EP0578946B1 - Electrochemical process for reducing oxatic acid to glyoxylic acid - Google Patents
Electrochemical process for reducing oxatic acid to glyoxylic acid Download PDFInfo
- Publication number
- EP0578946B1 EP0578946B1 EP93108108A EP93108108A EP0578946B1 EP 0578946 B1 EP0578946 B1 EP 0578946B1 EP 93108108 A EP93108108 A EP 93108108A EP 93108108 A EP93108108 A EP 93108108A EP 0578946 B1 EP0578946 B1 EP 0578946B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- weight
- lead
- electrolysis
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000002253 acid Substances 0.000 title claims abstract description 18
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 96
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 54
- 239000000243 solution Substances 0.000 claims abstract description 34
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 32
- 150000003839 salts Chemical class 0.000 claims abstract description 28
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 19
- 239000002184 metal Substances 0.000 claims abstract description 19
- 150000002739 metals Chemical class 0.000 claims abstract description 12
- 229910052709 silver Inorganic materials 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 8
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 239000011707 mineral Substances 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 3
- 150000007524 organic acids Chemical class 0.000 claims abstract 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 16
- 229910052745 lead Inorganic materials 0.000 claims description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 229910052718 tin Inorganic materials 0.000 claims description 9
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 8
- 235000019253 formic acid Nutrition 0.000 claims description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 229910052797 bismuth Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052716 thallium Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 12
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 230000000737 periodic effect Effects 0.000 abstract description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 16
- 238000002474 experimental method Methods 0.000 description 13
- 150000007513 acids Chemical class 0.000 description 8
- GEVPUGOOGXGPIO-UHFFFAOYSA-N oxalic acid;dihydrate Chemical compound O.O.OC(=O)C(O)=O GEVPUGOOGXGPIO-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000006227 byproduct Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- VTCHZFWYUPZZKL-UHFFFAOYSA-N 4-azaniumylcyclopent-2-ene-1-carboxylate Chemical compound NC1CC(C(O)=O)C=C1 VTCHZFWYUPZZKL-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 2
- 229910001245 Sb alloy Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- NLTSCOZQKALPGZ-UHFFFAOYSA-N acetic acid;dihydrate Chemical compound O.O.CC(O)=O NLTSCOZQKALPGZ-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000002140 antimony alloy Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- -1 for example Chemical class 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 150000003891 oxalate salts Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- WALXYTCBNHJWER-UHFFFAOYSA-N 2,4,6-tribromopyridine Chemical compound BrC1=CC(Br)=NC(Br)=C1 WALXYTCBNHJWER-UHFFFAOYSA-N 0.000 description 1
- HQLVOUOBRKMDMY-UHFFFAOYSA-N 2-ethenylperoxyethanesulfonyl fluoride Chemical compound FS(=O)(=O)CCOOC=C HQLVOUOBRKMDMY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- YJZATOSJMRIRIW-UHFFFAOYSA-N [Ir]=O Chemical compound [Ir]=O YJZATOSJMRIRIW-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
Definitions
- the present invention relates to a process for the production of glyoxylic acid by electrochemical reduction of oxalic acid.
- Glyoxylic acid is an important intermediate for the production of technically relevant compounds and can be produced either by a controlled oxidation of glyoxal or by an electrochemical reduction of oxalic acid.
- electrochemical reduction of oxalic acid to glyoxylic acid has long been known and is generally carried out in aqueous, acidic medium, at low temperature, on electrodes with high hydrogen overvoltage, with or without the addition of mineral acids and in the presence of an ion exchange membrane (DE-AS 458 438) .
- the object of the present invention is to provide a process for the electrochemical reduction of oxalic acid to glyoxylic acid which avoids the disadvantages mentioned above, in particular has a high selectivity, reaches the lowest possible oxalic acid concentration at the end of the electrolysis and a cathode with a high one Long-term stability used.
- Selectivity is understood to mean the ratio of the amount of glyoxylic acid produced to the total amount of products formed during the electrolysis, namely glyoxylic acid plus by-products, for example glycolic acid, acetic acid and formic acid.
- cathodes which consist of 66 to 99.96% by weight, preferably 80 to 99.9% by weight, of lead and 34 to 0.04% by weight, preferably 20 to 0 , 1 wt .-%, consist of other metals.
- the method according to the invention is carried out in undivided or preferably in divided cells.
- the usual diaphragms made of polymers or other organic or inorganic materials, such as glass or ceramics, which are stable in the aqueous electrolysis solution, are used to divide the cells into anode and cathode compartments.
- Ion exchange membranes in particular cationic cation exchange membranes made of polymers, preferably polymers with carboxyl and / or sulfonic acid groups, are preferably used.
- the use of stable anion exchange membranes is also possible.
- the electrolysis can be carried out in all customary electrolysis cells, such as, for example, in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar circuit of the electrodes can be used.
- All materials on which the corresponding anode reactions take place can be used as anode material.
- lead, lead dioxide on lead or other carriers, platinum, metal oxides on titanium, for example titanium dioxide doped with noble metal oxides such as platinum oxide, are suitable for the development of oxygen from dilute sulfuric acid.
- carbon or titanium dioxide on titanium doped with noble metal oxides are used, for example, for the development of chlorine from aqueous alkali metal chloride solutions.
- Aqueous mineral acids or solutions of their salts such as, for example, dilute sulfuric or phosphoric acid, dilute or concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions, can be used as anolyte liquids.
- the aqueous electrolysis solution in the undivided cell or in the cathode compartment in the divided cell contains the oxalic acid to be electrolyzed in a concentration expediently between about 0.1 mol of oxalic acid per liter of solution and the saturation concentration of oxalic acid in the aqueous electrolysis solution at the electrolysis temperature used.
- Salts of metals with a hydrogen overvoltage of at least 0.25 V are added to the aqueous electrolysis solution in the undivided cell or in the cathode space of the divided cell.
- Such salts are mainly the salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co or Ni, preferably the salts of Pb , Sn, Bi, Zn, Cd and Cr.
- the preferred anions of these salts are chloride, sulfate, nitrate or acetate.
- the salts can be added directly or can also be generated in the solution, for example by adding oxides, carbonates, in some cases also the metals themselves.
- the salt concentration of the aqueous electrolysis solution in the undivided cell or in the cathode compartment of the divided cell is advantageously from about 10 auf to 10 wt .-%, preferably to about 10 ⁇ 5 to 0.1 wt .-%, each based on the total amount aqueous electrolysis solution.
- metal salts can also be used which form poorly soluble metal oxalates after addition to the aqueous electrolysis solution, for example the oxalates of Cu, Ag, Au, Zn, Cd, Sn, Pb, Ti, Zr, V, Ta, Ce and Co.
- the added metal ions from the product solution can be removed very easily by filtration after the electrolysis to the saturation concentration.
- Phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, formic acid or acetic acid are added to the aqueous electrolysis solution in the undivided cell or in the cathode compartment in the divided cell. It is preferred to add mineral acids, particularly preferably nitric acid.
- the concentration of the abovementioned acids is between 10 ⁇ 6 and 10% by weight, preferably between 10 ⁇ 6 and 0.1% by weight. If acids are added to the catholyte or to the electrolyte of an undivided cell in the concentrations given above, the current yield surprisingly remains above 70% even after several batchwise tests, while the current yield in the absence of the acid is clearly below 70%. At the beginning of the electrolysis, the addition of acid can initially be dispensed with if there are simultaneously salts of the above-mentioned metals in the aqueous electrolysis solution.
- the current density of the method according to the invention is expediently between 10 and 5000 A / m, preferably 100 to 4000 A / m.
- the cell voltage of the method according to the invention is dependent on the current density and is expediently between 1 V and 20 V, preferably between 1 V and 10 V, based on an electrode spacing of 3 mm.
- the electrolysis temperature can range from - 20 ° C to + 40 ° C. Surprisingly, it was found that at electrolysis temperatures below + 18 ° C, even at oxalic acid concentrations less than 1.5% by weight, the formation of glycolic acid as a by-product can be less than 1.5 mol% compared to the glyoxylic acid formed. The proportion of glycolic acid increases at higher temperatures.
