing - Google Patents
Explosion assisted hydromechanical deep drawing Download PDFInfo
- Publication number
- EP0590262B1 EP0590262B1 EP93111956A EP93111956A EP0590262B1 EP 0590262 B1 EP0590262 B1 EP 0590262B1 EP 93111956 A EP93111956 A EP 93111956A EP 93111956 A EP93111956 A EP 93111956A EP 0590262 B1 EP0590262 B1 EP 0590262B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- shape
- press
- fluid
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004880 explosion Methods 0.000 title claims description 3
- 239000003380 propellant Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 230000013011 mating Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 11
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/205—Hydro-mechanical deep-drawing
Definitions
- the invention is based on a method for hydromechanical deep-drawing of sheet metal into a shape specified by only one of the two tool parts, preferably the stamp, by means of a press, according to the preamble of the patent claim, as is known, for example, from DE-OS 37 09 181 .
- hydromechanical deep drawing part of the drawing tool, preferably the die, is relatively simple and only needs to be adapted to the opposite tool part with respect to its contact surface, which considerably reduces tool costs.
- very high pressures in the range from 600 to 1000 bar have to act in order to be able to press the sheet into the engraving of the punch true to shape. After these high pressures are effective over the entire surface of the workpiece, this results in very high forces that are considerably higher than the press loads that occur between the forming punch and the die in purely mechanical deep drawing, because there the load is essentially due to the material cross section in the drawing area and the yield stress of the material is determined.
- Pressing times of two minutes can easily occur, which are much too long compared to the cycle times of four to six seconds that can be achieved with conventional body presses.
- a disadvantage of the hydromechanical deep drawing of larger sheet metal parts in presses is that the presses are disproportionately expensive and still not rigid enough and that the process is not productive enough.
- the object of the invention is to improve the generic method for hydromechanical deep-drawing of sheet metal by means of a press in such a way that the process is significantly increased in productivity and in this respect is approximated to purely mechanical deep-drawing and that the press is relieved of the high forces and is therefore much cheaper to manufacture with reasonable rigidity.
- the method according to the invention not only represents a combination of the known hydromechanical deep drawing with the known explosion forming, whereby short cycle times and thus high productivity are achieved.
- the inertial locking of the Stamp and the tool chamber by a correspondingly generous mass allocation, whereby the high, but only briefly acting forming forces are limited to these parts and are kept away from the press construction.
- the press 1 shown is essentially formed with respect to its static part by a press frame 2 which contains lateral press stands, a press head at the top and a press foot at the bottom.
- a press frame 2 which contains lateral press stands, a press head at the top and a press foot at the bottom.
- a die 6 with a large mass is arranged on the press foot as the lower part of the tool. This mass assignment will be discussed in more detail below.
- a die 7 which can be driven in a stroke direction 24 is required for shaping.
- the shape with which the sheet 8 introduced into the press 1 is to be deep-drawn is predetermined by the stamp 7.
- the die 6 arranged opposite the punch is designed in the form of an open tool chamber 9, which can be applied to the inserted sheet 8 in a liquid-tight and gas-tight manner with its upper end-face contact surface. Accordingly, seals are let into the contact surface of the die 6 that comes into contact with the sheet metal 8.
- the sheet 8 inserted into the press is on its outer edge between this contact surface on the one hand and a correspondingly shaped counter-contact surface of a hold-down frame 5 on the front side of the hold-down bar 4, on the other hand, can be clamped.
- the hold-down bear 4 is also covered with a very large mass, which will be discussed in more detail below.
- the hold-down frame 5 is interchangeably screwed to the hold-down bear.
- the hold-down bar with the hold-down frame is lowered onto the inserted sheet metal and pressed there in a liquid-tight manner and with sustained force.
- the separately drivable plunger bear 3 is attached with the aforementioned stamp 7, which can be moved up and down within the hold-down bear 4 in the manner of the plunger of a double-acting deep-drawing press.
- the holding-down frame 5 In order to be able to carry out a hydromechanical deep-drawing process with such a press, the holding-down frame 5 must be brought into sealing contact by lowering the holding-down bear 4 after inserting the sheet 8 into the press or onto the die 6.
- the tool chamber 9, which is initially largely filled with liquid, must contain a certain residual volume of fuel or air.
- a filling and emptying pump 19 which can be controlled by a control device 20 is connected to the tool chamber 9 via a filling and emptying line 25; the control unit for the pump 19 receives from the angle sensor 11 a timed trigger signal for the filling and emptying processes.
- the valve 16 Before and during the descent of the plunger 7, an increasing pressure in the liquid and in the gas is generated in the tool chamber 9 in accordance with the plunger movement and the plunger force.
- the valve 16 On the part of a control unit 18, which receives a timed trigger signal from an angle transmitter 11, the valve 16 is switched on at a suitable point in time during the pressing cycle for feeding a gaseous propellant charge into the tool chamber.
- the possibility of feeding the propellant charge into the tool chamber 9 during the filling process is through a gas supply line opening into the tool chamber 17 with check valve 21 and created by the controllable gas supply valve 16.
- the gaseous propellant charge can be supplied from the gas bottle 14 and - if and / or as far as necessary - from the oxygen bottle 15, in which the gases mentioned are stored in a high-tensioned form, so that they can be raised without pressure into the tool chamber, which is initially still under relatively low pressure 9 can be fed.
