EP0588185B1 - Regenerativ-Wärmetauscher - Google Patents

Regenerativ-Wärmetauscher Download PDF

Info

Publication number
EP0588185B1
EP0588185B1 EP93114189A EP93114189A EP0588185B1 EP 0588185 B1 EP0588185 B1 EP 0588185B1 EP 93114189 A EP93114189 A EP 93114189A EP 93114189 A EP93114189 A EP 93114189A EP 0588185 B1 EP0588185 B1 EP 0588185B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
rotor
regenerative heat
circumferential
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114189A
Other languages
English (en)
French (fr)
Other versions
EP0588185A1 (de
Inventor
Gerhard Dipl.-Ing. Kritzler
Siegfried Dipl.-Ing. Schlüter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apparatebau Rothemuehle Brandt and Kritzler GmbH
Original Assignee
Apparatebau Rothemuehle Brandt and Kritzler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apparatebau Rothemuehle Brandt and Kritzler GmbH filed Critical Apparatebau Rothemuehle Brandt and Kritzler GmbH
Publication of EP0588185A1 publication Critical patent/EP0588185A1/de
Application granted granted Critical
Publication of EP0588185B1 publication Critical patent/EP0588185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means

Definitions

  • the invention relates to a regenerative heat exchanger with a circumferential, radial and Axially sealed storage mass cells having rotor, which is the rotor peripherally enclosing housing formed with sealed peripheral chambers is and the heat exchanger of hot exhaust gas and countercurrent of cold Clean gas or air is flowed through, the rotor a cold and a hot Has end face.
  • the regenerative heat exchanger can be used both for Use air preheaters (Luvos) as well as gas preheaters (Gavos).
  • the exhaust gases are combined in one Regenerative heat exchanger used to preheat the combustion air.
  • the nitrogen oxides (NOx) contained in the exhaust gas be largely reduced by in this case the storage masses of the Regenerative air preheater in whole or in part as catalytically active elements are executed and especially ammonia is added as a reducing agent.
  • the NOx-containing flue gas is the flue gas from a furnace, which at the end of a Steam generator for preheating the combustion air Flow through regenerative heat exchanger.
  • a regenerative heat exchanger of the type mentioned is through FR-A-1 447,765 became known.
  • To seal the peripheral chambers are there numerous sealing blocks strung together to form sealing rings.
  • the sealing blocks are suspended in this overlapping U-shaped housing required, in which the sealing blocks are fixed in the upright position with bolts are; the sealing blocks lie against the rotor with their narrow surfaces, and to To increase the sealing, it is necessary to use a kind in the narrow areas Incorporate the labyrinth seal in the form of throats or grooves. The effort for that Manufacture and assembly of the seal is extremely large, without sacrificing the to achieve the desired degree of tightness.
  • the invention is therefore based on the object of a device to create that in a regenerative heat exchanger of the type mentioned allow a high degree of tightness and largely avoid leaks.
  • peripheral chambers with on the cold and hot end face on the outer circumference of the rotor in the rotor housing arranged, stationary flat, ring-like peripheral seals against the rotor are sealed, and that, the inner diameter of the peripheral seals bridging, radially between the heat-exchanging media on both sides of the rotor stationary flat radial seals are arranged, the circumferential and the Radial seals in a common plane, at the joints form a continuous, continuous sealing surface and be pressed elastically onto the rotor are.
  • An embodiment of the invention provides that the peripheral chambers are divided, i.e. with a regenerative heat exchanger vertical axis of rotation an upper and a lower or at one Regenerative heat exchanger with a horizontal axis of rotation have rear and a front chamber.
  • the area of the two Chambers are cylindrical seals around the rotor for subdivision placed.
  • the subdivided circumferential chambers advantageously allow Way an operation of the regenerative heat exchanger in which targeted and appropriate to the given location in the heat exchanger Pressure conditions at the respective sealing points can be suctioned, blocked, blown out or sucked out. A however, this mode of operation is also not used for subdivision Circumferential chambers possible.
  • the double seals achieved radially according to the invention allow this advantageously, either a suction to the barrier chambers, e.g. connect a fan or a sealing gas line and to create either a negative or positive pressure, as well to connect a purge gas line to the radial chambers. That offers the possibility of gap leaks in regenerative heat exchangers simple way to avoid partially or completely, e.g. by extraction or supply of sealing gas. Furthermore can wear through the radial areas in question Blow out can be minimized. Eventually, with every flush additionally achieved that each storage mass cell or chamber from polluted raw gas sector coming in the radial Double seal is flushed out with clean gas before entering the Clean gas sector enters.