- the electrolysis temperature is therefore preferably between + 10 ° C and + 30 ° C, in particular between + 10 ° C and + 18 ° C.
- the catholyte flow rate of the process according to the invention is between 1 and 10,000, preferably 50 and 2000, in particular 100 and 1000, liters per hour.
- the product solution is worked up using customary methods.
- the electrochemical reduction is stopped when a certain turnover has been reached.
- the resulting glyoxylic acid is separated from any oxalic acid still present in accordance with the prior art mentioned above.
- the oxalic acid can be selectively fixed to ion exchange resins and the aqueous oxalic acid-free solution can be concentrated in order to obtain a commercial 50% by weight glyoxylic acid.
- the glyoxylic acid is continuously extracted from the reaction mixture by customary methods and the corresponding equivalent proportion of fresh oxalic acid is added simultaneously.
- the reaction by-products in particular glycolic acid, acetic acid and formic acid, are not or not completely separated from the glyoxylic acid by these methods. It is therefore important to have a high selectivity in the To achieve procedures to avoid complex cleaning processes.
- the process according to the invention is characterized in that the proportion of the sum of by-products can be kept very low. It is between 0 and 5 mol%, preferably below 3 mol%, in particular below 2 mol%, relative to the glyoxylic acid.
- the selectivity of the process according to the invention is all the more remarkable in that, even at a low final oxalic acid concentration, that is to say in the range of 0.2 mol of oxalic acid per liter of electrolysis solution, the proportion of by-products is preferably below 3 mol%, based on glyoxylic acid.
- the particular advantage of the cathode used according to the invention is that a high-purity, expensive lead cathode can be dispensed with and conventional, technically available lead-containing materials can be used. Periodic rinsing with nitric acid can also be dispensed with, so that the lead wear is kept very low and a long service life of the cathode can be achieved in the technical process.
- a divided circulation cell which is constructed as follows:
- the quantitative analysis of the components was carried out by means of HPLC, the chemical yield is defined as the amount of glyoxylic acid produced, based on the amount of oxalic acid consumed.
- the current yield relates to the amount of glyoxylic acid produced.
- the selectivity has already been defined above.
- the weight of the cathode increased slightly during the electrolysis from 1958.3 g before experiment a) to 1958.9 g after experiment e).
- the example shows the catalytic effect of the added metal salts regardless of the acid concentration.
- the metal salts bring about a significant reduction in the evolution of hydrogen compared to experiment a).
- the electrolysis was carried out analogously to Example 4, but a lead-antimony alloy, material no. 2.3205 with a lead content between 93 and 95%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Glyoxylsäure durch elektrochemische Reduktion von Oxalsäure.The present invention relates to a process for the production of glyoxylic acid by electrochemical reduction of oxalic acid.
Glyoxylsäure ist ein wichtiges Zwischenprodukt zur Herstellung von technisch relevanten Verbindungen und läßt sich entweder durch eine kontrollierte Oxidation von Glyoxal oder durch eine elektrochemische Reduktion von Oxalsäure herstellen.Glyoxylic acid is an important intermediate for the production of technically relevant compounds and can be produced either by a controlled oxidation of glyoxal or by an electrochemical reduction of oxalic acid.
Die elektrochemische Reduktion von Oxalsäure zu Glyoxylsäure ist seit langem bekannt und wird im allgemeinen in wäßrigem, saurem Medium, bei niedriger Temperatur, an Elektroden mit hoher Wasserstoffüberspannung, mit oder ohne Zusatz von Mineralsäuren sowie in Gegenwart einer lonenaustauschermembran durchgeführt (DE-AS 458 438).The electrochemical reduction of oxalic acid to glyoxylic acid has long been known and is generally carried out in aqueous, acidic medium, at low temperature, on electrodes with high hydrogen overvoltage, with or without the addition of mineral acids and in the presence of an ion exchange membrane (DE-AS 458 438) .
Bei den bisher üblichen Elektrolyseverfahren von Oxalsäure im technischen Maßstab oder bei Versuchen mit längerer Elektrolysedauer wurden keine befriedigenden Ergebnisse erzielt, da im Verlauf der Elektrolyse die Stromausbeute deutlich sank (DE-AS 347 605) und die Wasserstoffentwicklung zunahm.Satisfactory results have not been achieved with the electrolysis processes of oxalic acid which have been customary up to now on an industrial scale or in experiments with a longer electrolysis time, since the current yield decreased significantly in the course of the electrolysis (DE-AS 347 605) and the evolution of hydrogen increased.
Um diesen Nachteilen zu begegnen, wurde die Reduktion von Oxalsäure an Bleikathoden in Gegenwart von Zusatzstoffen, beispielsweise tertiären Aminen oder quartären Ammoniumsalzen, durchgeführt (DE-OS 22 40 759, 23 59 863). Die Konzentration des Zusatzstoffes liegt dabei zwischen 10⁻⁵ % und 1 %. Dieser Zusatzstoff ist dann im Produkt Glyoxylsäure enthalten und muß durch ein Trennverfahren abgetrennt werden. Über die Selektivität des Verfahrens werden in den genannten Dokumenten keine näheren Angaben gemacht.In order to counter these disadvantages, the reduction of oxalic acid on lead cathodes was carried out in the presence of additives, for example tertiary amines or quaternary ammonium salts (DE-OS 22 40 759, 23 59 863). The concentration of the additive is between 10⁻⁵% and 1%. This additive is then contained in the product glyoxylic acid and must be separated by a separation process. No details are given in the documents mentioned about the selectivity of the process.
In Goodridge et al., J. Appl. Electrochem., 10, 1 (1980), S. 55 - 60 werden verschiedene Elektrodenmaterialien hinsichtlich ihrer Stromausbeute bei der elektrochemischen Reduktion von Oxalsäure untersucht. Dabei hat sich gezeigt, daß eine hochreine Bleikathode (99,999 %) für den genannten Zweck am besten geeignet ist.In Goodridge et al., J. Appl. Electrochem., 10, 1 (1980), pp. 55-60, various electrode materials are examined with regard to their current efficiency in the electrochemical reduction of oxalic acid. It has been shown that a high purity lead cathode (99.999%) is best suited for the purpose mentioned.
In der Internationalen Patentanmeldung WO-91/19832 wird ebenfalls ein elektrochemisches Verfahren zur Herstellung von Glyoxylsäure aus Oxalsäure beschrieben, in dem jedoch hochreine Bleikathoden mit einem Reinheitsgrad über 99,97 % in Gegenwart geringer Mengen von in der Elektrolyselösung gelösten Bleisalzen verwendet werden. Bei diesem Verfahren werden die Bleikathoden periodisch mit Salpetersäure gespült, wodurch sich die Lebensdauer der Kathoden vermindert. Ein weiterer Nachteil dieses Verfahrens besteht darin, daß die Oxalsäurekonzentration während der Elektrolyse ständig im Bereich der Sättigungskonzentration gehalten werden muß. Die Selektivität liegt dabei nur bei 95 %.International patent application WO-91/19832 also describes an electrochemical process for the production of glyoxylic acid from oxalic acid, in which, however, high-purity lead cathodes with a purity of more than 99.97% are used in the presence of small amounts of lead salts dissolved in the electrolysis solution. In this process, the lead cathodes are periodically rinsed with nitric acid, which reduces the life of the cathodes. Another disadvantage of this process is that the oxalic acid concentration must be kept constantly in the range of the saturation concentration during the electrolysis. The selectivity is only 95%.