- Both the liquid filling and the feeding of the gaseous propellant charge should be largely completed before the pusher bear 3 has approximately reached the reversal point of its stroke. It is thereby achieved that the tool chamber can be filled with gas or liquid at a relatively low pressure but at high speed. It may well be that during the filling, which of course takes place with increasing pressure, the sheet metal protrudes toward the descending stamp and - as far as the sheet metal touches the stamp - bulges into its engraving.
- a control device 13 for the ignition device which also receives a timed ignition signal from the angle transmitter 11.
- the ignition device 12 can be, for example, an electrical ignition device in the manner of a spark plug, as is known from the technology of internal combustion engines. A short current surge at high voltage can trigger a powerful spark at the electrodes of the spark plug, which ignites the propellant charge and causes an explosive build-up of pressure in the tool chamber, which is already under a relatively high pressure.
- the pressure rises very quickly to a high peak value; this powerful pressure peak brings about the final shaping of the sheet in the engraving of the stamp.
- the check valves 21 and 22 arranged in the gas supply line 17 and in the filling and emptying line 25 for the liquid, an outflow of the introduced media is prevented. Due to a vent hole 23 on the stamp, a resistance-free outflow of the air enclosed between the plate and the engraving of the stamp is ensured, so that the engraving can be formed cleanly and accurately through the plate.
- a cooling of the burned propellants leads to a relatively rapid drop in pressure, which is, however, desirable in order to relieve the press construction from high forces.
- the high pressure peaks of the exploding propellant charge and the resulting high forces exerted on the walls of the tool chamber 9 or the plunger 7 are kept away from the press construction or the press frame 2 by an inertial locking of these parts. This inertia locking is due to the generous mass allocation already mentioned above the die 6 or by a very large dimensioning of the ram bear 3 and the hold-down bear 4. Since the very high pressure peak is only effective for a very short time in the range of a few milliseconds, but which is sufficient to ensure that the sheet is completely formed, the masses involved cannot be moved out of the rest position.
- the check valve 22 arranged in the filling and emptying line 25 for the liquid is designed to be controllable, so that the closing action can be canceled, if necessary, and emptying of the tool chamber 9 can be initiated if necessary.
- the controllable check valve 22 receives a corresponding opening signal from the control device 20 for the pump, so that an outflow of a corresponding part of the enclosed liquid can be initiated at a suitable time within the pressing cycle, for example before the propellant charge is fed in. Not only is the pump 19 driven in the outflow direction, but the residual pressure of the propellant charge that is present inside the tool chamber 9 also acts.
- the advantage of the invention is that the advantages of a simple tool for hydromechanical deep drawing are fully retained, but that the disadvantages of this method are avoided, that relatively short press cycle times in the range of a few seconds can be achieved and that the press construction is subject to the high pressure forces is relieved.
- the introduction of the propellant charge by allowing a gas to flow in is simpler than other conceivable possibilities for this, for example the position-defined introduction of an explosive tablet with an integrated ignition device into the tool chamber or an adiabatic compression of air or oxygen enclosed in the tool chamber in the manner of a diesel engine and injection of the fuel Propellant charge only in the form of a atomized liquid fuel at the time of ignition, the ignition temperature of which is below the compression temperature of the compressed gas.
- Hydrogen would be suitable as the gas for the gaseous propellant charge used according to the invention, especially since it does not form any harmful combustion gases and the combustion products are readily compatible with the hydraulic fluid essentially formed by water; the combustion gases themselves very quickly condense into water.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Casting Devices For Molds (AREA)
- Press Drives And Press Lines (AREA)
Description
Die Erfindung geht aus von einem Verfahren zum hydromechanischen Tiefziehen von Blech in eine durch nur einen der beiden Werkzeugteile, vorzugsweise den Stempel vorgegebene Form mittels einer Presse, nach dem Oberbegriff des Patentanspruchs, wie es beispielsweise durch die DE-OS 37 09 181 als bekannt hervorgeht.The invention is based on a method for hydromechanical deep-drawing of sheet metal into a shape specified by only one of the two tool parts, preferably the stamp, by means of a press, according to the preamble of the patent claim, as is known, for example, from DE-OS 37 09 181 .
