EP0584377B1 - Appareil portable pour l'analyse de matières organiques et procédé le mettant en oeuvre - Google Patents

Appareil portable pour l'analyse de matières organiques et procédé le mettant en oeuvre Download PDF

Info

Publication number
EP0584377B1
EP0584377B1 EP93905639A EP93905639A EP0584377B1 EP 0584377 B1 EP0584377 B1 EP 0584377B1 EP 93905639 A EP93905639 A EP 93905639A EP 93905639 A EP93905639 A EP 93905639A EP 0584377 B1 EP0584377 B1 EP 0584377B1
Authority
EP
European Patent Office
Prior art keywords
furnace
temperature
thermal cracking
detector
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905639A
Other languages
German (de)
English (en)
Other versions
EP0584377A4 (en
EP0584377A1 (fr
Inventor
Shigeaki Ishida
Hidetoshi A-1003 Rose Mansion Fujinomori Fujimori
Hideki Matsubayashi
Tsutomu Machihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oil Gas and Metals National Corp
Original Assignee
Japan National Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan National Oil Corp filed Critical Japan National Oil Corp
Publication of EP0584377A1 publication Critical patent/EP0584377A1/fr
Publication of EP0584377A4 publication Critical patent/EP0584377A4/en
Application granted granted Critical
Publication of EP0584377B1 publication Critical patent/EP0584377B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content