In der US-PS 4,692,226 wird erwähnt, daß als Kathodenmaterial für die elektrochemische Reduktion von Oxalsäure zu Glyoxylsäure Blei oder eine seiner Legierungen, vorzugsweise mit Bi, verwendet wird. Nähere Angaben werden nicht gemacht. In den Beispielen wird eine 99,99 %ige Bleikathode verwendet.US Pat. No. 4,692,226 mentions that lead or one of its alloys, preferably with Bi, is used as the cathode material for the electrochemical reduction of oxalic acid to glyoxylic acid. No further details are given. A 99.99% lead cathode is used in the examples.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur elektrochemischen Reduktion von Oxalsäure zu Glyoxylsäure zur Verfügung zu stellen, das die vorstehend genannten Nachteile vermeidet, insbesondere eine hohe Selektivität aufweist, am Ende der Elektrolyse eine möglichst niedrige Oxalsäurekonzentration erreicht und eine Kathode mit einer hohen Langzeitstabilität benutzt. Unter Selektivität wird das Verhältnis der Menge an produzierter Glyoxylsäure zur Menge der insgesamt während der Elektrolyse gebildeten Produkte, nämlich Glyoxylsäure plus Nebenprodukte, beispielsweise Glykolsäure, Essigsäure und Ameisensäure, verstanden.The object of the present invention is to provide a process for the electrochemical reduction of oxalic acid to glyoxylic acid which avoids the disadvantages mentioned above, in particular has a high selectivity, reaches the lowest possible oxalic acid concentration at the end of the electrolysis and a cathode with a high one Long-term stability used. Selectivity is understood to mean the ratio of the amount of glyoxylic acid produced to the total amount of products formed during the electrolysis, namely glyoxylic acid plus by-products, for example glycolic acid, acetic acid and formic acid.
Die Aufgabe wird gelöst durch ein Verfahren, wie es Gegenstand des unabhängigen Anspruchs 1 ist; bevorzugte Ausführungen sind Gegenstand der abhängigen Ansprüche 2-13.The object is achieved by a method as is the subject of independent claim 1; preferred embodiments are the subject of dependent claims 2-13.
Von Interesse sind vor allem Kathoden, die zu 66 bis 99,96 Gew.-%, vorzugsweise zu 80 bis 99,9 Gew.-%, aus Blei und zu 34 bis 0,04 Gew.-%, vorzugsweise zu 20 bis 0,1 Gew.-%, aus anderen Metallen bestehen.Of particular interest are cathodes which consist of 66 to 99.96% by weight, preferably 80 to 99.9% by weight, of lead and 34 to 0.04% by weight, preferably 20 to 0 , 1 wt .-%, consist of other metals.
Als Kathoden kommen überraschenderweise eine Vielzahl von bleihaltigen Materialien in Frage. Insbesondere muß im Gegensatz zur WO-91/19832 kein hochreines Blei verwendet werden. Das hat den Vorteil, daß herkömmliche preiswerte Bleilegierungen als Kathoden eingesetzt werden können. Legierungsbestandteile sind V, Sb, Cu, Sn, Ag, Ni, As, Cd, Ca, insbesondere Sb, Sn, Cu und Ag. Von Interesse sind beispielsweise Legierungen, die zu 99,6 Gew.-% aus Blei und zu jeweils 0,2 Gew.-% aus Zinn und Silber bestehen. Von besonderem Interesse sind herkömmliche Bleilegierungen wie Rohrblei (Werkstoff-Nr. 2.3201, 98,7 bis 99,1 % Pb; Werkstoff-Nr. 2.3202, 99,7 bis 99,8 % Pb), Schrotblei (Werkstoff-Nr. 2.3203, 94,5 bis 96,8 % Pb; Werkstoff-Nr. 2.3205, 93 bis 95 % Pb; Werkstoff-Nr. 2.3208, 91,5 bis 92,5 % Pb), Hartblei (Werkstoff-Nr. 2.3212, 87 bis 88 % Pb), Weißmetall mit 70 bis 80 % Pb, Letternmetall, beispielsweise PbSn5Sb28 mit 67 % Pb, Hüttenblei (99,9 bis 99,94 % Pb) oder Kupferfeinblei (99,9 % Pb).Surprisingly, a large number of lead-containing materials can be used as cathodes. In particular, in contrast to WO-91/19832, no high-purity lead has to be used. This has the advantage that conventional inexpensive lead alloys can be used as cathodes. Alloy components are V, Sb, Cu, Sn, Ag, Ni, As, Cd, Ca, in particular Sb, Sn, Cu and Ag. Of interest are, for example, alloys which consist of 99.6% by weight of lead and 0.2% by weight of tin and silver. Of particular interest are conventional lead alloys such as pipe lead (material no. 2.3201, 98.7 to 99.1% Pb; material no. 2.3202, 99.7 to 99.8% Pb), shot lead (material no. 2.3203, 94.5 to 96.8% Pb; material no.2.3205, 93 to 95% Pb; material no.2.3208, 91.5 to 92.5% Pb), hard lead (material no.2.3212, 87 to 88 % Pb), white metal with 70 to 80% Pb, lettering metal, for example PbSn5Sb28 with 67% Pb, metallurgical lead (99.9 to 99.94% Pb) or fine copper lead (99.9% Pb).
Das erfindungsgemäße Verfahren wird in ungeteilten oder vorzugsweise in geteilten Zellen durchgeführt. Zur Teilung der Zellen in Anoden- und Kathodenraum werden die üblichen, in der wäßrigen Elektrolyselösung stabilen Diaphragmen aus Polymeren oder anderen organischen oder anorganischen Werkstoffen, wie beispielsweise Glas oder Keramik verwendet. Vorzugsweise verwendet man lonenaustauschermembranen, insbesondere Katic Kationenaustauschermembranen aus Polymeren, vorzugsweise Polymeren mit Carboxyl- und/oder Sulfonsäuregruppen. Die Verwendung von stabilen Anionenaustauschermembranen ist ebenfalls möglich.The method according to the invention is carried out in undivided or preferably in divided cells. The usual diaphragms made of polymers or other organic or inorganic materials, such as glass or ceramics, which are stable in the aqueous electrolysis solution, are used to divide the cells into anode and cathode compartments. Ion exchange membranes, in particular cationic cation exchange membranes made of polymers, preferably polymers with carboxyl and / or sulfonic acid groups, are preferably used. The use of stable anion exchange membranes is also possible.
Die Elektrolyse kann in allen üblichen Elektrolysezellen, wie beispielsweise in Becherglas- oder Platten- und Rahmenzellen oder Zellen mit Festbett- oder Fließbettelektroden, durchgeführt werden. Es ist sowohl die monopolare als auch die bipolare Schaltung der Elektroden anwendbar.The electrolysis can be carried out in all customary electrolysis cells, such as, for example, in beaker or plate and frame cells or cells with fixed bed or fluidized bed electrodes. Both the monopolar and the bipolar circuit of the electrodes can be used.
Es ist möglich, die Elektrolyse sowohl kontinuierlich als auch diskontinuierlich durchzuführen.It is possible to carry out the electrolysis both continuously and batchwise.
Als Anodenmaterial können alle Materialien verwendet werden, an denen die korrespondierenden Anodenreaktionen ablaufen. Beispielsweise sind Blei, Bleidioxid auf Blei oder anderen Trägern, Platin, Metalloxide auf Titan, beispielsweise mit Edelmetalloxiden wie Platinoxid dotiertes Titandioxid auf Titan, für die Sauerstoffentwicklung aus verdünnter Schwefelsäure geeignet. Kohlenstoff oder mit Edelmetalloxiden dotiertes Titandioxid auf Titan werden beispielsweise zur Entwicklung von Chlor aus wäßrigen Alkalichlorid-Lösungen eingesetzt.All materials on which the corresponding anode reactions take place can be used as anode material. For example, lead, lead dioxide on lead or other carriers, platinum, metal oxides on titanium, for example titanium dioxide doped with noble metal oxides such as platinum oxide, are suitable for the development of oxygen from dilute sulfuric acid. Carbon or titanium dioxide on titanium doped with noble metal oxides are used, for example, for the development of chlorine from aqueous alkali metal chloride solutions.