Der Vorteil des hydromechanischen Tiefziehens liegt darin, daß ein Teil des Ziehwerkzeuges, vorzugsweise die Matrize relativ einfach gestaltet ist und nur bezüglich seiner Anlagefläche an den gegenüberliegende Werkzeugteil angepaßt zu sein braucht, was die Werkzeugkosten erheblich verbilligt. Jedoch müssen beim hydromechanischen Tiefziehen zumindest gegen Ende des Formvorganges sehr hohe, im Bereich von 600 bis 1000 bar liegende Drücke wirken, um das Blech formgetreu in die Gravur des Stempels einpressen zu können. Nachdem diese hohen Drücke über die gesamte Fläche des Werkstückes wirksam sind, resultieren daraus sehr hohe Kräfte, die wesentlich höher sind, als die beim rein mechanischen Tiefziehen zwischen formgebendem Stempel und Matrize auftretenden Pressenbelastungen, weil dort die Belastung im wesentlichen lediglich durch den Materialquerschnitt im Ziehbereich und die Fließspannung des Werkstoffes bestimmt ist. Sollen beispielsweise Karosserieteile mit einer Flächenerstreckung von etwa einem Quadratmeter hydromechanisch tiefgezogen werden, so treten je nach erforderlichem Ausformdruck Kräfte in der Größe von 0,6 bis 1 Giganewton auf. Abgesehen von den dazu erforderlichen schweren, voluminösen und dementsprechend teuren Pressenkonstruktionen treten unter diesen Belastungen unvermeidlicherweise Verformungen der Presse auf, die in ihrer Größe nicht mehr tolerierbar sind, um einwandfreie Ziehergebnisse und vertretbare Werkzeugstandzeiten erzielen zu können. Darüber hinaus ist auch zu berücksichtigen, daß das gesamte, vom fertig gezogenen Blech eingenommene Volumen unter Druck mit Flüssigkeit aufgefüllt werden muß, was relativ lange dauert, weil dazu in der Druckhöhe zwar leistungsstarke, aber im Förderstrom nur schwache Druckpumpen verwendet werden. Preßzeiten von zwei Minuten können ohne weiteres vorkommen, die im Vergleich zu den mit herkömmlichen Karosserie-Pressen erzielbaren Zykluszeiten von vier bis sechs Sekunden viel zu lang sind. Nachteilig beim hydromechanischen Tiefziehen von größeren Blechteilen in Pressen ist also, daß die Pressen unverhältnismäßig teuer und trotzdem noch zu wenig steif sind und daß das Verfahren zu wenig produktiv ist.The advantage of hydromechanical deep drawing is that part of the drawing tool, preferably the die, is relatively simple and only needs to be adapted to the opposite tool part with respect to its contact surface, which considerably reduces tool costs. However, in hydromechanical deep drawing, at least towards the end of the molding process, very high pressures in the range from 600 to 1000 bar have to act in order to be able to press the sheet into the engraving of the punch true to shape. After these high pressures are effective over the entire surface of the workpiece, this results in very high forces that are considerably higher than the press loads that occur between the forming punch and the die in purely mechanical deep drawing, because there the load is essentially due to the material cross section in the drawing area and the yield stress of the material is determined. If, for example, body parts with a surface extension of approximately one square meter are to be deep-drawn hydromechanically, this depends on required molding pressure forces in the size of 0.6 to 1 Giganewton. Apart from the heavy, voluminous and correspondingly expensive press designs required for this, deformations of the press inevitably occur under these loads, the size of which can no longer be tolerated in order to achieve flawless drawing results and acceptable tool life. In addition, it must also be taken into account that the entire volume occupied by the finished sheet must be filled with liquid under pressure, which takes a relatively long time because powerful pressure pumps are used in the pressure head, but only weak in the flow rate. Pressing times of two minutes can easily occur, which are much too long compared to the cycle times of four to six seconds that can be achieved with conventional body presses. A disadvantage of the hydromechanical deep drawing of larger sheet metal parts in presses is that the presses are disproportionately expensive and still not rigid enough and that the process is not productive enough.
Aufgabe der Erfindung ist es, das gattungsgemäß zugrundegelegte Verfahren zum hydromechanischen Tiefziehen von Blech mittels einer Presse dahingehend zu verbessern, daß das Verfahren in der Produktivität erheblich gesteigert und diesbezüglich dem rein mechanischen Tiefziehen angenähert wird und daß zugleich die Presse von den hohen Kräften entlastet wird und somit bei vertretbarer Steifigkeit wesentlich kostengünstiger herstellbar ist.The object of the invention is to improve the generic method for hydromechanical deep-drawing of sheet metal by means of a press in such a way that the process is significantly increased in productivity and in this respect is approximated to purely mechanical deep-drawing and that the press is relieved of the high forces and is therefore much cheaper to manufacture with reasonable rigidity.
Diese Aufgabe wird bei Zugrundelegung des gattungsgemäßen Verfahrens erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs gelöst. Das erfindungsgemäße Verfahren stellt nicht nur eine Vereinigung des bekannten hydromechanischen Tiefziehens mit dem für sich bekannten Explosionsumformen dar, wodurch kurze Zykluszeiten und somit eine hohe Produktivität erreicht wird. Als weiterer Erfindungsschritt kommt die Trägheitsverriegelung des Stempels und der Werkzeugkammer durch eine entsprechend großzügige Massenbelegung hinzu, wodurch die hohen, jedoch nur kurzzeitig wirkenden Umformkräfte auf diese Teile beschränkt bleiben und von der Pressenkonstruktion ferngehalten werden.This object is achieved on the basis of the generic method according to the invention by the characterizing features of the patent claim. The method according to the invention not only represents a combination of the known hydromechanical deep drawing with the known explosion forming, whereby short cycle times and thus high productivity are achieved. As a further step of the invention comes the inertial locking of the Stamp and the tool chamber by a correspondingly generous mass allocation, whereby the high, but only briefly acting forming forces are limited to these parts and are kept away from the press construction.