Definitions

  • the present invention relates to an organic substance analyzing method and apparatus, and particularly it relates to a small-sized portable analyzer for rapidly evaluating the potential of petroleum source rock in the field.
  • a typical analyzer of fixed indoor type for evaluating the potential of petroleum source rock is adapted to analyze hydrocarbons and CO 2 evolved by thermal cracking of kerogen (insoluble high molecular organic substances in sediments are called "kerogen") in source rock; thus, it operates on the principle of rapidly heating about 100 mg of source rock sample in He stream from room temperature to 250°C, detecting the known hydrocarbons evaporating from the sample as an S1 peak by a hydrogen flame ionization detector (FID), heating the sample to about 550°C at a heating rate of 25°C/min and detecting also by FID the hydrocarbons evolved by thermal cracking as an S2 peak.
  • FID hydrogen flame ionization detector
  • the apparatus described above is designed to be used in laboratories, requiring complicated control operation and using He gas requiring a steel gas cylinder and liable to explode; thus, it is not suitable for use in the field. Therefore, at present, all of the samples taken are transferred to a location where such apparatus is installed (some times they are sent abroad) while it is still unknown whether or not they are worthy of analysis. This should be called a very wasteful analytical method from the standpoint of efficiency of analysis.
  • source rock analyzer There is a recently developed portable measuring apparatus known as "source rock analyzer”. This portable apparatus operates on the principle of using two large and small sieves (4.0 mm - 5 mesh and 3.5 mm - 6 mesh) for sorting rock sample particles taken in chip form, placing them in a thermal cracking furnace in the form of a small-sized crucible, instantaneously heating them in an air atmosphere to about 700°C to evolve hydrocarbons, detecting said hydrocarbons by a contact combustion type gas sensor, and evaluating the amounts of organic substances contained in the sample in two-class evaluation (lean/rich decision).
  • source rock analyzer This portable apparatus operates on the principle of using two large and small sieves (4.0 mm - 5 mesh and 3.5 mm - 6 mesh) for sorting rock sample particles taken in chip form, placing them in a thermal cracking furnace in the form of a small-sized crucible, instantaneously heating them in an air atmosphere to about 700°C to evolve hydrocarbons, detecting said hydrocarbons by a contact combustion type
  • This portable apparatus featured as a small-sized thermal cracking furnace, has merits that (1) the analyzing time is shortened and that (2) the capacity of a heater is low and hence the battery is small-sized, resulting in the entire apparatus being small in size and light in weight, and it is suitable for use in the field. In a performance aspect, it has the following demerits.
  • the present invention relates to a portable analyzing apparatus of the type utilizing air, not using a special steel gas cylinder, and is intended to provide an organic substance analyzing method and apparatus which, when it is desired to analyze source rock in the field where it is mined, are adapted to relatively accurately and quickly analyze hydrocarbons (HC peaks P1 and P2) and CO 2 (not including CO 2 produced by decomposition of inorganic carbonates) contained in a sample and provide potential evaluation in 4 - 5 classes for each component and find hydrocarbon / CO 2 ratio per unit weight.
  • hydrocarbons HC peaks P1 and P2
  • CO 2 not including CO 2 produced by decomposition of inorganic carbonates
  • the present invention provides an insoluble organic substance analyzing method using a portable apparatus including a hydrocarbon thermal cracking furnace adapted to be selectively connected to a vacuum sucking line and an air supplying line and also to an exhaust line for exhaust corresponding to air supply, and a hydrocarbon detector and a CO 2 detector which are placed in said exhaust line, said method comprising the steps of
  • the present invention also provides an insoluble organic substance analyzing portable apparatus, comprising;
  • thermal cracking is effected in the closed vacuum state, the operation is not influenced by combustion based on the oxygen in air and errors in the measurement of hydrocarbons can be reduced while measurement of CO 2 becomes possible. More particularly, after each of the thermal cracking operations at 390°C and 550°C, the thermal cracking furnace is cooled to a temperature at which the hydrocarbons in the furnace do not react with air (or do not burn) and then they are transferred to the measuring system by air.
  • special inert gases He, N 2 and others
  • hydrogen gas for FID are not used, the apparatus is safe and light in weight and convenient
  • a granulated sample can be sifted to obtain particles within sufficiently narrow particle size range, if the level to which particles are packed into a sample container is constant, relatively accurate sampling based on sample weight referring to the level is possible.