  • All rotor seals can be made with mechanical devices to the respective operating conditions Close the rotor end faces tightly.
  • the adjustments can be made by hand or be carried out automatically; larger ones can be used Areas of the peripheral seals, the radians of which are at least that Arc length of two storage mass chambers should correspond to from individual actuation points.
  • Leave to operate use levers that move from the actuation points to the individual connection points on the seals are sufficient.
  • the number the actuators can be reduced in this way. So that the actuation and pressure forces of the seals as possible are low, the weights of the sealing plates or rings Counterweights balanced over the existing lever linkage. Compared to pitch springs, counterweights have the advantage that the Reactive forces even with different sealing positions remain constant.
  • the regenerative heat exchanger 1 according to FIG. 1 has one by one vertical axis of rotation 2 rotating rotor 3, the numerous storage mass cells or chambers 4 (see FIG. 2).
  • the regenerative heat exchanger 1 is according to arrow direction 5, i.e. from top to top below from hot, from a steam generator, not shown Exhaust gas flows through a channel, while in counterflow according to arrow direction 6 clean gas or air, the heated by the exhaust gas Storage mass chambers 4 is supplied.
  • the clean gas or the air cools the storage mass chambers 4 and flows upwards, i.e. on the hot side 7 out of the heat exchanger 1.
  • Circumferential seals 9 placed, which are divided into segments and have an arc length 11 which is a multiple of the arc length correspond to a storage mass chamber 4 (cf. FIG. 2); in the in 2, the circumferential seals 9 consist four quarter-circle rings closely joined together at the joints.
  • the peripheral seals 9 create in the area between the the rotor 3 axially enclosing housing 12 and the rotor 3 locking or circumferential chambers 13.
  • the two media streams 5 and 6 are separated from one another separating separation zones 14 radial chambers 15 (see FIG. 1) formed, by radial seals 16 in each of these zones above and below are placed on the rotor 3; the radial seals 16 are in essentially strip-shaped, with widening ends and dimensioned so that they completely cover a storage mass chamber 4. In this way, they are the regenerative heat exchanger 1 media 5 or 6 flowing through in countercurrent on each end face of the rotor, i.e. both on the hot and on the cold side 7 or 8 completely sealed in itself; in the heat exchanger are in the radial Extension of the rotor 3 thus double seals.
  • the radial seals 16 are dimensioned so that they - the diameter of the Bridging circumferential seals 9 - fit into the circumferential seals 9 to let. All due to the circumferential seals 9 and Radial seals 16 resulting sealing surfaces lie in one plane, i.e. there is no offset between them; also own they have no penetrations of drive and other actuating elements.
  • the peripheral seals 9 and the radial seals 16 are elastic, i.e. resiliently adjusted or pressed against the rotor.
  • both for the circumferential seals 9 are also called several operating points on the cold side 7 and 8 of the rotor 3 17 for manual or fully automatic operation available; each a larger area of the peripheral seals 9 is assigned an actuation point 17, from which lever 18 extend to the seals. This makes it possible for a few Operating points 17 from the entire circumferential seals 9 so far to influence as necessary.
  • Radial chambers 15 adjusting springs 19 see. Fig. 1) arranged.
  • the peripheral chambers 13 by a placed around the jacket of the rotor 3 Ring seal 21 in an upper and a lower chamber 13a, 13b divided.
  • the peripheral chambers 13 and 13a, 13b and the radial chambers 15 can namely together or separately via a separate Extract the fan and keep it at a negative pressure, or in Conversely, apply sealing gas or purge gas and open it bring an overpressure.
  • a regenerative heat exchanger 100 is a leakage suction for the barrier chamber and sealing system shown in more detail; it consists of pipe connections 24, 25, via which a fan, not shown, in the direction of arrow 26 Leaks from the circumferential chamber, which is not subdivided in this case 13 and the lower radial chamber 15 sucks.
  • the regenerative heat exchanger 200 shown in FIG. 4 differentiates differs essentially from the embodiment according to FIG. 3 in that the pipe connections 24 and 25 in reverse Direction, i.e. according to the arrows 27 sealing or purge gas in the Circumferential chamber 13 or radial chamber 15 is introduced. Furthermore a pipe 28 is connected to the upper radial chamber 15, through which the introduced sealing or purge gas after Flow through the barrier chamber and sealing system again to the outside can leak.

Landscapes

  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Power Steering Mechanism (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Vending Machines For Individual Products (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Polarising Elements (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Air Bags (AREA)

