EP0588232B1 - Optic smoke detector - Google Patents
Optic smoke detector Download PDFInfo
- Publication number
- EP0588232B1 EP0588232B1 EP93114472A EP93114472A EP0588232B1 EP 0588232 B1 EP0588232 B1 EP 0588232B1 EP 93114472 A EP93114472 A EP 93114472A EP 93114472 A EP93114472 A EP 93114472A EP 0588232 B1 EP0588232 B1 EP 0588232B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- optical
- planar
- optical element
- smoke alarm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000779 smoke Substances 0.000 title claims abstract description 97
- 230000005855 radiation Effects 0.000 claims abstract description 143
- 230000003287 optical effect Effects 0.000 claims abstract description 61
- 230000010287 polarization Effects 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 11
- 230000008033 biological extinction Effects 0.000 claims description 8
- 238000011156 evaluation Methods 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000001746 injection moulding Methods 0.000 claims 1
- 230000002452 interceptive effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000000443 aerosol Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000004075 alteration Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/11—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
- G08B17/113—Constructional details
Definitions
- the invention relates to an optical smoke detector according to the preamble of claim 1.
- Smoke detectors of this type are generally known. They are used in particular as automatic fire detectors for the early detection of fires.
- Smoke detectors occupy a special position among the multitude of types of automatic fire detectors on the market, since they are best suited to detect fires at such an early stage that countermeasures can still be successfully initiated.
- ionization smoke detectors there are two main types of smoke detectors: ionization smoke detectors and optical smoke detectors.
- ionization smoke detectors the accumulation of air ions on smoke particles is used;
- the second type of smoke detector uses the optical properties of aerosols to detect smoke.
- the last-mentioned scattered light detectors are therefore the most widespread, since the measuring path can be so short that they can be designed as so-called "point detectors”.
- DE-A-28 22 547 (Hochiki; 07.12.78) describes a line extinction detector in which a transmitter emits light. Part of the emitted light falls on a radiation receiver after it has passed a measuring section. In the presence of smoke in the measuring section, the output signal of the radiation receiver is reduced depending on the smoke density and the output signal is fed to a threshold and comparison circuit, an alarm signal being generated in a downstream evaluation circuit if the output signal falls below a predetermined value, the alarm threshold .
- Lenses are arranged both in front of the radiation source and in front of the radiation receiver in order to bundle the light beam which traverses the measurement path.
- the bundling systems are structurally very complex.
- the diaphragms in the measuring chamber of the smoke detector according to EP-A-0 031 096 also serve in combination with optical converging lenses in front of the light source and the receiver to direct the light beam directed onto the measuring chamber or the radiation scattered from the measuring chamber in order to focus the Reduce the overall length of the smoke detector.
- a stray radiation smoke detector was proposed in GB-A-2 236 390 (Matsushita; April 3, 1991), which uses a wired IRED as a radiation source and as a receiver on an integrated circuit placed on a printed circuit board Has a photodiode lying flat on the print; a prism with an integrated lens serves as a deflection and focusing element for concentrating the scattered radiation from the measurement volume onto the photodiode.
- This prism with its integrated lens is relatively expensive; in addition, the exact placement of the lens required is quite complicated.
- the invention has for its object to provide an optical smoke detector that does not have the disadvantages of the known optical smoke detectors and, in particular, to create an optical smoke detector that can be used for a compact design and a reduced number of components inexpensive mass production.
- Another object of the invention is to improve the manufacturing technology in such a way, in particular to reduce the manufacturing tolerances to such an extent that the adjustment work, which is still required manually in some cases, is eliminated or at least reduced to a minimum.
- a particular advantage of a preferred embodiment of the smoke detector according to the scattered radiation principle is the expansion of the degrees of freedom of the optical smoke detectors of the prior art by the planar-optical elements (POE), such as holographic-optical elements (HOE), microfresh elements (MFE), such as e.g. Microfresh reflectors (MFR) and phase-matched microfresh reflectors (PMFR) and in the improvement of the detection of different fires given by the evaluation of the polarization of the scattered radiation.
- POE planar-optical elements
- HOE holographic-optical elements
- MFE microfresh elements
- MFR Microfresh reflectors
- PMFR phase-matched microfresh reflectors
- planar-optical elements as focusing optical deflection elements [holographic-optical elements (HOE), microsfresnel elements (MFE), e.g. Microfresh Reflectors (MFR) and Phase Adjusted Microfresh Reflectors (PMFR)].
- HOE planar-optical elements
- MFE microsfresnel elements
- PMFR Phase Adjusted Microfresh Reflectors
- planar-optical elements as focussing optical elements [holographic-optical elements (HOE), microsfresnel elements (MFE), such as, for example, microfresh reflectors (MFR) and phase-matched microfresh reflectors (PMFR)] a simplified design of the smoke detector, which enables cheap mass production.
- HOE holographic-optical elements
- MFE microsfresnel elements
- PMFR phase-matched microfresh reflectors
- Microfresh elements are diffractive Fresnel lens structures in microscopic dimensions, as they are mentioned as transmissive elements in US-A-4,936,666 (3M-Company; June 22, 90).
- the production of such microfresh lenses for transmission and reflection in an on-axis configuration is described, for example, by T. Shiono et al. in Optics Letters, Vol. 15, No. 1, 84 (01/01/90).
- the phase-adapted microfresh reflectors (PMFR) that can be used according to the invention are a planar arrangement of inclined and curved microfaces, which consist of sections of ellipsoids. They are used as surface mirrors and are therefore covered with a reflective layer.
- the micro surfaces are phase-matched, that is, the optical path from one focal point to the other over each of the micro surfaces always differs by an integral multiple of the light wavelength.
- the design of the optical smoke detectors with the microfresh elements has the advantage over that with the holographic-optical elements that the smoke detectors are less sensitive to chromatic aberration and are better suited for mass production.
- the phase-matched microfresh elements (MFE) and the holographic-optical elements (HOE) are flat optical elements that can be automatically equipped and precisely placed. Both are simply constructed and can therefore be manufactured very inexpensively.
- optical smoke detector Another advantage of the optical smoke detector according to the invention is that a photodiode and control electronics of an infrared light-emitting diode (IRED) can be integrated into an integrated circuit (IC) of the receiving electronics. Only a few switching elements remain, e.g. the charging capacitor, voltage stabilization and protective elements for the communication lines that cannot be integrated into an IC. This significantly reduces the number and space requirements of electronic components.
- IRED infrared light-emitting diode
- the connecting wires, which otherwise act as antennas, between the photodiode and the first stage for current / voltage conversion become very short. This makes the optical smoke detector significantly less sensitive to interference, which makes it possible to achieve detection reliability equivalent to the previous optical smoke detectors with a smaller, cheaper photodiode area and thus a lower signal level.
- microfresh elements MFE
- HOE holographic-optical elements
- microfresh elements allow a design with two (or more) focal points.
- a stray light detector of this type maps the stray volume onto two (or more) separate radiation receivers, which can be covered with crossed polarizers.
- both photodiodes receive radiation from an identical background (assuming that radiation from the background only falls on the photodiodes after several reflections on the labyrinth and thus unpolarized).
- the so-called basic pulses for each of the two photodiodes therefore remain the same even when the scattered light detector becomes increasingly dirty.
- the scattered light detector can thus be easily expanded into a detector using polarization filters without further optical elements.
- FIG. 1 shows an optical smoke detector according to the invention, namely a scattered-light smoke detector with two planar optical elements (POE).
- SMD-IRED surface mounting technology
- SMD photodiode surface mounting technology
- a planar-optical element (POE) 5 is arranged above the radiation source (SMD-IRED) 1 or above the radiation receiver (SMD photodiode) 2 in order to deflect the radiation emitted or scattered on aerosol particles.
- HOE holographic optical elements
- MFE microsfresnel elements
- holographic-optical elements HOE
- microsfresnel elements MFE
- certain difficulties can arise when implementing a scattered light smoke detector according to the invention which is equivalent to conventional scattered light detectors, since diffraction-optical elements can only be produced with an efficiency that is well below 100% .
- the surface of the diffraction-optical element acts as a diffuse scattered light source, as a result of which a considerable part of the radiation emitted by the radiation source 1 floods the measurement volume 8 as diffuse radiation.
- This scattered radiation can be a multiple of the light that is scattered on fire aerosol particles.
- a reduction of the interference radiation requires much more complex mechanical diaphragms than were previously common.
- FIGS. 2 and 3 show an embodiment of a scattered light smoke detector which is improved compared to the scattered light detector according to FIG. 1 and which has a wired diode 1 which emits infrared light without an optical element, a photodiode 2 on the printed circuit board 9 and a holographic optical element (HOE) 5 or has a phase-adapted microfresh reflector (PMFR) 5 as a deflecting element.
- the photodiode serving as the radiation receiver 2 is located in a blackened compartment 16, which is only connected to the interior of the detector by an aperture 4.
- the interference radiation emanating from the surface of the planar-optical element (HOE or PMFR) as diffuse scattered radiation can largely be eliminated.
- the aperture 4 is covered with a radiation-permeable film or a polarization filter in order to keep any dust that may enter the detector from the radiation receiver.
- a scattering angle of 70 to 110 ° is often used for scattered-light smoke detectors.
- the use of a polarization filter with an oscillation plane which is perpendicular to the scattering plane causes an adjustment of the sensitivities of the detectors for the detection of open fires which produce aerosols with small particles and of detectors for the detection of smoldering fires which Generate aerosols (smoke) with large particles.
- two different colored light sources e.g. red and infrared
- two radiation receivers photodiodes
- PMFR phase-matched microfresh reflector Due to the achromasia of the phase-adjusted microfresh reflectors (PMFR), no chromatic aberrations are to be expected as a result of the relatively broad spectral distribution of IRED and LED radiation.
- FIG. 4 shows a further embodiment of the scattered light smoke detector; however, there is no planar-optical element (POE) above the radiation source 1.
- the radiation source 1 an infrared radiation emitting diode (IRED), is mounted on the printed circuit board 9.
- the radiation beam 6 of the radiation source 1 is kept narrow by diaphragms 4, and the radiation which is not scattered on smoke particles 12 in the direction of the planar-optical element 5 attached above the radiation receiver 2 disappears in the light sump (labyrinth) 3.
- FIG. 5 shows a further embodiment of the scattered light detector according to FIG. 4, in which a flat or curved mirror 13 is mounted above the radiation source 1, through which the light from the radiation bundle 6, which is not scattered by smoke particles 12 in the direction of the radiation receiver 2, moves sideways is deflected into a labyrinth 3 and absorbed there.
- This makes it possible to mount the labyrinth 3 in a place where it takes up more space and can therefore be made more effective.
- FIG. 6 shows the structure of a phase-adapted microfresh reflector (PMFR), as can be used in a scattered light smoke detector, seen from above.