  • a small-sized thermal cracking furnace 1 has cylindrical furnace body 6 held in a frame structure comprising side plates 2 and 3 and upper and lower plates 4 and 5 connected to the upper and lower ends of the side plate 2. More particularly, the upper and lower plates 4 and 5 hold upper and lower end plates 9 and 10 by upper and lower spacers 7 and 8, said upper and lower end plates 9 and 10 holding the upper and lower end surfaces of the furnace body 6 to maintain the latter in the upright state.
  • An upper block 12 having an exhaust port 11 and a lower block 14 having an air inlet-outlet port 13 are fixed to the outer side (upper side) of the upper plate 4, with a cap 15 mounted on the upper end of the upper block 12.
  • a screw plug 17 having a CA wire serving as a temperature sensor.
  • an outer tube 18 and an inner tube 19 axially disposed inside said outer pipe with a slight clearance therebetween.
  • the upper and lower ends of the inner tube 19 project successively through the upper and lower portions of the furnace body 6, the end plates 9 and 10, the upper and lower spacers 7 and 8, and the upper and lower plates 4 and 5 and into the upper and lower blocks 12 and 14.
  • the central portion of the inner tube 19 is formed with a node having a narrow hole 20 extending along the axis, the node serving as a bottom surface for receiving a thin tube-like sample container 21 in the upper half.
  • the upper block 12 is formed with a reception hole 22 for receiving the sample container 21, and the upper end of the sample container 21 projecting beyond the upper block 12 is covered with a cap 15.
  • the sample container 21 and inner and outer tubes 19 and 18 are quartz tubes, with a heater wire, for example, a Kanthal wire, wound around the outer tube 18, the opposite ends 23a and 23b of said heater being led out of the furnace body 6 through the side plate 2.
  • a terminal plate 25 having terminals 24a and 24b mounted thereon for connecting and holding the opposite ends of the heater is supported by the side plate 2 in projecting relation thereto.
  • the lower surface of the lower block 14 is formed with an axial hole 26 communicating with the air inlet-outlet port 13, and the front end of the temperature sensor 16 is sufficiently smaller than the inner diameter of the axial hole 26 for the air inlet-outlet port 13 to lead through the space around the temperature sensor 16 in the axial hole 26 to the lower portion of the inner tube 19 and then through the intermediate axial hole 20 to the sample container 21.
  • Fig. 2 shows the sample container in detail
  • the sample container 21 made of quartz has a length of 67 mm, an outer diameter of 5.5 mm and an inner diameter of 3.5 mm and has a communication hole 21a of 1.0 mm in diameter in the lower end. The presence of said communication hole 21a provides the communicating relation with the lower portion of the inner tube 19.
  • Fig. 3 is a diagram showing the piping connection and electrical connection of said thermal cracking furnace 1.
  • the air inlet-outlet port 13 of the thermal cracking furnace has a vacuum pump 28 connected thereto through a line 27 and a diaphragm pump 30 connected thereto through a line 29.
  • the line 27 is a vacuum suction line and the line 29 is an air supply line, these lines being connected to the air inlet-outlet port 13 through solenoid valves MV 2-1 and MV 3-1, respectively.
  • the air supply line 29 has a flow control needle valve 31 placed therein upstream of the diaphragm pump 30 and an air filter 32 placed therein at the upstream line end thereof to serve as an air intake port.
  • the exhaust port 11 of the thermal cracking furnace 1 has connected thereto, in this case, an exhaust line 35 having placed therein a CO 2 detector 33 of the infrared nondispersion type and a hydrocarbon (HC) detector 34 in the form of a contact type combustion sensor.
  • a flow meter 36 is placed in the downstream region of the exhaust line 35, and in the upstream region thereof a solenoid valve MV 3-2 is connected to the exhaust port 11 of the thermal cracking surface 1.
  • This solenoid valve MV 3-2 and the solenoid valve MV 3-1 in the air supply line are three-way solenoid valves, the remaining one flow port of one valve being connected to such port of the other by a bypass line 37, so that air introduced from the diaphragm pump 30 is led directly to the exhaust line 35 through said bypass line 37.
  • the channel arrangement in the embodiment described above is controlled by the electrical circuit connection which follow.
  • the numeral 38 denotes a temperature control circuit for passing a control current between the heater terminals 23a and 23b of the thermal cracking furnace 1; 39 denotes an amplifier for receiving the output signal from the CO 2 detector 33; 40 denotes an amplifier for receiving the output from the HC detector 34; and 41 denotes an arithmetic and sequence control unit for performing switching control of the solenoid valves MV 2-1, MV 3-1, MV 3-2, performing selective drive control of the vacuum pump 28 and diaphragm pump 30 and executing the function of controlling the temperature control circuit 38 while monitoring temperature signals from the temperature sensor 16 and the function of storing and computing output signals from the amplifiers 39 and 40 during exhaust from the thermal cracking furnace and measurement.
  • a printer 42 is connected to the arithmetic and sequence control unit 41 to process output signals from the detectors and record the computed values.