Description

Die Erfindung betrifft einen Regenerativ-Wärmetauscher mit einem umlaufenden, radial und axial abgedichtete Speichermassenzellen aufweisenden Rotor, wobei das den Rotor peripher umschließende Gehäuse mit abgedichteten Umfangskammern ausgebildet ist und der Wärmetauscher von heißem Abgas und im Gegenstrom von kaltem Reingas oder Luft durchströmt ist, wobei der Rotor eine kalte und eine heiße Stirnseite aufweist. Der Regenerativ-Wärmetauscher läßt sich sowohl für Luftvorwärmer (Luvos) als auch für Gasvorwärmer (Gavos) einsetzen.
Bei Kraftwerks- und Industriefeuerungsanlagen werden die Abgase in einem Regenerativ-Wärmetauscher zur Vorwärmung der Verbrennungsluft genutzt. Bei diesem Prozeß können beispielsweise die im Abgas enthaltenen Stickoxide (NOx) weitgehend reduziert werden, indem in diesem Fall die Speichermassen des Regenerativ-Luftvorwärmers ganz oder teilweise als katalytisch wirksame Elemente ausgeführt sind und vor allem Ammoniak als Reduktionsmittel zugegeben wird. In der Regel ist das NOx-haltige Abgas das Rauchgas einer Feuerung, das am Ende eines Dampferzeugers zur Vorwärmung der Verbrennungsluft den Regenerativ-Wärmetauscher durchströmt.
Ein Regenerativ-Wärmetauscher der eingangs genannten Art ist durch die FR-A-1 447 765 bekanntgeworden. Zur Abdichtung der Umfangskammern sind dort zahlreiche Dichtungsblocks zu Dichtungsringen aneinandergereiht. Zur federnden Aufhängung der Dichtungsblocks sind diese übergreifende U-förmige Gehäuse erforderlich, in denen die Dichtungsblocks in aufrechter Position mit Bolzen festgelegt sind; die Dichtungsblocks liegen dem Rotor mit ihren Schmalflächen an, und zur Erhöhung der Abdichtung ist es erforderlich, in den Schmalflächen eine Art Labyrinthdichtung in Form von Kehlen bzw. Rillen einzuarbeiten. Der Aufwand für die Herstellung und Montage der Abdichtung ist außerordentlich groß, ohne dabei den gewünschten Dichtheitsgrad zu erreichen.
Es entspricht weiterhin dem Stand der Technik (vgl. den Prospekt "Regenerativ-Wärmetauscher " der Firma Lugat Aktiengesellschaft für Luft- und Gastechnik, Basel), daß bei Regenerativ-Wärmetauschern mit umlaufenden Speichermassen die Rotoren und damit die Rotor- bzw. Speichermassenkammern sowohl in radialer als auch in Umfangsrichtung abgedichtet sind, um den Übertritt von einem in das andere Medium, d.h. von Rohgas in das Reingas zu vermeiden. Bei Rotorabdichtungen mit rotierenden Heizflächen werden daher federnde Streifbleche eingesetzt. Diese sind an allen Radialwänden befestigt und so einjustiert, daß sie über die Radialholme des Wärmetauschergehäuses schleifen. Außerdem befinden sich Streifbleche im Umfangsbereich beider Rotorstirnseiten, die ebenfalls schleifend am Rotorgehäuse anliegen. Durch die Radialdichtungen werden die den Wärmetauscher durchströmenden Medien voneinander getrennt, und durch die Umfangsdichtungen lassen sich vornehmlich Bypass-Strömungen vermeiden.
Bei Anlagen zur Abgasreinigung bzw. Schadgasminderung sind die Anforderungen an die einzelnen Komponenten heutzutage sehr hoch. So wird beispeilsweise für einen Wärmetauscher, der in einer Müllverbrennungsanlage das Abgas zur katalytischen Reinigung auf die nötige Reaktionstemperatur vorwärmt, ein Leckage-Wert von deutlich unter 0,3% gefordert, um Dioxin- und Furan-Emissionen zu vermeiden. Dabei hat es sich herausgestellt, daß bei den bekannten, federnden Dichtungssystemen bei einem Regenerativ-Wärmetauscher mit umlaufenden Speichermassen eine solche Forderung nicht erfüllt werden kann.
Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zu schaffen, die bei einem Regenerativ-Wärmetauscher der eingangs genannten Art einen hohen Dichtheitsgrad erlauben und Leckagen weitestgehend vermeiden.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Umfangskammern mit an der kalten und heißen Stirnseite am äußeren Umfang des Rotors im Rotorgehäuse angeordneten, stationären flachen, ringartigen Umfangsdichtungen gegen den Rotor abgedichtet sind, und daß, den Innendurchmesser der Umfangsdichtungen überbrückend, radial zwischen den wärmetauschenden Medien beidseitig des Rotors stationäre flache Radialdichtungen angeordnet sind, wobei die Umfangs- und die Radialdichtungen eine in einer gemeinsamen Ebene liegende, an den Stoßstellen lückenlos durchgehende Dichtfläche bilden sowie elastisch an den Rotor angedrückt sind. Mit dieser Art der Rotorabdichtung wird vermieden, daß das Medium mit dem höheren Druck direkt zum Medium mit dem geringeren Druck übertritt; Spaltleckagen sammeln sich vielmehr zunächst im Wärmetauschergehäuse und strömen erst dann von da aus über die nächsten Dichtungen in die Bereiche mit geringeren Drücken ab. Die strömenden Medien sind an jeder Rotorstirnseite in sich völlig abgedichtet, und im Wärmetauscher liegen in radialer Richtung an allen Stellen Doppeldichtungen vor. Die Dichtungen sind im Unterschied zu den bekannten Dichtungen als axial aufliegende, breite Dichtleisten ausgebildet, die sich der betriebsbedingten Wärmeausdehnung des Rotors problemlos anpassen. Sie lassen sich dem jeweiligen Betriebszustand folgend über eine Sensorsteuerung, wie bekannt, vollautomatisch anstellen.