- Figures 7 and 8 show sections through the phase-matched microfresh reflector (PMFR).
- the PMFR are called "phase-adjusted" because the optical path [li + l'i], or [(li + k) + (l'i + k)] from the radiation source 1 to the radiation receiver over each of the ellipsoid micro-surfaces is always different differs by a multiple of the light wavelength.
- the structure can be on the front or on the back of the substrate.
- the latter version is the least dust and corrosion sensitive, since the mirrored structure can be provided with a protective lacquer.
- the phase-adjusted microfresh reflector (PMFR) can be manufactured in such a way that the structure is written in photoresist using a laser writing system. A nickel embossing stamp is made and reproduced. By embossing in plastic substrates such as polymethyl methacrylate (PMMA), polyvinyl chloride (PVC) or polycarbonate (PC), the phase-adjusted microfresh reflectors (PMFR) can now be produced inexpensively in large quantities.
- PMMA polymethyl methacrylate
- PVC polyvinyl chloride
- PC polycarbonate
- phase-adjusted microfresh reflectors are optimized for a wavelength of 880 nm (infrared) and have a profile depth of up to approx. 3 ⁇ m that varies over the active area of 17 x 12 mm 2 , for example (FIGS. 7 and 8).
- the phase-adjusted microfresh reflectors are located on the transition zone between diffractive and purely reflective or refractive elements. Reflection or transmission takes place on the micro-surfaces and diffraction appears at the transition edges between the micro-surfaces with superimposed superposition of the refracted light component in the second focal point.
- the phase-matched microfresh reflectors also have the advantage that they are less sensitive to chromatic aberration than the holographic optical elements (HOE).
- FIG. 9 shows a further preferred embodiment of a scattered light detector according to the invention.
- This scattered light detector has a planar-optical element (POE), which has a structure consisting of (concentric) areas A, B, .., which is arranged and designed such that the radiation emitted by the radiation source 1 is directed onto two different radiation receivers 21 , 22 falls.
- POE planar-optical element
- the radiation is deflected by the concentric zones A onto the photodiode 21 and through the zones B onto the photodiode 22; the area ratio of the sum of zones A and the sum of zones B can be chosen freely.
- Polarization filters 14, 15, preferably those with mutually perpendicular polarization planes, can be arranged above the two radiation receivers 21, 22, which makes it possible to detect the scattered radiation after its polarization; this enables the advantages described above with regard to the adjustment of the sensitivity of the detectors for the detection of open fires and smoldering fires to be achieved.
- two elements would be required for this, which would also represent two different areas (with different background radiation) of the measurement volume.
- the planar-optical element (POE) described here forms one and the same area from the measurement volume.
- the scattered radiation deflected by the planar-optical element (POE) can be divided into a plurality of radiation receivers, for example, with a planar-optical element, as shown in FIG. 11.
- the deflection of the scattered radiation takes place here by means of a phase-adapted microfresnel reflector (PMFR), as shown in FIG. 6, and the distribution of the scattered radiation among the different radiation receivers is carried out by diffraction on a phase-matched microfresnel reflector (PMFR), the grating structure being the grating structure is adapted to the main wavelength of the radiation source.
- PMFR phase-adapted microfresnel reflector
- the energy distribution within the different diffraction orders can also be selected by a suitable choice of the lattice structure, e.g. a sine grating has the diffraction orders -1, 0, +1, whereby the energy in the orders -1 and / or +1 can be made large by suitable selection of the structure depth or by suitable "blazing".
- a rectangular grid has many orders.
- a lattice structure of suitable shape can always be found for a freely selectable number of focal points and a freely selectable energy distribution in the focal points.
- FIG. 10 shows an embodiment of an optical smoke detector according to the invention, in which a planar-optical element (POE) 5 in the manner of a deflecting mirror is used.
- the planar-optical element (POE) is shown in FIG.
- the deflection of the scattered radiation takes place here through the elliptically arranged, phase-adapted micro surfaces, which alternately belong to ellipsoids with different focal points, and the distribution of the scattered radiation among the different radiation receivers 21, 22, 23, 24, 25 takes place by diffraction at a phase-adapted microfresh reflector ( PMFR) superimposed, linear grating, the grating structure is adapted to the main wavelength of the radiation source.
- PMFR phase-adapted microfresh reflector
- the radiation source 1 consists of a radiation in the near infrared emitting diode (IRED) and a red light emitting diode (LED), which are arranged in a common housing.
- the structure of the linear grating of the mirror 5 is selected so that the radiation is deflected to five different focal points, in which radiation receivers 21, 22, 23, 24, 25 are located.
- polarization filters 14 with parallel polarization planes are arranged in front of two of the radiation receivers 21, 22, while polarization filters 15, whose polarization planes are perpendicular to the polarization planes of the first two polarization filters 14, are arranged in front of two other radiation receivers 24, 25. There is none in front of one of the radiation receivers 23 Polarization filter, so that this radiation receiver 23 receives light of all wavelengths and all levels of polarization.
- First radiation receiver 21 infrared light, polarized perpendicularly (to the scattering plane); second radiation receiver 22: red light, vertically polarized; third radiation receiver 23: infrared light and red light, not polarized; fourth radiation receiver 24: red light polarized in parallel; fifth radiation receiver 25: infrared light, polarized in parallel.
- First radiation receiver 21 infrared light, polarized perpendicularly (to the scattering plane); second radiation receiver 22: red light, vertically polarized; third radiation receiver 23: infrared light and red light, not polarized; fourth radiation receiver 24: red light polarized in parallel; fifth radiation receiver 25: infrared light, polarized in parallel.
- Figure 12 shows a cross section through a smoke detector based on the extinction principle.
- a planar-optical element (POE) 5 is arranged in front of a radiation source 1, by means of which the radiation from the radiation source 1 is combined to form an approximately parallel radiation beam 6.
- a second planar-optical element 23 is arranged in front of a radiation receiver 2, by means of which the radiation which has passed through the measurement volume 8 is focused on the radiation receiver 2.
- planar-optical elements can also be used, which are arranged at an angle of, for example, 45 ° to the radiation in the measurement volume 8 (cf. FIG. 13).
- FIG. 14 shows a further embodiment of a scattered light smoke detector which has a wired diode 1 which emits infrared light and has no optical element, a photodiode 2 on the printed circuit board 9 and an ellipsoid mirror 24 as a deflecting element.
- the photodiode serving as the radiation receiver 2 is located in a blackened compartment 16, which is only connected to the interior of the detector by an aperture 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Fire-Detection Mechanisms (AREA)
Abstract
Description
Die Erfindung betrifft einen optischen Rauchmelder gemäß dem Oberbegriff des Patentanspruchs 1. Rauchmelder dieser Art sind allgemein bekannt. Sie werden insbesondere als automatische Brandmelder zur Früherkennung von Bränden eingesetzt.The invention relates to an optical smoke detector according to the preamble of
Unter der Vielzahl der auf dem Markt befindlichen Typen von automatischen Brandmeldern nehmen die Rauchmelder eine besondere Stellung ein, da sie am besten geeignet sind, Brände in einem derart frühen Zeitpunkt zu erkennen, daß Gegenmaßnahmen noch erfolgreich eingeleitet werden können.Smoke detectors occupy a special position among the multitude of types of automatic fire detectors on the market, since they are best suited to detect fires at such an early stage that countermeasures can still be successfully initiated.
Man unterscheidet im wesentlichen zwei Arten von Rauchmeldern: Ionisationsrauchmelder und optische Rauchmelder. Bei den Ionisationsrauchmeldern wird die Anlagerung von Luftionen an Rauchpartikel ausgenutzt; bei der zweiten Art von Rauchmeldern werden die optischen Eigenschaften von Aerosolen zur Detektion von Rauch herangezogen. Hierbei nutzt man entweder die Schwächung eines Lichtstrahls durch Rauch ("Extinktionsmelder") oder die Streuung von Licht an Rauchteilchen ("Streulichtmelder") aus. Da die Extinktion durch Rauch verhältnismässig gering ist, muß die Meßstrecke ziemlich lang sein, um eine sichere Detektion von Rauch zu ermöglichen; oder es müssen aufwendige konstruktive und/oder elektronische Maßnahmen ergriffen werden, um eine sichere Detektion von Schadenfeuern zu ermöglichen. Die letztgenannten Streulichtmelder, sind daher am weitesten verbreitet, da bei ihnen die Meßstrecke so kurz sein kann, daß sie als sogenannte "Punktmelder" ausgebildet sein können.There are two main types of smoke detectors: ionization smoke detectors and optical smoke detectors. In ionization smoke detectors, the accumulation of air ions on smoke particles is used; The second type of smoke detector uses the optical properties of aerosols to detect smoke. Here, one uses either the weakening of a light beam by smoke ("extinction detector") or the scattering of light on smoke particles ("scattered light detector"). Since the extinction by smoke is relatively low, the measuring section must be quite long in order to enable reliable detection of smoke; or complex constructive and / or electronic measures must be taken to enable safe detection of damage fires. The last-mentioned scattered light detectors are therefore the most widespread, since the measuring path can be so short that they can be designed as so-called "point detectors".
In der DE-A-28 22 547 (Hochiki; 07.12.78) ist ein Linienextinktionsmelder beschrieben, bei dem ein Sender Licht aussendet. Ein Teil des ausgesandten Lichts fällt auf einen Strahlungsempfänger nachdem er eine Meßstrecke durchlaufen hat. Bei Anwesenheit von Rauch in der Meßstrecke wird das Ausgangssignal des Strahlungsempfängers in Abhängigkeit von der Rauchdichte verringert und das Ausgangssignal wird einer Schwellenwert- und Vergleichsschaltung zugeführt, wobei in einer nachgeschalteten Auswerteschaltung ein Alarmsignal erzeugt wird, wenn das Ausgangssignal einen vorbestimmten Wert, die Alarmschwelle, unterschreitet. Sowohl vor der Strahlungsquelle als vor dem Strahlungsempfänger sind Linsen angeordnet, um den Lichtstrahl, der die Meßstrecke durchläuft, zu bündeln. Die Bündelungssysteme sind konstruktiv sehr aufwendig.DE-A-28 22 547 (Hochiki; 07.12.78) describes a line extinction detector in which a transmitter emits light. Part of the emitted light falls on a radiation receiver after it has passed a measuring section. In the presence of smoke in the measuring section, the output signal of the radiation receiver is reduced depending on the smoke density and the output signal is fed to a threshold and comparison circuit, an alarm signal being generated in a downstream evaluation circuit if the output signal falls below a predetermined value, the alarm threshold . Lenses are arranged both in front of the radiation source and in front of the radiation receiver in order to bundle the light beam which traverses the measurement path. The bundling systems are structurally very complex.