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispieles nachfolgend noch erläutert; dabei zeigt die einzige Figur eine Presse zum hydromechanischen Tiefziehen von Blechen mit starker Massebelegung der am Ziehvorgang beteiligten Werkzeugteile und mit der Möglichkeit zur Einspeisung einer gasförmigen Treibladung.The invention is explained below with reference to an embodiment shown in the drawing; the only figure shows a press for hydromechanical deep-drawing of sheet metal with a high mass of the tool parts involved in the drawing process and with the possibility of feeding a gaseous propellant charge.
Die dargestellte Presse 1 ist bezüglich ihres statischen Teiles im wesentlichen durch einen Preßrahmen 2 gebildet, der seitliche Pressenständer, oben ein Pressenhaupt und unten einen Pressenfuß enthält. Für die Darstellung ist das Beispiel einer doppeltwirkenden Presse gewählt, wenngleich dieses nicht für die vorliegende Erfindung Voraussetzung ist; vielmehr läßt sich diese auch an anderen Pressentypen realisieren. Auf dem Pressenfuß ist als unterer Teil des Werkzeuges eine Matrize 6 mit großer Masse angeordnet. Auf diese Massenbelegung sei weiter unten noch näher eingegangen. Zur Formgebung wird beim dargestellten Ausführungsbeispiel - wie beim konventionellen Tiefziehen - ein in Bewegungsrichtung 24 hubbeweglich antreibbarer Stempel 7 benötigt. Durch den Stempel 7 ist die Form, mit welcher das in die Presse 1 eingebrachte Blech 8 tiefgezogen werden soll, vorgegeben. Die gegenüberliegend zum Stempel angeordnete Matrize 6 ist in Form einer offenen Werkzeugkammer 9 ausgebildet, die mit ihrer oberen stirnseitigen Anlagefläche flüssigkeits- und gasdicht an das eingelegte Blech 8 anlegbar ist. In die mit dem Blech 8 in Berührung gelangende Anlagefläche der Matrize 6 sind dementsprechend Dichtungen eingelassen. Das in die Presse eingebrachte Blech 8 ist an seinem Außenrand zwischen dieser Anlagefläche einerseits und einer entsprechend geformten Gegen-Anlagefläche eines Niederhalter-Rahmens 5 an der Stirnseite des Niederhalter-Bärs 4 andererseits einklemmbar. Der Niederhalterbär 4 ist ebenfalls mit einer sehr großen Masse belegt, worauf weiter unten noch näher eingegangen werden soll. Der Niederhalterrahmen 5 ist auswechselbar mit dem Niederhalterbär verschraubt. Bei Ausführung eines Pressenhubes wird der Niederhalterbär mit dem Niederhalterrahmen auf das eingelegte Blech abgesenkt und dort flüssigkeitsdicht und mit anhaltender Kraft angedrückt. Innerhalb des Niederhalterbärs ist der gesondert antreibbarer Stößelbär 3 mit dem bereits erwähnten Stempel 7 angebracht, der innerhalb des Niederhalterbäres 4 nach Art des Stößels einer doppeltwirkenden Tiefziehpresse auf- und abbeweglich ist.The press 1 shown is essentially formed with respect to its static part by a
Um mit einer solchen Presse einen hydromechanischen Tiefziehvorgang ausüben zu können, muß - nach dem Einlegen des Bleches 8 in die Presse bzw. auf die Matrize 6 - der Niederhalterrahmen 5 durch Absenken des Niederhalterbäres 4 dichtend zur Anlage gebracht werden. Die zunächst weitestgehend mit Flüssigkeit gefüllte Werkzeugkammer 9 muß ein gewisses Restvolumen von Stauerstoff oder Luft enthalten. Zu diesem Zweck ist eine durch ein Steuergerät 20 ansteuerbare Füll- und Entleerungspumpe 19 an die Werkzeugkammer 9 über eine Füll- und Entleerungsleitung 25 angeschlossen; das Steuergerät für die Pumpe 19 erhält seitens des Winkelgebers 11 ein zeitlich abgstimmtes Triggersignal für die Füll- bzw. Entleerungsvorgänge. Vor und während des Niedergehens des Stempels 7 wird in der Werkzeugkammer 9 ein ansteigender Druck in der Flüssigkeit und im Gas entsprechend der Stößelbewegung und der Stößelkraft erzeugt. Seitens eines Steuergerätes 18, welches von einem Winkelgeber 11 ein zeitlich abgestimmtes Triggersignal erhält, wird das Ventil 16 zum Einspeisen einer gasförmigen Treibladung in die Werkzeugkammer zu einem geeigneten Zeitpunkt innerhalb des Preßzyklus' eingeschaltet. Die Möglichkeit zum Einspeisen der Treibladung in die Werkzeugkammer 9 während des Befüllvorganges ist durch eine in die Werkzeugkammer einmündende Gaszufuhrleitung 17 mit Rückschlagventil 21 und durch das steuerbare Gaszufuhrventil 16 geschaffen. Die gasförmige Treibladung kann aus der Gasflasche 14 und - sofern und/oder soweit notwendig - aus der Sauerstoffflasche 15 zugeführt werden, in denen die erwähnten Gase in hochgespannter Form bevorratet sind, so daß sie ohne Druckanhebung in die anfänglich noch unter relativ niedrigem Druck stehende Werkzeugkammer 9 eingespeist werden können.In order to be able to carry out a hydromechanical deep-drawing process with such a press, the holding-down
Sowohl die Flüssigkeitsbefüllung als auch die Einspeisung der gasförmigen Treibladung sollten weitgehend abgeschlossen sein, bevor der Stößelbär 3 etwa den Umkehrpunkt seines Hubes erreicht hat. Dadurch wird erreicht, daß die Befüllung der Werkzeugkammer mit Gas bzw. mit Flüssigkeit bei relativ niedrigem Druck aber mit hoher Geschwindigkeit vorgenommen werden kann. Es kann durchaus sein, daß während der Befüllung, die selbstverständlich mit ansteigendem Druck erfolgt, das Blech sich dem niedergehenden Stempel entgegen- und - soweit das Blech den Stempel berührt - in seine Gravur hineinwölbt.Both the liquid filling and the feeding of the gaseous propellant charge should be largely completed before the pusher bear 3 has approximately reached the reversal point of its stroke. It is thereby achieved that the tool chamber can be filled with gas or liquid at a relatively low pressure but at high speed. It may well be that during the filling, which of course takes place with increasing pressure, the sheet metal protrudes toward the descending stamp and - as far as the sheet metal touches the stamp - bulges into its engraving.