Eine Ausgestaltung der Erfindung sieht vor, daß die Umfangskammern unterteilt sind, h.h. bei einem Regenerativ-Wärmetauscher mit vertikaler Drehachse eine obere und eine untere bzw. bei einem Regenerativ-Wärmetauscher mit einer horizontalen Drehachse eine hintere und eine vordere Kammer aufweisen. Im Bereich der beiden Kammern sind zur Unterteilung zylindrische Dichtungen um den Rotor gelegt. Die unterteilten Umfangskammern erlauben in vorteilhafter Weise eine Betriebsweise des Regenerativ-Wärmetauschers, bei der gezielt und angemessen den örtlich im Wärmetauscher gegebenen Druckverhältnissen entsprechend an den jeweiligen Dichtstellen abgesaugt, gesperrt, ausgeblasen oder ausgesaugt werden kann. Eine solche Betriebsweise ist allerdings auch bei nicht unterteilten Umfangskammern möglich.
Die erfindungsgemäß radial erreichten Doppeldichtungen erlauben es in vorteilhafter Weise, an die Sperrkammern entweder eine Absaugung, z.B. einen Ventilator, oder eine Sperrgasleitung anzuschließen und damit entweder einen Unter- oder einen Überdruck zu erzeugen, sowie an die Radialkammern eine Spülgaszuleitung anzuschließen. Das bietet die Möglichkeit, Spaltleckagen in Regenerativ-Wärmetauschern auf einfache Art und Weise gezielt teilweise oder auch völlig zu vermeiden, z.B. durch Absaugung oder Zuführung von Sperrgas. Außerdem können über die betreffenden Radialbereiche Schleißverluste durch Ausblasen minimiert werden. Schließlich wird mit jedem Spülvorgang zusätzlich erreicht, daß jede Speichermassenzelle bzw. -kammer vom schadstoffbeladenen Rohgassektor kommend im Bereich der radiale Doppeldichtung mit sauberem Gas ausgespült wird, bevor sie in den Reingassektor eintritt.
Sämtliche Rotor-Abdichtungen lassen sich mit mechanischen Vorrichtungen den jeweiligen Betriebsverhältnissen entsprechend an die Rotorstirnflächen dicht anlegen. Die Verstellungen können von Hand oder auch automatisch durchgeführt werden; dabei lassen sich größere Bereiche der Umfangsdichtungen, deren Bogenmaß mindestens der Bogenlänge von zwei Speichermassenkammern entsprechen sollte, von einzelnen Betätigungspunkten aus feststellen. Zur Betätigung lassen sich Hebel einsetzen, die von den Betätigungspunkten aus zu den einzelnen Verbindungsstellen an den Dichtungen reichen. Die Anzahl der Betätigungsvorrichtungen läßt sich auf diese Weise verringern. Damit die Betätigungs- und Andruckkräfte der Dichtungen möglichst gering sind, werden die Gewichte der Dichtplatten bzw. -ringe durch Gegengewichte über die vorhandenen Hebelgestänge ausgeglichen. Gegenüber Anstellfedern haben Gegengewichte den Vorteil, daß die Reaktionskräfte auch bei unterschiedlichen Abdichtungspositionen konstant bleiben.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus den Ansprüchen und der nachfolgenden Beschreibung, in der einige Ausführungsbeispiele des Gegenstandes der Erfindung näher erläutert sind. Es zeigen:
Figur 1
den Querschnitt eines erfindungsgemäßen Regenerativ-Wärmetauschers mit umlaufenden Speichermassen, schematisch dargestellt;
Figur 2
den Regenerativ-Wärmetauscher gemäß Fig. 1 entlang der Linie II-II geschnitten;
Figur 3
in teilweise geschnittener Darstellung die Vorderansicht eines Regenerativ-Wärmetauschers mit einer angeschlossenen Leckage-Absaugung; und
Figur 4
in teilweise geschnittener Darstellung die Vorderansicht eines Regenerativ-Wärmetauschers mit einem Sperrgasanschluß.
Der Regenerativ-Wärmetauscher 1 gemäß Fig. 1 besitzt einen um eine vertikale Drehachse 2 rotierenden Rotor 3, der zahlreiche Speichermassenzellen bzw. -kammern 4 (vgl. Fig. 2) aufweist. Der Regenerativ-Wärmetauscher 1 wird gemäß Pfeilrichtung 5, d.h. von oben nach unten von heißem, von einem nicht dargestellten Dampferzeuger über einen Kanal zugeführtes Abgas durchströmt, während im Gegenstrom gemäß Pfeilrichtung 6 Reingas oder Luft, den von dem Abgas aufgeheizten Speichermassenkammern 4 zugeführt wird. Das Reingas bzw. die Luft kühlt die Speichermassenkammern 4 ab und strömt oben, d.h. an der heißen Seite 7 aus dem Wärmetauscher 1 heraus.