Die meisten älteren optischen Rauchmelder, die nach dem Lichtstreuungsprinzip arbeiten, nützen die Vorwärtsstreuung aus. Hierbei verursachen große Rauchaerosolteilchen einen starken Effekt, während kleine Rauchteilchen nur wenig Streulicht verursachen. Rauchmelder, welche die Rückwärtsstreuung ausnutzen, haben eine gleichmäßigere Empfindlichkeit, was einen universelleren Einsatz ermöglicht. Die schwächere Streulichtintensität erfordert jedoch einen höheren elektronischen Aufwand. Außerdem ist die Gefahr, daß Streulicht von den Wänden des Gehäuses auf den Empfänger reflektiert wird, besonders groß, so daß ein kompliziertes optisches Labyrinth (beispielsweise eine Vielzahl von Blenden, wie bei der EP-A-0 031 096) erforderlich ist, um Reflexionen im Innern des Melders vom Strahlungsempfänger fernzuhalten.Most older optical smoke detectors, which work according to the light scattering principle, use forward scattering. Large smoke aerosol particles cause a strong effect, while small smoke particles cause little scattered light. Smoke detectors, which take advantage of the backward scatter, have a more uniform sensitivity, what enables a more universal use. The weaker scattered light intensity, however, requires more electronic effort. In addition, the risk of stray light being reflected from the walls of the housing onto the receiver is particularly great, so that a complicated optical labyrinth (for example a large number of diaphragms, as in EP-A-0 031 096) is required to cause reflections keep away from the radiation receiver inside the detector.
Die Blenden in der Meßkammer des Rauchmelders gemäß EP-A-0 031 096 dienen außerdem dazu, in Kombination mit optischen Sammellinsen vor der Lichtquelle und dem Empfänger den auf die Meßkammer gerichteten Lichtstrahl, bzw. die aus der Meßkammer gestreute Strahlung zu fokussieren, um die Baulänge des Rauchmelders zu reduzieren.The diaphragms in the measuring chamber of the smoke detector according to EP-A-0 031 096 also serve in combination with optical converging lenses in front of the light source and the receiver to direct the light beam directed onto the measuring chamber or the radiation scattered from the measuring chamber in order to focus the Reduce the overall length of the smoke detector.
Die Verringerung der Baugröße von Rauchmeldern ist nicht nur aus ästhetischen Gründen erwünscht, sondern wird auch aus Gründen der vereinfachten Massenherstellung der Rauchmelder angestrebt. So wurde beispielsweise in der DE-A-37 43 737 (Hochiki; 07.07.88) ein Rauchmelder vorgeschlagen, bei dem es durch eine spezielle Formgebung gelungen ist, die Melderdimensionen zu verringern. Die wirtschaftliche Massenproduktion wird aber beispielsweise dadurch erschwert, daß eine Leiterplatte in einem separaten Arbeitsgang, eventuell von Hand, mit einer bedrahteten Photodiode bestückt werden muß.The reduction in the size of smoke detectors is not only desirable for aesthetic reasons, but is also sought for reasons of simplified mass production of the smoke detectors. For example, a smoke detector has been proposed in DE-A-37 43 737 (Hochiki; 07.07.88), in which a special design has made it possible to reduce the detector dimensions. The economic mass production is complicated, for example, by the fact that a printed circuit board has to be equipped with a wired photodiode in a separate operation, possibly by hand.
Dabei darfjedoch nicht außer acht gelassen werden, daß störende Streustrahlung (die beispielsweise durch Verschmutzung verursacht sein kann) aus der Meßkammer auf den lichtempfindlichen Empfänger treffen kann. In der DE-A-38 31 654 (Beyersdorf; 22.03.90) wurde vorgeschlagen, die Verschmutzung der Meßkammer durch eine zweite Photodiode zu messen und gegebenenfalls einen Alarm zu verhindern, wenn die Verschmutzung einen vorgegebenen Wert übersteigt.However, it should not be forgotten that disturbing stray radiation (which may be caused, for example, by contamination) from the measuring chamber can strike the photosensitive receiver. In DE-A-38 31 654 (Beyersdorf; 22.03.90) it was proposed to measure the contamination of the measuring chamber by a second photodiode and, if necessary, to prevent an alarm if the contamination exceeds a predetermined value.
Um die Dimensionen und die Zahl der Bauteile zu verringern, wurde in der GB-A-2 236 390 (Matsushita; 03.04.91) ein Streustrahlungsrauchmelder vorgeschlagen, der auf einer auf einem Print plazierten integrierten Schaltung eine bedrahtete IRED als Strahlungsquelle und als Empfänger eine Photodiode, die flach auf dem Print liegt, aufweist; dabei dient ein Prisma mit integrierter Linse als Umlenk- und Fokussierelement für die Konzentration der Streustrahlung aus dem Meßvolumen auf die Photodiode. Dieses Prisma ist mit seiner integrierten Linse relativ kostenaufwendig; außerdem ist die erforderliche genaue Plazierung der Linse ziemlich kompliziert.In order to reduce the dimensions and the number of components, a stray radiation smoke detector was proposed in GB-A-2 236 390 (Matsushita; April 3, 1991), which uses a wired IRED as a radiation source and as a receiver on an integrated circuit placed on a printed circuit board Has a photodiode lying flat on the print; a prism with an integrated lens serves as a deflection and focusing element for concentrating the scattered radiation from the measurement volume onto the photodiode. This prism with its integrated lens is relatively expensive; in addition, the exact placement of the lens required is quite complicated.
In der nicht vorveröffentlichten CH-A-682 428 und in der EP-A-0 462 642 (Ajax de Boer; 27.12.91) sind Streulichtrauchmelder beschrieben, bei denen die Polarisation des gestreuten Lichts zur Erkennung der Rauchkonzentration, der Partikelgröße und z.T. der Form der Partikeln ausgenutzt wird. Damit kann ein gleichmäßigeres Ansprechen des Rauchmelders auf unterschiedliche Brandtypen erreicht werden. Die Patentdokumente geben keine Anhaltspunkte für ein kompakteres Design oder eine vereinfachte Konstruktion von optischen Rauchmeldern.In the unpublished CH-A-682 428 and in EP-A-0 462 642 (Ajax de Boer; December 27, 1991) scattered-light smoke detectors are described in which the polarization of the scattered light to detect the smoke concentration, the particle size and partly the Shape of the particles is exploited. This allows the smoke detector to respond more evenly different types of fire can be achieved. The patent documents give no indication of a more compact design or a simplified construction of optical smoke detectors.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen optischen Rauchmelder zu schaffen, der die genannten Nachteile der bekannten optischen Rauchmelder nicht aufweist und insbesondere einen optischen Rauchmelder zu schaffen, der sich durch seine kompakte Bauweise und verringerte Zahl von Bauteilen für eine kostengünstige Massenproduktion eignet.Based on this prior art, the invention has for its object to provide an optical smoke detector that does not have the disadvantages of the known optical smoke detectors and, in particular, to create an optical smoke detector that can be used for a compact design and a reduced number of components inexpensive mass production.
Eine weitere Aufgabe der Erfindung besteht darin, die Fertigungstechnologie so zu verbessern, insbesondere die Fertigungstoleranzen so weit zu verringern, daß die zum Teil noch manuell erforderliche Abgleicharbeit entfällt oder doch auf ein Minimum reduziert wird.Another object of the invention is to improve the manufacturing technology in such a way, in particular to reduce the manufacturing tolerances to such an extent that the adjustment work, which is still required manually in some cases, is eliminated or at least reduced to a minimum.
Diese Aufgabe wird bei einem optischen Rauchmelder der eingangs genannten Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Bevorzugte Ausführungsformen der Erfindung und Ausgestaltungen sind in den abhängigen Patentansprüchen definiert.This object is achieved in an optical smoke detector of the type mentioned by the characterizing features of
Ein besonderer Vorteil einer bevorzugten Ausführungsform des erfindungsgemäßen Rauchmelders nach dem Streustrahlungsprinzip besteht in der Erweiterung der Freiheitsgrade der optischen Rauchmelder des Standes der Technik durch die planar-optischen Elemente (POE), wie holographisch-optische Elemente (HOE), Mikrofresnelelemente (MFE), wie z.B. Mikrofresnelreflektoren (MFR) und phasenangepaßte Mikrofresnelreflektoren (PMFR) und in der durch die Auswertung der Polarisation der Streustrahlung gegebenen Verbesserung der Erkennung unterschiedlicher Brände.A particular advantage of a preferred embodiment of the smoke detector according to the scattered radiation principle is the expansion of the degrees of freedom of the optical smoke detectors of the prior art by the planar-optical elements (POE), such as holographic-optical elements (HOE), microfresh elements (MFE), such as e.g. Microfresh reflectors (MFR) and phase-matched microfresh reflectors (PMFR) and in the improvement of the detection of different fires given by the evaluation of the polarization of the scattered radiation.
Die Tatsache, daß bei der bevorzugten Ausführungsform des erfindungsgemäßen optischen Rauchmelders nach dem Streustrahlungsprinzip die von der Strahlungsquelle ausgehende Strahlung und die von den Rauchteilchen zum Strahlungsempfänger gestreute Strahlung praktisch parallel zur Raumdecke geführt wird, ermöglicht eine sehr flache Bauweise des Melders. Diese Strahlungsführung wird durch die Verwendung von planar-optischen Elementen (POE) als fokussierende optische Umlenkelemente [holographisch-optische Elemente (HOE), Mikrosfresnelelemente (MFE), wie z.B. Mikrofresnelreflektoren (MFR) und phasenangepaßte Mikrofresnelreflektoren (PMFR)] erreicht.The fact that, in the preferred embodiment of the optical smoke detector according to the invention based on the scattered radiation principle, the radiation emanating from the radiation source and the radiation scattered from the smoke particles to the radiation receiver are guided practically parallel to the ceiling of the room enables a very flat construction of the detector. This radiation guidance is achieved through the use of planar-optical elements (POE) as focusing optical deflection elements [holographic-optical elements (HOE), microsfresnel elements (MFE), e.g. Microfresh Reflectors (MFR) and Phase Adjusted Microfresh Reflectors (PMFR)].
Auch bei einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Rauchmelders nach dem Extinktionsprinzip ermöglicht die Verwendung von planar-optischen Elementen (POE) als fokussierende optische Elemente [holographisch-optische Elemente (HOE), Mikrosfresnelelemente (MFE), wie z.B. Mikrofresnelreflektoren (MFR) und phasenangepaßte Mikrofresnelreflektoren (PMFR)] eine vereinfachte Bauweise der Rauchmelder, was eine billige Massenproduktion ermöglicht.In a further preferred embodiment of the smoke detector according to the invention based on the extinction principle, the use of planar-optical elements (POE) as focussing optical elements [holographic-optical elements (HOE), microsfresnel elements (MFE), such as, for example, microfresh reflectors (MFR) and phase-matched microfresh reflectors (PMFR)] a simplified design of the smoke detector, which enables cheap mass production.