Als Anolytflüssigkeiten können wäßrige Mineralsäuren oder Lösungen ihrer Salze, wie beispielsweise verdünnte Schwefel- oder Phosphorsäure, verdünnte oder konzentrierte Salzsäure, Natriumsulfat- oder Natriumchloridlösungen, verwendet werden.Aqueous mineral acids or solutions of their salts, such as, for example, dilute sulfuric or phosphoric acid, dilute or concentrated hydrochloric acid, sodium sulfate or sodium chloride solutions, can be used as anolyte liquids.
Die wäßrige Elektrolyselösung in der ungeteilten Zelle oder im Kathodenraum in der geteilten Zelle enthält die zu elektrolysierende Oxalsäure in einer Konzentration zweckmäßigerweise zwischen etwa 0,1 mol Oxalsäure pro Liter Lösung und der Sättigungskonzentration von Oxalsäure in der wäßrigen Elektrolyselösung bei der angewendeten Elektrolysetemperatur.The aqueous electrolysis solution in the undivided cell or in the cathode compartment in the divided cell contains the oxalic acid to be electrolyzed in a concentration expediently between about 0.1 mol of oxalic acid per liter of solution and the saturation concentration of oxalic acid in the aqueous electrolysis solution at the electrolysis temperature used.
Der wäßrigen Elektrolyselösung in der ungeteilten Zelle oder im Kathodenraum der geteilten Zelle werden Salze von Metallen mit einer Wasserstoffüberspannung von mindestens 0,25 V (bezogen auf eine Stromdichte von 2500 A/m) zugesetzt. Als derartige Salze kommen hauptsächlich infrage die Salze von Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co oder Ni, vorzugsweise die Salze von Pb, Sn, Bi, Zn, Cd und Cr. Die bevorzugten Anionen dieser Salze sind Chlorid, Sulfat, Nitrat oder Acetat.Salts of metals with a hydrogen overvoltage of at least 0.25 V (based on a current density of 2500 A / m) are added to the aqueous electrolysis solution in the undivided cell or in the cathode space of the divided cell. Such salts are mainly the salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co or Ni, preferably the salts of Pb , Sn, Bi, Zn, Cd and Cr. The preferred anions of these salts are chloride, sulfate, nitrate or acetate.
Die Salze können direkt zugesetzt oder auch, beispielsweise durch Zugabe von Oxiden, Carbonaten, in einigen Fällen auch der Metalle selbst, in der Lösung erzeugt werden.The salts can be added directly or can also be generated in the solution, for example by adding oxides, carbonates, in some cases also the metals themselves.
Die Salzkonzentration der wäßrigen Elektrolyselösung in der ungeteilten Zelle oder im Kathodenraum der geteilten Zelle wird zweckmäßig auf etwa 10⁻⁶ bis 10 Gew.-%, vorzugsweise auf etwa 10⁻⁵ bis 0,1 Gew.-%, jeweils bezogen auf die Gesamtmenge der wäßrigen Elektrolyselösung, eingestellt.The salt concentration of the aqueous electrolysis solution in the undivided cell or in the cathode compartment of the divided cell is advantageously from about 10 auf to 10 wt .-%, preferably to about 10⁻⁵ to 0.1 wt .-%, each based on the total amount aqueous electrolysis solution.
Überraschenderweise wurde festgestellt, daß auch solche Metallsalze eingesetzt werden können, die nach Zugabe in die wäßrige Elektrolyselösung schwerlösliche Metalloxalate bilden, beispielsweise die Oxalate von Cu, Ag, Au, Zn, Cd, Sn, Pb, Ti, Zr, V, Ta, Ce und Co. Auf diese Weise können die zugesetzten Metallionen aus der Produktlösung durch Filtration nach der Elektrolyse bis zur Sättigungskonzentration sehr einfach entfernt werden.Surprisingly, it was found that metal salts can also be used which form poorly soluble metal oxalates after addition to the aqueous electrolysis solution, for example the oxalates of Cu, Ag, Au, Zn, Cd, Sn, Pb, Ti, Zr, V, Ta, Ce and Co. In this way, the added metal ions from the product solution can be removed very easily by filtration after the electrolysis to the saturation concentration.
Der wäßrigen Elektrolyselösung in der ungeteilten Zelle oder im Kathodenraum in der geteilten Zelle werden Phosphorsäure, Salzsäure, Schwefelsäure, Salpetersäure Trifluoressigsäure, Ameisensäure oder Essigsäure, zugesetzt. Bevorzugt ist die Zugabe von Mineralsäuren, besonders bevorzugt von Salpetersäure.Phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, formic acid or acetic acid are added to the aqueous electrolysis solution in the undivided cell or in the cathode compartment in the divided cell. It is preferred to add mineral acids, particularly preferably nitric acid.
Die Konzentration der vorstehend genannten Säuren liegt zwischen 10⁻⁶ und 10 Gew.-%, vorzugsweise zwischen 10⁻⁶ und 0,1 Gew.-%. Bei Zugabe von Säuren in den Katholyt oder in den Elektrolyt einer ungeteilten Zelle in den oben angegebenen Konzentrationen bleibt die Stromausbeute überraschenderweise auch nach mehreren in diskontinuierlicher Weise durchgeführten Versuchen über 70 %, während die Stromausbeute bei Abwesenheit der Säure deutlich unter 70 % liegt. Zu Beginn der Elektrolyse, kann zunächst auf die Zugabe von Säure verzichtet werden, wenn sich gleichzeitig Salze der vorstehend genannten Metalle in der wäßrigen Elektrolyselösung befinden. Das ist beispielsweise der Fall beim ersten Ansatz bei diskontinuierlicher Verfahrensweise oder bei kontinuierlicher Verfahrensweise bis zum Durchgang von etwa 90 % der theoretisch zu übertragenden Ladungsmenge, bezogen auf den Anteil der Oxalsäure, der sich zu Beginn der Elektrolyse im Elektrolysekreislauf befindet. Wird jedoch in den Folgeversuchen oder in der Folgezeit der Elektrolyse keine Säure zugesetzt, so fällt die Stromausbeute von Versuch zu Versuch ab.The concentration of the abovementioned acids is between 10⁻⁶ and 10% by weight, preferably between 10⁻⁶ and 0.1% by weight. If acids are added to the catholyte or to the electrolyte of an undivided cell in the concentrations given above, the current yield surprisingly remains above 70% even after several batchwise tests, while the current yield in the absence of the acid is clearly below 70%. At the beginning of the electrolysis, the addition of acid can initially be dispensed with if there are simultaneously salts of the above-mentioned metals in the aqueous electrolysis solution. This is the case, for example, with the first batch-batch approach or with a continuous procedure up to the passage of about 90% of the amount of charge theoretically to be transferred, based on the proportion of oxalic acid that is in the electrolysis cycle at the beginning of the electrolysis. However, if no acid is added in subsequent experiments or in the subsequent period of electrolysis, the current yield drops from experiment to experiment.
Eine Spülung der Kathode mit 10 %iger Salpetersäure zur Regeneration der Kathode, wie das in der vorstehend genannten Internationalen Patentanmeldung WO-91/19832 vorgeschlagen wird, führt zu einem starken Abtrag der Bleikathode und somit zu einer Verkürzung der Kathoden-Standzeit.Flushing the cathode with 10% nitric acid to regenerate the cathode, as is proposed in the aforementioned international patent application WO-91/19832, leads to a strong removal of the lead cathode and thus to a shortening of the cathode service life.
Die Notwendigkeit einer Spülung mit Salpetersäure ist bei dem erfindungsgemäßen Verfahren nicht gegeben, was einen erheblichen Vorteil des erfindungsgemäßen Verfahrens darstellt. Überraschenderweise führt die Zugabe der oben beschriebenen Säuren in den oben angegebenen Konzentrationen zu keiner signifikanten Korrosion der Bleikathode.There is no need for rinsing with nitric acid in the process according to the invention, which represents a considerable advantage of the process according to the invention. Surprisingly, the addition of the acids described above in the concentrations given above does not lead to significant corrosion of the lead cathode.