Sowohl an der heißen Seite 7 als auch an der kalten Seite 8 sind auf den Rotor 3 an dessen äußerem Umfang bzw. Rand ringartige Umfangsdichtungen 9 aufgelegt, die segmentartig unterteilt sind und eine Bogenlänge 11 aufweisen, die ein Mehrfaches der Bogenlänge einer Speichermassenkammer 4 entsprechen (vgl. Fig. 2); in dem in Fig. 2 dargestellten Beispiel bestehen die Umfangsdichtungen 9 aus vier an den Stoßstellen eng aneinandergefügten Viertelkreisringen. Die Umfangsdichtungen 9 schaffen in dem Bereich zwischen dem das den Rotor 3 axial umschließende Gehäuse 12 und dem Rotor 3 Sperr- bzw. Umfangskammern 13.
Weiterhin sind in den die beiden Medienströme 5 bzw. 6 voneinander trennenden Trennzonen 14 Radialkammern 15 (vgl. Fig. 1) ausgebildet, indem in diesen Zonen Radialdichtungen 16 jeweils oben und unten auf den Rotor 3 aufgelegt sind; die Radialdichtungen 16 sind im wesentlichen streifenförmig, mit sich weitenden Enden ausgebildet und so bemessen, daß sie eine Speichermassenkammer 4 völlig abdecken. Auf diese Weise sind die den Regenerativ-Wärmetauscher 1 im Gegenstrom durchströmenden Medien 5 bzw. 6 auf jeder Rotorstirnseite, d.h. sowohl an der heißen als auch an der kalten Seite 7 bzw. 8 in sich völlig abgedichtet; im Wärmetauscher liegen in der radialen Erstreckung des Rotors 3 somit Doppeldichtungen vor. Die Radialdichtungen 16 sind so bemessen, daß sie sich - den Durchmesser der Umfangsdichtungen 9 überbrückend - in die Umfangsdichtungen 9 einpassen lassen. Sämtliche aufgrund der Umfangsdichtungen 9 und der Radialdichtungen 16 entstehenden Dichtflächen liegen in einer Ebene, d.h. es liegt kein Versatz zwischen ihnen vor; außerdem besitzen sie keinerlei Durchdringungen von Antriebs- und sonstigen Betätigungselementen.
Die Umfangsdichtungen 9 und die Radialdichtungen 16 sind elastisch, d.h. nachgiebig federnd angestellt bzw. an den Rotor angedrückt. Zu diesem Zweck sind für die Umfangsdichtungen 9 sowohl an der heißen als auch an der kalten Seite 7 bzw. 8 des Rotors 3 mehrereBetätigungspunkte 17 für den manuellen oder vollautomatischen Betrieb vorhanden; jeweils einem größeren Bereich der Umfangsdichtungen 9 ist dabei ein Betätigungspunkt 17 zugeordnet, von dem aus sich Hebel 18 zu den Dichtungen erstrecken. Damit ist es möglich, von wenigen Betätigungspunkten 17 aus die gesamten Umfangsdichtungen 9 soweit wie nötig zu beeinflussen. Zum Andrücken der Radialdichtungen 16 sind an den in den Trennzonen 14 ausgebildeten, geschlossenen Radialkammern 15 Anstellfedern 19 (vgl. Fig. 1) angeordnet.
Bei dem in Fig. 1 dargestellten Regenerativ-Wärmetauscher 1 sind die Umfangskammern 13 durch eine um den Mantel des Rotors 3 gelegte Ringdichtung 21 in eine obere und eine untere Kammer 13a, 13b unterteilt. An die obere Kammer 13a ist eine Zuleitung 22 für eine obere Absaugung bzw. Abdrückung und an die untere Kammer 13b ist eine Zuleitung 23 für eine untere Absaugung bzw. Abdrückung angeordnet; die Zuleitungen dienen zur Leckage-Minimierung bzw. -Vermeidung. Die Umfangskammern 13 bzw. 13a, 13b und die Radialkammern 15 lassen sich nämlich gemeinsam oder getrennt über einen separaten Ventilator absaugen und damit auf einem Unterdruck halten, oder in umgekehrter Weise mit Sperr- oder Spülgas beaufschlagen und auf einen Überdruck bringen.
Bei der Ausführung eines Regenerativ-Wärmetauschers 100 nach Fig. 3 ist eine Leckage-Absaugung für das Sperrkammer- und Dichtungssystem genauer dargestellt; sie besteht aus Rohranschlüssen 24, 25, über die ein nicht dargestellter Ventilator in Pfeilrichtung 26 Leckagen aus der in diesem Fall nicht unterteilten Umfangskammer 13 und der unteren Radialkammer 15 absaugt.
Der in Fig. 4 dargestellte Regenerativ-Wärmetauscher 200 unterscheidet sich von der Ausführung nach Fig. 3 im wesentlichen lediglich dadurch, daß über die Rohranschlüsse 24 bzw. 25 in umgekehrter Richtung, d.h. gemäß den Pfeilen 27 Sperr- bzw. Spülgas in die Umfangskammer 13 bzw. Radialkammer 15 eingebracht wird. Außerdem ist noch eine Rohrleitung 28 an die obere Radialkammer 15 angeschlossen, über die das eingeleitete Sperr- bzw. Spülgas nach dem Durchströmen des Sperrkammer- und Dichtungssystems wieder nach außen austreten kann.
Bezugszeichenliste
1, 100, 200
Regenerativ-Wärmetauscher
2
Drehachse
3
Rotor
4
Speichermassenkammer
5
Pfeilrichtung
6
Pfeilrichtung
7
heiße Seite
8
kalte Seite
9
Umfangsdichtung
10 11
Bogenlänge
12
Gehäuse
13, 13a, 13b
Sperrkammer
14
Trennzone
15
Radialkammer
16
Radialdichtung
17
Befestigungspunkt
18
Hebel
19
Anstellfeder
20 21
Ringdichtung
22
Zuleitung
23
Zuleitung
24
Rohranschluß
25
Rohranschluß
26
Pfeilrichtung
27
Pfeil
28
Rohrleitung