Nach Abschluß der flüssigkeitsseitigen und der gasseitigen Befüllung der Werkzeugkammer 9 erfolgt ein weiterer Druckaufbau darin aufgrund des niedergehenden Stempels 7, der die in der Werkzeugkammer 9 eingeschlossenen Medien unter gleichzeitiger Kompression des eingeschlossenen Gases vor sich herschiebt, wobei das Blech 8 durch den Druck zunehmend in die Gravur des Stempels hineingewölbt wird und wobei das randseitig eingeklemmte Blech aus dieser Randeinklemmung herausgleitet. Mit zunehmendem Verformungsgrad und Vollendung der Blechausformung nimmt der Druck in der eingegebenen Flüssigkeit bzw. in dem eingegebenen Gas mehr und mehr zu. Kurz vor Erreichen des unteren Umkehrpunktes des Stempels 7 wird mittels der am oberen Bereich des Stößelkolbens eingelassenen Zündeinrichtung 12 die eingebrachte, komprimierte gasförmige Treibladung gezündet. Zu diesem Zweck ist ein Steuergerät 13 für die Zündeinrichtung vorgesehen, die ebenfalls von dem Winkelgeber 11 ein zeitlich abgestimmtes Zündsignal erhält. Mit Rücksicht auf die Tatsache, daß sich die gasförmige Treibladung stets an der höchsten Stelle der weitgehend mit Flüssigkeit gefüllten Zündkammer hält, muß auch dort oben die Zündeinrichtung 12 angebracht sein. Es kann sich dabei bspw. um eine elektrische Zündeinrichtung nach Art einer Zündkerze handeln, wie sie aus der Technik der Verbrennungsmotoren bekannt ist. Durch einen kurzen Stromstoß bei hoher Spannung kann ein leistungsfähiger Zündfunke an den Elektroden der Zündkerze ausgelöst werden, der die Treibladung zur Entzündung bringt und einen explosionsartigen Druckaufbau in der ohnehin bereits unter einem relativ hohen Druck stehenden Werkzeugkammer hervorruft. Dank der Vorkompression der Treibladung kommt es zu einem sehr raschen Druckanstieg auf einen hohen Spitzenwert; diese leistungsstarke Druckspitze bewerkstelligt die Endausformung des Bleches in die Gravur des Stempels. Dank der in die Gaszufuhrleitung 17 und in die Füll- und Entleerungsleitung 25 für die Flüssigkeit angeordneten Rückschlagventile 21 bzw. 22 wird ein Abströmen der eingebrachten Medien verhindert. Aufgrund einer Entlüftungsbohrung 23 am Stempel wird auch ein widerstandsfreies Abströmen der zwischen Blech und Gravur des Stempels eingeschlossenen Luft sichergestellt, so daß die Gravur sauber und formgetreu durch das Blech ausgeformt werden kann.After completion of the liquid-side and gas-side filling of the
Zwar kommt es aufgrund einer Abkühlung der verbrannten Treibgase zu einem relativ raschen Druckabfall, der jedoch durchaus erwünscht ist, um die Pressenkonstruktion von hohen Kräften zu entlasten. Die hohen Druckspitzen der explodierenden Treibladung und die damit ausgelösten hohen, auf die Wandungen der Werkzeugkammer 9 bzw. des Stempels 7 ausgeübten Kräfte werden durch eine Trägheitsverriegelung dieser Teile von der Pressenkonstruktion bzw. dem Pressenrahmen 2 ferngehalten. Diese Trägheitsverriegelung kommt durch die bereits weiter oben erwähnte großzügige Massenbelegung der Matrize 6 bzw. durch eine sehr große massenmäßige Dimensionierung des Stößelbäres 3 und des Niederhalterbäres 4 zustande. Da die sehr hohe Druckspitze nur während einer sehr geringen Zeit im Bereich weniger Millisekunden wirksam ist, die jedoch ausreicht, um eine vollständige Ausformung des Bleches sicherzustellen, können die beteiligten Massen nicht aus der Ruhelage herausbewegt werden. Die auf die sehr stark massebelegte Werkzeugkammer 9 bzw. der Matrize 6 einerseits und auf den Stempel 7 bzw. Stößelbär 3 und Niederhalterbär 4 andererseits einwirkenden fluidischen Kräfte bleiben also in der sehr kurzen Zeit der Druckspitze auf die erwähnten Massen beschränkt; der Pressenrahmen 2 wird durch diese Kräfte nicht belastet.A cooling of the burned propellants leads to a relatively rapid drop in pressure, which is, however, desirable in order to relieve the press construction from high forces. The high pressure peaks of the exploding propellant charge and the resulting high forces exerted on the walls of the