Mikrofresnelelemente (MFE) sind diffraktive Fresnellinsenstrukturen in mikroskopischer Abmessung, wie sie als transmissive Elemente in der US-A-4,936,666 (3M-Company; 22.06.90) erwähnt werden. Die Herstellung solcher Mikrofresnellinsen für Transmission und Reflexion in einer on-axis Konfiguration ist beispielsweise von T. Shiono et al. in Optics Letters, Vol. 15, No. 1, 84 (01.01.90), beschrieben. Die erfindungsgemäß verwendbaren phasenangepaßten Mikrofresnelreflektoren (PMFR) sind eine planare Anordnung von geneigten und gekrümmten Mikroflächen, die aus Ausschnitten von Ellipsoiden bestehen. Sie werden als Oberflächenspiegel gebraucht und sind deshalb mit einer reflektiven Schicht überzogen. Die Mikroflächen sind phasenangepaßt, das heißt, der optische Weg von einem Brennpunkt zum andern über jede der Mikroflächen unterscheidet sich immer um ein ganzzahliges Vielfaches der Lichtwellenlänge.Microfresh elements (MFE) are diffractive Fresnel lens structures in microscopic dimensions, as they are mentioned as transmissive elements in US-A-4,936,666 (3M-Company; June 22, 90). The production of such microfresh lenses for transmission and reflection in an on-axis configuration is described, for example, by T. Shiono et al. in Optics Letters, Vol. 15, No. 1, 84 (01/01/90). The phase-adapted microfresh reflectors (PMFR) that can be used according to the invention are a planar arrangement of inclined and curved microfaces, which consist of sections of ellipsoids. They are used as surface mirrors and are therefore covered with a reflective layer. The micro surfaces are phase-matched, that is, the optical path from one focal point to the other over each of the micro surfaces always differs by an integral multiple of the light wavelength.
Die Ausgestaltung der optischen Rauchmelder mit den Mikrofresnelelementen hab gegenüber derjenigen mit den holographisch-optischen Elementen den Vorteil, daß die Rauchmelder weniger empfindlich gegenüber chromatischer Aberration sind und sich besser für die Massenproduktion eignen. Die phasenangepaßten Mikrofresnelelemente (MFE) und die holographisch-optischen Elemente (HOE) sind ebene optische Elemente, die automatisch bestückt und genau plaziert werden können. Beide sind einfach konstruiert und können daher sehr preiswert hergestellt werden.The design of the optical smoke detectors with the microfresh elements has the advantage over that with the holographic-optical elements that the smoke detectors are less sensitive to chromatic aberration and are better suited for mass production. The phase-matched microfresh elements (MFE) and the holographic-optical elements (HOE) are flat optical elements that can be automatically equipped and precisely placed. Both are simply constructed and can therefore be manufactured very inexpensively.
Ein weiterer Vorteil der erfindungsgemäßen optischen Rauchmelder besteht darin, daß eine Photodiode und eine Ansteuerelektronik einer Infrarotlicht emittierenden Diode (IRED) in einen integrierten Schaltkreis (IC) der Empfangselektronik integriert werden können. Es verbleiben nur noch wenige Schaltelemente, wie z.B. der Ladekondensator, die Spannungsstabilisierung und Schutzelemente für die Kommunikationsleitungen, die nicht in einen IC integriert werden können. Anzahl und Platzbedarf von Elektronikkomponenten werden dadurch erheblich herabgesetzt.Another advantage of the optical smoke detector according to the invention is that a photodiode and control electronics of an infrared light-emitting diode (IRED) can be integrated into an integrated circuit (IC) of the receiving electronics. Only a few switching elements remain, e.g. the charging capacitor, voltage stabilization and protective elements for the communication lines that cannot be integrated into an IC. This significantly reduces the number and space requirements of electronic components.
Mit der Integration der Photodiode und der Empfangselektronik in einen IC werden die sonst als Antennen wirkenden Verbindungsdrähte zwischen Photodiode und der ersten Stufe zur Strom/Spannungs-Wandlung sehr kurz. Der optische Rauchmelder wird dadurch wesentlich störungsunempfindlicher, was es ermöglicht, mit einer kleineren, preiswerteren Photodiodenfläche und damit tieferem Signalniveau ein den bisherigen optischen Rauchmeldern gleichwertige Detektionssicherheit zu erreichen.With the integration of the photodiode and the receiving electronics in an IC, the connecting wires, which otherwise act as antennas, between the photodiode and the first stage for current / voltage conversion become very short. This makes the optical smoke detector significantly less sensitive to interference, which makes it possible to achieve detection reliability equivalent to the previous optical smoke detectors with a smaller, cheaper photodiode area and thus a lower signal level.
Die Mikrofresnelelemente (MFE) und die holographisch-optischen Elemente (HOE) erlauben eine größere optische Apertur als konventionelle Linsen. Es gelingt somit mehr Streustrahlung aufzufangen und die Signale auf ein höheres Detektionsnineau zu heben mit dem Vorteil besserer Immunität gegen elektrische Störeinflüsse.The microfresh elements (MFE) and the holographic-optical elements (HOE) allow a larger optical aperture than conventional lenses. It is thus possible to collect more scattered radiation and raise the signals to a higher detection level with the advantage of better immunity to electrical interference.
Ferner erlauben die Mikrofresnelelemente (MFE) ein Design mit zwei (oder mehreren) Brennpunkten. Ein Streulichtmelder dieser Art bildet das Streuvolumen auf zwei (oder mehrere) separate Strahlungsempfänger ab, die mit gekreuzten Polarisatoren bedeckt werden können. Beide Photodioden erhalten in Abwesenheit von Rauch Strahlung von identischem Hintergrund (unter der Annahme, daß Strahlung vom Hintergrund erst nach mehreren Reflexionen am Labyrinth und damit unpolarisiert auf die Photodioden fällt). Die sogenannten Grundpulse für jede der beiden Photodioden bleiben also auch bei wachsender Verschmutzung des Streulichtmelders gleich. Damit kann der Streulichtmelder ohne weitere optische Elemente auf einfache Art zu einem Melder unter Verwendung von Polarisationsfiltern ausgebaut werden.Furthermore, the microfresh elements (MFE) allow a design with two (or more) focal points. A stray light detector of this type maps the stray volume onto two (or more) separate radiation receivers, which can be covered with crossed polarizers. In the absence of smoke, both photodiodes receive radiation from an identical background (assuming that radiation from the background only falls on the photodiodes after several reflections on the labyrinth and thus unpolarized). The so-called basic pulses for each of the two photodiodes therefore remain the same even when the scattered light detector becomes increasingly dirty. The scattered light detector can thus be easily expanded into a detector using polarization filters without further optical elements.
Im folgenden wird die Erfindung anhand der in den Zeichnungen dargestellten bevorzugten Ausführungsformen näher erläutert. Es zeigen
Figur 1- einen Vertikalschnitt durch einen erfindungsgemäßen Rauchmelder mit zwei planaren optischen Elementen (POE),
Figur 2- einen Horizontalschnitt durch eine andere Ausführungsform eines erfindungsgemäßen Rauchmelders mit einer Strahlungsquelle ohne optisches Element und einer Photodiode mit einem planaren optischen Element als Umlenkelement darüber,
Figur 3- einen Vertikalschnitt durch den Rauchmelder gemäss
Figur 2 entlang der Linie A - B (Photodiodenkompartment und Meßkammer), Figur 4- eine weitere Ausführungsform eines Streulichtrauchmelders gemäß Figur 1 mit Strahlungsquelle auf dem Print und planarem optischen Element über dem Strahlungsempfänger,
Figur 5- eine weitere Ausführungsform eines Streulichtrauchmelders gemäß Figur 4 mit zusätzlichem ebenem oder gekrümmtem Spiegel,
Figur 6- die Draufsicht auf die Struktur eines phasenangepaßten Mikrofresnelreflektors (PMFR),
Figur 7- einen Querschnitt durch einen phasenangepaßten Mikrofresnelreflektor (PMFR) gemäß
Figur 6, bei dem die Mikrostruktur auf der Vorderseite des Substrates liegt, Figur 8- einen Querschnitt durch einen phasenangepaßten Mikrofresnelreflektor (PMFR) gemäß
Figur 6, bei dem die Mikrostruktur auf der Rückseite des Substrates liegt, Figur 9- eine weitere Ausführungsform eines optischen Rauchmelders mit einem planaren optischen Element, welches die Strahlung auf zwei Strahlungsempfänger konzentriert, und mit Polarisatoren unterschiedlicher Polarisationsebene in jedem der Strahlengänge,
Figur 10- eine weitere Ausführungsform eines optischen Rauchmelders mit einem planaren optischen Element, dem ein Gitter überlagert ist, welches die Strahlung auf mehrere Strahlungsempfänger konzentriert, und mit Polarisatoren unterschiedlicher Polarisationsebene in jedem der Strahlengänge,
- Figur 11
- die Draufsicht auf einen phasenangepaßten Mikrofresnelreflektor (PMFR) mit aufgeprägtem linearem Gitter,
Figur 12- einen Querschnitt durch einen Extinktionsrauchmelder mit transmissiven planar-optischen Elementen,
Figur 13- einen Querschnitt durch einen Extinktionsrauchmelder mit reflektiven planar-optischen Elementen; und
Figur 14- einen Vertikalschnitt durch einen Streulichtrauchmelder mit Ellipsoidspiegel.
- Figure 1
- a vertical section through a smoke detector according to the invention with two planar optical elements (POE),
- Figure 2
- 3 shows a horizontal section through another embodiment of a smoke detector according to the invention with a radiation source without an optical element and a photodiode with a planar optical element as a deflecting element above it,
- Figure 3
- 3 shows a vertical section through the smoke detector according to FIG. 2 along the line A - B (photodiode compartment and measuring chamber),
- Figure 4
- 1 shows another embodiment of a scattered-light smoke detector according to FIG. 1 with a radiation source on the print and a planar optical element above the radiation receiver,
- Figure 5
- 4 a further embodiment of a scattered light smoke detector according to FIG. 4 with an additional flat or curved mirror,
- Figure 6
- the top view of the structure of a phase-adjusted microfresh reflector (PMFR),
- Figure 7
- 6 shows a cross section through a phase-adapted microfresh reflector (PMFR) according to FIG. 6, in which the microstructure lies on the front of the substrate,
- Figure 8
- 6 shows a cross section through a phase-adapted microfresh reflector (PMFR) according to FIG. 6, in which the microstructure lies on the back of the substrate,
- Figure 9
- a further embodiment of an optical smoke detector with a planar optical element which concentrates the radiation on two radiation receivers and with polarizers of different polarization levels in each of the beam paths,
- Figure 10
- another embodiment of an optical smoke detector with a planar optical element, on which a grating is superimposed, which concentrates the radiation onto several radiation receivers, and with polarizers of different polarization levels in each of the beam paths,
- Figure 11
- the top view of a phase-adapted microfresh reflector (PMFR) with an embossed linear grating,
- Figure 12
- 2 shows a cross section through an extinction smoke detector with transmissive planar-optical elements,
- Figure 13
- a cross section through an extinction smoke detector with reflective planar-optical elements; and
- Figure 14
- a vertical section through a scattered light smoke detector with an ellipsoidal mirror.