  • a power supply unit 43 serves to supply electric energy to the electric system described above, and is connected directly to 100 volt AC or required source voltages are derived via a DC/AC converter or the like from a contained battery.
  • the organic substance analyzing method of the present invention is embodied in the following manner using the above apparatus.
  • grits or chips are granulated by a hammer, passed through two sieves of 1 mm mesh and 0.5 mm mesh, respectively to provide a sample having a diameter range of 0.5 - 1 mm, said sample being placed in the sample container 21 to a given height.
  • the particle size may be further reduced by pulverization.
  • the sample container 21 charged with the sample is installed in the small-sized thermal cracking furnace 1 as shown in Fig. 1, with the cap 15 applied thereto.
  • the thermal cracking furnace 1 reaches an initial set temperature of 50 - 100°C and is maintained at this temperature.
  • the two-way solenoid valve MV 2-1 is opened and the three-way solenoid valves MV 3-1 and MV 3-2 on the inlet and outlet sides of the thermal cracking furnace 1 are closed, the vacuum pump 28 alone is connected to evacuate the furnace until its internal pressure is about 133.3 Pa (1 torr) or less, for example, whereupon the two-way solenoid valve MV 2-1 is closed, thereby establishing the vacuum closed state.
  • the diaphragm pump 30 is driven to draw the open air through the air filter 32, which air, while being controlled to a fixed flow rate by the needle valve 31, is fed successively through the three-way solenoid valve MV 3-1, the bypass line 37 and the three-way solenoid valve MV 3-2 and into the CO 2 detector 33 and hydrocarbon detector 34.
  • the respective output states of the detectors are transmitted to the control unit 41 through the amplifiers 39 and 40 to form pneumatic base line signals.
  • the two detectors 33 and 34 have been placed in series in the exhaust line 35, but if the downstream detector is influenced by the upstream detector, they will be connected in parallel.
  • the thermal cracking furnace 1 is then rapidly heated from the initial set temperature to 390°C and is maintained at this temperature for a fixed time, and then cooled. At 390°C under vacuum, thermal cracking takes place in the sample in the thermal cracking furnace, producing hydrocarbons and CO 2 , diffusing the products into the closed passages communicated with the furnace. In this low temperature thermal cracking, there is no evolution of CO 2 due to decomposition of inorganic carbonates, as described above.
  • the thermal cracking furnace 1 is cooled to the temperature at which even if the evolved hydrocarbons are contacted with air, they will not burn, and then the three-way solenoid valves MV 3-1 and MV 3-2 are switched to the thermal cracking furnace side to introduce the produced gases in the furnace into the detectors 33 and 34.
  • hydrocarbon peak (P1) and CO 2 peak (P3) and the respective peak areas are computed in the arithmetic and sequence control unit 41.
  • the amounts of components contained per unit weight of sample are found from the areas (as to hydrocarbons, P1 + P2, and as to CO 2 , P3 alone) in the arithmetic and sequence control unit 41 and from calibration curves preset for standard substances.
  • the hydrocarbon and CO 2 contents and their ratio (H / C) are printed by the small-sized printer 42 and simulteneously the potential evaluation for the sample is provided by potential evaluation lamps (provided for indicating 4 - 5 classes, for example).
  • the hydrocarbon detector is a contact combustion type sensor and the CO 2 detector is a nondispersion type infrared detector; however, one or both of them may be replaced by a semiconductor type.
  • the present invention is arranged in the manner described above, as compared with the conventional passage type thermal cracking apparatus (inert gas carrier type thermal cracking-analyzing apparatus), the peak shapes of components are better as they are sharp with less tailing. That is, in the case of the conventional passage type thermal cracking apparatus, even a slight variation in temperature during thermal cracking process can change the amount of produced gases, reflecting the peak shape and adversely affecting the reproducibility. In the technique of the present invention, however, even if there is a slight variation in temperature during thermal cracking process, the thermal cracking is averaged and this result appears as the size of the peak; thus, there is little dead space in the path to the detectors, a fact which seems to contribute to a sharp peak shape with less tailing.
  • the weight range is relatively stable; for example, for 100 mg, the accuracy can be within ⁇ 5%.
  • the apparatus of the present invention as compared with the recently employed portable type analyzing apparatus, has the merit of greatly improved accuracy, but it has the demerit of a more or less increase in size, as it requires an increased heater capacity and a vacuum pump.
  • the apparatus of the invention is of such shape and weight that it can be carried on a light van or a wagon car and can be powered by an automobile battery.
  • the apparatus is highly practical, suitable for use in the field.