Die Stromdichte des erfindungsgemäßen Verfahrens liegt zweckmäßigerweise zwischen 10 und 5000 A/m, bevorzugt bei 100 bis 4000 A/m.The current density of the method according to the invention is expediently between 10 and 5000 A / m, preferably 100 to 4000 A / m.
Die Zellspannung des erfindungsgemäßen Verfahrens ist abhängig von der Stromdichte und liegt zweckmäßigerweise zwischen 1 V und 20 V, vorzugsweise zwischen 1 V und 10 V, bezogen auf einen Elektrodenabstand von 3 mm.The cell voltage of the method according to the invention is dependent on the current density and is expediently between 1 V and 20 V, preferably between 1 V and 10 V, based on an electrode spacing of 3 mm.
Die Elektrolysetemperatur kann im Bereich von - 20 °C bis + 40 °C liegen. Überraschenderweise wurde festgestellt, daß bei Elektrolysetemperaturen unter + 18 °C, selbst bei Oxalsäurekonzentrationen kleiner als 1,5 Gew.-%, die Bildung von Glykolsäure als Nebenprodukt unter 1,5 Mol-% im Vergleich zur gebildeten Glyoxylsäure liegen kann. Bei höheren Temperaturen nimmt der Anteil der Glykolsäure zu. Die Elektrolysetemperatur liegt deshalb vorzugsweise zwischen + 10 °C und + 30 °C, insbesondere zwischen + 10 °C und + 18 °C.The electrolysis temperature can range from - 20 ° C to + 40 ° C. Surprisingly, it was found that at electrolysis temperatures below + 18 ° C, even at oxalic acid concentrations less than 1.5% by weight, the formation of glycolic acid as a by-product can be less than 1.5 mol% compared to the glyoxylic acid formed. The proportion of glycolic acid increases at higher temperatures. The electrolysis temperature is therefore preferably between + 10 ° C and + 30 ° C, in particular between + 10 ° C and + 18 ° C.
Der Katholytdurchfluß des erfindungsgemäßen Verfahrens liegt zwischen 1 und 10000, vorzugsweise 50 und 2000, insbesondere 100 und 1000, Liter pro Stunde.The catholyte flow rate of the process according to the invention is between 1 and 10,000, preferably 50 and 2000, in particular 100 and 1000, liters per hour.
Die Aufarbeitung der Produktlösung erfolgt nach üblichen Methoden. Bei diskontinuierlicher Arbeitsweise wird die elektrochemische Reduktion abgebrochen, wenn ein bestimmter Umsatz erreicht ist. Die entstandene Glyoxylsäure wird von noch vorhandener Oxalsäure nach dem vorstehend genannten Stand der Technik abgetrennt. Beispielsweise kann die Oxalsäure selektiv an lonenaustauscherharzen fixiert und die wäßrige oxalsäurefreie Lösung aufkonzentriert werden, um eine kommerzielle 50 gew.-%ige Glyoxylsäure zu erhalten. Bei einer kontinuierlichen Arbeitsweise wird die Glyoxylsäure kontinuierlich aus dem Reaktionsgemisch nach üblichen Methoden extrahiert und simultan dazu der entsprechende äquivalente Anteil an frischer Oxalsäure zugeführt.The product solution is worked up using customary methods. In the case of discontinuous operation, the electrochemical reduction is stopped when a certain turnover has been reached. The resulting glyoxylic acid is separated from any oxalic acid still present in accordance with the prior art mentioned above. For example, the oxalic acid can be selectively fixed to ion exchange resins and the aqueous oxalic acid-free solution can be concentrated in order to obtain a commercial 50% by weight glyoxylic acid. In the case of a continuous procedure, the glyoxylic acid is continuously extracted from the reaction mixture by customary methods and the corresponding equivalent proportion of fresh oxalic acid is added simultaneously.
Die Reaktionsnebenprodukte, insbesondere Glykolsäure, Essigsäure und Ameisensäure, werden nach diesen Methoden nicht oder nicht vollständig von der Glyoxylsäure abgetrennt. Es ist deshalb wichtig, eine hohe Selektivität in dem Verfahren zu erreichen, um aufwendige Reinigungsprozesse zu vermeiden. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß der Anteil der Summe an Nebenprodukten sehr gering gehalten werden kann. Er liegt zwischen 0 und 5 Mol-%, bevorzugt unter 3 Mol-%, insbesondere unter 2 Mol-%, relativ zur Glyoxylsäure.The reaction by-products, in particular glycolic acid, acetic acid and formic acid, are not or not completely separated from the glyoxylic acid by these methods. It is therefore important to have a high selectivity in the To achieve procedures to avoid complex cleaning processes. The process according to the invention is characterized in that the proportion of the sum of by-products can be kept very low. It is between 0 and 5 mol%, preferably below 3 mol%, in particular below 2 mol%, relative to the glyoxylic acid.
Die Selektivität des erfindungsgemäßen Verfahrens ist umso bemerkenswerter, als daß auch bei niedriger Oxalsäure-Endkonzentration, das heißt im Bereich von 0,2 mol Oxalsäure pro Liter Elektrolyselösung, der Anteil an Nebenprodukten vorzugsweise unter 3 Mol-%, bezogen auf Glyoxylsäure, liegt.The selectivity of the process according to the invention is all the more remarkable in that, even at a low final oxalic acid concentration, that is to say in the range of 0.2 mol of oxalic acid per liter of electrolysis solution, the proportion of by-products is preferably below 3 mol%, based on glyoxylic acid.
Der besondere Vorteil der erfindungsgemäß verwendeten Kathode besteht darin, daß auf eine hochreine, teure Bleikathode verzichtet werden kann und herkömmliche, technisch verfügbare bleihaltige Materialien eingesetzt werden können. Ferner kann auf ein periodisches Spülen mit Salpetersäure verzichtet werden, so daß der Bleiabrieb sehr gering gehalten und eine lange Standzeit der Kathode im technischen Verfahren erreicht werden kann.The particular advantage of the cathode used according to the invention is that a high-purity, expensive lead cathode can be dispensed with and conventional, technically available lead-containing materials can be used. Periodic rinsing with nitric acid can also be dispensed with, so that the lead wear is kept very low and a long service life of the cathode can be achieved in the technical process.
In den nachfolgenden Beispielen, die die vorliegende Erfindung näher erläutern, wird eine geteilte Umlaufzelle verwendet, die wie folgt aufgebaut ist:In the following examples, which explain the present invention in more detail, a divided circulation cell is used, which is constructed as follows:
Umlaufzelle mit 0,02 m Elektrodenfläche, Elektrodenabstand 3 mm.
- Kathode:
- Blei (99,6 %) mit Anteilen Zinn (0,2 %) und Silber (0,2 %)
- Anode:
- dimensionsstabile Anode für Sauerstoff-Entwicklung auf Basis Iridiumoxid auf Titan
- Kationaustauschermembran:
- 2-Schichtmembran aus Copolymerisaten aus Perfluorsulfonylethoxyvinylether + Tetrafluorethylen. Auf der Kathodenseite befindet sich eine Schicht mit dem Äquivalentgewicht 1300, auf der Anodenseite eine solche mit dem Äquivalentgewicht 1100, beispielsweise ®Nafion 324 der Firma DuPont;
- Abstandhalter:
- Polyethylennetze
- Cathode:
- Lead (99.6%) with tin (0.2%) and silver (0.2%)
- Anode:
- Dimensionally stable anode for oxygen development based on iridium oxide on titanium
- Cation exchange membrane:
- 2-layer membrane made from copolymers of perfluorosulfonylethoxy vinyl ether + tetrafluoroethylene. On the cathode side there is a layer with the equivalent weight 1300, on the anode side one with the equivalent weight 1100, for example ®Nafion 324 from DuPont;
- Spacers:
- Polyethylene nets
Die quantitative Analyse der Komponenten erfolgte mittels HPLC, die chemische Ausbeute ist definiert als Menge an produzierter Glyoxylsäure, bezogen auf die Menge an verbrauchter Oxalsäure. Die Stromausbeute bezieht sich auf die hergestellte Menge an Glyoxylsäure. Die Selektivität wurde vorstehend bereits definiert.The quantitative analysis of the components was carried out by means of HPLC, the chemical yield is defined as the amount of glyoxylic acid produced, based on the amount of oxalic acid consumed. The current yield relates to the amount of glyoxylic acid produced. The selectivity has already been defined above.