Claims (9)

  1. Regenerativ-Wärmetauscher (1, 100, 200) mit einem umlaufenden, radial und axial abgedichtete Speichermassenzellen (4) aufweisenden Rotor (3), wobei das den Rotor (3) peripher umschließende Gehäuse (12) mit abgedichteten Umfangskammern (13; 13a, 13b) ausgebildet ist und der Wärmetauscher von heißem Abgas (5) und im Gegenstrom von kaltem Reingas oder Luft (6) durchströmt ist, wobei der Rotor (3) eine kalte und eine heiße Stirnseite (8 bzw. 7 ) aufweist, wobei
    die Umfangskammern (13; 13a; 13b) mit an der kalten und heißen Stirnseite (7, 8) am äußeren Umfang des Rotors (3) im Rotorgehäuse (12) angeordneten, stationären flachen, ringartigen Umfangsdichtungen (9) gegen den Rotor (3) abgedichtet sind, und daß, den Innendurchmesser der Umfangsdichtungen (9) überbrückend, radial zwischen den wärmetauschenden Medien beidseitig des Rotors stationäre flache Radialdichtungen (16) angeordnet sind, wobei die Umfangs- und Radialdichtungen (9, 16) eine in einer gemeinsamen Ebene liegende, an den Stoßstellen lückenlos durchgehende Dichtfläche bilden sowie elastisch an den Rotor (3) angedrückt sind.
  2. Regenerativ-Wärmetauscher nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Umfangsdichtungen (9) als Dichtleisten mit einer dem Bogenmaß von mindestens zwei Speichermassenzellen (4) entsprechenden Länge ausgebildet sind.
  3. Regenerativ-Wärmetauscher nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß die beidseitig des Rotors (3) in Trennzonen (14) angeordneten Radialdichtungen (16) jeweils mindestens eine Speichermassenzelle (4) voll abdecken.
  4. Regenerativ-Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die Umfangskammern in eine obere bzw. hintere und eine untere bzw. vordere Kammer (13a, 13b) unterteilt sind.
  5. Regenerativ-Wärmetauscher nach Anspruch 4,
    gekennzeichnet durch
    eine zwischen den beiden Kammern (13a, 13b) an den Mantel des Rotors (3) gelegte Dichtung (21).
  6. Regenerativ-Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß an die Umfangskammern (13, 13a, 13b) eine Absaugung angeschlossen ist.
  7. Regenerativ-Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    daß an die Umfangskammern (13, 13a, 13b) eine Sperrgaszuleitung angeschlossen ist.
  8. Regenerativ-Wärmetauscher nach einem oder mehreren der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß in den Trennzonen (14) zwischen Abgas und Luft Radialkammern (15) ausgebildet sind, an die eine Spülgaszuleitung angeschlossen ist.
  9. Regenerativ-Wärmetauscher nach Anspruch 4,
    dadurch gekennzeichnet,
    daß entsprechend den im Wärmetauscher (1, 100, 200) gegebenen Druckverhältnissen an den jeweiligen Dichtstellen der oberen und unteren kammern (13a, 13b) abgesaugt, gesperrt, ausgeblasen oder ausgesaugt wird.
EP93114189A 1992-09-09 1993-09-04 Regenerativ-Wärmetauscher Expired - Lifetime EP0588185B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4230133 1992-09-09
DE4230133A DE4230133A1 (de) 1992-09-09 1992-09-09 Regenerativ-Wärmetauscher und Verfahren zum Betreiben des Wärmetauschers