Das in der Füll- und Entleerungsleitung 25 für die Flüssigkeit angeordnete Rückschlagventil 22 ist steuerbar ausgebildet, so daß die Schließwirkung ggf. aufhebbar ist und zu einem geeigneten Zeitpunkt eine Entleerung der Werkzeugkammer 9 erforderlichenfalls eingeleitet werden kann. Hierbei erhält das steuerbare Rückschlagventil 22 von dem Steuergerät 20 für die Pumpe ein entsprechendes Öffnungssignal, so daß zu einem geeigneten Zeitpunkt innerhalb des Preßzyklus', beispielsweise vor dem Einspeisen der Treibladung, eine Abströmung eines entsprechenden Teiles der eingeschlossenen Flüssigkeit eingeleitet werden kann. Hierbei wird nicht nur die Pumpe 19 in Abströmrichtung angetrieben, sondern es wirkt außerdem noch der im Innern der Werkzeugkammer 9 anstehender Restdruck der Treibladung.The
Der Vorteil der Erfindung liegt darin, daß die Vorteile eines einfachen Werkzeuges für das hydromechanische Tiefziehen voll erhalten bleiben, daß aber die Nachteile dieses Verfahrens vermieden werden, daß also relativ kurze Preßzykluszeiten im Bereich von wenigen Sekunden erreichbar sind und daß die Pressenkonstruktion von den hohen Druckkräften entlastet ist.The advantage of the invention is that the advantages of a simple tool for hydromechanical deep drawing are fully retained, but that the disadvantages of this method are avoided, that relatively short press cycle times in the range of a few seconds can be achieved and that the press construction is subject to the high pressure forces is relieved.
Das Einbringen der Treibladungs durch Einströmenlassen eines Gases ist einfacher als andere denkbare Möglichkeiten hierfür, bspw. das lagedefinierte Einbringen einer Sprengstofftablette mit integrierter Zündeinrichtung in die Werkzeugkammer oder ein adiabatisches Verdichten von in der Werkzeugkammer eingeschlossener Luft oder Sauerstoff nach Art eines Dieselmotores und Einspritzen des Brennstoffes der Treibladung erst zum Zeitpunkt der Zündung in Form eines vernebelten flüssigen Kraftstoffes, dessen Zündtemperatur unterhalb der Verdichtungstemperatur des komprimierten gases liegt. Als Gas für die erfindungsgemäß zum Einsatz gelangende, gasförmige Treibladung wäre Wasserstoff geeignet, zumal es keine schädlichen Verbrennungsgase bildet und die Verbrennungsprodukte sich ohne weiteres mit der im wesentlichen durch Wasser gebildeten Druckflüssigkeit vertragen; die Verbrennungsgase kondensieren selber sehr schnell zu Wasser. Außerdem bilden Wasserstoff und Sauerstoff eine hochbrisante Mischung, die in sehr weiten Mischungsgrenzen zündfähig ist. Um allerdings sicherzustellen, daß sich im Bereich der Presse kein Wasserstoff ansammeln kann, um andererseits sicherzustellen, daß kein übermäßiger Überschuß an Sauerstoff innerhalb der Presse entsteht, was ebenfalls ein Gefahrenpunkt sein kann, sollte annähernd stöchiometrisch mit leichtem Sauerstoffüberschuß gefahren werden, um eine vollständige Verbrennung des Treibgases sicherzustellen.The introduction of the propellant charge by allowing a gas to flow in is simpler than other conceivable possibilities for this, for example the position-defined introduction of an explosive tablet with an integrated ignition device into the tool chamber or an adiabatic compression of air or oxygen enclosed in the tool chamber in the manner of a diesel engine and injection of the fuel Propellant charge only in the form of a atomized liquid fuel at the time of ignition, the ignition temperature of which is below the compression temperature of the compressed gas. Hydrogen would be suitable as the gas for the gaseous propellant charge used according to the invention, especially since it does not form any harmful combustion gases and the combustion products are readily compatible with the hydraulic fluid essentially formed by water; the combustion gases themselves very quickly condense into water. In addition, hydrogen and oxygen form a highly explosive mixture that is ignitable within very wide mixing limits. However, in order to ensure that no hydrogen can accumulate in the area of the press, and on the other hand to ensure that there is no excessive excess of oxygen inside the press, which can also be a danger point, it should be operated approximately stoichiometrically with a slight excess of oxygen in order to ensure complete combustion of the propellant gas.