ohne Zusatz von Salzen und Säurewithout the addition of salts and acid
Ausgangskatholyt:Starting catholyte:
2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung Endkatholyt nach 945 Ah:
Das Beispiel zeigt die unbefriedigende Stromausbeute, obwohl eine frische Bleikathode verwendet wurde.The example shows the unsatisfactory current yield, although a fresh lead cathode was used.
mit Zugabe von Bleisalzen, ohne Zusatz von Säurenwith the addition of lead salts, without the addition of acids
-
(a) 2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung und Zusatz von 1,76 g Blei(II)acetat-Trihydrat (40 ppm Pb⁺)
Nach Durchgang von 950 Ah wurde eine Probe zur Bestimmung der Stromausbeute genommen, der Katholyt abgelassen, 1300 ml Wasser dem Anolyt zugegeben und eine frische Katholytlösung (b) eingefüllt.(a) 2418 g (19.2 mol) oxalic acid dihydrate in 24 l aqueous solution and addition of 1.76 g lead (II) acetate trihydrate (40 ppm Pb⁺)
After passing through 950 Ah, a sample was taken to determine the current efficiency, the catholyte was drained, 1300 ml of water were added to the anolyte and a fresh catholyte solution (b) was introduced. - (b) 2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung und Zusatz von 0,022 g Blei(II)acetat-Trihydrat (0,5 ppm Pb⁺).(b) 2418 g (19.2 mol) of oxalic acid dihydrate in 24 l of aqueous solution and addition of 0.022 g of lead (II) acetate trihydrate (0.5 ppm Pb⁺).
- (c) und (d): Frische Katholytlösung wurde wie in (b) zwei weitere Male, (c) und (d), zugegeben.(c) and (d): Fresh catholyte solution was added two more times as in (b), (c) and (d).
Der Verlauf der Stromausbeute war dabei wie folgt:
- (a): 81 %
- (b): 70 %
- (c): 67 %
- (d): 60 %
- (a): 81%
- (b): 70%
- (c): 67%
- (d): 60%
Nach 4 diskortinuierlich durchgeführten Versuchen und 3800 Ah übertragener Ladungsmenge, entsprechend 76 Stunden Elektrolysedauer war die Stromausbeute von 81 % während Versuch (a) auf 60 % während Versuch (d) gefallen. Die Stromausbeute von Versuch (d) lag dabei im Bereich der Stromausbeute, die an einer frischen Bleikathode ohne Zusatz von Salzen oder Säuren gefunden wurde (siehe Beispiel 1).After 4 discontinuous tests and 3800 Ah transferred charge, corresponding to 76 hours of electrolysis time, the current yield had dropped from 81% during test (a) to 60% during test (d). The current efficiency of experiment (d) was in the range of the current efficiency found on a fresh lead cathode without the addition of salts or acids (see Example 1).
Spülung mit 10 %iger Salpetersäure Anschlußversuch an Beispiel 2Rinsing with 10% nitric acid. Follow-up experiment on example 2
Die elektrochemische Zelle wurde im Umpumpverfahren mit 5 l 10 %iger HNO₃ für 20 Minuten bei etwa 20°C gespült. Der Gehalt an Blei(II)ionen nach dem Spülvorgang betrug 0,88 g/l, was einem Bleiabrieb von 4,4 g entspricht.The electrochemical cell was rinsed with 5 l of 10% HNO₃ for 20 minutes at about 20 ° C. The content of lead (II) ions after the rinsing process was 0.88 g / l, which corresponds to a lead wear of 4.4 g.
Das Beispiel bestätigt die starke Korrosion der Bleikathode, wenn mit Salpetersäure gespült wird.The example confirms the strong corrosion of the lead cathode when rinsing with nitric acid.
mit Zugabe von Bleisalzen und Salpetersäure Elektrolysebedingungen wie Beispiel 1with the addition of lead salts and nitric acid electrolysis conditions as example 1
-
(a) 2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung und Zusatz von 1,76 g Blei(II)acetat-Trihydrat (40 ppm Pb⁺)
Nach Durchgang von 945 Ah wurde eine Probe zur Bestimmung der Stromausbeute genommen, der Katholyt in einen Sammelbehälter abgelassen, 1300 ml Wasser dem Anolyt zugegeben und eine frische Katholytlösung (b) eingefüllt:(a) 2418 g (19.2 mol) oxalic acid dihydrate in 24 l aqueous solution and addition of 1.76 g lead (II) acetate trihydrate (40 ppm Pb⁺)
After passing through 945 Ah, a sample was taken to determine the current efficiency, the catholyte was drained into a collecting container, 1300 ml of water were added to the anolyte and a fresh catholyte solution (b) was poured in: -
(b) 2418 (19,2 Mol) Oxalsäure-Dihydrat in 24 1 wäßriger Lösung und Zusatz von 0,022 g Blei(ll)acetat-Trihydrat (0,5 ppm Pb⁺) und 0,86 ml 65 % HNO₃ (33 ppm)
Die vorstehend unter a) beschriebenen Verfahrensschritte wurden dreimal wiederholt und frische Katholytlösung (c), (d) und (e) wie in (b) eingesetzt.(b) 2418 (19.2 mol) oxalic acid dihydrate in 24 1 aqueous solution and addition of 0.022 g of lead (II) acetate trihydrate (0.5 ppm Pb⁺) and 0.86 ml of 65% HNO₃ (33 ppm)
The process steps described above under a) were repeated three times and fresh catholyte solution (c), (d) and (e) were used as in (b).
Der Verlauf der Stromausbeute war dabei wie folgt:
- (a) 78 %
- (b) 80 %
- (c) 71 %
- (d) 72 %
- (e) 71 %.
- (a) 78%
- (b) 80%
- (c) 71%
- (d) 72%
- (e) 71%.
Das Gewicht der Kathode erhöhte sich während der Elektrolyse geringfügig von 1958,3 g vor dem Versuch a) auf 1958,9 g nach dem Versuch e).The weight of the cathode increased slightly during the electrolysis from 1958.3 g before experiment a) to 1958.9 g after experiment e).
Endkatholyt im Sammelbehälter
Nach einer anfänglichen Stromausbeute von 78 % während Versuch (a) stieg diese auf 80 % während Versuch (b), um sich dann bei den Folgeversuchen bei Werten knapp über 70 % zu stabilisieren.After an initial current yield of 78% during test (a), this rose to 80% during test (b), in order to then stabilize at values just above 70% in the subsequent tests.
mit Zugabe von Bleisalzen und Salpetersäurewith the addition of lead salts and nitric acid
(a) 2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung und Zusatz von 0,022 g Blei(II)acetat-Dihydrat (0,5 ppm Pb⁺) und 0,86 ml 65 % HNO₃ (33 ppm).(a) 2418 g (19.2 mol) oxalic acid dihydrate in 24 l aqueous solution and addition of 0.022 g lead (II) acetate dihydrate (0.5 ppm Pb⁺) and 0.86 ml 65% HNO₃ (33 ppm ).
Nach Durchgang von 945 Ah wurde eine Probe zur Bestimmung der Stromausbeute genommen, der Katholyt in einen Sammelbehälter abgelassen, 1800 ml Wasser dem Anolyt zugegeben und eine frische Katholytlösung (b), entsprechend der Katholytlösung (a), eingefüllt und die vorstehend beschriebenen Verfahrensschritte dreimal (b), (c) und (d) wiederholt.After passing through 945 Ah, a sample was taken to determine the current efficiency, the catholyte was drained into a collecting container, 1800 ml of water was added to the anolyte and a fresh catholyte solution (b), corresponding to the catholyte solution (a), was poured in and the process steps described three times ( b), (c) and (d) repeated.