In Figur 1 ist ein erfindungsgemäßer optischer Rauchmelder und zwar ein Streulichtrauchmelder mit zwei planaren optischen Elementen (POE) dargestellt. Es sind eine Infrarotlicht aussendende Diode 1 in Oberflächen-Montage-Technik (SMD-IRED) und eine Photodiode 2 in Oberflächen-Montage-Technik (SMD-Photodiode) auf einer Printplatte 9 montiert. Ein planar-optisches Element (POE) 5 ist jeweils über der Strahlungsquelle (SMD-IRED) 1, bzw. über dem Strahlungsempfänger (SMD-Photodiode) 2 angeordnet, um die ausgesandte, bzw. an Aerosolteilchen gestreute Strahlung umzulenken. Hierbei sind zwei ablenkende und fokussierende optische Elemente erforderlich, beispielsweise zwei holographisch-optische Elemente (HOE) 5 oder zwei Mikrosfresnelelemente (MFE) 5.FIG. 1 shows an optical smoke detector according to the invention, namely a scattered-light smoke detector with two planar optical elements (POE). There are an infrared
Mit den zur Zeit erhältlichen holographisch-optischen Elementen (HOE) und Mikrosfresnelelementen (MFE) können bei der Realisierung eines den konventionellen Streulichtmeldern gleichwertigen, erfindungsgemäßen Streulichtrauchmelders gewisse Schwierigkeiten auftreten, da beugungsoptische Elemente nur mit einem Wirkungsgrad hergestellt werden können, der weit unter 100 % liegt. Als Folge davon wirkt die Oberfläche des beugungsoptischen Elements als diffuse Streulichtquelle, wodurch ein beträchtlicher Teil der von der Strahlungsquelle 1 ausgesandten Strahlung als diffuse Strahlung das Meßvolumen 8 überschwemmt. Diese Streustrahlung kann ein Mehrfaches des Lichtes betragen, das an Brandaerosolteilchen gestreut wird. Eine Reduktion der Störstrahlung erfordert wesentlich aufwendigere mechanische Blenden als sie bisher üblich waren.With the currently available holographic-optical elements (HOE) and microsfresnel elements (MFE), certain difficulties can arise when implementing a scattered light smoke detector according to the invention which is equivalent to conventional scattered light detectors, since diffraction-optical elements can only be produced with an efficiency that is well below 100% . As a result, the surface of the diffraction-optical element acts as a diffuse scattered light source, as a result of which a considerable part of the radiation emitted by the
In den Figuren 2 und 3 ist eine gegenüber dem Streulichtmelder gemäß Figur 1 verbesserte Ausführungsform eines Streulichtrauchmelders dargestellt, die eine Infrarotlicht aussendende, bedrahtete Diode 1 ohne optisches Element, eine Photodiode 2 auf der Printplatte 9 und ein holographisch-optisches Element (HOE) 5 oder einen phasenangepaßten Mikrofresnelreflektor (PMFR) 5 als Umlenkelement aufweist. Die als Strahlungsempfänger 2 dienende Photodiode befindet sich in einem geschwärzten Fach 16, das nur durch eine Blende 4 mit dem Melderinneren verbunden ist. Dadurch kann die von der Oberfläche des planar-optischen Elements (HOE oder PMFR) als diffuse Streustrahlung ausgehende Störstrahlung weitgehend ausgeschaltet werden.FIGS. 2 and 3 show an embodiment of a scattered light smoke detector which is improved compared to the scattered light detector according to FIG. 1 and which has a wired
Gemäß einer besonders bevorzugten Ausführungsform (siehe Figur 3) ist die Blendenöffnung 4 mit einer strahlungsdurchlässigen Folie oder einem Polarisationsfilter abgedeckt, um eventuell in das Melderinnere eindringenden Staub von dem Strahlungsempfänger abzuhalten. Bei Streulichtrauchmeldern wird häufig ein Streuwinkel von 70 bis 110° verwendet. Bei solchen Meldern wird durch die Verwendung eines Polarisationsfilters mit einer Schwingungsebene, die senkrecht zur Streuebene steht, bewirkt, daß eine Angleichung der Empfindlichkeiten der Melder zur Detektion von offenen Bränden, die Aerosole mit kleinen Partikeln erzeugen, und von Meldern zur Detekton von Schwelbränden, die Aerosole (Rauch) mit großen Partikeln erzeugen, erfolgt.According to a particularly preferred embodiment (see FIG. 3), the
Gemäß einer weiteren bevorzugten Ausführungsform des vorstehend beschriebenen Streulichtmelders werden zwei nahe beieinander liegende verschiedenfarbige Lichtquellen (z.B. rot und infrarot) verwendet. In diesem Fall werden zwei Strahlungsempfänger (Photodioden) verwendet, die an den Stellen angebracht sind, an denen die Strahlung durch den phasenangepaßten Mikrofresnelreflektor (PMFR) fokussiert wird. Auf Grund der Achromasie der phasenangepaßten Mikrofresnelreflektoren (PMFR) sind keine chromatischen Aberrationen als Folge der relativ breiten spektralen Verteilung von IRED- und LED-Strahlung zu erwarten.According to a further preferred embodiment of the scattered light detector described above, two different colored light sources (e.g. red and infrared) lying close together are used. In this case, two radiation receivers (photodiodes) are used, which are attached at the points at which the radiation is focused by the phase-matched microfresh reflector (PMFR). Due to the achromasia of the phase-adjusted microfresh reflectors (PMFR), no chromatic aberrations are to be expected as a result of the relatively broad spectral distribution of IRED and LED radiation.
In Figur 4 ist eine weitere Ausgestaltung des Streulichtrauchmelders dargestellt; es befindet sich aber über der Strahlungsquelle 1 kein planar-optisches Element (POE). Die Strahlungsquelle 1, eine Infrarotstrahlung aussendende Diode (IRED), ist auf der Printplatte 9 montiert. Das Strahlungsbündel 6 der Strahlungsquelle 1 wird durch Blenden 4 schmal gehalten, und die nicht an Rauchpartikeln 12 in Richtung des oberhalb des Strahlungsempfängers 2 angebrachten planar-optischen Elements 5 gestreute Strahlung verschwindet im Lichtsumpf (Labyrinth) 3.FIG. 4 shows a further embodiment of the scattered light smoke detector; however, there is no planar-optical element (POE) above the
In Figur 5 ist eine weitere Ausgestaltung des Streulichtmelders gemäß Figur 4 dargestellt, bei dem oberhalb der Strahlungsquelle 1 ein ebener oder gekrümmter Spiegel 13 angebracht ist, durch den das Licht des Strahlungsbündels 6, das nicht an Rauchteilchen 12 in Richtung Strahlungsempfänger 2 gestreut wird, seitwärts in ein Labyrinth 3 abgelenkt und dort absorbiert wird. Dadurch wird es ermöglicht, das Labyrinth 3 an einer Stelle anzubringen, wo es mehr Raum einnehmen und daher wirksamer gestaltet werden kann.FIG. 5 shows a further embodiment of the scattered light detector according to FIG. 4, in which a flat or
In Figur 6 ist die Struktur eines phasenangepaßten Mikrofresnelreflektors (PMFR), wie er in einem Streulichtrauchmelder verwendet werden kann, von oben gesehen, dargestellt. Die Figuren 7 und 8 zeigen Schnitte durch den phasenangepaßten Mikrofresnelreflektor (PMFR). Die PMFR heißen "phasenangepaßt", weil der optische Weg [li + l'i], bzw. [(li+k) + (l'i+k)] von der Strahlungsquelle 1 zum Strahlungsempfänger über jede der Ellipsoid-Mikroflächen sich immer um ein ganzes Vielfaches der Lichtwellenlänge unterscheidet.FIG. 6 shows the structure of a phase-adapted microfresh reflector (PMFR), as can be used in a scattered light smoke detector, seen from above. Figures 7 and 8 show sections through the phase-matched microfresh reflector (PMFR). The PMFR are called "phase-adjusted" because the optical path [li + l'i], or [(li + k) + (l'i + k)] from the
Die Struktur kann auf der Vorderseite oder auf der Rückseite des Substrates liegen. Die letztgenannte Ausführung ist die am wenigsten staub und korrosionsempfindliche, da die verspiegelte Struktur mit einem Schutzlack versehen werden kann. Die Herstellung des phasenangepaßten Mikrofresnelreflektors (PMFR) kann so erfolgen, daß die Struktur mit einem Laserschreibsystem in Photolack geschrieben wird. Davon wird ein Nickel-Prägestempel hergestellt und vervielfältigt. Durch Prägen in Kunststoffsubstrate, wie Polymethylmethacrylat (PMMA), Polyvinylchlorid (PVC) oder Polycarbonat (PC), können nun die phasenangepaßten Mikrofresnelreflektoren (PMFR) kostengünstig in großen Mengen produziert werden.The structure can be on the front or on the back of the substrate. The latter version is the least dust and corrosion sensitive, since the mirrored structure can be provided with a protective lacquer. The phase-adjusted microfresh reflector (PMFR) can be manufactured in such a way that the structure is written in photoresist using a laser writing system. A nickel embossing stamp is made and reproduced. By embossing in plastic substrates such as polymethyl methacrylate (PMMA), polyvinyl chloride (PVC) or polycarbonate (PC), the phase-adjusted microfresh reflectors (PMFR) can now be produced inexpensively in large quantities.
Die phasenangepaßten Mikrofresnelreflektoren (PMFR) sind für eine Wellenlänge von 880 nm (Infrarot) optimiert und weisen eine über die aktive Fläche von z.B. 17 x 12 mm2 variierende Profiltiefe von bis zu ca. 3 µm auf (Figuren 7 und 8). Die phasenangepaßten Mikrofresnelreflektoren liegen auf der Übergangszone zwischen diffraktiven und rein reflektiven oder refraktiven Elementen. An den Mikroflächen erfolgt Reflexion oder Transmission und an den Übergangsrändern zwischen den Mikroflächen erscheint Diffraktion mit phasengleicher Superposition des gebrochenen Lichtanteils im zweiten Brennpunkt. Die phasenangepaßten Mikrofresnelreflektoren (PMFR) haben, wie gesagt, außerdem den Vorteil, daß sie weniger empfindlich auf chromatische Aberration sind als die holographisch-optischen Elemente (HOE).The phase-adjusted microfresh reflectors (PMFR) are optimized for a wavelength of 880 nm (infrared) and have a profile depth of up to approx. 3 µm that varies over the active area of 17 x 12 mm 2 , for example (FIGS. 7 and 8). The phase-adjusted microfresh reflectors are located on the transition zone between diffractive and purely reflective or refractive elements. Reflection or transmission takes place on the micro-surfaces and diffraction appears at the transition edges between the micro-surfaces with superimposed superposition of the refracted light component in the second focal point. As already mentioned, the phase-matched microfresh reflectors (PMFR) also have the advantage that they are less sensitive to chromatic aberration than the holographic optical elements (HOE).