Claims (1)
- A method for the hydromechanical deep drawing of sheet metal into a predetermined form by only one of the two tool parts, preferably the male die, employing a press which contains the shape-determining tool part, preferably the male die (7) and a tool chamber (9) open towards the shape-determining tool part and to which a pressurised fluid can be applied, whereby one of the two parts can be driven for a lifting movement,- in which the sheet metal (8) is on its outer edge clamped between a supporting surface at the end face of the shape-determining tool part, preferably the male die (7) or depressor and a correspondingly shaped mating supporting surface on the end face of the tool chamber (9) in a fluid and gas-tight form and with an enduring force,- and in which furthermore the fluid-filled tool chamber (9) is increasingly pressurised, whereby the yielding sheet metal (8) is drawn out of the marginal clamping by the fluid pressure, the edge of the metal sheet slipping, and is forced into the impression in the shape-determining tool part in such a way that it assumes a faithful shape,characterised in that prior to or during filling of the tool chamber (9) with fluid, a measured propellant charge in the form of a combustible gas mixed with oxygen is introduced into the tool chamber (9), the tool chamber (9) is steadily filled with pressurised fluid at relatively low pressure and the propellant charge is detonated at a specific point in time prior to completion of the drawing process and in that the forces created by the explosion of the propellant charge and applied to the shape-determining tool part, preferably the male die (7) and to the tool chamber (9) briefly in the direction of movement (24) of the liftingly movable tool part (7) are kept remote from the press construction (2) by a correspondingly dimensioned positioning of the masses in these parts.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4232913A DE4232913C2 (en) | 1992-10-01 | 1992-10-01 | Two-stage process for hydromechanical explosion-assisted deep-drawing of sheet metal and a deep-drawing press for carrying out the process |
DE4232913 | 1992-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0590262A1 EP0590262A1 (en) | 1994-04-06 |
EP0590262B1 true EP0590262B1 (en) | 1996-04-17 |
Family
ID=6469316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93111956A Expired - Lifetime EP0590262B1 (en) | 1992-10-01 | 1993-07-27 | Explosion assisted hydromechanical deep drawing |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0590262B1 (en) |
DE (2) | DE4232913C2 (en) |
ES (1) | ES2087621T3 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8047036B2 (en) | 2005-06-03 | 2011-11-01 | Magna International Inc. | Device and method for explosion forming |
US8250892B2 (en) | 2006-12-01 | 2012-08-28 | Cosma Engineering Europe Ag | Closure device for explosion forming |
US8252210B2 (en) | 2006-08-11 | 2012-08-28 | Cosma Engineering Europe Ag | Method and device for explosion forming |
US8322175B2 (en) | 2006-12-20 | 2012-12-04 | Cosma Engineering Europe Ag | Workpiece and method for explosion forming |
US8650921B2 (en) | 2006-08-11 | 2014-02-18 | Cosma Engineering Europe Ag | Method and device for explosion forming |
US8713982B2 (en) | 2008-01-31 | 2014-05-06 | Magna International Inc. | Device for explosive forming |
US8875553B2 (en) | 2007-02-14 | 2014-11-04 | Cosma Engineering Europe Ag | Method and mould arrangement for explosion forming |
US8939743B2 (en) | 2007-08-02 | 2015-01-27 | Cosma Engineering Europe Ag | Device for supplying a fluid for explosion forming |
US9393606B2 (en) | 2007-05-22 | 2016-07-19 | Cosma Engineering Europe Ag | Ignition device for explosive forming |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2103656B1 (en) * | 1994-10-06 | 1998-05-01 | Idem Construcciones Vascas S L | INJECTED WATER EMBUTITION SYSTEM FOR THE CONFORMATION OF PARTS. |
DE4436437C2 (en) * | 1994-10-12 | 1996-09-05 | Hde Metallwerk Gmbh | Process for the hydrostatic shaping of, in particular, flat sheets of cold-formable metal and related device for carrying out the process |
DE4436436C2 (en) * | 1994-10-12 | 1996-08-22 | Hde Metallwerk Gmbh | Process for the hydrostatic forming of, in particular, flat sheets of cold-formable metal and device by carrying out the process |
DE19827614B4 (en) * | 1998-06-20 | 2005-08-25 | Steinhart, Paul, Dipl.-Ing. | Method and device for the production of deep drawn parts |
DE19846100C2 (en) | 1998-10-07 | 2000-08-03 | Sms Demag Ag | DC arc furnace for the production of steel and process therefor |
DE19955748A1 (en) * | 1999-11-19 | 2001-05-23 | Mannesmann Rexroth Ag | Control system for hydro-mechanical deep drawing machine has pressure intensifier with regulator valve to regulate pressure in water tank dependent upon drawing die position |
US7093470B2 (en) | 2002-09-24 | 2006-08-22 | The Boeing Company | Methods of making integrally stiffened axial load carrying skin panels for primary aircraft structure and fuel tank structures |
DE102004059445B3 (en) * | 2004-12-09 | 2005-09-15 | Konrad Schnupp | Process and assembly to form a workpiece under pneumatic pressure driven progressively from two or more pressure reservoirs |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1777208A1 (en) * | 1968-09-25 | 1971-04-01 | Hertel Heinrich Prof Dr Ing | Device for high-performance forming of workpieces, in particular made of sheet metal, with the aid of shock agents |