Claims (7)

  1. Méthode d'analyse de substances organiques insolubles à l'aide d'un appareil portatif comprenant un four pour craquage thermique d'hydrocarbures, adapté de manière à être relié sélectivement à une conduite d'aspiration sous vide et une conduite d'apport d'air et également à une conduite d'échappement pour l'échappement correspondant à l'apport d'air, et un détecteur d'hydrocarbures et un détecteur de CO2 qui sont placés dans ladite conduite d'échappement, ladite méthode comprenant les étapes consistant à
    a) placer le contenant pour échantillons rempli d'un échantillon de roche granulé dans ledit four pour craquage thermique maintenu à une température supérieure à la température ambiante mais inférieure à 100°C, relier ledit four pour craquage thermique à ladite conduite d'aspiration sous vide, mettre le four sous vide jusqu'à ce qu'un état de vide substantiel y soit établi, et fermer le four hermétiquement,
    b) chauffer rapidement ledit four pour craquage thermique fermé depuis ladite température jusqu'à une première température qui est efficace pour l'évaporation et le craquage thermique d'une partie des substances organiques mais qui n'est pas efficace pour la décomposition de carbonates inorganiques, ledit four étant maintenu à cette température pendant une période de temps fixe,
    c) refroidir ledit four pour craquage thermique à une température à laquelle les hydrocarbures dans le four ne réagissent pas avec l'air, et le relier à ladite conduite d'apport d'air et ladite conduite d'échappement pour permettre aux gaz produits dans le four de s'écouler dans le détecteur d'hydrocarbures et le détecteur de CO2, en vue de calculer le pic P1 des HC et le pic P3 du CO2 à partir de leurs signaux de sortie,
    d) relier à nouveau ledit four pour craquage thermique à la conduite d'aspiration sous vide, mettre le four sous vide, fermer le four hermétiquement et chauffer rapidement le four à une deuxième température supérieure à ladite première température pour réaliser un craquage thermique substantiel des substances organiques insolubles, ledit four étant maintenu à cette température pendant une période de temps fixe.
    e) refroidir ledit four pour craquage thermique à une température à laquelle les hydrocarbures dans le four ne réagissent pas avec l'air, et le relier à ladite conduite d'apport d'air et ladite conduite d'échappement pour permettre aux gaz produits dans le four de s'écouler dans le détecteur d'hydrocarbures et le détecteur de CO2, en vue de trouver au moins le pic P2 des HC à partir de leurs signaux de sortie et l'enregistrer, et
    f) décider des types et quantités de substances organiques à partir des tailles desdits pics P1, P2 et P3.
  2. Méthode selon la revendication 1, caractérisée en ce que les particules d'échantillon granulé sont triées de manière à ce qu'elles présentent une plage de tailles de particules de 0,5 à 1,0 mm et cet échantillon est chargé dans ledit contenant pour échantillons à un niveau prédéterminé.
  3. Méthode selon la revendication 1, caractérisée en ce que lesdites première et deuxième températures sont respectivement de 390°C et 550°C.
  4. Appareil portatif d'analyse de substances organiques insolubles, comprenant:
    a) un four pour craquage thermique d'hydrocarbures présentant un dispositif de chauffage, adapté de manière à être relié sélectivement à une conduite d'aspiration sous vide conduisant à une source de vide et une conduite d'apport d'air conduisant à une source d'apport d'air, ledit four pouvant être également relié à une conduite d'échappement en réponse à l'apport d'air,