Der Verlauf der Stromausbeute war dabei wie folgt:
- (a) 86 %
- (b) 73 %
- (c) 70 %
- (d) 75 %
- (a) 86%
- (b) 73%
- (c) 70%
- (d) 75%
Endkatholyt im Sammelbehälter:
mit Zugabe von Salpetersäure, ohne Zugabe von Bleisalzenwith the addition of nitric acid, without the addition of lead salts
2418 g (19,2 Mol) Oxalsäure-Dihydrat in 24 l wäßriger Lösung und Zusatz von 0,86 ml 65 %iger wäßriger HNO₃2418 g (19.2 mol) oxalic acid dihydrate in 24 l aqueous solution and addition of 0.86 ml 65% aqueous HNO₃
Endkatholyt nach 945 Ah:
Dieses Beispiel zeigt, daß bei Zugabe von 65 %iger Salpetersäure auf eine Zugabe von Bleisalzen verzichtet werden kann, da eine ausreichende Menge an Pb aus dem Elektrodenmaterial in Lösung geht. In der wäßrigen Elektrolyselösung wurde eine Pb⁺-Konzentration von 0,5 ppm gemessen.This example shows that when 65% nitric acid is added, it is not necessary to add lead salts, since a sufficient amount of Pb from the electrode material dissolves. A Pb⁺ concentration of 0.5 ppm was measured in the aqueous electrolysis solution.
Katalytische Wirkung zugegebener MetallsalzeCatalytic effect of added metal salts
Vor jedem Versuch wurde die Kathode mit 2 l 10 % Salpetersäure etwa 10 Minuten bei etwa 25°C gespült.Before each experiment, the cathode was rinsed with 2 liters of 10% nitric acid for about 10 minutes at about 25 ° C.
Während des Versuchs wurde die Menge des kathodisch entwickelten Wasserstoffs gemessen.During the experiment, the amount of hydrogen developed cathodically was measured.
403 g (3,2 Mol) Oxalsäure-Dihydrat in 4000 ml Wasser
- a) ohne Zusatz eines Metallsalzes
- b) mit 1,46 g Blei(ll)acetat-Dihydrat
- c) mit 1,67 g Zinkchlorid
- d) mit 1,85 g Wismut(lll)nitrat-Pentahydrat
- e) mit 2,01 g Kupfer(ll)sulfat-Pentahydrat und
- f) mit 2,85 g Eisen(ll)-chlorid-Tetrahydrat
- a) without the addition of a metal salt
- b) with 1.46 g of lead (II) acetate dihydrate
- c) with 1.67 g zinc chloride
- d) with 1.85 g bismuth (III) nitrate pentahydrate
- e) with 2.01 g of copper (II) sulfate pentahydrate and
- f) with 2.85 g of iron (II) chloride tetrahydrate
Nach Durchgang von 171 Ah war die kathodisch entwickelte Wasserstoffmenge wie folgt:
- a) 23,6 l
- b) 13,1 l
- c) 11,8 l
- d) 18,7 l
- e) 5,4 l
- f) 17,6 l
- a) 23.6 l
- b) 13.1 l
- c) 11.8 l
- d) 18.7 l
- e) 5.4 l
- f) 17.6 l
Das Beispiel zeigt die katalytische Wirkung der zugegebenen Metallsalze unabhängig von der Säurekonzentration. Die Metallsalze bewirken eine deutliche Verringerung der Wasserstoffentwicklung im Vergleich zu Versuch a).The example shows the catalytic effect of the added metal salts regardless of the acid concentration. The metal salts bring about a significant reduction in the evolution of hydrogen compared to experiment a).
Die Elektrolyse wurde analog zu Beispiel 4 durchgeführt, jedoch wurde als Kathode eine Blei-Antimon-Legierung, Werkstoff-Nr. 2.3202 mit einem Bleigehalt zwischen 99,7 und 99,8 % eingesetzt.The electrolysis was carried out analogously to Example 4, but a lead-antimony alloy, material no. 2.3202 with a lead content between 99.7 and 99.8%.
Die Elektrolyse wurde nach Versuch (d) beendet.The electrolysis was stopped after experiment (d).
Der Verlauf der Stromausbeute war wie folgt:
- (a) 82 %
- (b) 71 %
- (c) 72 %
- (d) 72 %
- (a) 82%
- (b) 71%
- (c) 72%
- (d) 72%
Endkatholyt im Sammelbehälter
Die Elektrolyse wurde analog zu Beispiel 4 durchgeführt, jedoch wurde als Kathode eine Blei-Antimon-Legierung, Werkstoff-Nr. 2.3205 mit einem Bleigehalt zwischen 93 und 95 % eingesetzt.The electrolysis was carried out analogously to Example 4, but a lead-antimony alloy, material no. 2.3205 with a lead content between 93 and 95%.
Nach Versucn (c) wurde die Elektrolyse beendet.After experiment (c), the electrolysis was ended.
Der Verlauf der Stromausbeute war wie folgt:
- (a) 76 %
- (b) 73 %
- (c) 74 %
- (a) 76%
- (b) 73%
- (c) 74%
Endkatholyt im Sammelbehälter
Claims (13)
- A process for preparing glyoxylic acid by electrochemical reduction of oxalic acid in aqueous solution in divided or undivided electrolytic cells, wherein the cathode comprises from 50 to 99.999% by weight of lead, the missing proportion up to 100% by weight comprising at least one of the metals V, Sb, Ca, Sn, Ag, Ni, As, Cd and Cu, and the aqueous electrolysis solution in the undivided cells or in the cathode compartment of the divided cells in addition contains at least one salt of metals having a hydrogen overpotential of at least 0.25 V, based on a current density of 2500 A/m, and nitric acid, phosphoric acid, sulfuric acid, hydrochloric acid, trifluoroacetic acid, formic acid or acetic acid.
- The process as claimed in claim 1, wherein the cathode comprises from 66 to 99.96% by weight, preferably from 80 to 99.9% by weight, of lead and from 34 to 0.04% by weight, preferably from 20 to 0.1% by weight, of other metals.
- The process as claimed in claim 1 or 2, wherein the cathode, in addition to lead, comprises at least one of the metals Sb, Sn, Cu and Ag.
- The process as claimed in at least one of claims 1 to 3, wherein the cathode comprises 99.6% by weight of lead, 0.2% by weight of Sn and 0.2% by weight of Ag.
- The process as claimed in at least one of claims 1 to 3, wherein the cathode comprises from 93 to 95% by weight of lead and from 7 to 5% by weight of antimony.
- The process as claimed in at least one of claims 1 to 5, wherein the aqueous electrolysis solution contains from 10⁻⁶ to 10% by weight, preferably from 10⁻⁶ to 0.1% by weight, of the acid.
- The process as claimed in claim 6, wherein the acid is nitric acid.
- The process as claimed in at least one of claims 1 to 7, wherein the concentration of the salts of metals having a hydrogen overpotential of at least 0.25 V, based on a current density of 2500 A/m, in the aqueous electrolysis solution in the undivided cell or in the cathode compartment of the divided cell is from 10⁻⁶ to 10% by weight, preferably from 10⁻⁵ to 0.1% by weight, based on the total amount of the aqueous electrolysis solution.
- The process as claimed in at least one of claims 1 to 8, which comprises using, as the salts of metals having a hydrogen overpotential of at least 0.25 V, based on a current density of 2500 A/m, the salts of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, Tl, Ti, Zr, Bi, V, Ta, Cr, Ce, Co, Ni, preferably of Pb, Sn, Bi, Zn, Cd, Cr, or a combination thereof, especially Pb salts.
- The process as claimed in at least one of claims 1 to 9, wherein the current density is between 10 and 5000 A/m, preferably between 100 and 4000 A/m.
- The process as claimed in at least one of claims 1 to 10, wherein the electrolysis temperature is between -20°C and +40°C, preferably +10°C and +30°C, especially +10°C and +18°C.