US3742746A (en) * | 1971-01-04 | 1973-07-03 | Continental Can Co | Electrohydraulic plus fuel detonation explosive forming |
CS229960B1 (en) * | 1981-06-15 | 1984-07-16 | Vaclav Penaz | Equipment for pressure mode control in pressure chamber for hydrodynamic drawing |
DE3709181A1 (en) * | 1987-03-20 | 1988-09-29 | Asea Ab | METHOD FOR THE PRODUCTION OF COMPLEX SHEET METAL PARTS AND TOOL FOR PRINT FORMING SUCH SHEET METAL PARTS |
-
1992
- 1992-10-01 DE DE4232913A patent/DE4232913C2/en not_active Expired - Fee Related
-
1993
- 1993-07-27 ES ES93111956T patent/ES2087621T3/en not_active Expired - Lifetime
- 1993-07-27 DE DE59302247T patent/DE59302247D1/en not_active Expired - Fee Related
- 1993-07-27 EP EP93111956A patent/EP0590262B1/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8047036B2 (en) | 2005-06-03 | 2011-11-01 | Magna International Inc. | Device and method for explosion forming |
US8252210B2 (en) | 2006-08-11 | 2012-08-28 | Cosma Engineering Europe Ag | Method and device for explosion forming |
US8650921B2 (en) | 2006-08-11 | 2014-02-18 | Cosma Engineering Europe Ag | Method and device for explosion forming |
US8250892B2 (en) | 2006-12-01 | 2012-08-28 | Cosma Engineering Europe Ag | Closure device for explosion forming |
US8322175B2 (en) | 2006-12-20 | 2012-12-04 | Cosma Engineering Europe Ag | Workpiece and method for explosion forming |
US8875553B2 (en) | 2007-02-14 | 2014-11-04 | Cosma Engineering Europe Ag | Method and mould arrangement for explosion forming |
US9393606B2 (en) | 2007-05-22 | 2016-07-19 | Cosma Engineering Europe Ag | Ignition device for explosive forming |
US8939743B2 (en) | 2007-08-02 | 2015-01-27 | Cosma Engineering Europe Ag | Device for supplying a fluid for explosion forming |
US8713982B2 (en) | 2008-01-31 | 2014-05-06 | Magna International Inc. | Device for explosive forming |
Also Published As
Publication number | Publication date |
---|---|
ES2087621T3 (en) | 1996-07-16 |
DE4232913C2 (en) | 1995-04-27 |
DE59302247D1 (en) | 1996-05-23 |
DE4232913A1 (en) | 1994-04-07 |
EP0590262A1 (en) | 1994-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0590262B1 (en) | Explosion assisted hydromechanical deep drawing | |
EP0539872B1 (en) | Gas generator, in particular for an airbag protecting a vehicle passenger against injuries | |
DE3036533C2 (en) | Hydraulic powder press | |
DE102007017595B3 (en) | Precision cutting press for producing precision cut parts of metal strip, has cross bars that are pressed against flange and plunger by force of respective cylinders during power stroke and are long such that bars support tool at pins | |
WO1999022133A1 (en) | Dual nozzle for injecting fuel and an additional fluid | |
DE2600948C3 (en) | Unit of force as a working organ, e.g. for presses for forming, compacting, etc. | |
DE102009017624B4 (en) | Deep Drawing Press | |
DE2108485A1 (en) | Method and device for high-energy pulse machining of materials. Compaction, extrusion, forging and the like | |
DE3423598A1 (en) | Device for closing vibration dampers | |
DE3506222A1 (en) | Device for pressing explosives mouldings | |
EP2145712B1 (en) | Device for thermal deburring of workpieces | |
WO1986004531A1 (en) | Installation for the treatment of parts by means of an explosive gas mixture, particularly thermal deburring machine | |
EP0418800B1 (en) | Fuel injection apparatus for an internal combustion engine | |
DE19831053A1 (en) | Powder-powered setting tool | |
DE4016787A1 (en) | IC engine fuel injection nozzle - has valve spring in form of capsules which are compressed by fuel pressure to open needle valve | |
DE102008052177A1 (en) | Device for explosion-high internal pressure forming pipe in vehicle industry, has compression unit compressing gas such that gas comes to explosion and impulse is transferred to pipe, where impulse is applied for engraving tool | |
DE2006017C3 (en) | Hollow cylinder to accommodate high pressure | |
AT228606B (en) | Method and device for forming containers, container bodies or container parts from a thin-walled preform | |
DE2157349C3 (en) | ||
DE1452547C (en) | Hydraulic pressure control device on a device for making a branched pipe connection | |
DE1484504C (en) | Two-stroke diesel ram with ignition aid | |
DE102019006803A1 (en) | Energy-efficient press with extended ram stroke and controlled synchronization with eccentric loads | |
DE2512356C3 (en) | Device for welding metallic materials using kinetic energy | |
DE1678541C (en) | Pressing tool for pressing solderless connection terminals onto electrical conductors | |
EP2457699B1 (en) | Fastening device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR IT |
|
17P | Request for examination filed |
Effective date: 19940223 |
|
17Q | First examination report despatched |
Effective date: 19950228 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR IT |
|
REF | Corresponds to: |
Ref document number: 59302247 Country of ref document: DE Date of ref document: 19960523 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: BA2A Ref document number: 2087621 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2087621 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000629 Year of fee payment: 8 Ref country code: DE Payment date: 20000629 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000720 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20020810 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050727 |