    b) un circuit de régulation de la température pour réguler l'activation du dispositif de chauffage dudit four pour craquage thermique,
    c) un système de détection constitué d'un détecteur d'hydrocarbures et d'un détecteur de CO2 qui sont placés dans ladite conduite d'échappement, et
    d) une unité de calcul et de commande séquentielle reliée électriquement à un moyen de vanne pour les conduites associées audit four pour craquage thermique, audit circuit de régulation de la température et auxdits détecteur d'hydrocarbures et détecteur de CO2, ladite unité de commande réalisant les étapes consistant à (1) initialiser ledit four pour craquage thermique à une température inférieure à 100°C, (2) chauffer rapidement ledit four pour craquage thermique dans un état de vide fermé depuis la température de consigne initiale jusqu'à une première température qui ne décompose pas les carbonates inorganiques, et maintenir le four à cette température, (3) chauffer rapidement ledit four pour craquage thermique dans l'état de vide fermé depuis une température de refroidissement inférieure à ladite première température jusqu'à une température supérieure à ladite première température, et maintenir ledit four à cette température, (4) refroidir ledit four pour craquage thermique depuis ladite première ou deuxième température jusqu'à une température à laquelle les hydrocarbures sont insensibles à l'air, et relier ledit four à la conduite d'apport d'air et la conduite d'échappement, (5) enregistrer au moins les pics P1 et P2 des HC et le pic P3 du CO2 des signaux de sortie générés à partir du détecteur d'hydrocarbures et du détecteur de CO2 dans ladite conduite d'échappement durant le raccordement de conduites dans l'étape (4) et décider des types et quantités des substances organiques à partir de la quantité P1 + P2 d'hydrocarbures et la quantité P3 de CO2.
  5. Appareil selon la revendication 4, caractérisé en ce que le contenant pour échantillons destiné à être installé dans le four pour craquage thermique est un tube conçu de telle sorte que le niveau de stockage d'échantillons soit visible, ledit tube ayant une structure en canal adaptée de manière à communiquer avec ladite conduite sous vide, ladite conduite d'apport d'air et ladite conduite d'échappement, lorsqu'il est installé dans ledit four.
  6. Appareil selon la revendication 4, caractérisé en ce que ledit détecteur d'hydrocarbures est un détecteur d'hydrocarbures du type combustion à contact et ledit détecteur de CO2 est un détecteur à infrarouge du type non-dispersion.
  7. Appareil selon la revendication 4, caractérisé en ce que ledit appareil comprend une conduite de dérivation d'air disposée entre l'orifice de raccordement de la conduite d'apport d'air et l'orifice de raccordement de la conduite d'échappement dudit four pour craquage thermique, et comprend également un moyen de vanne d'aiguillage entre le four pour craquage thermique et la conduite de dérivation, de telle sorte que la conduite de dérivation soit ouverte et que l'on fasse passer l'air vers lesdits détecteur d'hydrocarbures et détecteur de CO2 dans ladite conduite d'échappement, en établissant ainsi des lignes de base aux mesures dans lesdits détecteur d'hydrocarbures et détecteur de CO2.
EP93905639A 1992-03-13 1993-03-12 Appareil portable pour l'analyse de matières organiques et procédé le mettant en oeuvre Expired - Lifetime EP0584377B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP89778/92 1992-03-13
JP4089778A JPH0750022B2 (ja) 1992-03-13 1992-03-13 可搬構造を用いた有機物分析方法及び装置
PCT/JP1993/000305 WO1993018400A1 (fr) 1992-03-13 1993-03-12 Procede et appareil d'analyse de matieres organiques a l'aide d'une structure transportable