In Figur 9 ist eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Streulichtmelders dargestellt. Dieser Streulichtmelder weist ein planar-optisches Element (POE) auf, das eine aus (konzentrischen) Bereichen A,B,.. bestehende Struktur besitzt, die so angeordnet und ausgebildet ist, daß die von der Strahlungsquelle 1 ausgehende Strahlung auf zwei verschiedene Strahlungsempfänger 21, 22 fällt. Beispielsweise wird die Strahlung durch die konzentrischen Zonen A auf die Photodiode 21 und durch die Zonen B auf die Photodiode 22 umgelenkt; das Flächenverhältnis der Summe der Zonen A und der Summe der Zonen B kann dabei frei gewählt werden.FIG. 9 shows a further preferred embodiment of a scattered light detector according to the invention. This scattered light detector has a planar-optical element (POE), which has a structure consisting of (concentric) areas A, B, .., which is arranged and designed such that the radiation emitted by the
Über den beiden Strahlungsempfängern 21, 22 können Polarisationsfilter 14, 15, vorzugsweise solche mit senkrecht aufeinanderstehenden Polarisationsebenen, angeordnet werden, wodurch eine Detektion der Streustrahlung nach ihrer Polarisation möglich ist; dadurch können die weiter oben beschriebenen Vorteile hinsichtlich der Angleichung der Empfindlichkeit der Melder zur Detektion von offenen Bränden und von Schwelbränden erzielt werden. Mit den bisher bekannten Optiken wären dazu zwei Elemente erforderlich, welche zudem zwei unterschiedliche Bereiche (mit unterschiedlicher Hintergrundstrahlung) des Meßvolumens abbilden würden. Demgegenüber bildet das hier beschriebene planar-optische Element (POE) ein und denselben Bereich aus dem Meßvolumen ab. Durch den Einsatz zweier Strahlungsquellen kann man vier Brennpunkte erhalten, wodurch eine Analyse der Streustrahlung nach Farbe und Polarisation möglich ist.Polarization filters 14, 15, preferably those with mutually perpendicular polarization planes, can be arranged above the two
Eine Aufteilung der vom planar-optischen Element (POE) abgelenkten Streustrahlung auf mehrere Strahlungsempfänger kann beispielsweise auch mit einem planar-optischen Element, wie es in Figur 11 dargestellt ist, vorgenommen werden. Die Ablenkung der Streustrahlung erfolgt hier durch einen phasenangepaßten Mikrofresnelreflektor (PMFR), wie er in Figur 6 dargestellt ist, und die Aufteilung der Streustrahlung auf die verschiedenen Strahlungsempfänger erfolgt durch Beugung an einem dem phasenangepaßten Mikrofresnelreflektor (PMFR) überlagerten, linearen Gitter, wobei die Gitterstruktur an die Hauptwellenlänge der Strahlungsquelle angepaßt ist.The scattered radiation deflected by the planar-optical element (POE) can be divided into a plurality of radiation receivers, for example, with a planar-optical element, as shown in FIG. 11. The deflection of the scattered radiation takes place here by means of a phase-adapted microfresnel reflector (PMFR), as shown in FIG. 6, and the distribution of the scattered radiation among the different radiation receivers is carried out by diffraction on a phase-matched microfresnel reflector (PMFR), the grating structure being the grating structure is adapted to the main wavelength of the radiation source.
Je nach der Struktur des überlagerten Gitters können ein, zwei oder mehr Beugungsordnungen (=Brennpunkte) erhalten werden. Die Energieverteilung innerhalb der unterschiedlichen Beugungsordnungen kann ebenfalls durch passende Wahl der Gitterstruktur gewählt werden, z.B. hat ein Sinusgitter die Beugungsordnungen -1, 0, +1, wobei die Energie in den Ordnungen -1 und/oder +1 durch geeignete Wahl der Strukturtiefe oder durch geeignetes "Blazing" groß gemacht werden kann. Im Gegensatz dazu hat ein Rechteckgitter sehr viele Ordnungen. Noch weitergehend kann für eine frei wählbare Anzahl von Brennpunkten und eine frei wählbare Energieverteilung in den Brennpunkten immer eine Gitterstruktur geeigneter Formgebung gefunden werden.Depending on the structure of the superimposed grating, one, two or more diffraction orders (= focal points) can be obtained. The energy distribution within the different diffraction orders can also be selected by a suitable choice of the lattice structure, e.g. a sine grating has the diffraction orders -1, 0, +1, whereby the energy in the orders -1 and / or +1 can be made large by suitable selection of the structure depth or by suitable "blazing". In contrast, a rectangular grid has many orders. Going further still, a lattice structure of suitable shape can always be found for a freely selectable number of focal points and a freely selectable energy distribution in the focal points.
In Figur 10 ist eine Ausführungsform eines erfindungsgemäßen, optischen Rauchmelders dargestellt, in dem ein planar-optisches Element (POE) 5 in der Art eines Umlenkspiegels verwendet wird. In Figur 11 ist das planar-optische Element (POE) dargestellt. Die Ablenkung der Streustrahlung erfolgt hierbei durch die elliptisch angeordneten, phasenangepaßten Mikroflächen, die abwechselnd zu Ellipsoiden mit unterschiedlichen Brennpunkten gehören, und die Aufteilung der Streustrahlung auf die verschiedenen Strahlungsempfänger 21, 22, 23, 24, 25 erfolgt durch Beugung an einem dem phasenangepaßten Mikrofresnelreflektor (PMFR) überlagerten, linearen Gitter, wobei die Gitterstruktur an die Hauptweilenlänge der Strahlungsquelle angepaßt ist.FIG. 10 shows an embodiment of an optical smoke detector according to the invention, in which a planar-optical element (POE) 5 in the manner of a deflecting mirror is used. The planar-optical element (POE) is shown in FIG. The deflection of the scattered radiation takes place here through the elliptically arranged, phase-adapted micro surfaces, which alternately belong to ellipsoids with different focal points, and the distribution of the scattered radiation among the
Die Strahlungsquelle 1 besteht aus einer Strahlung im nahen Infrarot aussendenden Diode (IRED) und einer rotes Licht aussendenden Diode (LED), welche in einem gemeinsamen Gehäuse angeordnet sind. Die Struktur des linearen Gitters des Spiegels 5 ist so gewählt, daß die Strahlung auf fünf verschiedene Brennpunkte, in denen sich Strahlungsempfänger 21, 22, 23, 24, 25 befinden, umgelenkt wird. Gemäß einer bevorzugten Ausführungsform sind vor zwei der Strahlungsempfänger 21, 22, Polarisationsfilter 14 mit parallelen Polarisationsebenen angeordnet, während vor zwei anderen Strahlungsempfängern 24, 25 Polarisationsfilter 15, deren Polarisationsebenen senkrecht zu den Polarisationsebenen der beiden erstgenannten Polarisationsfilter 14 steht, angeordnet sind. Vor einem der Strahlungsempfänger 23 befindet sich kein Polarisationsfilter, so daß dieser Strahlungsempfänger 23 Licht aller Wellenlängen und aller Polarisationsebenen empfängt.The
Auf die Strahlungsempfänger kann dann beispielsweise folgende Strahlung auffallen: Erster Strahlungsempfänger 21: Infrarotlicht, senkrecht (zur Streuebene) polarisiert; zweiter Strahlungsempfänger 22: rotes Licht, senkrecht polarisiert; dritter Strahlungsempfänger 23: Infrarotlicht und rotes Licht, nicht polarisiert; vierter Strahlungsempfänger 24: rotes Licht parallel polarisiert; fünfter Strahlungsempfänger 25: Infrarotlicht, parallel polarisiert. Dadurch wird es bei einer entsprechenden Auslegung der Auswerteschaltung ermöglicht, festzustellen, ob die im Meßvolumen 8 gestreute Strahlung von großen oder kleinen Rauchpartikeln stammt. Dadurch kann auch ein gleichmäßigeres Ansprechverhalten der Rauchmelder gegenüber unterschiedlichen Bränden (offene Feuer - kleine Rauchteilchen oder Schwelbrände - große Rauchteilchen) erzielt werden.The following radiation can then strike the radiation receiver, for example: First radiation receiver 21: infrared light, polarized perpendicularly (to the scattering plane); second radiation receiver 22: red light, vertically polarized; third radiation receiver 23: infrared light and red light, not polarized; fourth radiation receiver 24: red light polarized in parallel; fifth radiation receiver 25: infrared light, polarized in parallel. With an appropriate design of the evaluation circuit, this makes it possible to determine whether the radiation scattered in the
Figur 12 zeigt einen Querschnitt durch einen Rauchmelder nach dem Extinktionsprinzip. Vor einer Strahlungsquelle 1 ist ein planar-optisches Element (POE) 5 angeordnet durch das die Strahlung der Strahlungsquelle 1 zu einem annähernd parallelen Strahlungsbündel 6 zusammengefaßt wird. Vor einem Strahlungsempfänger 2 ist ein zweites planar-optisches Element 23 angeordet, durch das die Strahlung, die das Meßvolumen 8 passiert hat, auf den Strahlungsempfänger 2 fokussiert wird. Anstelle der transmissiven planar-optischen Elemente 5, 23 können auch reflektive, planar-optische Elemente verwendet werden, die im Winkel von beispielsweise 45° zur Strahlung im Meßvolumen 8 angeordnet sind (vgl. Fig. 13).Figure 12 shows a cross section through a smoke detector based on the extinction principle. A planar-optical element (POE) 5 is arranged in front of a
In der Figur 14 ist eine weitere Ausführungsform eines Streulichtrauchmelders dargestellt, der eine Infrarotlicht aussendende, bedrahtete Diode 1 ohne optisches Element, eine Photodiode 2 auf der Printplatte 9 und einen Ellipsoidspiegel 24 als Umlenkelement aufweist. Die als Strahlungsempfänger 2 dienende Photodiode befindet sich in einem geschwärzten Fach 16, das nur durch eine Blende 4 mit dem Melderinneren verbunden ist.FIG. 14 shows a further embodiment of a scattered light smoke detector which has a wired
Claims (18)
- Optical smoke alarm with at least one radiation source (1), at least one radiation detector (2) and a measurement volume (8) located between radiation source (1) and radiation detector (2) and open to the outer atmosphere, wherein the radiation detector (2) detects the changes in radiation which are caused by smoke particles (12) present in the measurement volume (8) and emits an electric output signal as a function of the incident radiation, and with an electronic evaluation circuit which evaluates the electric signal emitted by the radiation detector (2) and emits an alarm signal when the output signal assumes a predetermined signature, characterised in that at least one planar-optical element (5) is arranged in the optical path between radiation source (1) and radiation detector (2).