- The process as claimed in at least one of claims 1 to 11, wherein the oxalic acid concentration in the electrolysis solution is between 0.1 mol per liter of electrolysis solution and the saturation concentration of oxalic acid in the electrolysis solution at the electrolysis temperature used.
- The process as claimed in at least one of claims 1 to 12, wherein, for the first batch in the case of a discontinuous mode of operation or, in the case of a continuous mode of operation, until approximately 90% of the electric charge to be transferred theoretically, based on the proportion of oxalic acid present in the electrolysis circulation at the start of the electrolysis, have passed through, the addition of the mineral acid or the organic acid is dispensed with.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4217338A DE4217338C2 (en) | 1992-05-26 | 1992-05-26 | Electrochemical process for the reduction of oxalic acid to glyoxylic acid |
DE4217338 | 1992-05-26 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0578946A2 EP0578946A2 (en) | 1994-01-19 |
EP0578946A3 EP0578946A3 (en) | 1994-02-09 |
EP0578946B1 true EP0578946B1 (en) | 1996-02-14 |
Family
ID=6459722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93108108A Expired - Lifetime EP0578946B1 (en) | 1992-05-26 | 1993-05-18 | Electrochemical process for reducing oxatic acid to glyoxylic acid |
Country Status (7)
Country | Link |
---|---|
US (1) | US5395488A (en) |
EP (1) | EP0578946B1 (en) |
JP (1) | JPH0657471A (en) |
AT (1) | ATE134224T1 (en) |
BR (1) | BR9302036A (en) |
CA (1) | CA2096901A1 (en) |
DE (2) | DE4217338C2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0834946B1 (en) * | 1996-10-02 | 2002-09-11 | Japan Storage Battery Company Limited | Valve regulated type lead-acid battery and producing method thereof |
CN1303252C (en) * | 2004-02-26 | 2007-03-07 | 华东理工大学 | Process of preparing ethyl aldehydic acid by electrolyzing |
CN100363538C (en) * | 2005-08-05 | 2008-01-23 | 山东建筑工程学院材料科学研究所 | Treating process for electrode activation in preparing glyoxalic acid by electrolytically reducing oxalic acid |
JP6219920B2 (en) * | 2013-02-28 | 2017-10-25 | 協和発酵バイオ株式会社 | Method for producing reduced glutathione |
WO2017154743A1 (en) | 2016-03-08 | 2017-09-14 | 国立研究開発法人科学技術振興機構 | Catalyst and use of same |
CN112023934B (en) * | 2020-10-09 | 2022-12-27 | 北京化工大学 | Preparation method of copper-indium bimetallic monatomic catalyst |
US20230416930A1 (en) | 2020-11-26 | 2023-12-28 | Avantium Knowledge Centre B.V. | Process and system for the electrochemical reduction of oxalic acid |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE347605C (en) * | 1920-01-25 | 1922-02-06 | Farbenfab Vorm Bayer F & Co | Process for the production of glyoxylic acid from oxalic acid |
BE787770A (en) * | 1971-08-20 | 1973-02-19 | Rhone Poulenc Sa | GLYOXYLIC ACID PREPARATION PROCESS |
BE787771A (en) * | 1971-08-20 | 1973-02-19 | Rhone Poulenc Sa | PREPARATION OF GLYOXYLIC ACID |
FR2208876B2 (en) * | 1972-12-01 | 1976-06-04 | Rhone Poulenc Ind | |
FR2587039B1 (en) * | 1985-09-10 | 1990-06-08 | Hoechst France | PROCESS FOR THE MANUFACTURE OF GLYOXYL OXIDE BY ELECTROCHEMICAL REDUCTION OF OXALIC ACID |
DE3607446A1 (en) * | 1986-03-07 | 1987-09-10 | Hoechst Ag | METHOD FOR THE DEHALOGENATION OF CHLORINE AND BROMIC ACID ACIDS |
ES2020475A6 (en) * | 1990-06-12 | 1991-08-01 | Ercros Sa | Method for producing glyoxylic acid by electroreduction with cathodic reactivation of oxalic acid |
-
1992
- 1992-05-26 DE DE4217338A patent/DE4217338C2/en not_active Expired - Fee Related
-
1993
- 1993-05-18 DE DE59301621T patent/DE59301621D1/en not_active Expired - Fee Related
- 1993-05-18 AT AT93108108T patent/ATE134224T1/en not_active IP Right Cessation
- 1993-05-18 EP EP93108108A patent/EP0578946B1/en not_active Expired - Lifetime
- 1993-05-24 BR BR9302036A patent/BR9302036A/en not_active Application Discontinuation
- 1993-05-24 US US08/066,533 patent/US5395488A/en not_active Expired - Fee Related
- 1993-05-25 JP JP5122838A patent/JPH0657471A/en not_active Withdrawn
- 1993-05-25 CA CA002096901A patent/CA2096901A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP0578946A3 (en) | 1994-02-09 |
JPH0657471A (en) | 1994-03-01 |
CA2096901A1 (en) | 1993-11-27 |
US5395488A (en) | 1995-03-07 |
BR9302036A (en) | 1993-11-30 |
EP0578946A2 (en) | 1994-01-19 |
DE59301621D1 (en) | 1996-03-28 |
ATE134224T1 (en) | 1996-02-15 |
DE4217338A1 (en) | 1993-12-02 |
DE4217338C2 (en) | 1994-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0627020B1 (en) | Electrochemical process for preparing glyoxylic acid | |
EP0012215B1 (en) | 2-Hydroxybutanesulfonic acid choline and its use as conducting salt | |
DE2936033C2 (en) | ||
EP0578946B1 (en) | Electrochemical process for reducing oxatic acid to glyoxylic acid | |
EP0308838B1 (en) | Process for the production of fluorinated acrylic acids and their derivatives | |
DE3607446C2 (en) | ||
DE2240731C3 (en) | Process for the production of glyoxylic acid | |
DE4217336C2 (en) | Electrochemical process for the production of glyoxylic acid | |
EP1179612B1 (en) | Process for the electrochemical reduction of organic compounds. | |
DE4205423C1 (en) | Electrochemical process for the production of glyoxylic acid | |
DE2124045A1 (en) | Process for the electrolytic production of pure chlorine, hydrogen and pure concentrated alkali metal phosphate solutions and an electrolysis cell for carrying out the process | |
DE4219758A1 (en) | Process for the electrochemical production of dicarboxylic acids | |
WO2016059102A1 (en) | Production of vanadyl sulfate from vanadium pentoxide | |
EP0293856B1 (en) | Process for preparation of fluorinated ether | |
EP0326855B1 (en) | Process for manufacturing fluoromalonic acid and its derivatives | |
WO1992005299A1 (en) | Process for producing halogenated acrylic acids | |
DE3443338C2 (en) | Cathode for the production of electrolyte manganese dioxide | |
DE2642496C2 (en) | Process for the preparation of p-hydroxymethylbenzoic acid | |
EP0415189A2 (en) | Process for the preparation of aminbenzylalcohol | |
EP0814906B1 (en) | Process for preparing phosphorus-doped silver catalysts | |
DE2260658C2 (en) | ||
DE1903656C3 (en) | Electrolytic process for the electrolysis of an aqueous sulfate solution | |
DE3419817C2 (en) | ||
EP0029083A1 (en) | Process for the simultaneous production of nitrogen monoxide and alkali hydroxide from aqueous solutions of alkali nitrite by electrolysis | |
DE2057519B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
17P | Request for examination filed |
Effective date: 19940610 |
|
17Q | First examination report despatched |
Effective date: 19941223 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 134224 Country of ref document: AT Date of ref document: 19960215 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59301621 Country of ref document: DE Date of ref document: 19960328 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19960411 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19960417 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19960424 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19960430 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960510 Year of fee payment: 4 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960502 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19960715 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19970518 Ref country code: AT Effective date: 19970518 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970531 Ref country code: BE Effective date: 19970531 |
|
BERE | Be: lapsed |
Owner name: HOECHST A.G. Effective date: 19970531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970518 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050518 |