Publications (3)

Publication Number Publication Date
EP0584377A1 EP0584377A1 (fr) 1994-03-02
EP0584377A4 EP0584377A4 (en) 1994-09-21
EP0584377B1 true EP0584377B1 (fr) 1998-10-21

Family

ID=13980138

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905639A Expired - Lifetime EP0584377B1 (fr) 1992-03-13 1993-03-12 Appareil portable pour l'analyse de matières organiques et procédé le mettant en oeuvre

Country Status (6)

Country Link
US (1) US5389550A (fr)
EP (1) EP0584377B1 (fr)
JP (1) JPH0750022B2 (fr)
DE (1) DE69321677T2 (fr)
NO (1) NO308116B1 (fr)
WO (1) WO1993018400A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010358A1 (de) * 2009-12-07 2011-06-09 AJIDC Geräteentwicklungsgesellschaft mbH Verfahren und Vorrichtung zum Nachweis von Gasen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739694B1 (fr) * 1995-10-05 1997-11-14 Inst Francais Du Petrole Methode et dispositif pour determiner des caracteristiques petrolieres de sediments geologiques
US20050250209A1 (en) * 2004-04-21 2005-11-10 Petroleum Habitats, Llc Determining metal content of source rock during well logging
US7153688B2 (en) * 2004-12-07 2006-12-26 Petroleum Habitats, L.L.C Rock assay for predicting oil or gas in target reservoirs
US7845414B2 (en) * 2006-01-06 2010-12-07 Petroleum Habitats, L.L.C. In situ conversion of heavy hydrocarbons to catalytic gas
CA2674322C (fr) * 2007-01-08 2015-01-06 Frank D. Mango Conversion in situ d'hydrocarbures lourds en gaz catalytique
CN101689102B (zh) * 2007-02-16 2014-01-29 沙特阿拉伯石油公司 测定储集岩中有机物质体积的方法
US8256267B2 (en) * 2008-08-14 2012-09-04 Breen Energy Solutions Method and apparatus for detection, measurement and control of sulfur-trioxide and other condensables in flue gas
US8727006B2 (en) 2010-05-04 2014-05-20 Petroleum Habitats, Llc Detecting and remedying hydrogen starvation of catalytic hydrocarbon generation reactions in earthen formations
CN102721590B (zh) * 2012-06-28 2014-02-19 中国石油天然气股份有限公司 连续无损耗全岩天然气生成模拟方法
CN103048261B (zh) * 2013-01-21 2014-12-31 中国科学院武汉岩土力学研究所 一种研究酸性流体作用下岩石物性参数变化的装置及方法
CN103323305B (zh) * 2013-05-24 2015-05-06 中国石油天然气股份有限公司 用于制备岩石中稀有气体的制样装置及方法
EP2878947A1 (fr) * 2013-12-02 2015-06-03 Geoservices Equipements Système et procédé d'analyse isotherme
CN103994917B (zh) * 2014-05-06 2016-04-06 中国科学院广州地球化学研究所 一种用于岩石热解仪上的加热装置
CN105203502B (zh) * 2015-08-14 2017-11-07 北京大学 一种气溶胶碳质组分原位在线采集分析仪及其方法
CN107561199B (zh) * 2017-10-30 2023-09-19 中国科学院西北生态环境资源研究院 高温高压模拟仪在线气体自动进样检测系统及检测方法
CN113092374B (zh) * 2021-04-12 2022-11-15 青岛科技大学 小型真空光电测试系统
CN114112970A (zh) * 2021-11-22 2022-03-01 中国地质大学(武汉) 一种页岩气储层碳同位素测量方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595621A (en) * 1968-09-30 1971-07-27 Anthony John Andreatch Catalytic analyzer
GB1330804A (en) * 1972-04-10 1973-09-19 Continental Oil Co Method and apparatus for source rock analysis
LU74758A1 (fr) * 1976-04-14 1977-10-26
JPS54140593A (en) * 1978-04-24 1979-10-31 Kokusai Electronics Carbon analyzer
FR2435038A2 (fr) * 1978-08-28 1980-03-28 Inst Francais Du Petrole Methode et dispositif pour determiner des caracteristiques petrolieres de sediments geologiques sur la base de faibles prelevements
JPS564052A (en) * 1979-06-23 1981-01-16 Yanagimoto Seisakusho:Kk Concentration measuring device for nonmethane organic compound
US4248599A (en) * 1979-09-19 1981-02-03 Shell Oil Company Process for determining the API gravity of oil by FID
US4251674A (en) * 1979-10-22 1981-02-17 Phillips Petroleum Company Method and apparatus for improving the selectivity of a process for hydrogenating acetylene to ethylene
US4360359A (en) * 1981-03-13 1982-11-23 Conoco Inc. Method for relating shallow electrical anomalies to the presence of deeper hydrocarbon reservoirs
JPS632083Y2 (fr) * 1981-06-19 1988-01-20
JPS57212510A (en) * 1981-06-25 1982-12-27 Mitsubishi Heavy Ind Ltd Sample temperature controlling method in heating furnace
JPS5920837A (ja) * 1982-07-23 1984-02-02 Shimadzu Corp 炭素分析装置
US4578356A (en) * 1983-05-16 1986-03-25 Union Oil Company Of California Field source rock evaluation method
US4629702A (en) * 1984-10-04 1986-12-16 Mobil Oil Corporation Method for classifying the sedimentary kerogen for oil source
IT1196389B (it) * 1984-12-28 1988-11-16 Erba Strumentazione Metodo ed apparecchiatura per la distillazione simulata mediante gas-cromatografia con iniezione diretta non vaporizzante
GB8518821D0 (en) * 1985-07-25 1985-08-29 British Petroleum Co Plc Rock analyser
US5009772A (en) * 1989-02-27 1991-04-23 Kerr-Mcgee Corporation Solvent extraction process
CA2020480C (fr) * 1989-08-24 1997-11-18 Michael P. Smith Analyses d'echantillons volatils communs d'inclusions fluides et leur utilisation pour la cartographie du sous-sol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010358A1 (de) * 2009-12-07 2011-06-09 AJIDC Geräteentwicklungsgesellschaft mbH Verfahren und Vorrichtung zum Nachweis von Gasen
DE102010010358B4 (de) * 2009-12-07 2011-11-10 AJIDC Geräteentwicklungsgesellschaft mbH Verfahren und Vorrichtung zum Nachweis von Gasen