Publications (2)

Publication Number Publication Date
EP0588185A1 EP0588185A1 (de) 1994-03-23
EP0588185B1 true EP0588185B1 (de) 1998-01-07

Family

ID=6467590

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114189A Expired - Lifetime EP0588185B1 (de) 1992-09-09 1993-09-04 Regenerativ-Wärmetauscher

Country Status (15)

Country Link
EP (1) EP0588185B1 (de)
JP (1) JPH0712477A (de)
AT (1) ATE161942T1 (de)
AU (1) AU667385B2 (de)
BR (1) BR9303726A (de)
CZ (1) CZ291069B6 (de)
DE (2) DE4230133A1 (de)
DK (1) DK0588185T3 (de)
ES (1) ES2113457T3 (de)
HU (1) HUT65211A (de)
MX (1) MX9305497A (de)
PL (2) PL300234A1 (de)
RU (1) RU2119127C1 (de)
UA (1) UA35561C2 (de)
ZA (1) ZA936296B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915340A (en) * 1996-10-02 1999-06-29 Abb Air Preheater Inc. Variable sector plate quad sector air preheater
JP3611272B2 (ja) * 1997-12-19 2005-01-19 三菱重工業株式会社 回転再生式熱交換器
DE10327078A1 (de) * 2003-06-13 2004-12-30 Klingenburg Gmbh Rotationswärmeaustauscher und Verfahren zur Abdichtung eines solchen
GB2424471A (en) * 2005-03-22 2006-09-27 Howden Power Ltd Rotary heat exchanger with a sector plate featuring suction ducts
DE102005053378B4 (de) * 2005-11-07 2011-12-08 Rwe Power Ag Rotierender regenerativer Luft-oder Gasvorwärmer
US8517086B2 (en) * 2008-02-29 2013-08-27 Caterpillar Inc. Composite heat exchanger end structure
PL2177855T3 (pl) * 2008-10-14 2011-08-31 Balcke Duerr Gmbh Regeneracyjny wymiennik ciepła z innowacyjną uszczelką obwodową
PL2199724T3 (pl) 2008-12-17 2013-01-31 Balcke Duerr Gmbh Sposób eksploatacji regeneracyjnego wymiennika ciepła i regeneracyjny wymiennik ciepła z polepszonym współczynnikiem sprawności
CN102200408B (zh) * 2011-07-09 2012-11-07 程爱平 回转式气气换热器无泄漏密封系统隔离风幕结构
EP2743624A1 (de) * 2012-12-14 2014-06-18 Alstom Technology Ltd Leckagereduktionssystem in Kraftwerkbetrieben
ES2450041B1 (es) * 2013-11-18 2015-02-11 Juan MARTÍNEZ-VAL PIERA Sellado de huelgo por recirculación parcial de fluido en intercambiador rotativo de calor
DE102016011918B4 (de) * 2016-10-05 2018-05-30 Balcke-Dürr GmbH Regenerativer Wärmetauscher
RU2716638C1 (ru) * 2019-07-05 2020-03-13 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Способ предотвращения деформации высокотемпературного вращающегося дискового теплообменника
RU2716640C1 (ru) * 2019-07-05 2020-03-13 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Силиконовые уплотнения высокотемпературного вращающегося дискового теплообменника
RU2716639C1 (ru) * 2019-07-05 2020-03-13 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Высокотемпературный вращающийся дисковый теплообменник
RU2716636C1 (ru) * 2019-07-05 2020-03-13 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Способ компенсации деформации высокотемпературного вращающегося дискового теплообменника
RU202881U1 (ru) * 2020-08-11 2021-03-11 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" (ФГУП "НАМИ") Устройство охлаждения каркаса роторного дискового теплообменника энергетической установки

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2681209A (en) * 1949-02-09 1954-06-15 Jarvis C Marble Suction device for rotary regenerative preheaters
US2665120A (en) * 1950-08-09 1954-01-05 Blomquist Uno Olof Regenerative heat exchanger
BE522549A (de) * 1952-09-06
FR1168896A (fr) * 1956-03-15 1958-12-18 Babcock & Wilcox France Réchauffeur rotatif pour gaz, air et analogues
DE1093392B (de) * 1957-01-31 1960-11-24 Kraftanlagen Ag Regenerativ-Waermeaustauscher mit Schleusgas-Rueckfuehrung
FR1402853A (fr) * 1962-11-23 1965-06-18 Svenska Rotor Maskiner Ab échangeur régénérateur de chaleur rotatif
DE1266435B (de) * 1963-04-01 1968-04-18 Kraftanlagen Ag Rauchgasbeheizter umlaufender Regenerativ-Luftvorwaermer mit Reinigungsvorrichtung
FR1447765A (fr) * 1965-09-23 1966-07-29 Podolsky Mashinostroitelny Zd Dispositif d'étanchéité du rotor des réchauffeurs d'air à régénération
US3822739A (en) * 1973-02-02 1974-07-09 Air Preheater Multi-directional seal biasing means
US4044822A (en) * 1976-01-08 1977-08-30 The Air Preheater Company, Inc. Horizontal modular inter-gasket seal
DE2809948C3 (de) * 1978-03-08 1984-09-20 Kraftanlagen Ag, 6900 Heidelberg Nachstellvorrichtung für die Abdichtung umlaufender Regenerativ-Wärmetauscher
DE3437945A1 (de) * 1984-10-17 1986-04-17 Kraftanlagen Ag, 6900 Heidelberg Verfahren und einrichtung fuer ein unterbinden des uebertritts von leckgasstroemen aus dem sektor des waermetauschenden gasstromes hoeheren druckes in denjenigen niedrigeren druckes in umlaufenden regenerativ-waermetauschern mit relativ zu den anschlusskanaelen bewegter speichermasse