- Optical smoke alarm according to claim 1 for smoke detection according to the stray radiation principle, with a measurement chamber containing the measurement volume (8) and with a labyrinth (3) for the absorption of interfering radiation which has penetrated the measurement chamber or has formed in the latter, characterised in that the at least one planar-optical element (5) is arranged inside the measurement chamber and is preferably formed by a holographic-optical element or by a microfresnel reflector.
- Optical smoke alarm according to claim 2, characterised in that the at least one planar-optical element (5) is formed by a reflective element provided with a micro-area structure on its front side.
- Optical smoke alarm according to claim 2, characterised in that the at least one planar-optical element (5) is formed by a reflective element provided with a micro-area structure on its rear side.
- Optical smoke alarm according to claim 2, in which the at least one planar-optical element (5) is formed by a microfresnel reflector, characterised in that its surface structure is so arranged and adjusted that the path difference across the various micro-areas of rays which are reflected by the microfresnel reflector comes to a whole multiple of the central light wavelength lambda, preferably the wavelength of 880 µm.
- Optical smoke alarm according to one of claims 2 to 5, characterised in that the radiation source (1) and the radiation detector (2) are arranged on a print plate (9), and that a single planar-optical element (5) assigned to the radiation source or to the radiation detector is provided.
- Optical smoke alarm according to one of claims 2 to 5, characterised in that the radiation source (1) and the radiation detector (2) are arranged on a print plate (9), and that two planar-optical elements (5) are provided, one of which is assigned to the radiation source and the other to the radiation detector.
- Optical smoke alarm according to claim 6 or 7, characterised in that a plane or curved mirror (13) is arranged above the radiation source (1) in such a way that the light not scattered on smoke particles (12) is directed into the labyrinth (3).
- Optical smoke alarm according to one of claims 6 to 8, characterised in that the radiation source (1) is formed by a diode emitting an infrared radiation or a laser diode.
- Optical smoke alarm according to one of claims 2 to 9, characterised in that there is arranged in front of the radiation detector (2) a polarizing filter (15), preferably one with a plane of polarization perpendicular to the scatter plane defined by the direction of propagation of the radiation from the radiation source (1) and the radiation detector.
- Optical smoke alarm according to claim 2, characterised in that two differently coloured radiation sources (1) and at least two radiation detectors (2) separate in space are provided.
- Optical smoke alarm according to one of claims 2 to 11, characterised in that two radiation detectors (21, 22) separate from one another in space and polarizing filters (14, 15) arranged in front of the latter are provided with different planes of polarization preferably perpendicular to one another, and that the at least one planar-optical element (5) comprises on its surface deflecting the incident radiation two regions (A, B) which comprise focal points varying from place to place and are so arranged and adjusted that the stray light falling upon the planar-optical element out of the measurement volume (8) falls upon the two radiation detectors (21, 22).
- Optical smoke alarm according to one of claims 2 to 11, characterised in that two differently coloured radiation sources (1) separate from one another in space and at least five radiation detectors (21, 22, 23, 24, 25) separate from one another in space are provided, that the at least one planar-optical element (5) comprises on its surface deflecting the incident radiation two regions (A, B) with focal points varying from place to place and bears a superimposed structure, preferably a lattice structure, wherein the focal points are so arranged and adjusted that the stray light falling upon the planar-optical element out of the test volume (8) is focussed onto the five radiation detectors by diffraction, and that polarizing filters (14, 15) with different planes of polarization preferably perpendicular to one another in pairs are arranged in front of four of the radiation detectors.
- Optical smoke alarm according to one of claims 2 to 12, characterised in that the at least one planar-optical element (5) is laminated onto the labyrinth (3).
- Optical smoke alarm according to one of claims 2 to 12, characterised in that the at least one planar-optical element is applied directly to the labyrinth (3) by the injection moulding method.
- Optical smoke alarm according to claim 2, characterised in that the planar-optical element is formed by a shallow deviation mirror (24).
- Optical smoke alarm according to claim 16, characterised in that the shallow deviation mirror (24) is formed [by] a dip in a plastics casing.
- Optical smoke alarm according to claim 1, for smoke detection according to the extinction principle, with an open measurement volume (8) and with radiation source (1) arranged at the side of the latter and radiation detector (2), characterised in that the at least one planar-optical element (5, 23) is arranged in the region of the radiation source and/or of the radiation detector and is preferably formed by a holographic-optical element or by a micro-fresnel reflector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2884/92 | 1992-09-14 | ||
CH2884/92A CH684556A5 (en) | 1992-09-14 | 1992-09-14 | Optical Smoke Detector. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0588232A1 EP0588232A1 (en) | 1994-03-23 |
EP0588232B1 true EP0588232B1 (en) | 1997-07-09 |
Family
ID=4243760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93114472A Expired - Lifetime EP0588232B1 (en) | 1992-09-14 | 1993-09-09 | Optic smoke detector |
Country Status (6)
Country | Link |
---|---|
US (1) | US5451931A (en) |
EP (1) | EP0588232B1 (en) |
AT (1) | ATE155272T1 (en) |
CH (1) | CH684556A5 (en) |
DE (1) | DE59306866D1 (en) |
ES (1) | ES2106930T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007045018A1 (en) | 2007-09-20 | 2009-04-16 | Perkinelmer Optoelectronics Gmbh & Co.Kg | Radiation guide device for a detector, scattered radiation detector |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9315779D0 (en) * | 1993-07-30 | 1993-09-15 | Stoneplan Limited | Apparatus and methods |
US5568130A (en) * | 1994-09-30 | 1996-10-22 | Dahl; Ernest A. | Fire detector |
JP2787001B2 (en) * | 1994-12-12 | 1998-08-13 | ホーチキ株式会社 | Photoelectric smoke detector |
US5713364A (en) * | 1995-08-01 | 1998-02-03 | Medispectra, Inc. | Spectral volume microprobe analysis of materials |
US5813987A (en) * | 1995-08-01 | 1998-09-29 | Medispectra, Inc. | Spectral volume microprobe for analysis of materials |
US6104945A (en) * | 1995-08-01 | 2000-08-15 | Medispectra, Inc. | Spectral volume microprobe arrays |
US6108084A (en) * | 1995-08-17 | 2000-08-22 | Robert Bosch Gmbh | Combined sensor device for measuring both rain-covered area on and visual range through a windshield of a motor vehicle |
EP0813178A1 (en) * | 1996-06-13 | 1997-12-17 | Cerberus Ag | Optical smoke detector |
US6826422B1 (en) | 1997-01-13 | 2004-11-30 | Medispectra, Inc. | Spectral volume microprobe arrays |
DE19741853A1 (en) * | 1997-09-23 | 1999-03-25 | Bosch Gmbh Robert | Hollow ellipse smoke alarm |
CA2356623C (en) | 1998-12-23 | 2005-10-18 | Medispectra, Inc. | Systems and methods for optical examination of samples |
WO2001095279A1 (en) * | 1999-03-05 | 2001-12-13 | Brk Brands, Inc. | Ultra-short wavelength photoelectric smoke detector |
GB9908073D0 (en) * | 1999-04-09 | 1999-06-02 | Texecom Limited | Infrared detector lens |
US6876305B2 (en) | 1999-12-08 | 2005-04-05 | Gentex Corporation | Compact particle sensor |
US6225910B1 (en) | 1999-12-08 | 2001-05-01 | Gentex Corporation | Smoke detector |
AUPQ553800A0 (en) * | 2000-02-10 | 2000-03-02 | Cole, Martin Terence | Improvements relating to smoke detectors particularily duct monitored smoke detectors |
US6815652B1 (en) * | 2000-09-11 | 2004-11-09 | Jackson Products, Inc. | Low power phototransistor-based welding helmet providing reduced sensitivity to low intensity light and sharp phototransistor response to high intensity light |
DE10110231A1 (en) | 2001-03-02 | 2002-09-26 | Bosch Gmbh Robert | Optical aperture |
DE10116723C1 (en) * | 2001-04-04 | 2002-10-31 | Bosch Gmbh Robert | Device for deflecting optical rays |
DE10118913B4 (en) * | 2001-04-19 | 2006-01-12 | Robert Bosch Gmbh | Scattered light smoke |
US6760107B1 (en) * | 2002-04-12 | 2004-07-06 | Pointsource Technologies, Llc | Detection of scattered light from particles |
DE50205854D1 (en) * | 2002-06-20 | 2006-04-27 | Siemens Schweiz Ag Zuerich | Scattered light smoke |
US6818903B2 (en) | 2002-07-09 | 2004-11-16 | Medispectra, Inc. | Method and apparatus for identifying spectral artifacts |
US6768918B2 (en) | 2002-07-10 | 2004-07-27 | Medispectra, Inc. | Fluorescent fiberoptic probe for tissue health discrimination and method of use thereof |
US6900726B2 (en) * | 2003-01-03 | 2005-05-31 | Antronnix, Inc. | System and method for fiber optic communication with safety-related alarm systems |
WO2004104959A2 (en) * | 2003-05-23 | 2004-12-02 | Apollo Fire Detectors Limited | Smoke detector |
JP4347296B2 (en) * | 2003-11-17 | 2009-10-21 | ホーチキ株式会社 | Scattered smoke detector |
DE10353837B4 (en) * | 2003-11-18 | 2017-05-24 | Robert Bosch Gmbh | Testing device for fire detectors |
US20050151968A1 (en) * | 2004-01-08 | 2005-07-14 | The Lxt Group | Systems and methods for continuous, on-line, real-time surveillance of particles in a fluid |
DE102004001699A1 (en) * | 2004-01-13 | 2005-08-04 | Robert Bosch Gmbh | fire alarm |
US7151460B2 (en) * | 2005-01-10 | 2006-12-19 | Nokia Corporation | Electronic device having a proximity detector |
ES2306025T3 (en) * | 2005-11-04 | 2008-11-01 | Siemens Aktiengesellschaft | WARNING OF COMBINED FIRE DISPERSED AND EXTINGUISHING LIGHT. |
EP1855259A1 (en) * | 2006-05-08 | 2007-11-14 | Siemens Schweiz AG | Fire detecor |
ITTO20060676A1 (en) | 2006-09-22 | 2008-03-23 | Elkron Spa | SMOKE DETECTOR |
US7786880B2 (en) * | 2007-06-01 | 2010-08-31 | Honeywell International Inc. | Smoke detector |