Also Published As

Publication number Publication date
NO308116B1 (no) 2000-07-24
JPH0750022B2 (ja) 1995-05-31
DE69321677D1 (de) 1998-11-26
DE69321677T2 (de) 1999-06-10
EP0584377A4 (en) 1994-09-21
EP0584377A1 (fr) 1994-03-02
WO1993018400A1 (fr) 1993-09-16
NO933994L (no) 1993-11-05
JPH05256748A (ja) 1993-10-05
NO933994D0 (no) 1993-11-05
US5389550A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
EP0584377B1 (fr) Appareil portable pour l'analyse de matières organiques et procédé le mettant en oeuvre
CA2038170C (fr) Appareil de detection de la luminescence chimique
US7343779B1 (en) High performance, hand-held gas chromatograph, method and system
US3540851A (en) Method of determining trace amounts of gases
Kotiaho On‐site environmental and in situ process analysis by mass spectrometry
EP0681182A1 (fr) Instrument pour mésurer des gaz organiques non-méthane dans des échantillons gazeux
JPH06503443A (ja) 質量分析計用サンプル導入装置及びサンプルモジュール
US5265463A (en) Apparatus for measuring the transmission rate of volatile organic chemicals through a barrier material
US6516656B1 (en) System for vehicle emission sampling and measurement
US3427863A (en) Method and apparatus for the direct determination of gases
US3713773A (en) Method of determining trace amounts of gases
CA1277507C (fr) Analyseur de gaz et source de rayonnement ir pour celui-ci
US7497991B2 (en) Reagent tube for top loading analyzer
US7070738B2 (en) Analyzer with variable volume ballast chamber and method of analysis
CN211627469U (zh) 一种基于色谱分离的碳氢氮元素分析系统
CN112986447A (zh) 气相色谱分析装置
CN107290463A (zh) 一种便携式吹扫捕集采样器
JPH0968486A (ja) 時分割高速サンプリング装置及び自動分析装置,自動分析方法
KR101348540B1 (ko) 농축기가 구비된 아웃가스 분석 장치
CN219871183U (zh) 一种集成式快速气相色谱模块和便携式气质联用仪
EP0446858B1 (fr) Méthode de calibrage pour système d'essais immunologiques sur des enzymes
CN217542967U (zh) 一种基于动态配气方法的半导体气敏材料测试装置
CN212483471U (zh) 一种高温分离检测双阀箱
CN217846210U (zh) 一种甲烷和非甲烷总烃在线监测装置
JPH07270316A (ja) 赤外線ガス分析装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940301

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19970218

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69321677

Country of ref document: DE

Date of ref document: 19981126

ITF It: translation for a ep patent filed

Owner name: LENZI & C.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030311

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030314

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050312