Also Published As

Publication number Publication date
CZ186493A3 (en) 1994-04-13
ATE161942T1 (de) 1998-01-15
AU4463193A (en) 1994-03-17
DK0588185T3 (da) 1998-09-07
ZA936296B (en) 1995-02-09
UA35561C2 (uk) 2001-04-16
BR9303726A (pt) 1994-03-22
MX9305497A (es) 1994-05-31
DE4230133A1 (de) 1994-03-10
CZ291069B6 (cs) 2002-12-11
HU9302529D0 (en) 1994-01-28
PL300234A1 (en) 1994-03-21
JPH0712477A (ja) 1995-01-17
DE59307922D1 (de) 1998-02-12
PL56220Y1 (en) 1998-07-31
RU2119127C1 (ru) 1998-09-20
AU667385B2 (en) 1996-03-21
ES2113457T3 (es) 1998-05-01
EP0588185A1 (de) 1994-03-23
HUT65211A (en) 1994-05-02

Similar Documents

Publication Publication Date Title
EP0588185B1 (de) Regenerativ-Wärmetauscher
DE4014415C2 (de) Vorrichtung zur katalytischen Oxidation der schädlichen Bestandteile in einem abgekühlten Trägergas eines verfahrenstechnischen Prozesses
DE3781487T2 (de) Sich hin- und herbewegender waermeaustauscher.
DE2712136C3 (de) Gasturbinenanlage für den Antrieb von Fahrzeugen
DE69419709T2 (de) Röhrenofen und Verfahren zur Überwachung der Verbrennung in einem Röhrenofen
EP0358866A1 (de) Vorrichtung hinter einer Gasturbine
GB2424471A (en) Rotary heat exchanger with a sector plate featuring suction ducts
AT506459B1 (de) Vorrichtung und verfahren zur reinigung von schadstoffhaltigem abgas
DE2342174C3 (de) Anschlußvorrichtung für einen Plattenwärmeaustauscher an einem Rahmen einer Turbine
DE3100074A1 (de) Rekuperativer waermetauscher mit zyklusumschaltung und verwendung desselben zur waermerueckgewinnung aus den rauchgasen von flammoefen
US5577551A (en) Regenerative heat exchanger and method of operating the same
DE3342572A1 (de) Kuehlvorrichtung fuer die beschickungsanlage eines schachtofens
DE69412573T2 (de) Wärmetauscher für Verbrennungsvorrichtung
EP2044379A1 (de) Regenerativer luftvorwärmer mit bürstendichtung
DE2320374C3 (de) Drehspeicherwärmetauscher mit selbst einstellbaren Sektorplatten
EP2023070B1 (de) Regenerativ-Wärmeaustauscher und Radialdichtung zur Verwendung für einen solchen sowie Verfahren zum Trennen von gasförmigen Medien in einem regenerativ-Wärmeaustauscher
DE1946436A1 (de) Waermetauscher
EP1584869B1 (de) Dreh-Regenerator
AT400482B (de) Vorrichtung zum unterbinden des übertritts von leckgasströmen
DE19950891C2 (de) Regenerative Nachverbrennungsvorrichtung
DE2301222A1 (de) Rekuperator, insbesondere zum waermeaustausch zwischen dem abgas und der zu verdichtenden luft in einer gasturbine
EP0226731B1 (de) Vorrichtung zum Vermindern der Schadstoffemissionen in Rauchgasen von Feuerungsanlagen
DE102016011918B4 (de) Regenerativer Wärmetauscher
DE2434101B2 (de)
DE1476798A1 (de) Dichtungseinrichtung fuer Rotations-Luftvorwaermer von Gasturbinenanlagen,insbesondere Flugzeuggasturbinenanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19950925

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 161942

Country of ref document: AT

Date of ref document: 19980115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59307922

Country of ref document: DE

Date of ref document: 19980212

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980407

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ULRICH UND BRIGITTE BALLMER PATENTANWAELTE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2113457

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980409

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991217

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000824

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010814

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20010827

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010904

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020827

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020907

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020923

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020904

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050904