KR101947004B1 (en) * | 2008-06-10 | 2019-02-12 | 엑스트랄리스 테크놀로지 리미티드 | Particle detection |
CA2760026C (en) * | 2009-05-01 | 2018-03-20 | Xtralis Technologies Ltd | Improvements to particle detectors |
FR2964743B1 (en) * | 2010-09-14 | 2015-06-26 | Finsecur | SMOKE DETECTION CIRCUIT, SMOKE DETECTOR COMPRISING IT, AND ALARM DEVICE COMPRISING SAME. |
US8988660B2 (en) | 2011-06-29 | 2015-03-24 | Silicon Laboratories Inc. | Optical detector |
MY179786A (en) * | 2013-06-03 | 2020-11-14 | Xtralis Technologies Ltd | Particle detection system and related methods |
US9355542B2 (en) * | 2014-01-27 | 2016-05-31 | Kidde Technologies, Inc. | Apparatuses, systems and methods for self-testing optical fire detectors |
EP2963627B1 (en) * | 2014-07-04 | 2016-05-18 | Amrona AG | Assembly for damping the impinging light of a beam of radiation |
DE102015002465A1 (en) * | 2015-02-27 | 2016-09-01 | Hella Kgaa Hueck & Co. | Method for fine dust measurement and fine dust sensor for the determination of the particle size of fine dust |
EP3128493A1 (en) * | 2015-08-06 | 2017-02-08 | Siemens Schweiz AG | Scattered light smoke detector with optical measurement chamber in detector housing and with a mirror surface on the inside of a detector hood as part of the detector housing |
US9830789B2 (en) * | 2015-12-29 | 2017-11-28 | Honeywell International Inc. | Ceiling mount intrusion detector with arbitrary direction detection capability |
EP3319057B1 (en) * | 2016-11-02 | 2019-06-26 | ams AG | Integrated smoke detection device |
EP3270362B1 (en) | 2017-02-07 | 2019-01-02 | Siemens Schweiz AG | Fire alarm with a measurement chamber and a switch holder for joint assembly of a fire sensor of the measuring chamber and at least one further sensor for detecting a measured variable in the environment outside the fire detector |
US10809173B2 (en) | 2017-12-15 | 2020-10-20 | Analog Devices, Inc. | Smoke detector chamber boundary surfaces |
US11788942B2 (en) | 2017-12-15 | 2023-10-17 | Analog Devices, Inc. | Compact optical smoke detector system and apparatus |
US11692813B2 (en) * | 2017-12-27 | 2023-07-04 | Ams Sensors Singapore Pte. Ltd. | Optoelectronic modules and methods for operating the same |
US11137331B2 (en) * | 2018-08-21 | 2021-10-05 | Viavi Solutions Inc. | Multispectral sensor based alert condition detector |
EP3857207B1 (en) * | 2018-09-28 | 2023-10-25 | Siemens Schweiz AG | Scattered light smoke detector having a two-color led, a photosensor, and a wavelength-selective polarizer connected upstream of the photosensor or connected downstream of the two-color led, and suitable use of such a polarizer |
US11079321B2 (en) | 2018-09-28 | 2021-08-03 | Stmicroelectronics S.R.L. | NDIR detector device for detecting gases having an infrared absorption spectrum |
US11073467B2 (en) * | 2018-09-28 | 2021-07-27 | Stmicroelectronics S.R.L. | Miniaturized optical particle detector |
USD920825S1 (en) | 2018-11-06 | 2021-06-01 | Analog Devices, Inc. | Smoke detector chamber |
USD918756S1 (en) | 2018-11-06 | 2021-05-11 | Analog Devices, Inc. | Smoke detector boundary |
CN111199628A (en) | 2018-11-20 | 2020-05-26 | 海湾安全技术有限公司 | Smoke detector |
US10921367B2 (en) | 2019-03-06 | 2021-02-16 | Analog Devices, Inc. | Stable measurement of sensors methods and systems |
US11796445B2 (en) | 2019-05-15 | 2023-10-24 | Analog Devices, Inc. | Optical improvements to compact smoke detectors, systems and apparatus |
USD913135S1 (en) * | 2019-05-15 | 2021-03-16 | Analog Devices, Inc. | Smoke chamber blocking ensemble |
US11238716B2 (en) * | 2019-11-27 | 2022-02-01 | Ningbo Weilaiying Electronic Technology Co., Ltd | Photoelectric smoke fire detection and alarming method, apparatus and system |
EP4078550A1 (en) * | 2019-12-20 | 2022-10-26 | Siemens Schweiz AG | Measurement chamber for mounting on a smoke detection unit, having a light trap according to the principle of a fresnel stepped lens |
CN111308009B (en) * | 2020-03-05 | 2022-04-29 | 山东科技大学 | Mining high polymer material smoldering oxygen consumption and product synchronous test analysis device and method |
US11972676B2 (en) * | 2021-10-25 | 2024-04-30 | Honeywell International Inc. | Initiating a fire response at a self-testing fire sensing device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH592933A5 (en) * | 1976-04-05 | 1977-11-15 | Cerberus Ag | |
JPS53144387A (en) * | 1977-05-23 | 1978-12-15 | Hochiki Co | Depreciation type detector |
JPS5413391A (en) * | 1977-06-30 | 1979-01-31 | Matsushita Electric Works Ltd | Smoke sensor |
US4242673A (en) * | 1978-03-13 | 1980-12-30 | American District Telegraph Company | Optical particle detector |
US4230950A (en) * | 1979-05-16 | 1980-10-28 | Honeywell Inc. | Electro-optic smoke detector |
DE2951459C2 (en) * | 1979-12-20 | 1984-03-29 | Heimann Gmbh, 6200 Wiesbaden | Optical arrangement for a smoke detector based on the light scattering principle |
JPS63163698A (en) * | 1986-12-26 | 1988-07-07 | ホーチキ株式会社 | Scattered light type smoke sensor |
US4857895A (en) * | 1987-08-31 | 1989-08-15 | Kaprelian Edward K | Combined scatter and light obscuration smoke detector |
WO1989009392A1 (en) * | 1988-03-30 | 1989-10-05 | Martin Terence Cole | Fluid pollution monitor |
DE3831654A1 (en) * | 1988-09-17 | 1990-03-22 | Hartwig Beyersdorf | OPTICAL SMOKE DETECTOR |
US4966446A (en) * | 1989-04-28 | 1990-10-30 | At&T Bell Laboratories | Mask controlled coupling of inter-substrate optical components |
US5130531A (en) * | 1989-06-09 | 1992-07-14 | Omron Corporation | Reflective photosensor and semiconductor light emitting apparatus each using micro Fresnel lens |
US4936666A (en) * | 1989-08-08 | 1990-06-26 | Minnesota Mining And Manufacturing Company | Diffractive lens |
JP2533653B2 (en) * | 1989-09-26 | 1996-09-11 | 松下電工株式会社 | Photoelectric smoke detector |
NL9001415A (en) * | 1990-06-21 | 1992-01-16 | Ajax De Boer B V | OPTICAL SMOKE, AEROSOL AND DUST DETECTOR AND FIRE RELEASE DEVICE WITH OPTICAL DETECTOR. |
-
1992
- 1992-09-14 CH CH2884/92A patent/CH684556A5/en not_active IP Right Cessation
-
1993
- 1993-09-09 ES ES93114472T patent/ES2106930T3/en not_active Expired - Lifetime
- 1993-09-09 EP EP93114472A patent/EP0588232B1/en not_active Expired - Lifetime
- 1993-09-09 AT AT93114472T patent/ATE155272T1/en active
- 1993-09-09 DE DE59306866T patent/DE59306866D1/en not_active Expired - Fee Related
- 1993-09-14 US US08/120,947 patent/US5451931A/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007045018A1 (en) | 2007-09-20 | 2009-04-16 | Perkinelmer Optoelectronics Gmbh & Co.Kg | Radiation guide device for a detector, scattered radiation detector |
US8441368B2 (en) | 2007-09-20 | 2013-05-14 | Excelitas Technologies Singapore Pte. Ltd. | Radiation guide for a detector, scattered radiation detector |
Also Published As
Publication number | Publication date |
---|---|
EP0588232A1 (en) | 1994-03-23 |
CH684556A5 (en) | 1994-10-14 |
US5451931A (en) | 1995-09-19 |
ATE155272T1 (en) | 1997-07-15 |
ES2106930T3 (en) | 1997-11-16 |
DE59306866D1 (en) | 1997-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0588232B1 (en) | Optic smoke detector | |
DE68924929T2 (en) | Device for data acquisition from uneven surfaces. | |
EP0238977B1 (en) | Emission-reception module for a bidirectional communication network, particularly a broadband ISDN | |
EP0050751B1 (en) | Optical arrangement for an infrared intrusion detector | |
DE2754139C3 (en) | Smoke detector | |
DE3134303A1 (en) | OPTICAL POSITIONING DEVICE | |
DE2103909C3 (en) | Monitoring device for the detection of an intruder, | |
WO2004001693A1 (en) | Scattered-light smoke detector | |
WO2004001694A1 (en) | Fire detector | |
DE2504300B2 (en) | Device for measuring the absorption capacity of a medium, in particular smoke | |
DE69934662T2 (en) | ULTRAVIOLET DETECTOR | |
DE4102146C1 (en) | Rain and dirt sensor for motor vehicle windscreen - uses light source below or at inner side of pane and light measurer at top or outside | |
EP0762153A2 (en) | Optical system | |
EP0069061B1 (en) | Method and device for inspecting web material | |
EP0080114A1 (en) | Radiation detector with sensor elements | |
DE60021580T2 (en) | An optical device for emitting / detecting a light signal and protective / insulating housing for a light source | |
DE69605266T2 (en) | Plate-shaped lighting device | |
DE7935901U1 (en) | RADIATION DETECTOR | |
DE19517517B4 (en) | Passive infrared intrusion detector | |
CH693776A5 (en) | Light projection device for a photoelectric smoke sensor. | |
WO1992020154A1 (en) | Forked light barrier | |
DE3619209A1 (en) | Device for visually detecting foreign bodies | |
EP0772171A1 (en) | Passive intrusion detector and its use | |
EP0105199A1 (en) | Radiation smoke alarm | |
WO1992010819A1 (en) | Passive infra-red movement detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930909 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19961220 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19970709 Ref country code: DK Effective date: 19970709 |
|
REF | Corresponds to: |
Ref document number: 155272 Country of ref document: AT Date of ref document: 19970715 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970709 |
|
REF | Corresponds to: |
Ref document number: 59306866 Country of ref document: DE Date of ref document: 19970814 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2106930 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000807 Year of fee payment: 8 Ref country code: AT Payment date: 20000807 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000811 Year of fee payment: 8 Ref country code: CH Payment date: 20000811 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000814 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000823 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000905 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000908 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000911 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010909 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010909 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010910 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010930 |
|
BERE | Be: lapsed |
Owner name: CERBERUS A.G. Effective date: 20010930 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020501 |
|
EUG | Se: european patent has lapsed |
Ref document number: 93114472.9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20021011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050909 |